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Abstract In Part I of this review,
we have covered basic concepts
regarding cardiorespiratory interac-
tions. Here, we put this theoretical
framework to practical use. We
describe mechanisms underlying
Kussmaul’s sign and pulsus para-
doxus. We review the literature on the
use of respiratory variations of blood
pressure to evaluate volume status.
We show the possibilities of attaining

the latter aim by investigating with
ultrasonography how the geometry of
great veins fluctuates with respiration.
We provide a Guytonian analysis of
the effects of PEEP on cardiac output.
We terminate with some remarks on
the potential of positive pressure
breathing to induce acute cor pulmo-
nale, and on the cardiovascular
mechanisms that at times may
underly the failure to wean a patient
from the ventilator.

Clinical correlates

Kussmaul’s sign

Kussmaul’s sign is a paradoxical increase in RAP during
inspiration. Although first described in constrictive peri-
carditis, it occurs most frequently in severe right-sided
heart failure of any cause [1]. Whether due to pericardial
constraint or due to dilation of the ventricular chamber to
the limit of distensibility, an abnormally high impedance
to right ventricular (RV) diastolic filling is a prerequisite
for the appearance of Kussmaul’s sign. The traditional
explanation is that the rigid RV cannot accommodate the
inspiratory increase of venous return [1]. However, if
venous return increased solely as a response to the fall
in intrathoracic pressure (ITP), RAP measured relative
to atmosphere could never become elevated above its
end-expiratory value (otherwise, venous return would
fall, a contradiction in terms) [2]. Work by Takata and

colleagues [3] has shown that an absolute requirement for
the occurrence of Kussmaul’s sign is an inspiratory
increase in abdominal pressure, induced by diaphragmatic
descent and presumably raising mean systemic filling
pressure (MSFP).

Pulsus paradoxus

In healthy humans breathing spontaneously, the systolic
arterial pressure falls slightly (by less than 10 mmHg) in
inspiration. It is now well accepted that this phenomenon
reflects an inspiratory fall of left ventricular (LV) stroke
volume due to diastolic ventricular interdependence (Part
I, Section ‘‘Respiration and cardiac function’’) [4].

As originally described by Kussmaul in 1873, pulsus
paradoxus referred to the inspiratory disappearance of the
radial pulse in patients with tuberculous pericarditis [2, 5].
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In its present definition, this term designates an abnor-
mally large fall ([10 mmHg) in systolic arterial blood
pressure during spontaneous inspiration. Pulsus paradoxus
is a frequent symptom of cardiac tamponade [6] and acute
severe asthma [7, 8]. It may be observed as well in other
forms of airway obstruction and in hypovolemia. There
are occasional reports of pulsus paradoxus in massive
pleural effusion [9], pulmonary embolism [10], anaphy-
lactic shock [11], strangulated diaphragmatic hernia [12],
and tricuspid atresia [13].

As already suspected by Dornhorst 50 years ago [14],
the main mechanism of pulsus paradoxus in cardiac
tamponade is a massive amplification of parallel diastolic
ventricular interdependence, due to a much tighter
mechanical coupling of the cardiac chambers when
compressed within a tense, pressurized pericardium [6].
Thus, pulsus paradoxus in experimental tamponade dis-
appeared following extracorporeal bypass of the RV [15].
Accordingly, pulsus paradoxus is minimal or absent in
tamponade associated with atrial septal defect, a condition
in which RV and LV fillings are no longer competitive
[16]. For somewhat less clear reasons, tamponade may
also fail to cause pulsus paradoxus in presence of con-
comitant LV dysfunction [17].

The mechanism of pulsus paradoxus in acute severe
asthma differs somewhat from that in tamponade. Jardin
and colleagues [7] studied patients admitted to an inten-
sive care unit for acute severe asthma, using 2D
echography and invasive hemodynamic monitoring. They
found that exaggerated parallel diastolic interdependence,
although clearly present in view of the respiratory chan-
ges in ventricular end-diastolic volumes and septal
geometry, did not suffice to explain the concomitant
pulsus paradoxus, because RV stroke volume appeared to
fall, rather than increase in inspiration. They concluded
that, with severe hyperinflation of the lung, inspiration
augmented RV afterload sufficiently to depress RV out-
put, hence LV preload. In other words, pulsus paradoxus
in acute severe asthma is an exaggerated form of series (in
addition to parallel) ventricular interdependence (Part I,
Section ‘‘Respiration and cardiac function’’).

