
Improved Statistical Analysis of Low Abundance
Phenomena in Bimodal Bacterial Populations
Friedrich Reinhard¤, Jan Roelof van der Meer*

Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland

Abstract

Accurate detection of subpopulation size determinations in bimodal populations remains problematic yet it represents a
powerful way by which cellular heterogeneity under different environmental conditions can be compared. So far, most
studies have relied on qualitative descriptions of population distribution patterns, on population-independent descriptors,
or on arbitrary placement of thresholds distinguishing biological ON from OFF states. We found that all these methods fall
short of accurately describing small population sizes in bimodal populations. Here we propose a simple, statistics-based
method for the analysis of small subpopulation sizes for use in the free software environment R and test this method on real
as well as simulated data. Four so-called population splitting methods were designed with different algorithms that can
estimate subpopulation sizes from bimodal populations. All four methods proved more precise than previously used
methods when analyzing subpopulation sizes of transfer competent cells arising in populations of the bacterium
Pseudomonas knackmussii B13. The methods’ resolving powers were further explored by bootstrapping and simulations.
Two of the methods were not severely limited by the proportions of subpopulations they could estimate correctly, but the
two others only allowed accurate subpopulation quantification when this amounted to less than 25% of the total
population. In contrast, only one method was still sufficiently accurate with subpopulations smaller than 1% of the total
population. This study proposes a number of rational approximations to quantifying small subpopulations and offers an
easy-to-use protocol for their implementation in the open source statistical software environment R.
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Introduction

Advances in microbiology have traditionally been based on

studies at the population level. Questions of how cells respond to

their environment, interact with each other, or undergo complex

processes such as cellular differentiation or gene expression have

been mostly answered by inference from population-level data.

Recent technological advances have facilitated the study of

individual cells and led to new appreciation for the existence

and importance of phenotypic heterogeneity [1,2]. There is no

more doubt that gene expression is heterogeneous among cells in

isogenic microbial populations and leads to physiological hetero-

geneity [3–5]. In many cases distributions of physiological

parameters among individual cells in populations show a small

part, usually less than a few percent of the total, to be more than

two-fold different from the population average [6–8]. It is thought

that the appearance or existence of small subpopulations with

different phenotypes in a clonal population may be beneficial for

its survival under adverse conditions [5,9]. As example, persistence

to antibiotic toxicity in Escherichia coli is a very rare phenomenon

[10], yet it is of great importance since it enables population

survival and outgrowth when the antibiotic is removed. Growth to

stationary phase of B. subtilis leads to the appearance of

subpopulations with widely varying expression of glycolysis and

gluconeogenesis enzymes that are thought to better enable

stationary phase survival [5]. In fact, an increasing number of

phenotypic traits has been discovered that are not even

homogenously distributed among all cells in a clonal bacterial

population but rather lead to the formation of two (bimodal)

distinct subpopulations. Current examples from microbiology

include horizontal gene transfer activation in Pseudomonas [11–13],

sporulation [14,15], cannibalism [16], extracellular matrix forma-

tion [17], competence development [18,19], and motility [20,21]

in Bacillus subtilis, the lysis-lysogeny switch of phage lambda [22],

lactose utilization [23], the arabinose catabolic pathway [24], and

chemotaxis in E. coli [25], quorum sensing-regulated biolumines-

cence in Vibrio harveyi [26], flagella expression in Salmonella Typhi

[27], or phase variation in a number of pathogens [28,29]. There

is no reason not to assume that many more and diverse bimodal or

even multimodal phenotypic differentiations in clonal bacterial

populations would exist, and there is evidence that the extent of

phenotypic variability is a selectable trait [4]. Evidently, in order to

better understand bimodal phenomena it is of critical importance

to have accurate measurement and analysis tools for differentiating

subpopulations within the total population. Most authors explor-

ing bimodal phenomena have been relying on production of
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autofluorescent proteins to study critical promoters and regulatory

events at the single cell level, mainly because of the ease to detect

expression of the reporter protein in individual cells [3,4,30]. Such

detection is typically performed by either epifluorescence micros-

copy and digital image analysis [3,5,9,31–33] or by flow

cytometry, if expression of the fluorescent reporter protein is

sufficiently high [4,17,34–38]. Measures of expression heteroge-

neity such as occurrence of bimodalities or subpopulation sizes,

represent useful parameters to quantify phenotypic heterogeneity

and its differences in mutants or as a result of growth conditions.

However, the more one approaches very small subpopulation sizes

(e.g., a few percent of the total) the more difficult it is to accurately

detect and determine such events, and so far most methods do not

take such low proportions into appropriate consideration. For

example, subpopulation dynamics is often solely assessed in form

of descriptive graphs that present the total distribution of

fluorescence intensities for individuals. These included histograms

[5,23,24,34,35,39], cumulative distribution curves (CDFs)

[19,40,41] [42,43], normal quantile-quantile (Q-Q) plots

[30,44,45] or percentile-percentile (P-P) plots [46]. Although

representations of total populations are useful for stating evident

differences in distribution patterns between treatments, they tend

to overlook more subtle differences which often need a quantita-

tive approach. Quantification of subpopulation dynamics is

generally done by addressing individual fluorescence values that

fall within pre-defined boundaries of the total population.

However, often these boundaries are determined independently

of the nature of the distribution of the total population data. An

example of this is when gating of clusters in flow cytometry is

manually defined to identify subpopulation shifts [17,36,38,47] or

when threshold rules are based on background or control

fluorescence in fluorescence microscopy to determine ‘‘all-or-

none’’ induction responses [11,21,26,33,37]. A problem with

subpopulation quantification using pre-defined and distribution-

independent thresholding is that such classification does not

attempt to statistically approximate estimates for true, that is

biologically relevant, subpopulations (since boundaries have

nothing or little to do with the distribution of the data), but rather

represent a pragmatic approach to achieve differentiation between

treatments. Therefore, generally, such approach falls short of

serving as a universal method for subpopulation quantification,

especially when subpopulations overlap. One solution to this

problem would entail a distribution-based approximation of the

distinct subpopulations that is entirely independent of the

experimental test system used (as long as the test system is

sensitive enough), and the result of which could be expressed as a

dimensionless quantity.

The aim of this study is to propose a methodology for

quantifying small subpopulations (few percent) in bimodal

populations. Our approach is based on a statistically valid

approximation to accurately estimate the ‘‘true’’ subpopulation

size in bimodal populations and expressing it as a percentage of

the total population size. The model system we use to develop our

method is the bistable behaviour of the integrative and conjugative

element called ICEclc of the bacterium Pseudomonas knackmussii B13

[40,48–50]. It was previously discovered that the promoter of the

integrase gene (Pint) on ICEclc expresses under stationary-phase

conditions in some 3% of cells in culture, specifically when they

have been grown with 3-chlorobenzoate (3CBA) as sole carbon

and energy source [40,51]. Cells that induce Pint are locked in a

bistable state [11] and undergo a process of competence formation

which enables ICEclc transfer [13]. ICEclc behaviour was inferred

from single-cell fluorescence measurements on strains carrying an

additional single-copy transcriptional fusion between Pint and the

gene for enhanced green fluorescent protein (eGFP) or mCherry.

