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‘‘If you don’t understand a problem from a Bayesian decision
theory point of view, you don’t understand the problem and
trying to solve it is like shooting at a target in the dark.’’
(Hermann Chernoff, from a personal communication to Martin
McIntosh, quoted in [2, p. 6])
‘‘Give me a place to stand, and I shall move the earth.’’ (Sentence
attributed to Archimedes [e.g., 3,4])1

1. Introduction

Academic researchers and practitioners in forensic science
and other fields, such as medicine and the law, maintain
divergent views about ‘individualization’, that is the reduction
of a pool of potential donors of a forensic trace to a single source
[5]. Viewpoints differ with respect to the definition, the scope

and the practical feasibility of individualization [1,6,7]. As a
hallmark in the last decade, the report of the US National
Research Council in 2009 [8] considerably stirred up the
discussion by drawing a rather critical picture of the current
state of the field. It triggered diverse reactions from institutions,
practitioners and scholars, inspired scientific research and
received attention in courtrooms in the US and beyond [9],
but the situation as of today remains ambivalent. While it is
largely uncontroversial that forensic traces such as fingermarks
and toolmarks can have – depending on their quality – a
considerable potential to help discriminate between competing
propositions regarding common source, and that there are
practitioners who are able to demonstrate reliable practice in
trials under controlled conditions, the field’s main struggle
remains conceptual. This touches on two fundamental issues:
first, the question of what strength is to be assigned to a
comparison conducted in a given case, and second how
particular conclusions can be justified through an argument.

The former of these two issues, value of evidence, is not dealt
with in this paper. In forensic science, value of evidence is
defensibly approached in terms of likelihood ratios or, more
generally, Bayes factors, that feature a unified underlying logic
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A B S T R A C T

Throughout forensic science and adjacent branches, academic researchers and practitioners continue
to diverge in their perception and understanding of the notion of ‘individualization’, that is the claim to
reduce a pool of potential donors of a forensic trace to a single source. In particular, recent shifts to refer
to the practice of individualization as a decision have been revealed as being a mere change of label [1],
leaving fundamental changes in thought and understanding still pending. What is more, professional
associations and practitioners shy away from embracing the notion of decision in terms of the formal
theory of decision in which individualization may be framed, mainly because of difficulties to deal with
the measurement of desirability or undesirability of the consequences of decisions (e.g., using utility
functions). Building on existing research in the area, this paper presents and discusses fundamental
concepts of utilities and losses with particular reference to their application to forensic individualization.
The paper emphasizes that a proper appreciation of decision tools not only reduces the number of
individual assignments that the application of decision theory requires, but also shows how such
assignments can be meaningfully related to constituting features of the real-world decision problem to
which the theory is applied. It is argued that the decisonalization of individualization requires such
fundamental insight to initiate changes in the fields’ underlying understandings, not merely in their
label.
! 2016 The Authors. Published by Elsevier Ireland Ltd. This is an open access article under the CC BY-NC-

ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1 The relevance of this quote in the context of decision theory and forensic
individualization will be discussed in Section 4 in this paper.
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[10–13], although they may take different forms and degrees of
technicality according to the domain of application (such as
fingermarks [e.g., 14], DNA [e.g., 15], handwriting [e.g., 16], etc.).
This paper concentrates on the latter of the above two issues – the
justification of conclusions – by focusing on one recent movement
in response to the NAS report, exemplified by the fingerprint
profession. This movement gravitates around the notion of
‘decision’ as mentioned in the title of the document ‘Guideline
for the Articulation of the Decision-Making Process for the
Individualization in Friction Ridge Examination’2 issued by the
Scientific Working Group on Friction Ridge Analysis, Study and
Technology (SWGFAST).3 In Section 3.1, this document acknowl-
edges that ‘‘(. . .) it is now recognized that our conclusions are
more appropriately expressed as a decision, rather than proof’’,
and in Section 10.2.2, the following definition is given: ‘‘Individu-
alization is the decision by an examiner that there are sufficient
features in agreement to conclude that two areas of friction
ridge impressions originated from the same source.’’ [italics added
by the authors] This prominent use of the term decision
contributes to its more widespread adoption as standard
terminology by many forensic practitioners across the so-called
identification branches.

The field’s shift to a new term, decision, remains dubious,
however. In one of the most meticulous studies of the fingerprint
profession’s recent ‘decision shift’, Cole [1] reveals4 that the term
decision appears to be used merely as a new label without any
fundamental change in conceptual understanding or actual
practice. Most interestingly, in exchange with Cole, SWGFAST
declared that it does not rely on decision theory as endorsed in
papers such as [17,18], despite giving reference to such publica-
tions. While this can be seen as a deliberate choice that is open to
any discussant of the topic, it is worth mentioning that such a
choice is of no effect to the validity of decision theory itself, in
particular its logic. Also, it is of no detriment to the interest that one
may take in comparing current practices of the profession with the
prescriptions that derive from (Bayesian) decision theory. The
focus on such prescriptions on how to act under uncertainty
represents an analytical approach to the notion of decision and is to
be distinguished from the descriptive use of this notion for people’s
observable (decision) behaviour, intuitive or otherwise. In this
article, we will concentrate on the analytical and normative
approach to the notion of decision and argue that it can foster
progress in fundamental understanding of core forensic science
topics [e.g., 19] and, thus, should drive what we will propose to call
the decisionalization (of individualization).

Besides the extreme position of those who do not endorse
decision theory, there are others who are sensitive to the theory’s
logic but still refrain from applying the approach on grounds that
they don’t ‘know’ what numbers they ought to use in the various
formulaic expressions, or what those numbers actually mean. In
Bayesian decision theory, the numbers refer to probabilities and
utilities5 (or, alternatively, losses). While the meaning of proba-
bilities in forensic science is well established, in particular the
subjectivist belief type interpretation [18,20,21], the notion of
utility is more recent and less well known [22,23].

