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a b s t r a c t

Adaptive dynamics shows that a continuous trait under frequency dependent selection may first
converge to a singular point followed by spontaneous transition from a unimodal trait distribution into a
bimodal one, which is called “evolutionary branching”. Here, we study evolutionary branching in a
deme-structured population by constructing a quantitative genetic model for the trait variance
dynamics, which allows us to obtain an analytic condition for evolutionary branching. This is first
shown to agree with previous conditions for branching expressed in terms of relatedness between
interacting individuals within demes and obtained from mutant-resident systems. We then show this
branching condition can be markedly simplified when the evolving trait affect fecundity and/or survival,
as opposed to affecting population structure, which would occur in the case of the evolution of dispersal.
As an application of our model, we evaluate the threshold migration rate below which evolutionary
branching cannot occur in a pairwise interaction game. This agrees very well with the individual-based
simulation results.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

In evolutionary game theory, individuals are allowed to interact
with each other and selection will be frequency-dependent. Even
in a constant environment, a population may then show intriguing
temporal dynamics. For example, if a trait evolves by the accumu-
lation of small mutations and if disruptive selection stemming
from frequency-dependent selection is at work, a continuous trait
may show convergence to a singular point followed by sponta-
neous splitting of a unimodal trait distribution into a bimodal (or
multimodal) one, referred to as “evolutionary branching” (Metz
et al., 1992, 1996; Geritz et al., 1997). Evolutionary branching is
predicted to occur at an evolutionarily singular point that is
approaching stable (or convergence stable, CS, Eshel, 1983) but
not evolutionarily stable (ES), and it is actually observed in
individual-based simulations in many models for the evolution
of ecological traits (Doebeli et al., 2004; Brännström et al., 2011).

One important contribution of evolutionary game theory and
adaptive dynamics is the analytically tractable prediction of the
criteria of evolutionary branching, i.e., the CS and non-ES condi-
tion (e.g., Eshel, 1983; Geritz et al., 1997), which generally agrees

well with individual-based simulations. This has been applied to a
large spectrum of ecological scenarios involving both inter- and
intra-specific interactions. However, the standard application of
the recipe assumes an infinite and well-mixed population to
obtain the stability criteria. Since real populations are always
finite and usually have a spatial structure (dispersal is localized
and organisms are likely to interact with neighbors), extending the
criteria of stability to more realistic models is biologically relevant.

One important contribution of evolutionary game theory and
inclusive fitness theory is an analytically tractable measure of
selection (or mutant invasion fitness) for deme-structured popula-
tions (e.g., Taylor, 1988; Frank, 1998; Rousset, 2004), which provides
a condition for convergence stability (Rousset, 2004). Owing to the
smallness of local deme size, any analytic measure of selection
needs to take into account local fluctuations of allele frequencies
induced by genetic drift. This generates positive correlations of
mutant frequencies among individuals in the same deme, making
mutant-mutant interactions unavoidable. The concept of related-
ness plays a crucial role here, as it allows to reduce the problem of
computing the full local distribution of mutants (and thus account-
ing for their interactions) to the simpler problem of computing the
probability that two genes sampled from different individuals are
identical-by-descent, thereby making tractable the evaluation of
invasion fitness. This has been applied to a large number of different
social scenarios (e.g., Frank, 1998), and agrees generally well
with individual-based simulations (e.g., Bulmer, 1986, Pen, 2000;
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Leturque and Rousset, 2002; Rousset and Ronce, 2004; Guillaume
and Perrin, 2006). However, the standard application of the recipe
usually ignores the possibility of branching.

Evolution of continuous traits under a wide variety of different
biological situations has been studied using adaptive dynamics
and inclusive fitness (e.g., Metz et al., 1992; Dieckmann and Law,
1996; Geritz et al., 1997, 1998; Frank, 1998; Rousset, 2004;
Wenseleers et al., 2010). Branching condition in structured popu-
lations has been studied using the number of successful emigrants
descended from a mutant immigrant, Rm, as invasion fitness
measure (e.g., Metz and Gyllenberg, 2001; Parvinen and Metz,
2008; Ajar, 2003). The 2nd-order derivative R″

m being positive is
the non-ES condition in this approach. Day (2001) takes a slightly
different approach and calculates the expected fitness of a carrier
of the mutant allele under a probability distribution of the number
of mutant alleles in the same deme.

It is relevant to mention that the previous approaches compute
invasion fitness under the assumption that there are only two types
(or alleles), the mutant and the resident, present in the population.
From a stochastic process point of view, this is obtained in the
asymptotic of rare mutations, where adaptive evolution is described
as a monomorphic jump process that gives rise to the so-called
canonical equation of adaptive dynamics (Dieckmann and Law,
1996; Champagnat et al., 2006a,b). Strictly speaking, branching is
impossible unless at least three alleles segregate in the population
(e.g., Wakano and Lehmann, 2012). Thus, the mutant-resident
approach based on a two-allele system does not directly deal with
evolutionary branching, but only provides an ad-hoc measure of
disruptive selection, which matches very well with results from
simulations.

There is, however, another approach to describe the adaptive
dynamics. This is to model the trait distribution dynamics as in
quantitative genetics. Some studies directly deal with the evolu-
tion of the full phenotypic distribution (e.g., Sasaki and Ellner,
1995; Jabin and Raoul, 2011; Mirrahimi et al., 2012), while other
studies focus only on some important moments of the distribution
such as the mean or the variance (Iwasa et al., 1991; Abrams et al.,
1993; Day and Taylor, 1996; Sasaki and Dieckmann, 2011). The
dynamics of these moments can be derived under some assump-
tions on the trait distribution, which is called the moment closure.
In this distributional context, which is generally applied to
panmictic populations, evolutionary branching is characterized
by the increase of the variance in the trait distribution (Sasaki
and Dieckmann, 2011). This approach can also be extended to
finite and well-mixed population models, in which case the trait
variance dynamics provides the branching condition in finite
populations (Wakano and Iwasa, 2013).

Here, we aim to construct a model to obtain the condition for
evolutionary branching from the variance in the trait distribution
in a population subdivided into demes of finite size. To that end,
we derive moment dynamics to the 2nd-order of selection and
study the 1st (mean) and 2nd (variance) moments. In doing so, we
combine elements of inclusive fitness theory, adaptive dynamics,
and quantitative genetics to obtain the condition of evolutionary
branching in deme structured populations. Using a Gaussian
moment closure approximation, the condition for disruptive
selection will be expressed analytically. To describe the effect of
population structure on selection, we will extend standard coales-
cence arguments to a quantitative genetics framework.

This paper is organized as follows. We first describe the
biological framework of our deme-structured population model
and present results of our individual-based simulations as moti-
vating examples. When the migration rate is low, mutant-mutant
interactions are more likely to occur and the evolutionary
dynamics can be different from that in well-mixed population.
By simulation, we first find the threshold migration rate below

which evolutionary branching does not occur, illustrating the
importance of spatial structure for branching. We then present
our mathematical analysis of the condition for evolutionary
branching and we finally perform a detailed comparison between
simulation results and analytic predictions.

2. Model and analysis

2.1. Main assumptions

We consider a spatially structured population consisting of Nd

islands (demes), each of size N, thus summing up to NT¼Nd N adult
haploid individuals in total. Each individual i in deme k has a
genetically determined continuous trait value zki. Individuals play
games and the payoffs determine their fecundity. We assume that
a large number of juveniles are produced by each adult, and that a
fraction of them disperses randomly to another deme. Adults die
with a constant probability and juveniles compete on each deme
for the vacated spots so that exactly N individuals in each deme
form the next generations of adults. No other exact assumption
about social interactions, reproduction, competition, and dispersal
is done at this stage (but later for applications). The model can
thus take independent demic extinction (or catastrophes) into
account so as to capture meta-population processes.

2.2. A preliminary simulation result

Before carrying out our derivation of moment dynamics, we
present a motivational example satisfying our assumptions and
illustrating the role of spatial structure for branching. We run
individual-based simulations of a pairwise non-linear public goods
game (Doebeli et al., 2004) played within demes under a Wright–
Fisher updating scheme with standard infinite island model of
dispersal assumptions, where the migration rate is m (Fig. 1; for
simulation details see Section 4). When the migration rate is
relatively large (m ¼0.6), the evolutionary dynamics was similar
to that in a well-mixed population, and branching occurred as
soon as the trait evolved to reach the convergence stable (CS)
value zn (Fig. 1a). For m¼0.4, branching still occurred but the
dynamics was more stochastic (Fig. 1b). For m¼0.2, branching was
never observed (Fig. 1c). These simulation results clearly illustrate
the importance of spatial structure, implying the existence of a
threshold migration rate, mn, below which evolutionary branching
does not occur. One practical goal of our analysis is to give an
analytical prediction on this threshold migration rate. We will now
derive approximations for the dynamics of the mean and variance
in trait value under our population assumptions.