In first instance and because of the absence of clear bimodality,

distribution-independent descriptors were used to describe Pint

expression [40,51]. For that purpose, eGFP fluorescence intensities

of at least one thousand imaged cells were ranked, from which the

95th percentile and the mean fluorescence intensity among the top

five percent were calculated [40,51]. Alternatively, subpopulation

sizes were determined from the ‘breakpoint’ in cumulatively

ranked fluorescence values of thousands of individual imaged cells

[12]. Here we evaluate different methods for subpopulation

characterization and propose a simple routine in the open source

statistical software R that integrates some of the ideas of earlier

studies [11,12,30]. As these methods require population splitting

(PS) into a large and small subpopulation (by use of a cutoff value)

we call them PS methods. Our PS methods are particularly

suitable for analysis of subpopulations of only a few percent of the

total, which may otherwise be difficult to discern. A first data

verification step is incorporated in the subroutine that summarizes

data from different images to ensure that no outlier exposure

errors or biases exist. The following steps then help to find the

statistically most likely appropriate subpopulation size. We

challenge PS methods in two ways; firstly, by measuring

subpopulation sizes of ICEclc transfer competent cells of P.

knackmussii B13 under different growth conditions, and secondly,

Figure 1. eGFP expression from a monocopy randomly
inserted PinR-egfp fusion in planctonic cells of P. knackmussii
B13 grown in batch culture and sampled in exponential phase
(A) or stationary phase (B). Micrographs show typical population
differences of cells grown on 5 mM 3-chlorobenzoate (3CBA) under
non-inducing (exponential phase) and inducing conditions (stationary
phase), taken under eGFP illumination (right) and the corresponding
image in phase contrast (PhC, left). The white bar in images
corresponds to a scale of 10 mm. Graphs show fluorescence values
(AGVs) measured from single cells represented as histograms and lateral
boxplots (grey area below graph). Percentages correspond to calculated
sizes of subpopulations statistically significantly expressing eGFP. Note
that the calculated mean fluorescence values over the whole
population are statistically significantly different if assuming both are
normally distributed (P = 0.00056, Welch two-sample t-test).
doi:10.1371/journal.pone.0078288.g001
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by quantifying subpopulation sizes of computer-generated mixed

populations.

Methods

Culture Conditions
All strains in this work are listed in Table S1. All strains were

batch-cultured in 200 ml Erlenmeyer flasks containing 30 ml

liquid minimal at 30uC and with 200 rpm rotary shaking. Type

21C minimal medium (MM) [52] was supplemented with either

3CBA (10 mM), fructose (10 mM), glucose (10 mM), benzoate

(10 mM), anthranilate (10 mM) or 4-hydroxybenzoate (10 mM) as

sole carbon and energy source. Increase in culture turbidity at

600 nm was followed during growth to estimate the onset of the

stationary phase and to define exact sampling times for

epifluorescence microscopy (Table S2). Stationary phase samples

(i.e., 10 to 30 hours after cessation of turbidity increase in batch

culture) of three microliter were deposited on microscope glass

slides, covered with a 0.17 mm cover slip and immediately

imaged.

Promoter Reporter Gene Fusions
To examine expression of the Pint promoter at single cell level

we used previously constructed transcriptional fusions between Pint

and promoterless egfp genes [11], that were inserted in single copy

on the chromosome of a variety of Pseudomonas strains (Table S1)

via mini-Tn5 delivery, and verified by antibiotic selection markers

and specific PCR amplification.

Digital Imaging
Fluorescence intensities of single cells with or without

transcriptional fusions to the egfp gene were determined by digital

imaging. Single cells were visualized at 1000-fold magnification

under a Zeiss Axioscope2 upright epifluorescence microscope

equipped with a Spot Xplorer 1.4 MPixel cooled CCD camera

(Visitron Systems GmbH, Puchheim, Germany). Images were

recorded with phase-contrast illumination (10 ms) and with the

filter eGFP HQ470/40 for eGFP fluorescence (excitation wave-

length 480620 nm, emission wavelength 520620 nm, 500 ms)

(Chroma Technology Corp, VT, USA). Average intensity values

(AGV) of each cell were determined from 16-bit stored TIF-

images using the program METAVIEW (version 6.1r5, Visitron

Systems GmbH) using the phase-contrast image as mask for

outlining the cells in the eGFP channel. Data were exported to

EXCEL (Microsoft Corporation, Redmond, Wash.) or R [53]. At

least 1000 cells were measured for each condition and at least six

images were taken per condition or strain.

Programming in R
All statistical analysis and computations were processed in R.

For PS methods, an approach was followed that assumed

bimodality of the data (i.e., containing two subpopulations each

with a normal distribution). The list of individual cellular AGVs

was hereto transferred from EXCEL to a data text file, which was

placed into an R work-folder. Data were processed according to

different PS and non-PS methods in a subroutine written in R

named findsub(…) (Protocol S1, S2). Essentially, the setting Default

in findsub(…) ranks data according to their AGV and plots the

values against a theoretical normal distribution (the normal Q-Q

plot) (Protocol S1) [30]. Subsequently, the subroutine determines

the median and a region around the median to produce the linear

regression line for the larger subpopulation. A horizontal separator

line is then automatically generated according to

cutoff ~2:576|slopezmedian, where cutoff is the point at which

the horizontal separator line is drawn, slope is slope of the linear

regression line (and therefore the standard deviation of the large

subpopulation), and median is the median of the data set (Protocol

S1). All data points above the horizontal separator line are

considered to belong to the smaller subpopulation. The subroutine

in Default mode further allows manual setting of the range of the

large population from which the median value is determined via

mouse-clicking on an interactive graph (Protocol S1). Other PS

modes of findsub(…) include the modes Manual, Boxplot1.5 and

Boxplot3. While Manual allows manual determination of the

breakpoint between subpopulations via mouse-clicking on an

interactive graph (Protocol S1, Figure S3), Boxplot1.5 and Boxplot3

use an outlier algorithm as calculated by the R function boxplot(…)

(R graphics package) (Protocol S1). The argument range of the

function boxplot(…) determines how far the plot whiskers extend

out from the box beyond which outliers are identified. Boxplot1.5

uses range = 1.5 and Boxplot3 uses range = 3, corresponding to mild

and extreme outlier detection, respectively [54]. Finally, a fifth

Figure 2. Distribution of eGFP fluorescence intensities (AGV) in
cells of P. knackmussii B13 strain 1343 (single copy insertion of
a Pint-egfp fusion) taken at exponential or stationary phase
after growth on 10 mM 3CBA. (A) Boxplot representation. Ctrl,
wildtype P. knackmussii B13 without eGFP. (B) Cumulative distribution
curve representation (CDF). Stat, stationary phase. Exp, exponential
phase. (C, D) Same as (B) but as normal quantile-quantile (Q-Q) plot
representations. (E) Same as (D) but data is categorized in large
subpopulation (G1, grey area) and small subpopulation (G2, white area)
below and above a cutoff line (cutoff), respectively. The placement of
the cutoff line is determined via the slope of a regression line (orange
line) fitted to the data points belonging to the interquartile range (IQR,
orange) of the large subpopulation. (F) Distribution of eGFP fluores-
cence intensities in cells taken at inducing conditions (stationary phase)
grown on either 10 mM 3CBA (CBA, black) or 10 mM fructose (Fruc,
red). Percentages express subpopulation fractions of fructose and 3CBA
induced cells (see further Table 1).
doi:10.1371/journal.pone.0078288.g002
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mode of findsub(…) is the mode Other. This mode calculates results

according to four non-PS algorithms including the population

mean (Mean), and the population-independent methods 95th

percentile (95th Percentile), mean between the 75th and 95th

percentile (Boosted Mean), and mean of the top 5% of a population

(Mean Top 5%) (Protocol S1).