Respiratory fluctuations of vascular pressures
for the evaluation of preload-sensitivity at the bedside

When peripheral perfusion is inadequate, a basic question
facing the clinician is whether any improvement is to be
expected from expansion of the intravascular volume.
This is equivalent to asking whether the heart operates on
the steep portion (i.e., preload-sensitive cardiac output),
or on the plateau of its function curve (preload-insensi-
tive). Little help can be expected in that respect from
single determinations of RAP and pulmonary artery
occlusion pressure (PAOP), as provided by the Swan-
Ganz catheter [18–20]. An essential, although not the only

reason is that the PAOP and RAP are intramural rather
than true filling (i.e., transmural) pressures [21]. Taking
readings at end-expiration is not a foolproof solution, due
to frequent active expiration (Fig. 1) [22]. This latter
problem may be suspected by abdominal wall palpation to
assess for expiratory contraction of abdominal muscles. It
may also be detected by observing the respiratory fluc-
tuations of bladder pressure [23]. Also, trends in PAOP
and RAP following i.v. fluid administration may be more
informative than single measurements [24], an approach
which however entails the risk of volume overload. A
substitute to fluid challenge devoid of the latter risk might
consist in observing the hemodynamic impact of passive
leg raising, a maneuver which translocates peripheral
blood towards the thorax, and thus may augment cardiac
preload [25–27]. Finally, the easily measured respiratory
fluctuations of arterial blood pressure and RAP may
convey useful information on preload-sensitivity.

In the course of a ventilator-delivered positive pressure
breath, the systolic blood pressure transiently increases
relative to the stable level obtained in a prolonged expi-
ratory pause (Fig. 2, Dup), and then decreases below that
level (Fig. 2, Ddown). The Dup reflects the transient aug-
mentation of LV stroke volume related both to diminished
afterload and enhanced pulmonary venous return (blood
‘‘squeezed out of the lungs’’) [28–30]. The Ddown is

Fig. 1 Impact of active expiration on readings of pulmonary artery
occlusion pressure (PAOP) made at end-expiration. In this example
obtained in a ventilated patient, the effect is evident from the
comparison of recordings made before (upper trace) and after
administration of a neuromuscular blocking agent (lower trace).
Arrows indicate end-expiration. Before paralysis, active inspiration
causes a rapid drop in vascular pressure, the transition from end-
inspiration to the begin of expiration cannot be recognized, and
active expiration is manifested by a progressive increase, reaching a
maximum at end-expiration, where the PAOP reads 42 mmHg.
After paralysis, passive inflation by the ventilator causes the
vascular pressure to increase above the end-expiratory value, which
now reads 20 mmHg. In this case, uncritical reading of the upper
trace would lead to considerable overestimation of the true PAOP.
The wavelets seen on the upper trace might be cardiogenic
oscillations (a and v waves, compatible with a heart rate of
approximately 150/min), or artefacts. Modified from [22], with
permission
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caused by the subsequent reduction of LV preload and
stroke volume, which takes place in exhalation as the
inspiratory depression of RV preload and output propa-
gates to pulmonary venous return with a time lag of a few
heartbeats [29]. Thus, preload-insensitivity of the heart
should be associated with a blunting or disappearance of
the Ddown. The Dup would be less reliable in that respect
due to the potential influence of changing LV afterload.
This concept has been validated experimentally [31–33].
Two small clinical studies demonstrated a superiority of
the Ddown, compared with either PAOP or echographic
estimates of LV size, for predicting the response of cardiac
output to a fluid challenge in mechanically ventilated
postoperative [34] or severely septic patients [19].

A variation of the Ddown approach, which has been
similarly validated consists in quantifying the variations
of pulse pressure (DPP) induced by a positive pressure
breath (Fig. 2) [20, 35]. The respiratory fluctuations in the
amplitude of the plethysmographic pulse wave (obtained
non-invasively from pulse oxymetry) have been used to
the same effect [36]. A practical problem with all these
methods is the potential confounding influence of cardiac
arrythmias, increased abdominal pressure [37], and
changes in vascular tone or ventilatory conditions. Indeed,
the aforementioned validation studies were carried out in
heavily sedated patients ventilated in controlled mode
with relatively large tidal volumes (C8 ml/kg) [19, 20,
34]. It is not clear that similar results would be obtained

with smaller tidal volumes [38–40]. A possible answer to
this critique has been proposed in the form of applying a
succession of three mechanical breaths of progressively
increasing plateau pressure and quantifying the effect on
systolic blood pressure [41]. We must finally underscore
that these methods lose most of their validity with the
presence of active inspiratory or expiratory effort, whe-
ther in the course of mechanically assisted or spontaneous
breathing [25, 26, 42].