Thus, in the current state-of-art, there is room for the study and
discussion of the constituting elements of Bayesian decision theory
– especially the utility component – from a forensic science point
of view, which is the main aim of this paper. Section 2 recalls the
principal elements of classical Bayesian decision theory, applied to
the ‘problem’ of individualization, whereas Section 3 will focus on
the choice of the utility scale and the subsequent derivation of the
utility function. At this juncture, the paper will seek to justify the
standpoint that the numbers to be assigned to utilities are not
undefinable, and hence arbitrary, as claimed by critics, but can be
given a clear interpretation. Most importantly, we will emphasize
that this interpretation can embrace defining elements of the
individualization task sketched at the outset, which represents a
strong argument in favour of the relevance of Bayesian decision
theory for inference and decision in forensic science. We will also
point out that a close look at the decision theoretic formulation of
individualization, under modest and reasonable assumptions,
reduces the number of assessments that require the attention of
the analyst. Section 4 will present a general discussion of the
foregoing analyses and converge to conclusions highlighted in
previous works, in particular the importance of understanding the
normative character of the theory [24]. The discussion in Section 4
will also emphasize the natural role of traditional expressions of
weight of evidence, in particular likelihood ratios, in the decision
framework and the feasibility of illustrating the logic of Bayesian
decision theory through fundamental insights from other fields,
such as physics, that can be traced back to Archimedes in Ancient
Greece. Readers well acquainted with decision theory may skip
Section 2, but they should take notice briefly of the notation
introduced there. Conclusions are presented in Section 5.

2. The Bayesian decision theoretic answer to the ‘problem’ of
individualization

2.1. The basic elements of the decision problem

In Bayesian decision theory, the basic components of a decision
problem are formalized in terms of three elements. Consider these
elements in the context of forensic individualization as defined
at the beginning of this paper (Section 1). In particular, suppose
that there is trace material collected on a crime scene, such as a
fingermark, and reference material is available from an individual
(the suspect), considered to be a potential source of the fingermark.
After comparative examinations between the fingermark and the
fingerprints taken from the suspect under controlled conditions,
individualization – our decision problem – may be brought up as
an issue.6

The first decision theoretic element are the feasible decisions d,
which define the decision space. To keep the discussion on a
moderately technical level, let there be only two decisions, d1,
short for ‘individualize’, and d2, short for ‘not individualize’. For
a development with the decision ‘not individualize’ broken down
to the decisions ‘exclusion’ and ‘inconclusive’ see, for example,
[17,19]. Note that the simple negation of the first decision is rarely
a concise approach because, generally, there are explicit alter-
natives available and their respective merit ought to be appre-
ciated [26]. Stated otherwise, the alternative must specify what to
do if not individualizing.

When a choice has to be made, it is usually not known which
state of nature actually holds. A second element, thus, is the list
of uncertain events, also called states of nature, denoted u. Clearly,
in an individualization scenario, the states of nature that are

2 Version 1.0, available at http://www.swgfast.org/documents/articulation/
130427_Articulation_1.0.pdf, page last accessed 15 July 2015.

3 The discussion in this paper will mainly refer to the formative documents of
SWGFAST in order to acknowledge the original source. Notice, however, that
SWGFAST has undergone changes and became the Subcommittee on Friction Ridge,
which is part of the Organization of Scientific Area Committees (OSAC).

4 Cole’s study [1] is based, in part, on SWGFAST replies on comments submitted
during a public consultation process for one of its guideline drafts.

5 A utility, in the context of the current discussion, is an expression of an
individual’s desirability for a given consequence, that is a result of a decision in the
light of a particular state of nature. Section 2 will elaborate further on these terms.

6 Note that another decision, not studied in this paper, relates to the question of
whether or not to search for fingermarks on a receptor surface. See [25] for further
details.
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uncertain to the decision-maker7 are those formulated more
commonly in terms of the propositions ‘the person of interest is the
source of the crime mark (or, trace)’ (u1) and ‘an unknown person
is the source’ (u2). The couple {u1, u2} forms the set of possible
states of nature denoted Q. Taking a decision di in the light of a
state of nature uj leads to a consequence Cij. The set of all
consequences is written C, for short. It represents the third element
of the decision problem. Using this notation, C11 is the consequence
of an individualization (d1) when the suspect is truly the source of
the fingermark (u1) and C12 is the consequence of the same decision
when the suspect is not the source (u2). Thus, C11 and C12 represent
correct and false individualizations, respectively. Analogously, C21

and C22 denote a missed individualization and a correct non-
individualization,8 respectively. Note also that only states of nature
are uncertain, whereas consequences are not: the combination of
a state of nature with a particular action leads to a consequence
that is – in our case – sure.

Clearly, if the actual state of nature would be known with
certainty, that is whether or not the suspect is the source of the
crime mark, there would be no decision problem. One could
directly choose the decision to individualize (d1) if the suspect is
the source of the crime mark, and choose not to individualize (d2)
otherwise. In both cases, one would reach correct conclusions.
When it is not known which state of nature actually holds, it may
not be obvious to decide at a glance. Notwithstanding, it is of
obvious interest to make an optimal decision given the elements of
the decision problem outlined above. What is needed, thus, are
decision criteria (Section 2.2) that incorporate the assessment of
both the desirability (undesirability) of possible consequences and
also uncertainty about which state of nature actually holds, to
compare the merit of available decisions and to avoid incoherent
proceedings.

2.2. The Bayesian decision rule

The Bayesian decision theoretic approach to the problem of
decision is based on two additional concepts, besides the
elements introduced in the previous section. The first is a
measure of uncertainty about the states of nature, given by
probability. In the current discussion, the states of nature u are
discrete, hence a probability mass function Pr(u j I) is applicable,
with I denoting the information available at the time when the
decision is to be taken. The second concept is a measure of the
desirability of consequences. This measure takes the form of a so-
called utility function, denoted U(!). With the utility function, one
assigns utility values to each consequence on a numerical scale.
When there is uncertainty about the states of nature, one can "
for each decision " multiply the desirability of each consequence
with the probability of obtaining that consequence, as given by
the probability of the state of nature of interest, and then take the
sum of these products. The result is known as the expected utility
(EU) of the decision. For example, the expected utility of the
decision to individualize (d1) is equal to the utility of a correct
individualization U(C11) multiplied by Pr(u1 j I), the probability
that the suspect truly is the source, plus the utility of a false
identification U(C12), multiplied by the probability that the

suspect is not the source of the mark, Pr(u2 j I):

EUðd1Þ ¼ UðC11ÞPrðu1jIÞ þ UðC12ÞPrðu2jIÞ: (1)

The expected utility of the alternative action, not identifying the
suspect, is obtained with the same procedure:

EUðd2Þ ¼ UðC21ÞPrðu1jIÞ þ UðC22ÞPrðu2jIÞ; (2)

where U(C21) and U(C22) are, respectively, the utilities of a missed
individualization and a correct non-individualization (Table 1).
The latter two utilities are weighted, as for EU(d1), by the
probabilities Pr(u1 j I) and Pr(u2 j I), the suspect being and not
being the source of the mark.