Finally, the subroutines get.ci(…) and get.ci.other(…) were written

in R (Protocol S2), allowing to bootstrap PS and non-PS methods,

respectively, for 95% confidence interval determination. Boot-

strapping was carried out via random sampling with replacement

of data sets with subsequent application of the method of choice

with n repetitions (Protocol S1, S2). For confidence interval

calculations with 20 repetitions (Default, Manual), a normal

distribution of the bootstrapped results was assumed (Protocol

S1): CIupper=lower~mean+SD|1:96, where CIupper/lower is the

upper or lower confidence interval, respectively, mean is the

population mean and SD is standard deviation. For methods

Default and Manual repetitions were limited to 20 because every

calculation requires manual intervention on an interactive graph

for the method to work.

For confidence interval calculations with 500 repetitions (all

other methods), the R function boot.ci(…) from the R boot package

[55,56] was used with the percentile method of bootstrap

confidence interval calculation.

Simulations and Data Presentation
Bimodal populations were simulated by mixing a large

subpopulation with multiple, smaller subpopulations varying in

standard deviation, mean and size, respectively. Large and small

subpopulations were created with the function rnorm(…) of the R

statistical package [53]. Parameters for the creation of the large

subpopulation were set to standard deviation SD = 3.9, and mean

mean = 63, both of which were considered typical values for AGV

data sets obtained from stationary phase batch cultures of ICEclc-

harbouring Pseudomonas tagged with a Pint-egfp reporter and grown

on 3CBA (Table S3). Size N of the mixed populations was set to

2000, 20000 or 200000. Parameters for the creation of subpop-

ulations were set to all possible combinations of either 40 or 15

equidistantly spaced values for standard deviations, mean values,

or population sizes, which in total yielded 403 ( = 64000) or 153

( = 3375) different subpopulations, respectively. The ranges for 40

equidistantly spaced parameter values were set to 10 to 50 for

standard deviations, 65 to 200 for mean values, and 0.1% to 40%

of the total population for small subpopulation sizes. The ranges

for 15 equidistantly spaced parameter values were set as above

except for 0.1% to 1.2% for small subpopulation sizes. Small

subpopulation determination was carried out according to the PS

methods Boxplot1.5 and Boxplot3. For code and script for the

simulation of mixed populations and their separation using

Boxplot1.5 and Boxplot 3 see Protocol S3. The R package ‘‘lattice’’

[57] was used for 3D visualizations of the data by use of the

function wireframe(…). The freeware IMAGEJ (version 1.440, USA)

was used for creating movies of the visualisations (Video S1–S9).

Results

Stationary Phase Induction of Pint-egfp in P. knackmussii
B13

Single cell fluorescence can be quantified from a digital image

with the help of image analysis software that recognizes cells as

objects through thresholding of pixel intensities, and measures

their average pixel fluorescence intensity (AGV). AGVs of all cells

are typically plotted as histograms, CDFs, or as Q-Q plots. As

noticed previously [11,40], cells of P. knackmussii B13 Pint-egfp did

not visibly fluoresce during exponential growth on 3CBA, whereas

a small proportion of cells in the culture induced egfp in stationary

phase (Figure 1A and 1B). This difference is reflected in the shapes

of the histograms that can be constructed from the AGVs of cells

grown under these conditions; in the histograms of Figure 1 both

populations look similarly in that they follow the shape of a normal

distribution. However, paying attention to detail, it can be seen

that under stationary phase conditions, a small proportion of cells

manifests as a far-stretched right-hand tail of the histogram

(Figure 1B and lower boxplot), which under exponential phase

conditions is missing (Figure 1A and lower boxplot). The eGFP

expression of such cells could be considered as outliers, or they

could comprise a separate subpopulation, in which case the

distribution of the data would be bimodal. The distribution is

visualized more clearly in a boxplot representation, where, under

stationary phase conditions, the histogram upper tail corresponds

to boxplot outliers (Figure 1B, 2A). A CDF shows this particular

subpopulation of cells with high eGFP expression as a ‘kink’

(Figure 2B, also see [40]), while in a normal Q-Q plot two lines

with different slopes can be seen (Figure 2D, also see [30]). In all

representations it becomes apparent that there is a subpopulation

of cells behaving differently, but the Q-Q plot representation

indicates that the data are bimodal. On the other hand, mean

values alone, as commonly used as a measure in averaged samples,

would not have revealed the bimodal nature of the population.

Table 1. Varying subpopulation sizes of ICEclc transfer competent cells in P. knackmussii B13–1343 Pint-egfp grown on different
carbon sources.

Category Carbon source1 % Subpopulation2 Significantly different category3

A 3-Chlorobenzoate 4.761.4 B*, C**, D**, E**, F*

B Fructose 2.260.4 A*, C*, D*, E*, F*

C 4-Hydroxybenzoate 0.660.2 A**, B*

D Anthranilate 0.360.2 A**, B*, F*

E Benzoate 0.160.3 A**, B*, C*

F Glucose 0.760.5 A*, B*, D*

110 mM of carbon source in minimal medium (see Methods).
2Average ICEclc transfer competent subpopulation of cells (percent of total) determined from biological triplicates, expressing egfp from Pint 6 standard deviation.
Sampled 15 - 20 h after onset of stationary phase. Determined via R command find.sub.pop(…) in Default mode.
3* and ** indicate significant differences at P,0.05 and P,0.01, respectively, as determined by the Welch Two Sample t-test.
doi:10.1371/journal.pone.0078288.t001
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Figure 3. Different methods for quantification of subpopulation sizes of Pint-egfp or PinR-egfp expressing cells. (A) Output of four
different PS methods for subpopulation size. For each method the same data set was used. (B) Same data as (A) but quantified via distribution-
independent non-PS methods that do not determine subpopulation size. Error bars indicate the 95% confidence interval for re-sampled
(bootstrapped) data. Dark grey bars: 3CBA grown cells; intermediate grey bars: fructose-grown cells; light grey bars: glucose-grown cells.
doi:10.1371/journal.pone.0078288.g003