2.3. Mean trait dynamics to the 1st-order effect of selection

We write the fitness of individual i in deme k (expected
number of adult offspring produced) as a function wkiðzÞ of the
full trait distribution z : ¼ ðz11; z12;…; zNdNÞ in the population (see
below for examples). The expectation of the mean trait value in
the next generation is given by

E½ztþ1jzt ¼ z� ¼ 1
NT

∑
Nd

k ¼ 1
∑
N

i ¼ 1
zkiwkiðzÞ ð1Þ

When the trait distribution is narrow around the mean
z : ¼ ð1=NT Þ∑k∑izki, the deviation δki : ¼ zki�z is small and the
fitness function can be approximated by a 1st-order Taylor
expansion about the mean:

wkiðzÞ ¼wkiðzÞþwki;kiδkiþ ∑
ja i

wki;kjδkjþ ∑
lak

∑
j
wki;ljδlj ð2Þ
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where z : ¼ ðz; z; :::; zÞ and

wki;lj : ¼ ∂wkiðzÞ
∂zlj

ð3Þ

is the partial derivative of the fitness function of an individual i in
deme k with respect to the trait value of individual j in deme l,
evaluated at z. Owing to the assumption of constant population
size w¼ 1 and wkiðzÞ ¼ 1 always hold. Moreover, under the
assumption of random dispersal, a derivative of a fitness function
depends only on the relationship between two individuals (self, in
the same deme, or in different demes). In other words, wki;lj takes
one of three values.

Using this symmetry, putting Eq. (2) into Eq. (1), and rearran-
ging terms (see Appendix A), we have

E½Δzjz� ¼ 1
NT

∑
k
∑
i

wki;kiδki
2þwki;kjδki ∑

ja i
δkjþwki;ljδki ∑

lak
∑
j
δlj

1
A

0
@ ð4Þ

where E½Δzjz� : ¼ E½ztþ1�zjzt ¼ z�. We denote by

δ2 : ¼ 1
NT

∑
Nd

k ¼ 1
∑
N

i ¼ 1
ðδkiÞ2 ð5Þ

the 2nd centralized moment of the trait distribution z, which
equals the trait variance V : ¼ δ2 in the population. Similarly,

δδ : ¼ 1
NdNðN�1Þ ∑

Nd

k ¼ 1
∑
N

i ¼ 1
∑
N

j ¼ 1;ja i
δkiδkj ð6Þ

is the covariance of trait values of pairs of individuals taken in the
same deme, and

δδd : ¼ 1

NdðNd�1ÞN2 ∑
Nd

k ¼ 1
∑
Nd

lak
∑
N

i ¼ 1
∑
N

j ¼ 1
δkiδlj ð7Þ

is the covariance of trait values of pairs of individuals taken in
different demes. In terms of these moments, the expected change
of the mean trait can be written as

E½Δzjz� ¼wSVþwDδδþwOδδd

¼wSðV�δδd ÞþwDðδδ�δδd Þ ð8Þ

which follows from the assumed symmetries and

wS ¼wki;ki ð9aÞ

wD ¼ ðN�1Þwki;kj ðja iÞ ð9bÞ

wO ¼NðNd�1Þwki;lj ðka lÞ ð9cÞ
where the right hand side is identical regardless of i, j, k and l.
These are, respectively, the total fitness effects from Self, Deme-
mates and individuals from Other demes, and wSþwDþwO ¼ 0
always holds (Rousset, 2004).

When the number of demes is infinite ðNd-1Þ, the dynamics
becomes deterministic and E½Δzjz� can be replaced by Δz. In
addition, the covariance across demes vanishes and the term δδd
in Eq. (8) is negligible because δδd is the average of products of the
deviations of two independent variables. To derive the moment δδ ,
we apply a coalescence argument and write

δδ ¼ R2δ
2 þð1�R2ÞðδÞ2 ð10Þ

Here, R2 is the probability that the ancestral gene lineages sampled
from two different individuals in the same deme coalesce in the
same ancestor in that deme, in which case the covariance in trait

values between the two individuals is δ2 . With probability (1�R2)
at least one of the ancestral lineages eventually moves out from
the deme so that the ancestral lines can be considered as
independent (no coalescence occurs), and the covariance between
individuals will be zero since δ ¼ 0. Hence,

R2 ¼
δδ

V
ð11Þ

represents the (neutral) relatedness coefficient within demes.
Using Eq. (11), in the infinite population limit we obtain the
standard formula

Δz¼ V ½wSþwDR2� ð12Þ
where wSþwDR2 is Hamilton's (1964) inclusive fitness effect.

Note that Eq. (12) describes the change in continuous trait
value, while the above coalescence argument (Eq. (10)) is usually
applied to describe the allele frequency change in a two-allele

Fig. 1. Simulation results for different migration rates. Upper and lower panels show the dynamics of the total population and an arbitrarily chosen local population (the
deme with index k¼1), respectively. Parameter values are Nd ¼ 1000; N ¼ 8, μ¼ 0:01; s¼ 0:02; ðb1 ;b2 ; c1 ; c2Þ ¼ ð6:0; �1:4;4:56; �1:6Þ: See Section 4 for details.
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system (mutant-resident system, e.g. Roze and Rousset, 2003;
Rousset, 2004). One message behind Eq. (12) is that the inclusive
fitness effect for our quantitative genetics approach can be
calculated using exactly the same type of coalescence arguments
as in the classical setting. Hence, R2 under neutrality can be readily
calculated for various updating schemes. For instance, for the
Wright–Fisher process under the dispersal assumptions of the
infinite island model adopted in our simulations (Fig. 1), related-
ness is the solution of the classical equation

R2 ¼ ð1�mÞ2 1
N
þN�1

N
R2

� �
ð13Þ

To the 1st-order effect of selection, an evolutionary singular point
zn is given by wSðznÞþwDðznÞR2 ¼ 0 where zn : ¼ ðzn; zn;…; znÞ. If zn
satisfies

QCS ¼
dðwSðzÞþwDðzÞR2Þ

dz

����
z ¼ zn

o0; ð14Þ

then zn is CS and the mean trait value evolves toward zn. This
provides exactly the same condition as obtained under the trait
substitution sequence assumption (Rousset, 2004).

2.4. Mean trait dynamics to the 2nd-order effect of selection

2.4.1. Taylor expansion of fitness function
We now apply the same line of reasoning to evaluate the mean

trait dynamics to the 2nd-order effect of selection. The Taylor
expansion of wkiðzÞ to the 2nd-order is given by

wkiðzÞ ¼ 1þwki;kiδkiþ ∑
ja i

wki;kjδkjþ ∑
lak

∑
j
wki;ljδlj

þ1
2

wki;kikiδki
2þ2∑

ja i
wki;kikjδkiδkjþ2 ∑

lak
∑
j
wki;kiljδkiδlj

þ ∑
ja i

wki;kjkjδkj
2þ ∑

ja i
∑

na i;j
wki;kjknδkjδknþ2 ∑

lak
∑
j
∑
n
wki;kjl nδkjδl n

þ ∑
lak

∑
j
wki;ljljδlj

2þ ∑
lak

∑
j

∑
na j

wki;ljl nδljδl nþ ∑
pak

∑
lak

∑
j
∑
n
wki;ljpnδljδpn

2
6666664

3
7777775

ð15Þ
where

wki;ljpn : ¼ ∂wkiðzÞ
∂zlj∂zpn

: ð16Þ

Eq. (15) involves three kinds of 1st-order derivatives and nine
kinds of 2nd-order derivatives of a fitness function. Symbols to
classify them are shown in Tables 1 and 2. For example, for any k
and i, we have wSS : ¼wki;kiki which represents the disruptive
selection intensity in the case of well-mixed population. Similarly,
wSD : ¼ ðN�1Þwki;kikj represents the combined effect from self and
another individual in the same deme, wDD : ¼ ðN�1Þwki;kjkj repre-
sents the 2nd-order effect from a single individual in the same

deme and wDD0 : ¼ ðN�1ÞðN�2Þwki;kjkn represents the combined
effect from two different individuals in the same deme.