Eqs. (1) and (2) quantify the overall value that one may expect
to obtain as a consequence of taking one or the other of the
available decisions. These expected utilities characterize the
available decisions, allows one to compare them and formulate
a decision rule: taking the decision with the maximum expected
utility. Thus, if one does not know which state of nature actually
holds, and hence it is not trivial to tell which decision to take in
order to obtain the best consequence, the reasonably best way to
proceed is to choose the decision that has the highest expected
utility. This is the general criterion referred to as maximum
expected utility (MEU) in which one selects that action for which
one has the highest expected utility [e.g., 26].

The probabilities Pr(u1 j I) and Pr(u2 j I) denote the decision-
maker’s personal beliefs about the states of nature, given all the
information available, at the time when the decision must be
made. These probability assignments are the same for both Eqs. (1)
and (2), and any changes9 in their magnitude may affect the
expected utilities of the decisions. Hence, they are one source that
impacts on the decision that has the maximum expected utility.
The second obvious influence stems from the utilities: they are
distinct terms in Eqs. (1) and (2). To ensure an informed and
meaningful use of the Bayesian decision rule, the question of how
to understand these utility terms, and assign values to them
represents a relevant topic of inquiry.

3. The choice of a scale for the valuation of consequences

3.1. The utility view

Table 1 summarizes the main components of the individualiza-
tion scenario in decision theoretic terms. To operationalize Eqs. (1)
and (2), that is finding the decision with the maximum expected
utility, the decision analyst must somehow conceive of a way to
express the desirability of the various consequences Cij. In Table 1,
the desirability (or, preference) is expressed, more formally, in
terms of utilities U(Cij). A related concept is ‘loss’, considered later
in Section 3.3. It is worth mentioning that decision theory merely
says that utilities are part of the formulation of the problem, and

Table 1
A decision matrix using utilities with d1 and d2 denoting, respectively, the decisions
to individualize and not to individualize a suspect. The states of nature u1 and u2 are,
respectively, the suspect is the source of the crime mark and the suspect is not the
source of the crime mark. The notation U(Cij) with i, j = {1, 2} represents the utility of
the consequence Cij when taking decision di and the state of nature uj holds.

States of nature: Suspect is . . . the source
(u1)

. . . not the
source (u2)

Decisions Individualize (d1) U(C11) U(C12)
Do not individualize (d2) U(C21) U(C22)

7 Throughout this paper, terms such as ‘decision-maker’ and ‘decision analyst’ are
used interchangeably. In fact, the theory presented is entirely general and is
applicable by any person facing a decision problem in their own way regarding, in
particular, their beliefs about states of nature and preferences among conse-
quences.

8 The term ‘non-individualization’ may seem awkward, but it is a consequence of
the fact that the decisions other than an individualization are not specified in
further detail in this discussion.

9 Note that, as evidence E accumulates, Pr(uj j I) becomes Pr(uj j E, I) through
Bayes’ theorem.
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how utilities are connected with the other elements of the decision
theoretic formulation, but it does not say how numerical assign-
ments for utilities ought to be made. This seems to be a major
disturbing factor in the application of decision theory in forensic
science. Below, we present several considerations that help
substantiate utility assignments in a way that is tailored to the
situation faced by the forensic decision analyst.

Following an approach that goes from the general to the
particular, one does not need to start by focusing on any particular
values. Indeed, a common claim among forensic practitioners is
that utilities cannot be assigned in principle, so it appears relevant
to ask: ‘Can we really tell nothing about the consequences Cij?’ This
seems a restrictive view because people can reasonably be
expected to have, at least, an ordering of the various consequences.
That is, it should be possible to designate at least one of the
consequences as the most favourable, and one that is the least
favourable. Clearly, in a decision scenario regarding individualiza-
tion, correct consequences C11 (individualizing if the suspect is the
source of the trace) and C22 (not individualizing if the suspect is not
the source of the trace) are the best consequences. Conversely, no
one would wish a suspect to be wrongly associated with the trace,
hence C12, a false individualization, is the worst consequence.
These considerations leave us with only one intermediate
consequence, C21, a missed individualization. Thus, a question to
be dealt with is how to position this consequence with respect to
the best and the worst consequences, respectively.

Turning now to the issue of numbers, start by considering how
to assign numbers for the best and the worst consequence,
respectively, that is fixing the maximum and the minimum of scale
of preferences. To deal with this question, one can invoke a
property of the measurement procedure for subjective utilities
developed by Ramsey [27] and von Neumann and Morgenstern
[28]: their utility functions are unique up to linear transformations.
This means that if U(!) is a utility function, then aU(!) + b is another
utility function which maintains the same ordering as U(!),
changing only the origin of the utility measure [e.g., 29].
Practically, this means that the maximum and the minimum of
the utility scale can be fixed at one and zero, respectively. More
formally, U(C11) = U(C22) = 1 and U(C12) = 0. Hence, one can see that
all but one cell in the decision matrix (Table 1) are already assigned
through the sole effort of specifying a qualitative ordering of
preference among consequences and choosing the endpoints of the
preference scale. The latter is greatly facilitated by the function’s
mathematical property of being invariant under linear transfor-
mations. The former – qualitative ordering – should be largely
uncontroversial and intersubjectively agreeable.