Figure 4. Effect of re-sampling methods of original data sets on the determination of confidence intervals for the subpopulation
size of egfp-expressing cells in stationary phase cultures of P. knackmussii B13 strain 2399 (single copy PinR-egfp) grown on 3CBA. (A)
Bootstrapping of original data sets (re-sampling with replacement). Methods Default and Manual were repeated 20 times with manual intervention of
the slope line determination. Methods Boxplot1.5 and Boxplot3 use 500 automatically re-sampled data sets. 95% confidence intervals (red, dotted
lines) were calculated assuming a normal distribution of the results (mean6SD61.96). (B) same data as in (A) but re-sampled subpopulation size
determinations plotted as Q-Q plots. Note the normal distribution of the results.
doi:10.1371/journal.pone.0078288.g004
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Which parameters would best describe and quantify the

subpopulation effect? Quantification of the extent of bimodality

is particularly important when less evident differences in popula-

tion responses occur or effects of e.g., mutations need to be

interpreted. For example, previous analysis suggested that Pint-egfp

is induced more strongly under stationary phase conditions when

cells are pre-grown on 3CBA than on fructose [40]. This

interpretation was based on use of distribution-free analyses and

parameters such as the 95th percentile, the boosted mean or the

mean of the top 5% of the population in a CDF [11,40]. Although

these methods have worked satisfactorily to conclude that cells that

had grown on 3CBA were different from those grown on fructose

[40], they did not provide a biological explanation for the choice

of the 95% percentile-AGV value. Other distribution-free

parameters like the boosted mean (mean of AGV between 75

and 95th percentile) or mean of the top 5% AGV of the population

also permitted statistical differentiation of eGFP expression from

Pint-egfp in cultures of P. knackmussi B13 under different growth

conditions, but did not allow calculation of the actual subpopu-

lation size [40]. Therefore, we decided to follow another approach

that aimed to separate the bimodal data, which would allow the

level of induction to be described in terms of the percentage of

induced cells of the total population and mean AGV of induced

cells. Because these methods rely on splitting of the population into

large and small subpopulation, we refer to these methods as

population splitting (PS) methods.

Quantile-quantile Plot Interpretation of Bimodality
When plotting all AGV values in cumulative order as a function

of their theoretically derived normally distributed ranking number,

a so-called normal Q-Q plot, normally distributed AGV values

among a population will become visible as a straight line

(Figure 2C, also see [30,46]), the slope of which corresponds to

the standard deviation of the population. The median AGV in a

normal Q-Q plot is found at the ranking number of ‘zero’

(Figure 2C–F). Deviations from a normal distribution will become

visible in the normal Q-Q plot as deviations from the straight line

(Figure 2D). Ideally, bimodal normally distributed subpopulations

appear as two intersecting straight lines with different slopes (and

therefore different standard deviations). Indeed, while AGV values

of single cells in exponentially growing populations of P. knackmussii

B13 cells expressing egfp from Pint were distributed along a single

straight line (Figure 2C), AGVs from cells in stationary phase

distributed in the diagram along two straight lines with different

slopes (Figure 2D). Calculation of the size of the (eGFP inducing)

smaller subpopulation would thus in essence consist of finding a

statistically correct approximation of the point where the two

straight lines would intersect and subsequent determination of the

number of data points in each population. However, this proves

difficult because it is impossible to determine a priori whether cells

close to the intersection point would belong to one or the other

subpopulation. Nevertheless, because of the large size of the ‘eGFP

uninduced’ subpopulation (large subpopulation) compared to that

of the eGFP inducing one (small subpopulation), a highly robust

linear regression can be calculated for the large subpopulation on

basis of a sub-sample of this subpopulation. We took this sub-

sample as equivalent to the approximate interquartile range (IQR)

(Figure 2E) of the large subpopulation. The large subpopulation

IQR can be calculated from all AGV points between visually

placed minimum and maximum AGVs (grey area: Figure 2E,

Protocol S1), which can easily be estimated from a normal Q-Q

plot. Since the slope in a Q-Q plot corresponds to the standard

deviation it can be used to calculate the upper cutoff value at the

1% confidence level assuming that the large subpopulation is

normally distributed (Figure 1E): cutoff ~2:576|SDzmedian,

where 2.576 is the constant of the quantile function of the normal

distribution with probability 0.995, SD is the standard deviation of

the large subpopulation and median is the median of the large

subpopulation. When applying such method, we calculated that

2.8% of cells in stationary phase cultures of P. knackmussii B13 Pint-

egfp grown on 3CBA and 1.2% in cultures grown on fructose

expressed egfp statistically different from the large subpopulation

(Figure 2F, Table 1). The method, therefore, permitted calculation

of subpopulations of proportionally low abundance (< few percent

of the total).

This method was termed Default in R to distinguish it from three

other methods of subpopulation separation proposed in this study:

Manual, Boxplot1.5, and Boxplot3 (Protocol S1). Manual allows the

user to manually distinguish large and small subpopulation by

visually placing the cutoff value between the two subpopulations

on a Q-Q plot (this can be done in R by use of the locator(…)

function, which reads the position of the graphics cursor when the

mouse button is pressed; see Protocol S2, Figure S3). Alternatively,

the same procedure can also be carried out on a histogram, in

which case the histogram peak-to-tail border has to be visually

determined (Figure S3). Bates and collegues [42] deduced

subpopulation size by determining the midpoints of histogram

peaks. However, when comparing histogram mid-point determia-

Figure 5. Example of a data set showing poorer Q-Q plot
performance (smooth curve of distributed data points). (A) Q-Q
plot of single cell eGFP fluorescence values obtained from P. putida
UWC1-ICEclc Pint-egfp cells (strain 2508) grown on 3CBA to early
stationary phase. Width of the red line corresponds the interquartile
range of the fluorescence values. Dotted lines indicate threshold line
placement for subpopulation calculation via methods Boxplot3,
Boxplot1.5, Default and Manual. (B) Results from the four different
subroutines on this data set. Error bars represent 95% confidence
intervals on re-sampled data sets with bootstrapping (see Figure 4).
doi:10.1371/journal.pone.0078288.g005

Figure 6. Scheme illustrating the three parameters, mean
difference between large and small subpopulation, standard
deviation of small subpopulation and proportion of small
subpopulation, that were changed in a computer simulation to
create variations of mixed populations upon which the PS
methods of subpopulation determination were tested (see
Figure 7, 9). Black, large subpopulation. Colour, small subpopulation.
doi:10.1371/journal.pone.0078288.g006
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tion versus histogram peak-to-tail border determination as means

to define subpopulatione we found the latter more precise (Figure

S3). A similar idea based on manual placement of population

separation aids has been used previously (although without the use

of interactive graphs), where visually placed tangents in a CDF

plot were employed and approximate reading by eye determined

the cutoff point between small and large subpopulation [12]. The

methods Boxplot1.5 and Boxplot3 both work simply by applying

commonly used formulas for outlier detection in boxplots [58,59];

here we consider the upper tail outliers as part of the small

subpopulation and represent them as a percentage of the whole

population. Boxplot1.5 uses the formula

cutoffmild~Q3zIQR|1:5, where Q3 is the 3rd quartile of the

data, IQR the interquartile range, and cutoff the lower limit for mild

outlier determination. Similarly, Boxplot3 uses the formula

cutoffextreme~Q3zIQR|3 for extreme outlier determination.