2.4.2. Moment closure
Inserting Eq. (15) to Eq. (1) yields three 2nd-order moments

and nine 3rd-order moments, as summarized in Tables 1 and 2.
Each moment is multiplied by the corresponding fitness deriva-
tive. The calculation of these moments might result in very
complicated expressions when the number of demes is finite,
but, as above, we assume that the number of demes is very large
(Nd-1). Then individuals from different demes can be consid-
ered as genetically unrelated (their ancestral lineages are inde-
pendent), which allows us to neglect the moments involving
individuals from different demes. Thus, we obtain

Δz¼wSδ
2 þwDδδþ

1
2
ðwSSδ

3 þð2wSDþwDDÞδ2δþwDD0δδδÞ ð17Þ

where we defined

δ3 : ¼ 1
NT

∑
Nd

k ¼ 1
∑
N

i ¼ 1
ðδkiÞ3; ð18Þ

δ2δ : ¼ 1
NdNðN�1Þ ∑

Nd

k ¼ 1
∑
N

i ¼ 1
∑
N

j ¼ 1;ja i
ðδkiÞ2δkj; ð19Þ

and

δδδ : ¼ 1
NdNðN�1ÞðN�2Þ ∑

Nd

k ¼ 1
∑
N

i ¼ 1
∑
N

j ¼ 1;ja i
∑
N

l ¼ 1;la i;la j
δkiδkjδkl: ð20Þ

It is sufficient to evaluate these 3rd-order moments appearing in
Eq. (17) under neutrality, which we do in two steps. First, we apply

the same coalescence argument as above, δiδj , whereby

δiδj ¼ R2δ
iþ j þð1�R2Þδi δj ð21Þ

Second, we assume that the distribution of phenotypes at a
singular point is Gaussian, which is indeed a standard assumption
in quantitative genetics and can be derived under the infinite sites

model. This leads to the Gaussian closure δ3 ¼ 0 and δ4 ¼ 3V2

(Kimura, 1965; Sasaki and Dieckmann, 2011, Wakano and Iwasa,

2013). Putting i¼1, j¼2, δ ¼ 0 and δ3 ¼ 0 into Eq. (21), we have

δ2δ ¼ 0. Note that Eq. (21) is only true when selection is absent. We

will later calculate the perturbation of δ2δ in detail.
The moment δδδ can be thought of as covariance among three

different individuals in the same deme. In order to evaluate it, we
again use a coalescence argument. The ancestral lineages of the
three individuals may all coalesce into a single ancestor, two of
them coalesce, or none of them coalesces. So under neutrality we
have

δδδ ¼ R3δ
3 þ3ðR2�R3Þδ2 δþð1�R3�3ðR2�R3ÞÞðδÞ3: ð22Þ

where R3 is the probability that the ancestral gene lineage
sampled from three different individuals in the same deme
coalesce in the same ancestor. This can be thought of as a triplet
relatedness, the neutral value of which can again be calculated
under different updating schemes. For instance, for Wright–Fisher
updating this is a solution of

R3 ¼ ð1�mÞ3 1

N2þ3
N�1

N2 R2þ
N�1
N

� �
N�2
N

� �
R3

� �
: ð23Þ

Putting δ ¼ 0 and δ3 ¼ 0 into Eq. (22) yields δδδ ¼ 0. Intuitively
speaking, it is natural to expect that odd order moments vanish if
the phenotypic distribution is symmetric, because odd order
products of different variables can take positive or negative values.
Thus, Eq. (17) simplifies to

Δz¼wSδ
2 þwDδδ ð24Þ

Table 1
The 1st-order fitness derivatives and elements of the corresponding moments.
“Occurrences“ means the number of occurrences in NT ¼NdN pairs. “Fitness effect“
equals the product of “fitness derivative“ and “occurrences“. “Other“ refers to an
individual in another island from the focal individual's island. Elements of
moments are averaged over population to calculate the moment. Fitness effects
are multiplied by the corresponding 2nd-moments (3rd-moments, respectively) in
the same row to calculate the mean trait dynamics (the trait variance dynamics,
respectively).

Fitness
effect

Fitness
derivative

Occurrences Description Elements
of 2nd-
moments

Elements
of 3rd-
moments

wS wki;ki 1 Self δ2ki δ3ki
wD wki;kj N�1 Deme-

mate
δkiδkj δ2kiδkj

wO wki;lj NðNd�1Þ Other δkiδlj δ2kiδlj

J.Y. Wakano, L. Lehmann / Journal of Theoretical Biology 351 (2014) 83–9586



In order to evaluate Eq. (24) to the 2nd-order effect of selection,

we need to evaluate δ2 and δδ under selection (this can be thought
as the effect of selection on relatedness). However, at a singular
point zn, where the 1st-order effect of selection vanishes, the
perturbation of these 2nd-order moments to the 1st-order effect
of selection can be expressed only in terms of the 3rd-order

moments (δ3 , δ2δ,δδδ) evaluated under neutrality. Under our
Gaussian closure assumption, these 3rd-order moments vanish.

Thus, the 1st-order effect of selection on δ2 and δδ can be
neglected at a singular point zn, which entails that the relatedness
coefficient must be well approximated by the value estimated
under neutrality.

In summary, to the 2nd-order effect of selection, the mean trait
dynamics around a singular point can still be approximated by
Eq. (12), and this fact will be used in the next section.

2.5. Trait variance dynamics to the 2nd-order effect of selection

Since our main goal is to obtain the condition for evolutionary
branching, we want to obtain the recursion for the trait variance
when z has already reached the CS value zn. We have shown that
the mean trait (i.e., the 1st-moment of trait distribution) does not
change even to the 2nd-order effect of selection. It does also not
fluctuate as the dynamic is deterministic in infinite populations
ðNd-1Þ. Thus, ztþ1 ¼ zt ¼ zn holds. In this situation, we can
rescale z to set z¼ 0 without loss of generality and the expectation
of trait variance in the next generation is given by

E½Vtþ1jzt ¼ z� ¼ 1
NT

∑
k
∑
i
δ2kiwkiðzÞ ð25Þ

because the expected number of offspring with trait zki ¼ δki is
wkiðzÞ.

Putting Eq. (15) into Eq. (25) yields three 3rd-order moments
and nine 4th-order moments. The terms including 4th-order
moments can be calculated in a similar way as in the previous
section. On the other hand, the 1st-order effect of selection on 3rd-
order moments (i.e., the perturbation of relatedness, see Ajar,
2003) cannot be neglected in general. Thus, Eq. (25) should consist
of two terms.

3. Main result

3.1. Condition for evolutionary branching

In Appendix B, we show that the dynamics of trait variance can
be written as

E½ΔV jz� ¼ V2ðΔwþΔrÞ ð26Þ

where Δw quantifies the effect of disruptive selection on the
fitness of a focal individual, while Δr quantifies that effect through
the perturbation of relatedness. Explicitly, we have

Δw¼wSSþð2wSDþwDDÞR2þwDD0R3: ð27Þ
Each term in Δw represents a relatedness-weighted 2nd-order
effect of various actors on the fitness of a focal recipient. First, wSS

stems from the focal individual altering its own trait value. Second,
2wSDþwDD stems from the focal individual and its neighbors
altering their trait values (2wSD is the combined effect, while
wDD is the effect due solely to neighbors), which is weighted by the
association R2 between the trait value of the focal individual and
any of its neighbors. Third, wDD0 stems from two distinct neighbors
altering their trait values (summed over all possible pairs of
neighbors), which is weighted by the association R3 between the
trait value of the focal individual and the two distinct neighbors.

The general form of the fitness effect Δw displayed in Eq. (27)
does not depend on the particular demographic assumptions (e.g.,
Wright–Fisher or Moran). By contrast, Δr depends on such
assumptions, and for the Wright–Fisher process we have

Δr¼ 4V2R2
ð2R2þðN�2ÞR3ÞwP

Dþð1þðN�1ÞR2ÞwP
S

1�m
wD ð28Þ

where wP
S and wP

D are fitness derivatives of the philopatric
component wP of the fitness function (see Eqs. (B.17), (B.20) and
(B.21) in Appendix B).

Note that Δw and Δr are evaluated at a singular point and thus
they are constant. Thus, the trait variance unlimitedly increases if

QES : ¼ΔwþΔr40 ð29Þ
Together with the CS condition given by Eq. (14), Eq. (29) can

be considered as the branching condition in deme-structured
populations.