With spontaneous breathing, Magder et al. [43] have
suggested that the lack of an inspiratory drop in RAP is
indicative of an overfilled, non-compliant heart lying on
the flat part of its function curve, and therefore predicts
the lack of volume responsiveness of cardiac output.

Respiratory fluctuations of great veins geometry

The transmural pressure versus volume relationship of the
venae cavae is nonlinear, with a steep slope at low dis-
tension and a plateau at full repletion [44]. Thus, one
would expect that phasic changes in transmural pressure
would more readily translate into respiratory variations in
cross-sectional size when imposed on a partially empty
vessel (hypovolemia), as opposed to a fully repleted one
(normo or hypervolemia). Based on this rationale, the
phasic changes in caval diameters, as evaluated from
echocardiography, have been proposed as non-invasive
indices of intravascular volume status [44–50].

In man, the IVC runs almost entirely intraabdominal,
i.e., it enters the right atrium immediately after crossing
the diaphragm. Thus, its extramural pressure is abdominal
pressure (Pabd), while its intramural pressure lies close to
RAP. In the course of a spontaneous inspiration, Pabd
increases (diaphragmatic descent) while RAP decreases
(transmission of pleural pressure swing), leading to an
inspiratory diminution of transmural pressure. The latter,
however, only causes the IVC diameter to shrink if the
vessel is not fully repleted (i.e., if it operates on the steep
part rather than the plateau of its transmural pressure/
diameter relationship). Quantified in various ways with
transthoracic echocardiography, the inspiratory decrease
of IVC diameter has been used to characterize volume
status in the course of hemodialysis for end-stage renal
disease [45, 46]. In the ICU, we are aware of no similar
application in spontaneously breathing subjects. In con-
trast with spontaneous breathing, positive pressure
inflation is expected to dilate an incompletely filled IVC,
because the positive swing of pleural pressure is fully
transmitted to RAP, but only partially to Pabd, thus
causing an inspiratory increase of IVC transmural pres-
sure. Two studies have found that the amplitude of phasic
changes in IVC geometry, as measured with transthoracic
echocardiography, were highly predictive of cardiac out-
put response to a fluid challenge in sedated septic shock
patients ventilated in controlled mode [47, 48]. Although

Fig. 2 Respiratory variations of arterial blood pressure in a sedated
patient on volume-controlled mechanical ventilation. In such
conditions, the respiratory fluctuations of either systolic (Dup and
Ddown) or pulse pressure (PPmax and PPmin) may be used to detect
hypovolemia and so determine the need for intravascular volume
expansion. The first method requires an end-expiratory pause of
sufficient duration for systolic blood pressure to stabilize, to obtain
a reference level from which to measure Dup and Ddown as
indicated. PPmax and PPmin can be obtained without interrupting
ventilation. A high value of either Ddown or DPP (=PPmax–PPmin)
indicates hypovolemia. Detailed explanations in ‘‘Respiratory
fluctuations of vascular pressures’’

200



not documented so far, respiratory fluctuations in IVC
diameter are likely to depend not only on volemia, but
also on respiratory pattern, prevailing level of mean Pabd,
and right ventricular function, as is the case for DPP and
Ddown.

In contrast to the IVC, the superior vena cava (SVC)
runs mainly intrathoracic, so that its extramural pressure
is close to pleural pressure. In hypovolemic conditions,
positive pressure inflation may transiently create zone 2
conditions (intraluminal pressure \Ppl1) in this vessel,
leading to its partial inspiratory collapse [49]. Phasic
variations of SVC diameter have been found to correlate
well with fluid responsiveness of cardiac output in septic
patients on controlled mechanical ventilation [50]. This
index of hypovolemia has been advocated as superior to
that based on IVC diameter [44], notably because it is not
influenced by Pabd. In contrast with the IVC, however,
the SVC can only be echographically imaged via the
transesophageal, but not the transthoracic route.

Effects of PEEP on cardiac output

The effects of PEEP on cardiac output are modulated by a
variety of factors, the understanding of which is greatly
facilitated by the Guytonian representation of venous
return-cardiac function interactions (i.e., Fig. 2d in Part
I). In Fig. 3, the venous return curves labeled ‘‘ZEEP’’
(zero end-expiratory pressure) and ‘‘PEEP’’ have been
taken from the data presented above [51] (Fig. 3 in Part
I). The venous return curve labeled ‘‘PEEP ? volume’’
has been drawn under the assumptions that intravascular
volume expansion under PEEP would increase MSFP,
with little effect on either Rv or Pcrit (Chapter 12 of [52]).
Figure 3a depicts events associated with normal cardiac
function: the cardiac function curve under ZEEP is steep
(Fig. 4 in Part I) and intersects the corresponding venous
return curve at point 1 located slightly on the right of and
below the critical point [53]. PEEP effects a shift to the
right of the cardiac function curve (Fig. 4, lower left, in
Part I) and of the critical point by approximately the same
amount (equal to the increase in ITP), while depressing
the maximal venous return. Under PEEP, the operating
point becomes located on the plateau of the new venous
return curve (point 2), showing not only that cardiac
output must decrease, but also that it becomes insensitive
to changes in cardiac function (point 3). In these condi-
tions, volume expansion is mandatory to restore systemic
blood flow (point 4), whereas PEEP superimposed on
hypovolemia may lead to cardiovascular collapse (point
4a), as is well known to clinicians [54].