Figure 7. 3D surfaces of simulation data showing the accuracy (z axis) in the estimated compared to the true subpopulation size
using two different methods of population separation: Boxplot1.5 and Boxplot3. Accuracy is shown as a function of different population
mixtures (1600 per plot), with subpopulations either varying in mean differences (range: 2–137; n = 40; x axis) and proportions (range: 0.1–40%;
n = 40; y axis) at a constant standard deviation (37.7) (A, B), or varying in mean differences (range: 2–137; n = 40; x axis) and standard deviations
(range: 10–50; y axis) at a constant proportion (3.2%) (C, D), or with varying standard deviations (range: 10–50; n = 40; x axis) and proportions (range:
0.1–40%; n = 40; y axis) at a constant mean difference (67.8) (E, F). Accuracy is expressed as the percent difference between calculated and real
subpopulation size, and therefore indicates the normalized deviance of the calculated subpopulation size from the real subpopulation size. A
negative value indicates that the method underestimated the subpopulation size. A positive value indicates an overestimated result. A value of zero
indicates absolute accuracy. A smooth surface of the same colour/grey-level indicates a robust separation. NA, missing values.
doi:10.1371/journal.pone.0078288.g007
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Method Comparison
To compare methods that relied on population splitting (PS)

into large and small subpopulation (Default, Manual, Boxplot1.5,

Boxplot3) to methods that did not (Mean, Boosted Mean, 95th percentile,

Mean Top 5%), we analyzed small subpopulation sizes of cells

defined by eGFP expression from both the Pint and the PinR

promoters inserted in single copy in P. knackmussii B13 derivatives,

and grown under different conditions (Figure 3, Table S4, S5). P.

knackmussii cultures in 3CBA were typically growing exponentially

between 8 and 20 h after inoculation, whereas stationary phase

(i.e., cessation of growth) was reached after 24 h (Table S2). P.

knackmussii cultures in fructose were typically growing exponen-

tially between 20 and 40 h after inoculation, and reached

stationary phase after 45 h (Table S2). In contrast, P. knackmussii

cultures on glucose grew slightly faster and reached stationary

phase after 12 h (Table S2). We further tested benzoate, 4-

hydroxybenzoate and anthranilate (Table 1). Cultures on anthra-

nilate grew much slower, with stationary phase reached after 50 h

(Table S2). Analysis of all culture conditions indicated that growth

on 3CBA elicited the strongest induction of Pint and PinR

promoters in comparison to the others (Table 1, Figure 3, Table

S4). Further, PS methods indicate that a larger subpopulation of

Pint-egfp expressing cells is formed on fructose in comparison to

glucose, benzoate, and the other two aromatic compounds

(Table 1, Figure 3A, Table S4). In contrast, with the exception

of Mean Top 5%, non-PS methods failed to distinguish between

3CBA-, fructose- and glucose-grown induction (Figure 3B, Table

S5). We therefore conclude that the PS methods are more sensitive

to small but consistent changes in subpopulation sizes than non-PS

methods.

Method Robustness Analysis by Bootstrapping
In order to assess the robustness and accuracy of estimating

small subpopulation sizes using different PS methods, we tested

each PS method separately on a number of slightly varying

bimodal populations. For this purpose we used bootstrapping with

re-sampling (with replacement) data from wet experiments

followed by the PS method and calculation of 95% confidence

intervals. Bootstrapping was carried out with 20 replicates for the

manual PS methods Default and Manual, and 500 replicates for all

other methods, PS and non-PS. The bootstrapping procedures

were implemented in the R functions get.ci(…) and get.ci.other(…)

(Protocol S1) for PS and non-PS methods, respectively, both of

which keep a record of the results after each replicate and calculate

95% confidence intervals (Figures 3, 4, 5). We compared eight

different methods using the same data set including four PS

(Figure 3A) and four non-PS methods (Figure 3B). Bootstrapping

results indicate that, although less sensitive to small subpopulation

changes, most non-PS methods are much more precise than PS

methods; that is, they display smaller confidence intervals in

response to random variations in data. An exception is the non-PS

method Mean Top 5%, whose 95% confidence intervals look

similar to those of the PS methods. Interestingly, Mean Top 5% is

also the only non-PS method that confirmed a statistically

significant eGFP fluorescence subpopulation change in P.

knackmussi B13 Pint-egfp/PinR-egfp grown on 3CBA versus grown

on fructose or glucose (Table S4). However, Mean Top 5%, like all

other non-PS methods but unlike most PS methods, failed to

indicate a statistically significant difference between growth on

fructose and growth on glucose (Table S5). The extreme

robustness to random variation as seen in the methods Mean,

Boosted Mean, and 95th Percentile, might explain part of the reason

why these methods fail to respond significantly to small changes in

small subpopulations (Figure 3B, Table S5). On the other hand,

PS methods Default, Manual, Boxplot1.5, and Boxplot3, showed

comparably large confidence intervals, reflecting some inconsis-

tency in separating small subpopulations from large subpopula-

tions (Figure 3A, Table S4). Nevertheless, all PS methods

distinguished between small subpopulation sizes of 3CBA-grown

versus fructose-grown or glucose-grown P. knackmussii B13 Pint-

egfp/PinR-egfp. Furthermore, PS methods Manual, Boxplot1.5 and

Boxplot3.5 even showed significant differences between fructose-

grown and glucose-grown P. knackmussii B13 Pint-egfp/PinR-egfp.

Thus, our experiments showed that, while non-PS methods are

generally more robust to overall variation in populations, they are

also less sensitive to small subpopulation changes than PS

methods.

Confidence interval calculation via bootstrapping may be

particularly useful in cases where subpopulation measurements

are biased. As an example, subpopulation determination accord-

ing to the PS method Manual is inherently biased due to human

subjectivity in placing the cutoff point on a Q-Q plot where

subpopulations should be separated. This problematic can be

diminished, however, by repeating the method several times on a

resampled dataset (bootstrapping) and calculating the confidence

interval. As another example for the use of bootstrapping, normal

Q-Q plot representation of Pint-egfp expression in P. putida UWC1

typically manifested as a curve (Figure 5) rather than the two lines

of different slopes as seen in P. knackmussii B13 (Figure 2), which

complicated the finding of the point of separation between

Figure 8. 2D representations of simulations shown in Figures 7A–F. Accuracy is shown as a function of subpopulation proportion (range:
0.1–40%; n = 40) at a mean difference of 67.8 and a subpopulation standard deviation of 37.7 (A), as a function of mean difference (range: 2–137;
n = 40) at a subpopulation proportion of 3.2% and subpopulation standard deviation of 37.7 (B), or as a function of subpopulation standard deviation
(range: 10–50; n = 40) at a mean difference of 67.8 and a subpopulation proportion of 3.2% (C). Also see Table S6 for values of these graphs.
doi:10.1371/journal.pone.0078288.g008
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subpopulations. However, re-applying PS methods on re-sampled

datasets helped to define the confidence limits of the subpopula-

tion determination itself (Figure 5). Another demonstration of such

a case is shown in Figure S1, where a dataset that includes biases

due to faulty data recording during image acquisitions is subjected

to PS methods. This case also highlights the usefulness of

summarizing single cell data as boxplots per image, which makes

it possible to filter out image-inherent bias in a data set (Protocol

S2).