To assign a value to U(C21), the remaining intermediate
consequence, the procedure for subjective utility measurement
proceeds as follows (Fig. 1). Start by considering the intermediate
consequence, a missed individualization (C21), compared to the
gamble in which the best consequence (e.g., C11, a correct

identification) is obtained with probability a and the worst
consequence (C12, a false individualization) is obtained with
probability 1 " a. To render this probability a explicit, one can
consider, for example, a so-called ‘probability wheel’ [e.g., 30] as
shown in Fig. 1, where the spun of a pointer can stop in either of
two sectors with angles that correspond to the ratio a : (1 " a). A
common alternative procedure to measure a consists of imagining
the drawing a ball from a urn with balls that have one of two
colours (e.g., red and white) [e.g., 31], and where the drawing of a
coloured ball depends on the proportion of red balls, which is to be
equated with a. Doing so, the last step of the procedure (Fig. 1)
consists of finding one’s probability a that makes one indifferent
between the sure consequence C21 and the gamble, that is:

C21' aC11 þ ð1"aÞC12: (3)

When relation (3) is satisfied, it can be proved that the utility of C21

can be derived accordingly as [32]:

UðC21Þ ¼ aUðC11Þ þ ð1"aÞUðC12Þ: (4)

However, as the best consequence C11 has utility one and the worst
consequence C12 utility zero, one immediately obtains
U(C21) = a. Thus, according to this scheme, the numerical measure
of the desirability of the intermediate consequence C21 equals the
probability a that could lead one to the best consequence (e.g., a
correct individualization) and, conversely, with probability 1 " a
to be worst consequence (i.e., false individualization).

3.2. Discussion of the utility approach

The utility view presented in the previous section involves the
consideration of one’s probability for a false individualization
(1 " a). This is a personal probability defined as part of the utility
elicitation procedure. It is important to emphasize that it is
conceptually different from – and ought not to be confounded with
– one’s probability for the proposition that the suspect is the source
of the trace material, denoted Pr(u1 j I) in Section 2.2.

It might be considered objectionable to measure the desirability
of a missed individualization (i.e., intermediate consequence C21)
in terms of the probability for obtaining the best consequence
(correct individualization) and, conversely, the expression and
acceptance of a probability for a false individualization. In
particular, it might be argued that it is inacceptable to maintain
such a probability in principle and that, as a consequence, one
should require a = 1. That is, one ought to be indifferent between
the sure consequence C21 and the imaginary gamble only if the
latter does not lead to a false individualization, a situation in which
(1 " a) = 0. However, consider what happens if one assigns
U(C21) = a = 1. The expected utility of decision d2, not individual-
izing the suspect, would be one (Eq. (2)), whatever the probability
Pr(u1 j I). Hence, it would always be greater than the expected
utility of decision d1, given by EU(d1) = Pr(u1 j I) (Eq. (1)). But if it is

Sure cons equ ence :

Interme diate   con sequ ence  
(C21 : miss ed ind ividualization)

Best con sequ ence
(C11: correct   ind ividualization)

Wor st con sequ ence  
(C12 : fal se ind ividualization)

Gam ble :

1-

1

2

Adjus t probability 3

1-

Fig. 1. Illustration of the procedure for subjective utility elicitation in terms of three steps: the sure consequence for which a utility is to be elicited, a gamble in which the
best and the worst consequences are obtained with probabilities a and 1 " a respectively, adjustment of the probability a to the point at which one is indifferent between
the sure consequence and the gamble.
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always the case that EU(d2) ( EU(d1), then this means that one will
always decide d2, that is not individualize. Practical decision-
makers do however make individualizations. Hence, their utility
U(C21) for a missed identification exists and is clearly smaller than
one, and so is their probability a which makes the imaginary
gamble acceptable to them.10

Presumably, the utility U(C21) = a takes a value that is closer to
the upper limit of the 0–1 utility scale, than to the lower limit. This
follows from the view that the probability (1 " a) for the worst
consequence (a false individualization) in the imaginary gamble
should be clearly low. How low is a matter of judgment in the
realm of the individual decision-maker. This conclusion might
seem unsatisfactory for the practical decision-maker who requires
an explicit assignment in order to determine the decision with
maximum expected utility (Eqs. (1) and (2)). One way to approach
this conceptual difficulty is to relate U(C21) = a to the decision-
maker’s beliefs about the target propositions u1 and u2. For
example, the decision maker might ask:

Given my current state of belief about the truth or otherwise of
u1, what ought to be my utility for a missed individualization,
U(C21), in order for an individualization (decision d1) to be
warranted in decision theoretic terms (i.e., the maximum
expected utility principle)?

More formally, one needs to inquire about the values of U(Cij) so
that EU(d1) > EU(d2), that is

UðC11ÞPrðu1jIÞ þ UðC12ÞPrðu2jIÞ > UðC21ÞPrðu1jIÞ

þ UðC22ÞPrðu2jIÞ: (5)

By rearranging terms one obtains

Prðu2jIÞ
Prðu1jIÞ

<
UðC11Þ"UðC21Þ
UðC22Þ"UðC12Þ

: (6)

Note that whenever a 0–1 scale is chosen for the utility function,
the utilities for the best and the worst consequence (C11 and C12)
are assigned as, respectively, one and zero (see also Section 3.1)
and Eq. (6) reduces to

Prðu2jIÞ
Prðu1jIÞ

< 1"UðC21Þ ¼ 1"a: (7)

This result reveals two points. First, if the odds against u1 are
greater than 1, that is Pr(u2 j I) > Pr(u1 j I), then the inequality can
not be satisfied since the utility U(C21) should be negative, that is
beyond the 0–1 utility scale (see also Fig. 2). Hence, decision d1

cannot be the preferred decision in this framework for probabili-
ties Pr(u1 j I) below 0.5. This is in line with the general idea that one
would not be prepared to decide in favour of a proposition that
does not have the preponderance of probability. The second point
is that, for d1 to be the preferred decision, the utility U(C21) must
not exceed one minus the odds against u1. That is, rewriting Eq. (7):

1"Prðu2jIÞ
Prðu1jIÞ

> UðC21Þ: (8)