Figure 3b shows the possible effects of PEEP in
presence of LV failure. Under ZEEP, the cardiac function

curve is so depressed that the operating point is located on
its plateau (point 5) and remains so under PEEP if cardiac
function is not simultaneously altered, i.e., if the cardiac
function curve is merely shifted to the right (point 6). In
these conditions, systemic blood flow cannot be increased
by volume expansion (point 7). With a failing LV, how-
ever, cardiac function becomes sensitive to changes in LV
afterload. Reduction of the latter by PEEP or continuous
positive airway pressure (CPAP), therefore may cause
cardiac output to increase (point 8) [55, 56], or at least to
be better preserved [57–59] in normo- or hypervolemic
patients with a failing left heart, compared to those with
normal LV function.

It is worth noting that PEEP reduces the afterload of
the failing LV by increasing LV extramural pressure at all
phases of the respiratory cycle, not only at end-expiration.
This is especially true when spontaneous inspiratory
efforts occur in the context of pulmonary edema: PEEP or

Fig. 3 Various possible effects of PEEP on cardiac output,
illustrated with Guyton’s graphical analysis: a with normal cardiac
function, b with depressed cardiac function. In both panels a and b,
right atrial pressure is measured relative to atmosphere, i.e., it
represents the intracavitary pressure. This is the reason why PEEP
shifts the cardiac function curve to the right (see left lower part of
Fig. 4 in Part I). PEEP shifts the venous return curve as shown in
Fig. 3 of Part I, i.e., the zero flow intercept (which is MSFP) and
the critical pressure (Pcrit, at the intersection of the oblique and
plateau parts) are increased by approximately equal amounts, while
the maximal venous return (height of the plateau part) is depressed.
Volume expansion shifts the venous return curve ‘‘rightwards’’ (see
Footnote 2 in Part I), whereas hypovolemia has the opposite effect.
Pcrit is not affected by changes in volemia. Further explanations in
the text (‘‘Effects of PEEP on cardiac output’’)

1In analogy with West lung zones, see Part I, Section ‘‘Respiration
and cardiac function; RV afterload’’.
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CPAP then improve lung mechanics, thereby attenuating
the negative inspiratory swings of ITP [59]. Another
interesting observation has been made by Huberfeld and
colleagues [60], who found in volume loaded sedated pigs
that a substantial surface pressure existed on the dilated
heart under ZEEP. Application of CPAP in these condi-
tions decreased pericardial pressure, in spite of increasing
esophageal pressure (Fig. 4). This paradox was explained
by the lower heart size which followed afterload reduction
by CPAP. In Fig. 3b, this phenomenon would translate
into a shift to the left of the cardiac function curve, with a
further increase in cardiac output (point 9). These con-
siderations form in part the basis for the beneficial
hemodynamic effects of CPAP or mechanical ventilation
with PEEP in LV failure [59, 61–65]. However, a limit
would be set to these benefits by the concomitant reduc-
tion of maximal venous return. Accordingly, clinical
experience has shown that moderate levels of end-

expiratory pressure (5–10 cm H2O) are optimal in these
conditions.

Of course, Fig. 3 is an oversimplified representation of
two idealized extremes in continuous spectrum of actual
situations. However, it is certainly necessary to evaluate
in each patient whether he/she stands closer to panel A or
B. Such evaluation essentially requires integrated clinical
and pathophysiological thinking. Some help may come
from observing the phasic fluctuations of arterial pressure
or great veins geometry (see previous two sections).