Computer Simulations
Following the empirical bootstrap approach above, we wanted

to test the performance of our proposed methods on a large variety

of bimodal populations. Hereto we used computer simulations that

not only allowed to treat large data sets but also had the added

advantage that true subpopulation parameters were known before

analysis. Thus, by comparing true and estimated subpopulation

ratios, the accuracy (in percent) of each PS method in estimating

subpopulation proportions could be assessed, which we calculated

according to: 100| Sestimated{Strueð Þ=Strue

� �
, where Sestimated is the

estimated subpopulation size, and Strue is the true subpopulation

size, both expressed as a percentage of the total population. In this

Figure 9. Same as Figure 7 but as a result from a simulation focusing on subpopulations with small proportions (range: 0.1–1.2%).
Each surface is constructed from 250 data points, stemming from population separations of population mixtures with varying subpopulations with 15
different mean difference values (range: 2–137) and 15 different proportion values (range: 0.1–1.2%) at a constant standard deviation of 38.6. (A, B):
Simulation was performed with population mixtures with n = 2000. (C, D): Simulation was performed with population mixtures with n = 20,000. (E, F)
Simulation was performed with population mixtures with n = 200,000.
doi:10.1371/journal.pone.0078288.g009
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way we could consider how the accuracy varies with different

bimodal population parameters. In a first experiment we tested the

accuracy of separating two subpopulations across a range of

64,000 simulated bimodal populations (Figure 6, 7, Video S1–S3).

The populations were produced by mixing a single large

subpopulation with a variety of smaller-sized subpopulations

(Figure 6). To create the large subpopulation we used typical

population parameters as found in non-induced populations of P.

Figure 10. 2D representations of simulations shown in Figures 9A–F. Accuracy is shown as a function of subpopulation proportion (range:
0.1–1.2%; n = 15) at a mean difference of 67.8 and a subpopulation standard deviation of 37.7. (A): Simulation was performed with population
mixtures with n = 2000. (B): Simulation was performed with population mixtures with n = 20,000. (C): Simulation was performed with population
mixtures with n = 200,000. Also see Table S7 for values of these graphs.
doi:10.1371/journal.pone.0078288.g010

Table 2. Comparison of estimated to true subpopulation sizes in simulated bimodal populations by using different separation
methods.

True subpopulation
size (% of total population)1 Estimated subpopulation size (% of total population)2

Default Manual Boxplot1.5 Boxplot3

1.00 1.7560.17 0.9860.03 1.1760.18 0.9860.06

3.00 3.8060.93 2.7760.20 2.9260.08 2.6360.21

6.00 5.8060.31 5.8560.26 5.5760.03 5.4560.05

9.00 8.8060.10 8.4060.30 8.2860.13 7.7560.35

12.00 11.3560.15 11.5860.35 10.9760.12 10.4260.13

15.00 14.2560.18 14.1260.13 13.8560.10 13.1560.33

18.00 17.0260.18 16.6760.28 16.5260.25 15.4360.28

20.00 18.8860.13 18.7360.45 17.8360.06 16.8060.26

30.00 27.5060.23 28.5860.38 12.4762.32 2.4261.06

40.00 37.1360.56 38.0560.26 1.9360.31 0.0360.03

50.00 46.0260.30 46.1860.60 0.3060.15 0.0360.03

60.00 54.3260.38 56.9560.28 0.1060.10 0.0260.03

70.00 63.0260.49 66.0260.21 0.0360.03 0.0360.03

80.00 70.8861.16 74.5560.17 0.0560.00 0.0360.03

90.00 75.4062.16 84.3261.08 0.1760.14 0.0360.03

92.00 75.6461.58 87.0160.38 0.2560.15 0.0060.00

95.00 71.4261.00 90.0360.58 0.3560.17 0.0360.03

98.00 50.59618.55 92.2060.10 0.3260.18 0.0360.03

1True subpopulations were simulated using the R function rnorm(…) with a standard deviation of 37.7, a mean value of 127.3, and the number of observations
corresponding to the subpopulation percentage to be tested from a total number of 2000 observations. Mean and standard deviation used for the simulations
represent population parameters as obtained from fluorescence microscopy analysis of batch grown P. knackmussii B13 Pint-egfp in 3CBA (see Table S3).
2Estimated subpopulation sizes (mean 6 SD; 3 independent repetitions) were determined applying the PS methods on simulated bimodal populations using the R
function findsub(…) (Protocol S2). A bimodal population was simulated by mixing two simulated populations, a real subpopulation1 and a second subpopulation. The
second subpopulation was created using the R function rnorm(…) with a standard deviation of 3.9, a mean value of 63.0, and the number of observations depending on
the sample size of real subpopulation1 to give a total of 2000 observations. Mean and standard deviation used for the simulations represent population parameters as
obtained from fluorescence microscopy analysis of batch grown P. knackmussii B13 Pint-egfp in 3CBA (see Table S3).
doi:10.1371/journal.pone.0078288.t002
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knackmussii B13 containing a PinR-egfp fusion (Table S3). By plotting

the calculated accuracy against true subpopulation size, true

subpopulation standard deviation and/or true subpopulation

mean, we now obtained an overview of the accuracy and

robustness of the separation method, presented, for space reasons,

either as selected representative 3D plots (Figure 7) or selected

representative 2D plots (Figure 8). However, the complete data set

can be viewed in 4D as movies (Video S1–S3). Only two of the

four separation methods were tested in this way, Boxplot1.5 and

Boxplot3, since it would have been an almost impossible feat to test

the other methods Default and Manual on an equally large number

of datasets due to their requirement of a manual work-flow

(mouse-clicking on an interactive graph). However, Default and

Manual were still tested on a smaller scale including fewer

simulated bimodal populations (Table 2). The simulation results

show that Boxplot1.5 and Boxplot3 produce estimates within 20% of

the true value over the entire span of tested subpopulation

standard deviations (10–50) as long as the difference between

means of the large and the small populations remains between 40

and 50 units, respectively (Figure 7, Figure 8, Video S1–S3, Table

S6). Furthermore, the simulations indicated that subpopulation

size estimation becomes less accurate when its size is decreasing to

below 1.1% or values in the small subpopulation become more

diverse (i.e., higher standard deviation) (Figure 7, 8, Video S1–S3,

Table S6). Both methods also become rapidly unreliable when

small subpopulation proportions become larger than 25%

(Figure 7, 8, Video S1–S3, Table S6), a feature also confirmed

in another simulation experiment (Table 2). This is because outlier

detection in boxplots beyond this point is not synonymous with

bimodality anymore (Figure S2). However, we found that the Q-Q

plot-based PS methods Manual and Default could still be used to

accurately determine subpopulations larger than 25%, since Q-Q

plots show bimodality over a large range of subpopulation

proportions (Table 2, Figure S2).