3.2. Connection to the previous results

In the case of a well-mixed population where R2 ¼ R3 ¼ 0,
Eq. (29) reduces to the traditional non-ES condition (Eshel,
1983); namely,

wSS ¼
∂2wðzself ; zresidentÞ

∂z2self
40 ð30Þ

Most previous studies on structured populations have used the
number of successful emigrants descended from a mutant immi-
grant, Rm, as invasion fitness measure and studied the branching
condition by calculating the 2nd-order derivative R″m (Metz and
Gyllenberg, 2001; Ajar, 2003). Nevertheless, Appendix C shows
that for the Wright–Fisher process our branching condition
reduces to that given in Ajar (2003). The correspondence to
the result of Day (2001) is also shown in Appendix C.

Table 2

The 2nd-order fitness derivatives and elements of the corresponding moments. “Occurrences“ means the number of occurrences in N2
T ¼N2

dN
2 pairs. Fitness effects are

multiplied by the corresponding 3rd-moments (4th-moments, respectively) in the same row to calculate the mean trait dynamics (the trait variance dynamics, respectively).

Fitness effects Fitness derivative Occurrences Description Elements of 3rd-moments Elements of 4th-moments

wSS wki;kiki 1 Self δ3ki δ4ki
wSD wki;kikj 2ðN�1Þ Self and deme-mate δ2kiδkj δ3kiδkj
wSO wki;kilj 2NðNd�1Þ Self and other δ2kiδlj δ3kiδlj
wDD wki;kjkj ðN�1Þ Deme-mate δkiδ

2
kj δ2kiδ

2
ki

wDD0 wki;kjkp ðN�1ÞðN�2Þ two different deme-mates δkiδkjδkp δ2kiδkjδkp
wDO wki;kjlp 2ðN�1ÞðNd�1ÞN Deme-mate and other δkiδkjδlp δ2kiδkjδlp
wOO wki;ljlj ðNd�1ÞN Other δkiδ

2
lj δ2kiδ

2
li

wOO0 wki;ljlp ðNd�1ÞNðN�1Þ Two different others in the same deme δkiδljδlp δ2kiδljδlp
wOOd

wki;ljmp ðNd�1ÞðNd�2ÞN2 Two different others in different demes δkiδljδmp δ2kiδljδmp
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This demonstrates a direct correspondence between the condition
of branching obtained by endorsing a mutant-resident system
framework and that obtained using a quantitative genetics or
distributional framework.

3.3. Structural-skew effect

The term Δr captures the effect on the trait variance induced by

a skew in the trait distribution from the neutral state δδ2 ¼ 0.
Conceptually, Δr measures the 1st-order perturbation of related-

ness due to selection (Rselection
2 �R2). It may be expected that such

structural-skew effect is limited when population structure is
fixed, e.g. constant m and N. We will later numerically confirm
this (jΔrj5 jΔwj) in our example case. As long as branching is
mainly induced by disruptive selection intensity (wSS), we can use
Eq. (27) as an approximate measure instead of the full branching
condition Eq. (29). Note also that for a model where trait changes
only fecundity only slightly (weak fecundity selection, see Section
4.3.2), Δr can be neglected as it consists of products of 1st-order
fitness derivatives (e.g., wP

SwD).

3.4. Trait variance dynamics with mutation

So far we have only considered the effect of selection. Mutation
also increases the trait variance. Genetic drift at the population
level is negligible since we assume infinitely many demes. For
weak selection and mutation, the variance dynamics can be
approximated by

dV
dt

¼QESV
2þμs2 ð31Þ

where μ and s are mutation rate and the standard deviation of
mutation step size, respectively (Wakano and Iwasa, 2013). When
QES40 the dynamics explodes, while when QESo0 it converges to

Vn ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
�μs2

QES

s
ð32Þ

The formula gives a quantitative prediction on the effect of
migration rate on the trait variance when limited migration
suppresses evolutionary branching.

4. Comparison with simulation results

4.1. Pairwise interaction game

In order to provide an application of our results, we now
consider pairwise interactions in each deme. Specifically, every
interaction is a two-player game, where the fecundity of individual
i in deme k is given by

Fki ¼ ∑
N

j ¼ 1;ja i
f ðzki; zkjÞ=ðN�1Þ; ð33Þ

where f ðzki; zkjÞ is its payoff when matched with individual j in
deme k. As an example, we assume that the trait z represents the
amount of investment into public goods shared by two players
(Doebeli et al., 2004). That is, we have

f ðzi; zjÞ ¼ 1þBðziþzjÞ�CðziÞ; ð34aÞ
where the benefit function

BðzÞ ¼ b1zþb2z2; ð34bÞ
and the cost function

CðzÞ ¼ c1zþc2z2; ð34cÞ
are non-linear.

We assume the Wright–Fisher updating. The updating rule in
Doebeli et al. (2004) is different from ours, while we faithfully
coded the exact Wright–Fisher updating in our simulations to
compare with our analytic predictions. The fitness function wki in
terms of fecundity Fki depends on the updating rule. The explicit
form is given by Eq. (D.2) in Appendix D.

After reproduction, there is a small probability of mutation
μ per individual, and the mutant trait value follows a normal
distribution with a mean equal to the parent's and a variance s2.
Mutants are constrained to be between 0 and 1, which confines
trait z within an interval [0,1].

4.2. Evolutionary branching in well-mixed population

When the population is well-mixed, Doebeli et al. (2004) have
shown that the singular strategy zn ¼ ðc1�b1Þ=ð4b2�2c2Þ is con-
vergence stable (CS) when 2b2�c2o0 and evolutionarily
stable (ES) when b2�c2o0. They have observed evolutionary
branching in an individual-based simulation of a large population
(N¼10,000) when zn is CS but not ES. We confirmed that our
calculations of zn, QCS and QES give the same conditions when
R2 ¼ R3 ¼ 0, and that branching occurred in our simulation with
Nd¼1 and N¼8000 (Fig. 1 in Wakano and Iwasa, 2013).

4.3. Evolutionary branching in structured populations: analytical
results

4.3.1. Mean trait dynamics
When the number of demes is sufficiently large, the inclusive

fitness effect in Eq. (12) is given by

wSþwDR2 ¼
ð2�mÞmN

1þð2�mÞmðN�1ÞsðzÞ ¼ ð1�R2ÞsðzÞ ð35Þ

where

sðzÞ ¼ b1�c1þð4b2�2c2Þz
1þð2b1�c1þ4b2z�c2zÞz

ð36Þ

is the selection gradient in the corresponding well-mixed model.
Thus, the singular strategy zn and the CS condition remains the
same for deme-structured models and we predict that mean trait
dynamics are qualitatively the same in both well-mixed and
deme-structured models. Since we adopted the Wright–Fisher
updating (no generation overlap), the CS strategy should in effect
be identical to that in a well-mixed population (Lehmann, 2008).

4.3.2. Trait variance dynamics
The fitness derivatives appearing in our condition for evolu-

tionary branching (Eqs. (27)–(29)) can be explicitly calculated for
any pairwise payoff function f ðz1; z2Þ. Thus, we have the branching
condition explicitly written in terms of model parameters
ðb1; b2; c1; c2;m;NÞ. Although the expression for QES becomes
cumbersome, the derivation is straightforward and is detailed in
Appendix D.

Further, the expression for QES can be drastically simplified if
one assumes that payoffs affect weakly fitness; namely the cost
and benefit in Eqs. (34) are of small order ε relative to the baseline
payoff of one. In this case, one can retain only terms of leading
order in ε in QES and all products of fitness derivatives vanish
which assures Δr¼ 0. Then the trait variance unlimitedly increases
if

∂2f
∂z21

þκ
∂2f
∂z22

þ2ðκþνÞ ∂2f
∂z1∂z2

40 ð37Þ
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where

κ¼ ½N�ð1�mÞ2ðN�1Þ�R2�ð1�mÞ2
N�ð1�mÞ2½1þðN�1ÞR2�

ð38Þ

is a (demographically) scaled pairwise relatedness coefficient
(Queller, 1994; Lehmann and Rousset, 2010), while

ν¼ ð1�mÞ2½1þðN�3ÞR2�ðN�2ÞR3�
N�ð1�mÞ2½1þðN�1ÞR2�

ð39Þ

is a (demographically) scaled relatedness coefficient involving
triplets of genes. Each updating process will result in a different
value for κ and ν, and for the Wright–Fisher process we have κ¼ 0
and

ν¼ ð1�mÞ2ð3�ð3�mÞmÞN�2ð1�mÞ4
ð2�mÞð�2þmð3�ð3�mÞmÞðN�2ÞðN�1Þþ3NÞ ð40Þ

The branching condition Eq. (37) is much simpler to compute,
since it is expressed directly in terms of payoff and does not
require to evaluate any fitness function explicitly. Although
Eq. (37) assumes weak fecundity selection, we conjecture that
this condition obtains more generally, as long as payoffs affect vital
rates (fecundity and survival) by small amount ε (and this should
apply to multiplayer interaction games as well). Thus, κ and ν can
be treated as fixed parameters, without the need to explicitly
specify a life cycle, with large κ and ν values indicating strong
population structure, while small values indicating low population
structures.