In principle, from the above, the scheme allows d1 to be the
preferred decision for probabilities even slightly above 0.5, but this
would result in a rather low limiting value for U(C21). This may
conflict with one’s assessment of U(C21) = a through Eq. (4), which
involves the probability 1 " a for a false identification. For
example, if one’s probability Pr(u1 j I) is only 0.55, then U(C21)
must be smaller than 1 " (0.45/0.55) = 0.18 in order for d1 to be the
preferred decision (see dotted line in Fig. 2). However, from Eq. (4),
a = 0.18 implies a probability of 1 " 0.18 = 0.82 for a false
identification, which is considerable. Thus, in order to decide d1,
the probability of u1 ought not only be higher than 0.5, as noted in
the previous paragraph, but clearly preponderant (i.e., values close
to one). Generally, as Pr(u1 j I) tends to one, the upper limit of
U(C21) approaches one, too. This should resolve possible conflicts
with the preferences expressed through Eq. (4). These tendencies
seem entirely reasonable.

An essential conclusion from the above is that any decision to
individualize (d1) made in a state of belief Pr(u1 j I) > 0.5 can be
reconstructed in terms of an assignment of a utility value a, smaller
than one, to the intermediate consequence ‘missed individualiza-
tion’ which, in turn, is related to a probability for a false
identification (1 " a) greater than zero.

3.3. The loss approach

The choice of the utility scale considered throughout
Sections 3.1 and 3.2 is subtle and conceptually intricate. To find,
for example, the decision with maximum expected utility, one
needs to consider one’s probability for a false identification (1 " a),
but this value does not correspond to the probability that the
decision to individualize (d1) in the case at hand is erroneous.
Clearly, the latter is given by Pr(u2 j I), the probability of the trace
not coming from potential source. Note, in particular, that in order
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Fig. 2. Representation of the maximum value that the utility of a missed individualization, U(C21), may take (bold solid line), as a function of the probability that the potential
source is the true source (Pr(u1 j I)), in order for the decision to individualize (d1) to be the preferred decision. This maximum value is given by 1 minus the odds in favour of u2

(Eq. (8)) and is strictly smaller than Pr(u1 j I) (dashed line). The dotted line illustrates an example for a case in which Pr(u1 j I) = 0.55 as discussed in the main body of the text.

10 This argument has also been presented in the context of legal decisions of guilt,
regarding the utility assessment for a false acquittal [33]. Here, the above result
EU(d2) > EU(d1) implies that acquittals (decision d2) are to be preferred to
convictions (decision d1), which would not reflect actual judicial practice.
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to individualize (decision d1) in a given state of uncertainty about
the true state of affairs (u), one’s probability for a false
identification (1 " a), as defined in the elicitation procedure
(Fig. 1), must actually be greater than Pr(u2 j I). These distinctions
may not be easy to accommodate.

An alternative way to specify the decision matrix is to valuate
consequences Cij in terms of losses, denoted L(Cij) in Table 2. In this
view, the best consequences – correct individualization (C11) and
correct exclusion (C22) – are assigned the value zero: no loss is
associated to these because they do not represent undesirable
consequences. In turn, let the consequences C12 (false individuali-
zation) and C21 (missed individualization) of an erroneous decision
have values different from zero. For the time being, let particular
numerical assignments aside and focus only on the general
properties of the development. In fact, the very advantage of the
loss function considered in the application here is that explicit
numerical assignments are not needed in order to further the
understanding of forensic individualization from a decision
analytic point of view.

Start by rewriting Eqs. (1) and (2) in terms of losses instead of
utilities. This leads to the expected loss EL of decisions d1 and d2,
respectively:

ELðd1Þ ¼ LðC11ÞPrðu1jIÞ þ LðC12ÞPrðu2jIÞ; (9)

ELðd2Þ ¼ LðC21ÞPrðu1jIÞ þ LðC22ÞPrðu2jIÞ: (10)

The decision criterion now is to choose the option that minimizes
expected loss. For example, individualization (d1) is the preferred
decision if its expected loss is lower than that of not individualizing
(d2), that is EL(d1) < EL(d2). To determine the conditions under
which this is the case, it is necessary to take a closer look at the
assignments L(C12) and L(C21) for adverse consequences. One can
concentrate on these because the other two losses L(C11) and L(C22)
are zero and cancel out. Writing EL(d1) < EL(d2) in full length and
eliminating the terms involving the zero losses, L(C11) and L(C22),
leads to the following:

LðC12ÞPrðu2jIÞ < LðC21ÞPrðu1jIÞ;
Prðu1jIÞ
Prðu2jIÞ

>
LðC12Þ
LðC21Þ

:
(11)

Eq. (11) states that the decision to individualize (d1) is to be
preferred if and only if the odds in favour of u1 (the proposition
according to which the trace comes from the potential source)
is greater than the ratio of the losses L(C12) and L(C21) for,
respectively, a false individualization and a missed individuali-
zation.

3.4. Discussion of the loss approach

It is worth mentioning that Eq. (11) is a standard result in
Bayesian decision theory regarding the choice between any two
rival theories or models [e.g., 29].11 For example, it is readily seen
that if decisions for the wrong state of nature (i.e., consequences

C12 and C21) are considered equally undesirable, that is assigned
the same loss value, then the Bayesian decision rule is to decide
d1 if and only if u1 is considered more probable than u2. This is
sometimes illustrated with reference to the civil process where the
result would be to decide for a party if the probability of their ‘case’
is larger than 0.5, and hence the probability of the adversary party’s
case is smaller than 0.5, and deciding wrongly for either side is
considered equally undesirable [e.g., 35].

The comparison implied by Eq. (11) is essentially qualitative
and reduces to a single factor, call it x for simplicity, that states how
much greater one loss value is compared to the other. Assuming
that a false identification (C12) is worse that a missed individuali-
zation (C21), one has L(C12) > L(C21) and one can define

LðC12Þ ¼ xLðC21Þ; for x > 0: (12)

Eq. (12) shows that the central factor is x and that for a given x,
using the 0–1 scale, one can set L(C12) – the loss associated with the
worst consequence – and then divide by x to get immediately
L(C21), or alternatively set L(C21) first and then get L(C12) through
multiplication by x. The practical conclusion thus is that decision-
makers only need to specify how much worse they consider a wrong
identification compared to a missed individualization.