With respect to the decreasing accuracy with decreasing small

subpopulation sizes we conducted a second series of simulations

dedicated to very small subpopulation sizes focussing on subpop-

ulation proportions between 0.1 and 1.2% (Figure 9, 10, Video

S4–S9, Table S7). Overall, Boxplot3 manifested itself as the more

precise and accurate method than Boxplot1.5 for determining very

small subpopulations. More specifically, Boxplot3 estimates were

never more than 11% inaccurate from the true value (n = 200000)

over the entire span of percentage parameters tested, provided the

mean difference was at least 67.8 units and standard deviation was

set at 37.7 units (Figure 10, Table S7). By comparison, under the

same conditions, Boxplot1.5 estimates were within 20% accuracy of

the true value only when the tested subpopulation was larger than

1.1%, exponentially increasing to 352% where subpopulations

were approaching 0.1% (Figure 10, Table S7).

Discussion

Principal Contribution of the Study
The principal contribution of this study is a simple and practical

statistical approximation to subpopulation quantification in

bimodal populations. For this purpose we created a set of

functions in the open source software environment R accompanied

by a step-by-step instructional protocol for easy implementation

(Protocol S1, 4).

Motivation of this Study
The motivation to define methods of subpopulation quantifica-

tion was twofold: firstly stemming from a need for a statistical tool

do describe subpopulation sizes of ICEclc transfer competent cells

in Pseudomonas in particular [12,13,60] and, secondly, to provide a

more general set of tools for basic subpopulation quantification in

single cell microbiology with easy implementation into existing

image analysis work-flows.

Why Try to Distinguish between Subpopulations?
Population-level parameters, such as the average cellular

response, by definition will obscure biological detail that is

noticeable in small subpopulations of cells. The task of determin-

ing the subpopulation sizes of ICEclc-transfer competent cells in P.

knackmussii B13 presents itself as a particularly challenging

example. Firstly, this is because their proportions are typically

small (3.3% of the total population; see Table S3) [11,13];

secondly, they commonly have an estimated mean expression

value from the key Pint-promoter that is only twice as high as the

mean of the non-active population (Table S3). Thirdly, the

standard deviation of expression values in this subpopulation is ca.

10 times larger than that of the non-active population (Table S3).

Together, this equates to subpopulations that are almost certainly

overlapping and thus mixed to some degree, which makes it

mathematically impossible to achieve ‘‘true’’ demarcation between

subpopulations [46]. Histograms of ICEclc-activity distributions

typically resemble Gaussian curves with hardly noticeable tails

extending to their right-hand sides (Figure 1). First, we speculated

that such histograms are unsuitable visualisations for manually

placing subpopulation thresholds confidently and in a statistically

acceptable way; even if a threshold was placed such that the

histogram tail would be separated from the Gaussian curve, we

questioned the reproducibility of such a placement due to a

manual work-flow based on grounds of visual perception. Such an

approach, we assumed, was likely be prone to bias (user

arbitrariness) by subjective decision-making, therefore hindering

reliable quantification of subpopulation changes. Indeed, Bates

and collegues [42,43] offered a ‘‘manual’’ histogram-based

approach earlier, which we noticed produced strong variability

(imprecision) in subpopulation size determination of ICEclc

transfer competent cells (Figure S3). Hence, we decided to

improve upon this by using Q-Q plot representations. These have

the added advantage of showing two subpopulations, each with

normally distributed data of different spread, as two straight lines

of different slopes (see, e.g., Figure 2) [30]. The point of

demarcation between such subpopulations can be determined

manually (as in the subroutine Manual). Yet, in cases where

bimodal distribution patterns are less clear (e.g., Figure 5), we

developed a method (named Default) that standardizes cutoff

placement on grounds of the most reproducible part of the

distribution pattern, that is, the part that is most robust to change

by subpopulation effects. In a Q-Q plot this region conveniently

corresponds to the lower (and longer) straight line, on which an

interval of representative slope of that line should be easily

definable. Nevertheless, under certain conditions Manual can be

the more accurate tool (Table 2, Figure S3) and is especially useful

in cases where the Default algorithm fails, for example in instances

with datasets where the IQR of the larger subpopulation does not

follow a Gaussian distribution (Figure S1). Generally, when

subpopulation quantification becomes challenging and ambiguous,

or risks to be influenced by subjective input from the user, it is

good practice to apply quantification repeatedly on the same

original but re-sampled (with replacement) data set. Importantly,

both Default and Manual are not limited by the proportions of the

tester subpopulation in order to produce quantitatively correct

results (Table 2), in contrast to Boxplot methods.

Boxplot1.5 and Boxplot3 define subpopulations without prompt-

ing the user for input since their subpopulation classification is
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simply based on outlier detection as commonly used in boxplots

[54,58,59]. This latter trait was found especially useful when

numerous data sets needed to be analysed as shown in the

simulations of this study, where 64,000 bimodal populations were

analysed within ca. 10 hours (see Figure 7, 9). As expected,

Boxplot methods respond differently than manual methods to

changes in distribution patterns (Figure 5, Figure S1, S2).

Boxplot1.5 and Boxplot3 only allowed for accurate subpopulation

quantification where these amounted to less than 25% of the total

population (Figure 7, 8, Table 2, Figure S2). This is not surprising,

since it is well documented that under certain distribution

scenarios boxplots fail to visualize bimodality [61]. Boxplot3 was

by far more accurate than Boxplot1.5 with subpopulations smaller

than 1% of the total population (Figure 9, 10, Video S4–S9, Table

S7). In contrast, due to its more conservative classification of

outliers, Boxplot3 tends to underestimate subpopulation sizes in

comparison to Boxplot1.5 (Figure 8). At low subpopulation sizes, it

is relevant to increase sample numbers such as can be obtained

from flow cytometry experiments (.20000; see Figure 9), or

calculate confidence limits from bootstrappings (e.g., function

get.ci(…), Figure 5, Protocol S2). In general, when comparing PS

methods to existing methods of quantification, we found that they

were more sensitive to small subpopulation effects, for example

when assessing ICEclc activity in P. knackmusssii B13 under different

growth conditions (Figure 3, Table S4).