4.4. Evolutionary branching in structured populations: simulation
results

4.4.1. A very small population
All individual-based simulations were run with fixed game

parameters ðb1; b2; c1; c2Þ for which unique evolutionary branching
point zn¼0.6 exists in a well-mixed model. In order to study the
effect of population structure and also to check the correctness of
the code, we first investigated very small populations with NT¼8
individuals divided into either Nd¼2 or 4 demes. In these cases,
the evolutionary dynamics should be well-approximated by the
trait substitution sequence and evolutionary branching is impos-
sible. The analytic prediction for the stationary distribution φ(z) is
obtained by the two-allele approximation (Wakano and Lehmann,
2012; Lehmann, 2012), with the selection gradient calculated from
the fixation probability perturbation corresponding to the model's
assumption (using Eq. (2a) in Eqs. (7) and (8) and Eq. (A.22) of
Lehmann, 2008). Our simulation result agreed very well with
these theoretical predictions (Fig. 2). As long as the total popula-
tion size was kept constant, we observed essentially the same
result for different structures (e.g., different deme sizes and
migration rates).

4.4.2. A large population
Next we focused on a population with 1000 demes of size 8.

The population size NT¼8000 is sufficiently large to trigger
deterministic branching at least in a well-mixed population
(Wakano and Iwasa, 2013). Preliminary simulation results (Fig. 1)
had already shown the effect of migration rate m. The trait
variance dynamics for these simulation runs are shown in Fig. 3.

Fig. 2. Results of simulations and analytic predictions for when a singular point is a
branching point. Trait distributions averaged over 108 generations are shown with
inlet panels showing the evolutionary dynamics for the first 105 generations. The
inlet panels are drawn in the same way as in Fig. 1. Curves represent an analytically
obtained distribution φðzÞ � R

sðzÞ dz where sðzÞ is the fixation probability pertur-
bation evaluated in a case of finite and well-mixed population (see Wakano and
Lehmann, 2012), while circles represent the result of individual-based simulations.
Distributions are normalized so that

R
φðzÞ dz¼ 1. Simulation results with different

migration rates (m¼0.2, 0.4, 0.6, 0.8) were almost indistinguishable so only a result
with m¼0.2 is shown. The other parameter values are the same as in Fig. 1.

tra
it 

va
ria

nc
e

generation

m = 0.2m = 0.4m = 0.6

Fig. 3. The dynamics of trait variance V in the simulation runs shown in Fig. 1. (a and b) When m¼0.4 or m¼0.6, evolutionary branching occurred and the resulting increase
of V was observed. (c) When m¼0.2, the distribution remained unimodal. Eq. (32) predicts a stable value Vn¼0.0063 (horizontal line).
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For a large migration rate, the trait variance increased sharply at
the onset of branching (Fig. 3a). For a small migration rate, the trait
variance of a resultant unimodal distribution fluctuated around
the equilibrium. This equilibrium value agrees with the predicted
value given by Eq. (32) (Fig. 3c).

We substitute parameter values into our branching condition
(Eqs. (27)–(29), see also Appendix D) to draw a graph of
QES ¼ΔwþΔr as a function of migration rate m (Fig. 4). We
numerically confirm that the structural-skew effect Δr is negligi-
ble. We also find that the simplified condition Eq. (37) is

numerically very close to the full condition, although game
parameters (b1; b2; c1; c2) are not chosen as very small. Our analysis
predicts the existence of the threshold migration rate mn below
which branching does not occur. Moreover, it gives a quantitative
prediction mn � 0:368 for N¼8, which is consistent with our
simulation results (Fig. 1). In order to check this prediction more
precisely, we have performed simulations for many different m
values. Typical dynamics for m¼0.34, 0.36, and 0.38 are shown in
Fig. 5. The dynamics looked highly stochastic when m¼0.36, but
they behaved exactly as predicted when m was increased only by
0.02. As soon as m was increased above mn, we observed relatively
clear branching dynamics. Several simulations with different
combinations of parameter values were performed and they also
agreed with our prediction.

5. Discussion

Our aim was to derive an analytical condition for evolutionary
branching in structured populations using a model of trait dis-
tribution dynamics. We have derived the dynamics of the
moments (mean and variance) in the total population up to the
2nd-order effect of natural selection. We have shown that the
mean trait dynamics can be captured by the traditional inclusive
fitness effect. The effect of population structure on the trait
variance can then be represented by relatedness coefficients
involving two and three individuals evaluated under neutrality.
We have derived the condition under which the trait variance
explodes. It is the instability condition of a unimodal distribution,

m

rQES Δ,

branching

no branching

N = 20 8 4

Fig. 4. The dependence of QES ¼ΔwþΔr on migration rate m and deme size N
based on analytic result for infinite number of demes (Eqs. (27)–(29)). Both QES and
Δr are drawn showing that Δr values are negligibly small compared to QES . Results
for N¼4, 8, and 20 are shown. The threshold migration rates are mn¼0.504,
0.368, 0.210 for N¼4, 8, 20, respectively. Parameter values ðb1 ; b2 ; c1 ; c2Þ ¼
ð6:0; �1:4;4:56; �1:6Þ are the same as in Fig. 1.

Fig. 5. Simulation results for migration rates close to the threshold. Simulations were run for 10 times longer generations than Fig. 1. Our prediction yields mn¼0.368.
Evolutionary dynamics were highly stochastic and unpredictable when m¼0.36, while they were relatively robust when m was increased or decreased by 0.02 from the
threshold value. The other parameter values are the same as in Fig. 1.

J.Y. Wakano, L. Lehmann / Journal of Theoretical Biology 351 (2014) 83–9590



which parallels the non-ES condition in a mutant-resident system.
Together with the CS condition, it can also be considered as the
condition of evolutionary branching. Our prediction of branching
is qualitatively consistent with individual-based simulations
showing that the deme structure suppresses the chance of evolu-
tionary branching in our example (non-linear pairwise public
goods game). Moreover, our result is also quantitatively consistent
with simulations to predict the value of the minimum migration
rate for evolutionary branching to occur.

It is very interesting that we recover the same branching
condition as in a previous study that assumed the Wright-Fisher
process (Ajar, 2003), although we studied evolutionary branching
from a different angle. This confirms the consistency of both
approaches; the trait distribution approach (this study) and the
mutant-resident approach based on the number of successful
mutant emigrants (e.g., Metz and Gyllenberg, 2001; Ajar, 2003;
Parvinen and Metz, 2008). One benefit of the trait distribution
approach might be that it clarifies the biological interpretation of
the condition of disruptive selection QES. It is the result of selection
acting on the trait variance and for example we can predict the
variance of a stable unimodal trait distribution (see Eq. (32),
Figs. 1 and 3c).

The stability measure QES consists of two components. The first
component Δw includes the disruptive selection intensity that
already exists in the corresponding well-mixed model. The second
component Δr captures the effect of selection on relatedness,
which is a form of skew in the trait distribution from what is
expected from population structure (e.g., deme size and dispersal
rate) when selection is absent. Our numerical calculations have
shown that this second component is negligible in a model where
population structure is fixed. This is very useful because it
circumvents the need to compute Δr, which is process specific
and complicated to obtain, while the expression for Δw is general
and given by Eq. (27) for all reproductive processes satisfying our
demographic assumptions. However, if the evolving trait values
affects population structure, such as in a the case of evolution of
dispersal rate, the structural-skew effect Δr, may no longer be
negligible (Ajar, 2003).