Example. Suppose that a decision-maker considers a wrong
individualization (C12) fifty12 times worse than a missed individu-
alization (C21). So x in Eq. (12) is 50. To individualize with such a
preference structure, Eq. (11) requires the decision-maker to have
odds of at least 50 in favour of u1 (the suspect being the source
of the crime mark), which corresponds to a probability Pr(u1 j I) of
approximately 0.98.

Example. Suppose that the decision-maker’s odds for the
proposition u1 (the suspect being the source of the crime mark)
over u2 (an unknown person is the source of the crime mark) is
1000, corresponding to a probability Pr(u1 j I) of 0.999. Given this
state of beliefs about u1 and u2, the decision criterion of Eq. (11)
entitles the decision-maker to individualize (decision d1) if and
only if the loss L(C12) for a wrong individualization is less than
one thousand times greater than the loss L(C21) of a missed
individualization.

Note that the factor x is sometimes thought of in terms of
Blackstone’s ‘‘it is better that ten guilty persons escape, than that
one innocent suffer’’ [36, at p. 352]. However, as Kaye [35] notes,
this sentence expresses actual error rates rather than a ratio of
losses (i.e., relative losses) for a given case, represented by the
righthand side of Eq. (11).

While the interpretation of the loss values through Eq. (12) is
intuitively clear, it is still of interest to consider the relationship
between loss and utility values so as to ensure overall coherence
of the decision-maker’s preference structure. A standard way to
obtain a loss function is to consider, for each state of nature u (i.e.,
the columns in Table 1), the difference between the utility of the
best consequence under the given state of nature and the utility of
a consequence of interest. The loss assigned to a given consequence
thus expresses the penalty for not choosing the best decision under
the state of nature at hand. More formally, the loss for any
consequence Cij can be written as L(Cij) = max{U(C{!}j)} " U(Cij).
Table 3 shows how to derive loss values from the utilities assigned
in Section 3.1. For a given state of nature uj, one starts by
identifying the maximum utility (e.g., 1 under u1). Next one
subtracts, for each consequence, the utility U(Cij) of the conse-
quence. This will transform utilities of 1 for the best consequences
to losses of 0, expressing the view that no loss is incurred by taking
the best action. Note that the resulting loss function is closely
related to the utility function in the sense that it is confined to

Table 2
Reformulation of Table 1 in terms of losses L(Cij), with i, j = {1, 2}, assigned to
consequences Cij resulting from decisions di under possible states of nature uj.

States of nature: Suspect is . . . the source
(u1)

. . . not the
source (u2)

Decisions Individualize (d1) L(C11) L(C12)
Do not individualize (d2) L(C21) L(C22)

11 See [34] for an application of this result for Bayesian classification in forensic
science. 12 Readers are invited to consider their own numbers.
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values in the interval between 0 and 1. It is also worth noting that
the utility of the intermediate consequence C21 (missed individu-
alization), that is the probability a (Fig. 1), becomes the loss
(1 " a), which has been interpreted as the probability of a false
individualization in the utility elicitation procedure (Section 3.1).

With the above loss structure in mind, one can again ask a
question similar to the one considered in Section 3.2:

Given my current state of belief about the truth or otherwise of
u1, what are the logical constraints on my loss for a missed
individualization, L(C21), in order for an individualization
(decision d1) to be warranted in decision theoretic terms (i.e.,
the minimum expected loss principle)?

With the losses assigned in Table 3, one can rewrite Eq. (11) as:

Prðu1jIÞ
Prðu2jIÞ

> 1=ð1"aÞ

from which it follows that

Prðu2jIÞ
Prðu1jIÞ

< ð1"aÞ: (13)

In words, thus, the decision to individualize (d1) ought to be
selected if one’s probability for a false individualization (1 " a) is
greater than one’s odds against u1. Fig. 3 provides a visual summary
of this condition and also illustrates that (1 " a) ought to be strictly
greater than Pr(u2 j I). The figure also illustrates a situation in
which one’s probability for u1 is rather moderate, that is 0.55,
which would require a probability for a false identification (1 " a)
(in the gamble defined as in Fig. 1) of at least 0.45/0.55 = 0.82
(dotted line) in order for the decision to individualize (d1) to be the
preferred decision according to the principle of minimizing
expected loss. Note also that such a high value for (1 " a) implies

a low probability a, and thus a low utility for a missed
individualization. Clearly, as noted in Section 3.2, it would seem
more appropriate to maintain a low probability (1 " a) for a false
individualization, which would make an individualization (d1)
preferable only when Pr(u1 j I) tends towards 1. Insofar, thus, the
decision theoretic model translates an intuitively acceptable
perspective.

4. Discussion and conclusions

4.1. Archimedes’ Law of Lever and Bayesian decision theoretic
individualization

Throughout Section 3, it has been shown that the decision to
individualize relies, in essence, on a comparison between, on the
one hand, the odds in favour of the proposition that the potential
source is the true source (proposition u1), rather than a unknown
person (proposition u2), and, on the other hand, the relative losses
of wrong determinations, that is the ratio of the loss of a wrong
individualization (L(C12)) and a missed individualization (L(C21)).
Whenever the former ratio exceeds the latter, the Bayesian
decision criterion is to select decision d1 (individualization).

In order to help apprehend this formal result, it is of interest to
convey the logic of the Bayesian decision point in an illustrative
way. This can be achieved in terms of Archimedes’ Law of Lever,
illustrated in Fig. 4(i) and (ii). In brief, this law states that ‘‘(...)
magnitudes (...) will be in equilibrium at distances reciprocally
proportional to the magnitudes’’ [4, p. 305]. That is, for example, two
equal magnitudes A and B are at equilibrium if the lengths R and S
of the lever that pivots on a fulcrum are the same (situation shown
in Fig. 4(i)). If the magnitude B were greater than A, then the length
R would need to be increased in order to maintain an equilibrium:
as shown in Fig. 4(ii), if the magnitude B is twice as large as A, the
establishment of an equilibrium requires the length R to be two
times that of S. More generally, A ) R = B ) S, from which follows
that

A
B
¼ S

R
; (14)

that is the ratio of the two magnitudes A and B being equal to the
reciprocal of their distances R and S.