Fig. 4 Differential effects of continuous positive airway pressure
(CPAP) on esophageal and pericardial pressure in normovolemic
and hypervolemic pigs. Pigs were chronically instrumented with
pressure sensors in the pericardial space. On the day of experiment
a pressure sensor was inserted into the esophagus. The animals
were intubated and connected to a high flow CPAP system.
Esophageal (Pes) and pericardial pressure (Pper) were measured
synchronously at end-diastole, at various CPAP levels, before
(normovolemia) and after volume expansion with i.v. hetastarch
(35 ml/kg, hypervolemia). In normovolemia, Pper and Pes track
each other. In hypervolemia and without CPAP, Pper exceeds Pes,
due to the contact pressure exerted by the lung on the surface of the
dilated heart. The progressive institution of CPAP reduces the
afterload of the left ventricle (LV), with the following conse-
quences: a smaller LV, a lower global size of the heart, hence
release of contact pressure exerted by the lung and finally reduction
of Pper. Pes, measured away from the lung surface, increases with
CPAP, independent of heart size. From [60], with permission

Fig. 5 Cardiovascular mechanisms of weaning failure. The oblig-
atory cardiovascular effects of withdrawing mechanical assistance
(linked by plain arrows) are depicted on the left of the thick vertical
dashed line. The dashed arrows point to potential consequences in
presence of insufficient cardiovascular reserve. BP blood pressure,
CO cardiac output, HR heart rate, ITP intrathoracic pressure, MSFP
mean systemic filling pressure, LVEDV left ventricular end-
diastolic volume, LVEDP left ventricular end-diastolic pressure,
RVEDV right ventricular end-diastolic volume, SV stroke volume,
S�vO2 mixed venous oxygen saturation, WOB work of breathing.
Upstream effects on the lung and downstream effects on peripheral
oxygenation are not necessarily linked: depending on circum-
stances, one or the other may predominate, or both may occur
concomitantly More explanations in ‘‘Weaning failure from
cardiovascular origin’’
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Mechanical ventilation and acute cor pulmonale

Acute pulmonary hypertension and associated RV failure
(acute cor pulmonale, ACP) are frequent findings in
patients on mechanical ventilation for respiratory failure,
especially ARDS. An important role in this setting is now
attributed to mechanical ventilation itself, which in addi-
tion to promoting alveolar-capillary injury, acts by direct
mechanical augmentation of RV afterload in the inflation
period, leading to RV dilation, abnormal septal motion and
low cardiac output [66, 67] (Part I, Section ‘‘Ventricular
afterload’’). Especially when combined with high inflation
pressures, ACP in ARDS is associated with a high mortality
[68]. One might speculate that the improved mortality seen
when patients with ARDS receive smaller tidal volumes
[69] may be due in part to improved RV function.

It is essential for clinicians to understand that, in
patients with ARDS, a major cause of ventilator-induced
hypotension may not be venous return impairment but
increased RV afterload. Echography is required to con-
firm this mechanism, and the correct treatment in this case
is primarily a reduction in inflation pressures, especially
plateau pressure.

Weaning failure from cardiovascular origin

The switch from assisted to spontaneous breathing stres-
ses the cardiovascular system, akin to an exercise test
[70]. As depicted in the left part of Fig. 5. weaning
activates the sympathoadrenergic system, with predict-
able consequences on heart rate and blood pressure. Due
to venoconstriction and associated reduction in venous
compliance, MSFP increases. At the same time, the mean
ITP falls, thus increasing LV afterload (Part I, Sec-
tion ‘‘Ventricular afterload’’), to which the failing heart is
oversensitive. Furthermore, venous return is boosted,
leading to increased right and left ventricular end-dia-
stolic volumes. These chains of events augment the

myocardial O2 demand. A prerequisite to successful
weaning is therefore that the heart be able to cope with
this situation. With diminished cardiovascular reserve
(right hand part of Fig. 5), myocardial ischemia may
appear [71], and left ventricular filling pressure may
increase disproportionately [72]. The upstream conse-
quences on the lung [72] and downstream consequences
on O2 transport [73] then initiate vicious circles which
culminate in florid cardiorespiratory failure and the need
to resume mechanical ventilation. Such considerations are
of paramount importance when evaluating patients who
are difficult to wean [74].

Conclusion

Cardiorespiratory interactions are encountered daily in the
clinical practice of critical care. Much of our under-
standing in this area rests on fundamental knowledge
acquired decades ago. These concepts have then been
enriched by technological advance, notably the advent
and ever greater performance of echocardiography, and
are likely to keep evolving as new methods of investi-
gation become available, such as cardiorespiratory-
resolved magnetic resonance imaging [75]. We hope to
have convinced the reader that understanding cardiore-
spiratory interactions is not only of academic, but also of
practical importance for his or her training as an intens-
ivist. The concepts covered in the present review are
essential to the proper use of mechanical ventilatory
assistance. Furthermore, they have been put to use in the
last decade in order to promote a less invasive approach to
hemodynamic monitoring, an area in which progress may
be expected in the near future.
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