We further showed that when the evolving trait weakly affects
fecundity and/or survival, the condition for branching can be
markedly simplified, which allows in this case for a simpler
analytical characterization of branching than obtained in previous
work (see Sections 3.3 and 4.3.2). Moreover, we observed that this
simplified condition still matches well results from simulations
even with relatively strong fecundity effects.

We have also focused on a case where the population is
subdivided into demes of a constant size. The number of demes
was assumed very large to derive analytically tractable equations
so that genetic drift at the level of the total population was
neglected. Conceptually, these limitations might be relaxed, but
calculations may then be difficult for practical purposes. However,
preliminary simulations (not presented here) show that the
expected waiting time until branching depends on the number
of demes in such a way that it agrees with analytic prediction
(based on the present study and Wakano and Iwasa, 2013), at least
qualitatively.

Our calculation assumes that the trait distribution in the total
population obeys the Gaussian distribution, which is not required
in the mutant-resident approach. Among the properties of the
Gaussian distribution, we only need a Gaussian moment closure
that consists of (a) the 3rd moment ðδ3 Þ is negligible and (b) the
4th moment is three times the variance squared ðδ4 ¼ 3V2Þ. The
former is quite a reasonable assumption because it holds when-
ever the trait distribution is symmetric around the mean and
because the mean does no longer change once the distribution
around the singular point is realized. On the other hand, the latter

assumption is more constraining. It can be shown, however, that
our result still holds when the kurtosis is not three, but it must be
constant. The agreement of the two approaches might imply that
the Gaussian distribution assumption is not necessary to justify
our results, but clarifying this point is beyond the scope of the
present study.
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Appendix A

Fitness derivatives satisfy the following equalities for any i, j, k,
l, p, q, r and n:

wki;ki ¼wlj;lj ðA:1aÞ

wki;kj ¼wkp;kq if ja i and paq ðA:1bÞ

wki;lj ¼wpr;qn if ka l and paq ðA:1cÞ

Throughout the paper, different indices imply different values.
Using this symmetry and putting Eq. (2) into Eq. (1), we have

E½ztþ1jzt ¼ z�

¼ 1
NT

∑
k
∑
i
ðzþδkiÞ 1þwki;kiδkiþwki;kj ∑

ja i
δkjþwki;lj ∑

lak
∑
j
δlj

 !
ðA:2Þ

Since the sum of deviations adds up to zero ð∑k∑iδki ¼ 0Þ, we have

∑
k
∑
i
∑
ja i

δkj ¼∑
k
∑
i
∑
j
δkj�∑

k
∑
i
δki ¼ 0 ðA:3Þ

and

∑
k
∑
i
∑
lak

∑
j
δlj ¼ 0�∑

k
∑
i
∑
j
δkj ¼ 0 ðA:4Þ

which lead to Eq. (4).

Appendix B

Inserting Eq. (15) into Eq. (25) yields

E½Vtþ1jzt ¼ z� ¼wSδ
3 þwDδδ

2 þV2 ΔwþOðδ5Þ: ðB:1Þ
where the first and second terms come from the 1st-order
expansion of fitness, while the term V2 Δw comes from the 2nd-
order expansion. We denote by OðδnÞ the term that only includes
the nth or higher order products of δ0kis. The derivation of our main
result Eqs. (27)–(29) from Eq. (B.1) consists of three steps.

First, we derive the expression of Δw, i.e., we show the effect of
4th-order moments each of which is associated with a 2nd-order
fitness derivative. In contrast to 3rd-order moments, some 4th-
order moments among different demes do not vanish because
E½X2Y2� ¼ E½X2�E½Y2�40 when X and Y are independent. We have
the following non-vanishing 4th-order moments:

δ4 : ¼ 1
NT

∑
Nd

k ¼ 1
∑
N

i ¼ 1
ðδkiÞ4; ðB:2Þ

δ3δ : ¼ 1
NT ðN�1Þ ∑

Nd

k ¼ 1
∑
N

i ¼ 1
∑
N

j ¼ 1;ja i
ðδkiÞ3δkj

 !
; ðB:3Þ
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δ2δ2 : ¼ 1
NT ðN�1Þ ∑

Nd

k ¼ 1
∑
N

i ¼ 1
∑
N

j ¼ 1;ja i
ðδkiÞ2ðδkjÞ2

 !
; ðB:4Þ

δ2δδ : ¼ 1
NT ðN�1ÞðN�2Þ ∑

Nd

k ¼ 1
∑
N

i ¼ 1
∑
N

j ¼ 1;ja i
∑
N

n ¼ 1;na i;na j
ðδkiÞ2δkjδkn

 !
;

ðB:5Þ

δ2δ2d : ¼ 1
NT ðNd�1ÞN ∑

Nd

k ¼ 1
∑
N

i ¼ 1
∑
Nd

l ¼ 1;lak
∑
N

j ¼ 1
ððδkiÞ2ðδljÞ2Þ; ðB:6Þ

and

δ2δδd : ¼ 1
NT ðNd�1ÞNðN�1Þ ∑

Nd

k ¼ 1
∑
N

i ¼ 1
∑
Nd

l ¼ 1;lak
∑
N

j ¼ 1
∑
N

n ¼ 1;na j
ððδkiÞ2δljδlnÞ:

ðB:7Þ
In terms of these moments which are to be evaluated under
neutrality,

V2 Δw¼ 1
2
ðwSSδ

4 þ2wSDδ
3δþwDDδ

2δ2 þwDD0δ2δδþwOOδ
2δ2d

þwOO0δ2δδd Þ ðB:8Þ
holds where we defined wOO ¼ ðNd�1ÞNwki;ljlj and wOO0 ¼
ðNd�1ÞNðN�1Þwki;ljln. Using Eq. (21) and also δ2δd

2 ¼ V2 and

δ2δδd ¼ Vδδ ¼ R2V
2, we have

Δw¼ 1
2
ð3wSSþ6wSDR2þwDDð1þ2R2ÞþwOOþwOO0R2ÞþwD0Dδ

2δδ

ðB:9Þ

The moment δ2δδ can be evaluated by a similar coalescence
argument that we used to derive Eq. (22). This yields

δ2δδ ¼ R3δ
4 þ2ðR2�R3Þδ3 δþðR2�R3Þδ2 δ2

þð1�R3�3ðR2�R3ÞÞδ2 δ δ ðB:10Þ
and we have

Δw¼ 1
2
ð3wSSþwDDþwOOþð6wSDþ2wDDþwD0DþwOO0 ÞR2þ2wD0DR3Þ

ðB:11Þ
To simplify this, we use the fact

∑
Nd

k ¼ 1
∑
N

i ¼ 1
wki ¼NT : ðB:12Þ

By differentiating this equality, we have

∂2

∂z2lj
∑
Nd

k ¼ 1
∑
N

i ¼ 1
wki

 !
¼ ∑

Nd

k ¼ 1
∑
N

i ¼ 1

∂2wki

∂z2lj
¼wSSþwDDþwOO ¼ 0 ðB:13Þ

and

ðN�1Þ ∂2

∂zli∂zlj
∑
Nd

k ¼ 1
∑
N

i ¼ 1
wki

 !
¼ 2wSDþwDD0 þwOO0 ¼ 0 ðB:14Þ

Using these two equalities, we obtain a simplified expression

Δw¼wSSþð2wSDþwDDÞR2þwDD0R3

which finishes the first part.
We now calculate the perturbation of the first 3rd-order

moments appearing in Eq. (B.1). After selection, this 3rd-order
moment in the next generation is given by

E½δ3 tþ1jzt ¼ z� : ¼ 1
NT

∑
k
∑
i
δ3kiwkiðzÞ ¼ δ3 þwSδ

4 þwDδδ
3 þOðδ5Þ:

ðB:15Þ

Since 4th-order moments are evaluated under neutrality at sin-
gular point, we have

wSδ
4 þwDδδ

3 ¼ ðwSþR2wDÞδ4 ¼ 0: ðB:16Þ
Thus, if δ3 ¼ 0 then it remains zero (precisely, Oðδ5Þ) even after
selection. This means that the perturbation of the term wSδ

3 in
Eq. (B.1) can be neglected, which is consistent with the Gaussian
closure.