It is obvious to see that Eq. (14) has the same structure as the
Bayesian decision criterion, Eq. (11), so that the magnitudes can be
interpreted as the losses of adverse consequences and the lengths
R and S as the probabilities of the propositions about which a
decision needs to be made. This is illustrated in Fig. 4(iii): clearly, if
the loss of a wrong individualization (L(C12)) times the probability
of the suspect not being the source of the crime mark, Pr(u2 j I), is
smaller than the loss of a missed individualization times the
probability of the suspect being the source of the mark, Pr(u1 j I),
the balance will drop to the left, indicating that the expected loss of
not individualizing (decision d2) is greater than the expected loss of
individualizing (decision d1). The decision to be taken thus is d1,
because it has the smaller expected loss. Likewise, it is possible
to interpret the magnitudes as the probabilities of the main
propositions u1 and u2, and their distances to the fulcrum as the

Table 3
A decision matrix with utilities and losses for the consequences of decisions d1 and d2 under states of nature u1 (the suspect is the source of the crime mark) and u2 (an
unknown person is the source). Utilities are assigned according to the discussion presented in Section 3.1 with a denoting the probability to obtain the best consequence (see
also Fig. 1).

States of nature: The suspect is the source u1 not the source u2 the source u1 not the source u2

Utilities Losses

Decisions Individualize (d1) 1 0 0 1
Do not individualize (d2) a 1 1 " a 0
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Fig. 3. Representation of the minimum value that the loss of a missed
individualization, L(C21), must have (bold black line), as a function of the
probability that the potential source is the true source (Pr(u1 j I)), in order for
the decision to individualize (d1) to be the preferred decision. This minimum value
is given by the odds against u1 (Eq. (13)) and is strictly greater than Pr(u2 j I) (dashed
line). For the purpose of comparison, the grey solid line reproduces the maximum
value that the utility of a missed individualization (U(C21)) may take according to
Fig. 2. The dotted line illustrates an example for a case in which Pr(u1 j I) = 0.55 as
discussed in the main body of the text.
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losses of wrong decisions, as shown in Fig. 4(iv). It is clear from this
perspective that when the two losses L(C12) and L(C21) are equal,
then the equilibrium requires the two magnitudes – that is the
probabilities Pr(u1 j I) and Pr(u2 j I) – to be equal as well, for as they
are not, the lever will pivot to one side or the other, depending on
which probability is larger. This precisely illustrates the reference
to the civil process mentioned at the beginning of Section 3.4,
where the decision is made on what is also known as the ‘balance
of probabilities’.

The Law of Lever provides a telling generalization of the more
commonly known illustration of the scales (of justice). In
particular, the Law of Lever illustrates that even though the
magnitude Pr(u1 j I) (the probability of the suspect being the
source) may be clearly greater than the probability of the
alternative proposition u2, a sufficiently large loss associated to
C12 (a wrong individualization), may make the lever pivot to the
left, meaning that the expected loss EL(d1) = L(C12) Pr(u2 j I) being
greater than the expected loss of d2 (not to individualize), making
the latter decision preferable to d1 (individualization) from a
Bayesian decision point of view. Stated otherwise, even though one
may have a case of a preponderance of probabilities in favour of the
proposition according to which the suspect is the source of the
crime stain, that is Pr(u1 j I) > Pr(u2 j I), individualizing may not be
the optimal decision when the loss of a false individualization
L(C12) is large enough compared to the loss of a missed
individualization L(C21), and capable to tip the pivot to the left
in Fig. 4(iv), making EL(d1) greater than EL(d2).13

4.2. Likelihood ratios in the decision framework

It is worth to mention and hence to illustrate that the Bayesian
decision theoretic framework for individualization is not incom-
patible with the likelihood ratio approach to evaluating results of
comparative forensic examinations. This can be pointed out by
reconsidering Eq. (11) and writing the posterior odds in favour of
u1, that is the proposition according to which the suspect is the
source of the crime mark, as the product of the prior odds and the
likelihood ratio for the forensic results E:

Prðu1jI; EÞ
Prðu2jI; EÞ

¼ Prðu1jIÞ
Prðu2jIÞ|fflfflfflffl{zfflfflfflffl}
prior odds

) PrðEju1; IÞ
PrðEju2; IÞ|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

likelihood ratio

>
LðC12Þ
LðC21Þ|fflfflffl{zfflfflffl}

loss ratio

(15)

Recall that Eq. (15) defines the requirement that makes the
decision to individualize (d1) to be preferable to d2 (not to

individualize), that is when the product on the left is greater than
the relative losses on the right. The Bayesian decision criterion can
thus be reformulated with an emphasis on the likelihood ratio:

The decision to individualize d1 is to be preferred if the product
of the likelihood ratio and the prior odds is larger than the ratio
of the loss of an erroneous individualization to the loss of a
missed individualization (i.e., losses associated with adverse
consequences).

It is sometimes argued that the understanding of products can
be eased when working with logarithms [e.g., 37], because this
makes the terms additive. Applying the logarithm to Eq. (15), one
obtains

log
Prðu1jIÞ
Prðu2jIÞ

" #
þ log

PrðEju1; IÞ
PrðEju2; IÞ

" #
> log

LðC12Þ
LðC21Þ

" #
; (16)

and by re-arranging the terms one can isolate the likelihood ratio
as follows:

log
PrðEju1; IÞ
PrðEju2; IÞ

" #
> log

LðC12Þ
LðC21Þ

" #
þ log

Prðu2jIÞ
Prðu1jIÞ

" #
: (17)

The logarithm of the likelihood ratio is commonly interpreted in
terms of the weight of evidence, a term widely attributed to Good
[37]. In the context of the Bayesian decision criterion for
individualization (decision d1), Eq. (17), it leads to the following
requirement:

Individualization (d1) is the preferred decision if and only if the
weight of evidence is greater than the sum of the logarithm of the
prior odds against the proposition of common source (u1) and the
logarithm of the ratio of the loss of an erroneous individualization
to the loss of a missed individualization (i.e., losses associated with
adverse consequences).