Finally, we now compute the dynamics of the moment δδ2 in
Eq. (B.1) for a Wright-Fisher process which will turn out to be
complicated even though we assume Wright's island model. To
calculate this, we split fitness into phillopatric and dispersal
(allopatric) components:

wki ¼wP
kiþ ∑

hak
wD

hki ðB:17Þ

where wD
hki is the expected number of adult offspring in deme h of

individual i in deme k. An individual in deme k descends from an
individual i in deme kwith probability wP

ki=N. Two individuals (say,
A and B) in deme k descend from the individual i in deme k with
probability ðwP

ki=NÞ2, and they descend from individuals i and j
(a i) in deme k with probability ðwP

ki=NÞðwP
kj=NÞ. We can then write

E½δδ2 tþ1jzt ¼ z� ¼ φþϕ ðB:18Þ
where

φ¼ 1
Nd

∑
k

∑
i

wP
kiðzÞ
N

 !2

δ3kiþ∑
i
∑
ja i

wP
kiðzÞwP

kjðzÞ
N2 δ2kiδkj

0
@

1
A ðB:19Þ

represents the case when both individuals in deme k (i.e., A and B)
descended from deme k. The term φ takes into account effect due
to allopatry and will be calculated explicitly later. Putting the last
term in the following Taylor expansion into Eq. (B.19):

wP
ki ¼ ð1�mÞþwP

ki;kiδkiþ ∑
ja i

wP
ki;kjδkjþ ∑

hak
∑
j
wP

ki;hjδhjþOðδ2Þ: ðB:20Þ

produces moments that will be zero at neutrality. Thus, we can
approximate this full expression by

wP
ki ¼ ð1�mÞþwP

SδkiþwP
D

1
N�1

∑
ja i

δkjþOðδ2Þ; ðB:21Þ

where wP
S : ¼wP

ki;ki and wP
D : ¼ ðN�1ÞwP

ki;kj, whereby

ðwP
kiÞ2 ¼ ð1�mÞ2þ2ð1�mÞ wP

SδkiþwP
D

1
N�1

∑
ja i

δkj

" #
þOðδ2Þ; ðB:22Þ

which yields several 4th-order moments evaluated under neutral-
ity. The first term in φ is given by

1
Nd

∑
k

∑
i
δ3ki

wP
kiðzÞ
N

 !2
1
A¼ ð1�mÞ

N
ð2wP

Sδ
4 þ2wP

Dδδ
3 Þ:

0
@ ðB:23Þ

and the second term in φ is given by (after some calculations)

1
Nd

∑
k
∑
i
∑
ja i

wP
kiðzÞwP

kjðzÞ
N2 δ2kiδkj ¼ ð1�mÞ2N�1

N
δδ2 þXþOðδ5Þ ðB:24Þ

where X is of Oðδ4Þ and given by

X ¼ 1�m

N2Nd

∑
k
∑
i
∑
ja i

wP
SδkiþwP

D
1

N�1
∑
la i

δklþwP
SδkjþwP

D
1

N�1
∑
la j

δkl

 !
δ2kiδkj

¼ ð1�mÞ
N

ððN�1ÞwP
S ðδδ3 þδ2δ2 ÞþwP

Dðδ2δ2 þδδ3 þ2ðN�2Þδδδ2 ÞÞ
ðB:25Þ

The sum of Eq. (B.23) and (B.24) then gives

φ¼ ð1�mÞ2N�1
N

δδ2
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þð1�mÞ
N

ðwP
S ð2δ4 þðN�1Þðδδ3 þδ2δ2 ÞÞ

þwP
Dðδ2δ2 þ3δδ3 þ2ðN�2Þδδδ2 ÞÞ ðB:26Þ

The term ϕ in Eq. (B.18) comes from the case when two individuals
sampled in a deme descend from different demes through dis-
persal. Since the population is of constant size, wD

hki is also N times
the probability that an individual sampled in h descends from
individual i in deme k. We have

ϕ¼ 1
Nd

∑
k

∑
i

∑
hak

∑
j

wP
kiw

D
khj

N2 ðδ2kiδhjþδkiδ
2
hjÞ

þ ∑
hak

∑
j
∑
lak

∑
i

wD
khjw

D
kli

N2 δ2hjδli

0
BBB@

1
CCCA ðB:27Þ

The Taylor expansion of wD
hkj is

wD
khj ¼

m
Nd�1

þ∑
i
wD

khj;kiδkiþwD
khj;hjδhjþ ∑

na j
wD

khj;hnδhn

þ ∑
lak;h

∑
i
wD

khj;liδliþOðδ2Þ; ðB:28Þ

The second term equals to wD
khj;kiδk where δk : ¼∑iδki. The last

term produces moments for individuals taken in three different
demes, which vanish under neutrality. Thus, we can approximate
the full expression by

wD
khj ¼

1
Nd�1

mþwD
C
1
N
δkþwD

S δhjþwD
D

1
N�1

∑
na j

δhn

" #
: ðB:29Þ

where we defined

wD
S : ¼ ∑

kah
wD

khj;hj ¼ ðNd�1ÞwD
khj;hj ðB:30aÞ

wD
D : ¼ ∑

kah
∑
na j

wD
khj;hn ¼ ðNd�1ÞðN�1ÞwD

khj;hn ðB:30bÞ

wD
C : ¼ ∑

kah
∑
i
wD

khj;ki ¼ ðNd�1ÞNwD
khj;ki ðB:30cÞ

Note that wD
C represents the effect of individuals changing their

trait values in a target deme on the dispersing component of
fitness. Each summation in Eq. (B.27) becomes a product and we
have

ϕ¼ 1
Nd

1

N2 ∑
i
wP

kiδ
2
ki

( )
∑

hak
∑
j
wD

khjδhj

( )
þ 1

N2 ∑
i
wP

kiδki

( )
∑

hak
∑
j
wD

khjδ
2
hj

( )

þ 1

N2 ∑
hak

∑
j
wD

khjδ
2
hj

( )
∑
lak

∑
i
wD

kliδli

( )
0
BBBBB@

1
CCCCCA

¼ ϕ1þϕ2þϕ3: ðB:31Þ
Using Eq. (B.29) and taking the limit Nd-1, the leading terms are
given by

∑
hak

∑
j
wD

khjδhj ¼
m

Nd�1
∑

hak
∑
j
δhj ¼

m
Nd�1

ð�δkÞ-0 ðB:32Þ

∑
hak

∑
j
wD

khjδ
2
hj-mNδ2 ðB:33Þ

and we have

∑
i
wP

kiδ
2
ki

( )
∑

hak
∑
j
wD

khjδhj

( )

¼ ∑
i

ð1�mÞδ2kiþwP
Sδ

3
kiþwP

D
1

N�1
∑
ja i

δkjδ
2
ki

" #( )

1
Nd�1

∑
hak

∑
j

wD
C

N
δkδhjþwD

S δ
2
hjþ

wD
D

N�1
∑
na j

δhnδhj

" #( )
ðB:34Þ

Since δ3 ¼ δδ2 ¼ Oðδ4Þ,

ϕ1 ¼
1
Nd

∑
k

1

N2 ∑
i
wP

kiδ
2
kig ∑

hak
∑
j
wD

khjδhj

( )(

¼ ð1�mÞδ2 fwD
S δ

2 þwD
Dδδg ðB:35Þ

By a similar calculation, we obtain

ϕ2 ¼
1
Nd

∑
k

1

N2 ∑
i
wP

kiδki

( )
∑

hak
∑
j
wD

khjδ
2
hj

( )

¼ 1

NdN
2∑

k
∑
i

ð1�mÞδkiþwP
Sδ

2
kiþ

wP
D

N�1
∑
ja i

δkjδki

" #( )

mNδ2 þ 1
Nd�1

∑
hak

∑
j

wD
C

N
δkδ

2
hjþwD

S δ
3
hjþ

wD
D

N�1
∑
na j

δhnδ
2
hj

" #( )

¼ 1

NdN
2∑

k
ð1�mÞδk½wD

C δkδ
2 �þmδ2

NdN
∑
k
∑
i

wP
Sδ

2
kiþ ∑

ja i

wP
D

N�1
δkjδki

" #

¼ ð1�mÞδ2
N2Nd

wD
C∑

k
δ2kþmδ2 ½wP

Sδ
2 þwP

Dδδ� ðB:36Þ

Using ∑kδ
2
k ¼∑kð∑kδkiÞ2 ¼∑k∑i∑jδkiδkj ¼NdðNðN�1ÞδδþNδ2 Þ,

we have

ϕ2 ¼ ð1�mÞδ2wD
C

N�1
N

δδþ 1
N
δ2

� �
þmδ2 ½wP

Sδ
2 þwP

Dδδ � ðB:37Þ

Since any individual in deme h has a parent, the following equality
always holds:

∑
kah

∑
i

wD
hki

N
þ∑

i

wP
hi

N
¼ 1: ðB:39Þ

Thus,

∑
kah

∑
i
wD

hki;h1þwP
h1;h1þ ∑

ia1
wP

hi;h1 ¼wD
C þwP

S þwP
D ¼ 0; ðB:40Þ

and which also holds for any individual j in deme h. Using this, we
have

ϕ2 ¼ �ð1�mÞδ2 ðwP
S þwP

DÞ
N�1
N

δδþ 1
N
δ2

� �
þmδ2 ½wP

Sδ
2 þwP

Dδδ�

ðB:41Þ
By a similar calculation, we have

ϕ3 ¼mδ2 ðwD
S δ

2 þwD
DδδÞ ðB:42Þ

Using wS ¼wP
S þwD

S ;wD ¼wP
DþwD

D, and wSþR2wD ¼ 0, we obtain

ϕ¼ �ð1�mÞδ2 wP
DδδþwP

Sδ
2 þðwP

S þwP
DÞ

N�1
N

δδþ 1
N
δ2

� �� 	
ðB:43Þ

By adding Eq. (B.26) and (B.43) and rewriting the moments in terms of
relatedness coefficients, we finally obtain

E½δδ2 tþ1jzt ¼ z� ¼ ð1�mÞ2N�1
N

δδ2

þ4V2ð1�mÞ
N

ðð2R2þðN�2ÞR3ÞwP
Dþð1þðN�1ÞR2ÞwP

S ÞþOðδ5Þ
ðB:44Þ

Since only the first term in the above recursion for δδ2 has a dominant
order Oðδ3Þ, we can approximate δδ2 at the quasi-equilibrium given by

δδ2 ¼ 4V2ð1�mÞð2R2þðN�2ÞR3ÞwP
Dþð1þðN�1ÞR2ÞwP

S

1þ2mðN�1Þ�m2ðN�1Þ ðB:45Þ

which can be simplified to

δδ2 ¼ 4V2R2
ð2R2þðN�2ÞR3ÞwP

Dþð1þðN�1ÞR2ÞwP
S

1�m
: ðB:46Þ

By inserting Eq. (B.46) and δ3 ¼ 0 into Eq. (B.1), the effect on trait
variance due to the perturbation of relatedness is then given by

Δr¼ 4R2
ð2R2þðN�2ÞR3ÞwP

Dþð1þðN�1ÞR2ÞwP
S

1�m
wD
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Appendix C

The correspondence of Δw to the first term of the 2nd-order
derivative of invasion fitness R″m given in Eq. (18) in Ajar (2003) is
clear, while the correspondence of Δr to the second term is not
trivial. Here we show this correspondence. The notations in Ajar
(2003) can be translated into our notation as follows:

F ¼ 1
N
þN�1

N
R2

K ¼ 1

N2þ3
N�1

N2 R2þ
ðN�1ÞðN�2Þ

N2 R3

∂wp

∂z�
¼wP

S �
wP

D

N�1
;

∂wp

∂z0
¼ N
N�1

wP
D;

∂w
∂z0

¼ N
N�1

wD

wp ¼ 1�m ðC:1Þ

Then after some calculations our result can be rewritten as

Δr¼ 4FðN�1Þ K
∂wp

∂z0
þF

∂wp

∂z�

� �
wp

∂wp

∂z0
ðC:2Þ

which is identical to the second term of Eq. (18) in Ajar (2003)
except a factor 1/d. This factor also appears in the first term
corresponding to Δw, and thus our condition reduces to the
condition given by Ajar (2003).

We also note the correspondence to the results of Day (2001),
which shows the ESS condition only for a case N¼2 and hence R3

does not exist. The translation of variables is given by

wSS ¼
∂2G
∂x2

; wSD ¼ ∂2G
∂x∂y

; wDD ¼ ∂2G
∂y2

; wD ¼ ∂G
∂y

ρ2 ¼ R2 ðC:3Þ

and then Eq. (D.5) in Day (2001) has exactly the same term as our
Δw plus the additional term

2
dρ2
dx

∂G
∂y

ðC:4Þ

which clearly corresponds to our Δr as both of them capture the
effect of the perturbation of relatedness.

Appendix D

Fitness is defined to be the expected number of successful
offspring. In terms of fecundity Fki ¼ FkiðzÞ, which is determined by
the pairwise payoff function f ðzi; zjÞ as in Eq. (33), the fitness
function is obtained as follows. The total amount of gametes in
deme k is given by

N � Fk ¼ ð1�mÞ ∑
N

j ¼ 1
Fkjþ

m
Nd�1

∑
Nd

l ¼ 1;lak
∑
N

j ¼ 1
Flj ðD:1Þ

where Fk is the average fecundity in deme k. Then the fitness
function is given by

wki ¼wP
kiþwD

ki

¼ ð1�mÞFki
Fk

þ ∑
Nd

l ¼ 1;lak

m=ðNd�1ÞFki
Fl

ðD:2Þ

It is straightforward to confirm that the fitness function is normal-
ized as w¼ 1 and symmetric as wkiðzÞ ¼ 1 holds.

The fitness derivatives appearing in our branching condition
can be derived by differentiating Eq. (D.2). In the infinite-deme
limit (Nd-1), we have

wSS ¼
1
F
ðFki;kiki�ð1�mÞ2Fk;kikiÞþ

2ð1�mÞ2
F2

½ð1�mÞðFk;kiÞ2�Fki;kiFk;ki�

ðD:3Þ

where F is fecundity evaluated at the trait distribution (zn, zn, …,
zn). Similarly, we obtain

wDD ¼ ðN�1Þ

� 1
F
ðFki;kjkj�ð1�mÞ2Fk;kjkjÞþ

2ð1�mÞ2
F2

½ð1�mÞðFk;kjÞ2�Fki;kjFk;kj�
" #

ðD:4Þ

wSD ¼ ðN�1Þ

�
1
FðFki;kikj�ð1�mÞ2Fk;kikjÞ
þð1�mÞ2

F2
½2ð1�mÞFk;kiFk;kj�Fki;kjFk;ki�Fki;kiFk;kj�

2
4

3
5 ðD:5Þ

wDD0 ¼ ðN�1ÞðN�2Þ

�
1
FðFki;kjkr�ð1�mÞ2Fk;kjkrÞ
þ2ð1�mÞ2

F2
ð1�mÞðFk;kjÞ2�Fki;kjFk;kj
h i

2
4

3
5 ðD:6Þ

where i, j, and r are different from each other. Fecundity deriva-
tives are explicitly given by pairwise payoff function f as follows:

Fki;ki ¼ f 1; Fki;kiki ¼ f 11

Fk;ki ¼ Fk;kj ¼
1
N
ðf 1þ f 2Þ

Fk;kiki ¼ Fk;kjkj ¼
1
N
ðf 11þ f 22Þ

Fki;kj ¼ f 2=ðN�1Þ; Fki;kjkj ¼ f 22=ðN�1Þ
Fki;kikj ¼ f 12=ðN�1Þ; Fk;kikj ¼ Fk;kjkr ¼ ð2=NðN�1ÞÞ f 12; Fki;kjkr ¼ 0

where a subscript to f means a variable with respect to which a
partial derivative is calculated, e.g., f 12 ¼ ∂2f ðz1; z2Þ=∂z1∂z2
(Wakano and Lehmann, 2012). Rewriting fitness derivatives (Eqs.
(D.3)–(D.6)) in terms of payoff derivatives, then putting them to
Eq. (27), we have the explicit form of Δw in terms of payoff
derivatives. Similar process can be applied for Δr and hence QES.
The result is not shown here since it is very lengthy. This can be
applied to any kind of pairwise payoff function f ðz1; z2Þ. To derive
the condition for our example case, putting an explicit form of
payoff function (Eqs. (34)) into this result and solving Eqs. (13) and
(23) to replace R2 and R3 as functions of m and N, we obtain an
explicit expression of QES by Mathematica, which is too cumber-
some to be presented here.

Note that wSS;wSD;wDD;wDD0 as well as R2;R3 depend on m and
N. Even in the Wright–Fisher updating, m and N do not vanish as
they do in a case of the mean trait dynamics. Thus, the resultant
condition is a very complicated function of m and N. Weak
fecundity selection assumed in Eq. (37) removes many of these
complexities.
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