Table 4 illustrates examples of combinations of prior odds and
threshold values that likelihood ratio must exceed to make – for

Pr( 2| I)Pr( 1| I)

A B

R S

A

R S

B

L(C12 )
L(C21 )

Pr( 1| I)
Pr( 2| I)

L(C12 ) L(C21 )

(i) (ii)

(iii) (iv)
EL(d2) EL(d1) EL(d2)EL(d1)

Fig. 4. (i and ii) Illustration of Archimedes’ Law of Lever for two magnitudes A and B at distances R and S from a pivot. (iii and iv) Interpretation of the Law of Lever in terms of
the probabilities for propositions u1 and u2 and the losses L of wrong decisions in an individualization scenario, as defined by the Bayesian decision criterion in Eq. (11).

Table 4
Examples of minimum likelihood ratio (LR) values necessary to make the decision
to individualize (d1) preferable to not individualizing (d2) for different combina-
tions of prior odds (PO, odds in favour of the proposition that the suspect is the
source of the crime stain) and relative losses (RL) as defined by Eq. (17). The values
in columns four to six are the logarithms (base 10) of the values presented in the
first three columns.

PO = Pr(u1 j I)/Pr(u2 j I) LR RL log(PO) log(LR) log(RL)

1/10 = 0.1 100 10 "1 2 1
1/10 = 0.1 1000 100 "1 3 2
1/1000 = 0.001 105 100 "3 5 2
1/1000 = 0.001 106 1000 "3 6 3

13 Archimedes’ sentence ‘‘Give me a place to stand, and I shall move the earth.’’
[e.g., 3,4] can thus be translated in the present context as, for example, ‘any odds in
favour of the proposition of common source can be levered if the loss of a missed
individualization is sufficiently large’.
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given loss ratios – an individualization preferable to not
individualizing according to the Bayesian decision theoretic
account (Eq. (16)).

5. Conclusions

The three main elements of Bayesian decision theory, that is
propositions and their associated probabilities, decisions and
preferences for consequences provide a rigorous framework
through which the problem of individualization in forensic
contexts can be approached in a disciplined manner. In particular,
as Stoney [38] has noted, these three elements allow us to see that
the traditional practice of forensic individualization took on a task
that went beyond what it could justifiably do with science alone:

For over 100 years the courts and the public have expected, and
fingerprint examiners have provided, expert testimony that fuses
these three elements: offering testimony not as evidence, but as
proof, assuming priors and including decision-making prefer-
ences. This created an overwhelming and unrealistic burden,
asking fingerprint examiners, in the name of science, for
something that science cannot provide. As a necessary conse-
quence, fingerprint examiners became unscientific. [38, p. 400]

Preference judgments for consequences, thus, hold a central
position in the decision problem to which individualization
amounts. Yet the very nature of these expressions of preferences,
how they ought to be assigned and how they ought to be connected
to the defining features of the individualization problem, remains a
topic of lively discussion (see also reference in Section 1).
Difficulties in how to answer these questions appear to be a
major hindrance of a more widespread appreciation of the decision
theoretic perspective.

Throughout this paper, the assignment of values to the decision
matrix has been approached from two different perspectives,
utilities and losses. It was emphasized that general mathematical
properties of utility and loss functions not only ease the definition
of the scope of the scale of value judgments, but also effectively
reduce the number of assignments that require the analyst’s active
attention. In the particular context of individualization, the
assignments that require primary care can actually be reduced
to only a single element (e.g., when assuming a 2 ) 2 decision
matrix and a 0–1 utility (loss) function), that is the preference
value for a missed individualization. It can be thought about in
isolation or in a comparative way with respect to the preference
value assigned to a false individualization. On a more general
account, the decision to individualize can also be conceptualized as
a comparison between relative beliefs in the main propositions
(i.e., the suspect or some other person being the source of the crime
stain) and relative losses for adverse consequences (i.e., Eq. (11)). The
latter elements are all ingredients of what decision-makers already
conceive of informally, hence the decision theoretic framework
provides a way to make those elements explicit and formally precise.
What is more, the established concept for weighing evidence in
forensic applications, that is the likelihood ratio, has a clearly defined
role in the decision theoretic framework for individualization: as
shown through Eqs. (15)–(17), it compares against the relative
losses of adverse consequences and the prior odds.

The above insights do not provide, nor do they intend to provide
direct prescriptions for the roles that participants in practical
proceedings ought to take. Also, there is no suggestion that the
ultimate responsibility of decision-makers should be delegated to
a formal theory. The theoretical framework merely intends to
equip practical decision-makers with a powerful analytical and
logical instrument to help them deal with the various factors
thought to have a bearing on the decision problem they face. If,
however, one accepts the precept that ‘‘(...) it is the utility function

of the court that is appropriate (...)’’ [39, p. 141], then the Bayesian
decision theoretic framework presented here provides a logically
rigorous account of how utility may be framed, and by which
participant in the legal proceeding.

The decisionalization of individualization may be nothing novel
in the sense that, ever since, forensic practitioners may have
decided on the conclusions they have rendered, which amounts to a
description of what practitioners do, and what recent changes in
terminology by professional associations reflect [1]. But, as argued
by Stoney in the quote given above [38], this practice conflicts with
a scientific approach and is beyond the scope of current guidelines
[e.g., 13]. Contemporary means of Bayesian decision theory allow
us to make these distinctions between probative value and
decisional practice formally precise and articulate them in logically
justifiable terms, providing thus a normative perspective. This
should be of interest to professional associations and practitioners,
as tying their considerations to normative precepts offers potential
to gain credibility for their current practice, to scrutinize the role of
experts and to rethink the scope of forensic expert reporting. This
corresponds to a current need and helps counter critiques
according to which changes in the disciplines of forensic
individualization are mere changes of the label, rather than of
the underlying practice.
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