Limitations of the Proposed Methods
The strength of the proposed methods in this paper is also their

weakness; the determination of the percentile corresponding to the

cutoff point or threshold between two subpopulations can only be

approximated, and becomes more inaccurate as subpopulations

overlap. On the one hand the approximation allows to split a

bimodal population into two and characterize the biologically

relevant fraction in a subpopulation response. On the other hand

such characterization becomes increasingly inaccurate in describ-

ing the biologically relevant fractions until it eventually fails

completely as subpopulations overlap. There are only two

alternatives to this dilemma, which are analyses that either avoid

finding subpopulation-relevant cut-off percentiles altogether, or

describe all percentiles in a population, without specifying one. An

example of the second approach are visualisations of qualitative

changes of entire populations through comparisons of distribution

patterns [30,40,41,46]. MacArthur [46] even proposed a way to

quantify qualitative changes spanning the total range of percen-

tiles, that is calculating percentage differences per individual

percentile between treatment and control (Figure S4, Table S8)

[46].

Other Studies
Few studies in the microbiology literature specify the problem-

atic of statistically exposing true subpopulations from bimodal

populations. Rather, it seems that most studies content themselves

with a categorisation of subpopulations via thresholds based on

fluorescence background levels, negative controls lacking fluores-

cent marker, or manual gating of clusters in flow cytometry

[11,17,21,26,33,36–38,47]. The reasons might be twofold. Firstly,

pragmatism, which argues that as long as an approach serves the

purpose of quantification at a sufficiently high resolution it is good

enough. Secondly, the problematic that statistical distributions of

subpopulation behaviours overlap, causing a certain degree of

subpopulation mixing, and therefore make a precise demarcation

between subpopulations impossible.

Conclusion
To date there exists no universal protocol in the microbiology

literature for the determination of small subpopulation sizes.

Rather, many labs use their own in-house methods of subpop-

ulation quantification. We see the advantage and novelty of our

proposed methods in the attempt to statistically deduce subpop-

ulation size from a qualitative assessment of the underlying

bimodal distributional shape. We argue that a distribution shape-

based approach is by definition (inherently) more accurate in

determining the true biologically relevant subpopulation than

distribution-independent methods. Consequently, our approach

should help firstly, to minimize inconsistencies in subpopulation

classification caused by manual threshold placements, and

secondly, to increase sensitivity and accuracy to subpopulation

changes. Thirdly, our method would help to standardize

subpopulation evaluation across different experimental set-ups.

Since subpopulation size as expressed as percentage of the total

population is a dimension-less quantity, it is also independent of

scales and units linked to the sensitivity of recording equipments

and experimental set-ups. Therefore, subpopulation size ex-

pressed as a fraction of the total population represents a suitable

parameter for comparisons across a wide range of different

studies.

Supporting Information

Figure S1 Bias compromises detection of small sub-
populations in bimodal data. This file contains a series of

graphs that demonstrate the obstructive role of bias in estimating

subpopulation size in bimodal data. The left row of graphs are

based on a faulty data set with data originating from two images

that have much lower fluorescence values as a result of a mistake

during image acquisition. The right row of graphs represents the

same data set but with the data from the biased images removed.

This panel of graphs highlights the practicality of summarizing

single cell data as boxplots per image, which makes it possible to

find the source of bias in a data set.

(PDF)

Figure S2 Failure of the method Boxplot1.5 and
success of the method Default to accurately analyze a
bimodal population that contains a large subpopula-
tion (40% of the total population). In this file the failure of

the method Boxplot1.5 and the success of the method Default to

accurately analyze a simulated bimodal population that contains

a large subpopulation (40% of the total population) is

demonstrated.

(PDF)

Figure S3 Accuracy of a hand-analysis method estimat-
ing small subpopulation sizes in simulated bimodal
populations via mid-point determination of large sub-
population histogram peak. This file contains a graphical

explanation of a hand-analysis method for subpopulation detection

which uses visual determination of the mid-point of the large

subpopulation peak in a histogram as a basis. A similar hand-

analysis method has been proposed recently by Bates and collegues

[42]. Further, this file contains a data-table showing the accuracy

performance of the method on multiple simulated bimodal

populations, and an annotated script which was used for the

simulations in R.

(PDF)

Figure S4 The use of P-P plots for non-parametric and
graphical response quantification. This file illustrates the

concept of employing P-P plots for non-parametric and graphical
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response quantification [46], using results obtained from the

measurement of ICEclc activity in P. knackmussii B13 grown under

different environmental conditions as an example data-set.

(PDF)

Table S1 Bacterial strains used in this work. In this file
we provide a list with all bacterial strains used in this
work.

(DOC)

Table S2 Pseudomonas knackmussii B13 growth in
batch culture. This file contains a table listing timing of

exponential growth and onset of stationary phase in batch cultures

of P. knackmussii B13 and P. putida UWC (ICEclc) grown on

different carbon substrates.

(DOC)

Table S3 Large and small subpopulation parameters of
fluorescence data from promoter-egfp reporters for
ICEclc activation in Pseudomonas knackmussii B13.
This file contains a data table showing typical measured large and

small subpopulation parameters of fluorescence data obtained

from promoter-egfp reporters for ICEclc activation in P. knackmussii

B13 after growth on 3CBA. These parameters were used as

reference parameters for ICEclc activation when creating some of

the simulated subpopulations in Figures 7, 8, 9 and 10, Table 2,

and Figure S2, S3.

(DOC)

Table S4 Significance testing of subpopulation effects
from ICEclc activation under different conditions quan-
tified by different PS methods. This file contains a data table

showing results from quantifications of small subpopulation effects

by different PS methods. Results from this table are visualized in

Figure 3A.

(DOC)

Table S5 Significance testing of subpopulation effects
from ICEclc activation under different conditions quan-
tified by different non-PS methods. This file contains a data

table showing results from quantifications of small subpopulation

effects by different PS methods. Results from this table are

visualized in Figure 3B.

(DOC)

Table S6 Accuracy as a function of subpopulation proportion

(range: 0.1–40%; n = 40) at a mean difference of 67.8 and a

subpopulation standard deviation of 37.7. This file contains a data

table showing numerical data corresponding to Figure 8.

(DOC)

Table S7 Accuracy as function of subpopulation pro-
portion (range: 0.1–1.2%; n = 15) at a mean difference of
67.8 and a subpopulation standard deviation of 37.7.
Data table corresponding to Figure 10.

(DOC)

Table S8 ICEclc activity-response in Pseudomonas
knackmussi B13 Pint-egfp to pre-growth on different
carbon sources, quantified over percentile range. Data

correspond to Figure S4C.

(DOC)

Protocol S1 Description of R functions for quantifica-
tion of low abundance phenomena in bimodal popula-
tions. This file provides a detailed description of the proposed R

functions findsub(…) and get.ci(…) as tools for quantification of

small subpopulation phenomena and method confidence interval

calculation, respectively. We also show examples of graphical and

command-line output from these functions.

(PDF)

Protocol S2 Scripts and functions for quantification of
low abundance phenomena in bimodal populations.
This file contains the proposed R scripts and functions for

quantifying low abundance phenomena in bimodal populations.

Comments within scripts and the README file serve as step-by-

step guidance for the implementation of the relevant functions in

R. An example data set is included, allowing for a demonstration

of the relevant functions while following the step-by-step

procedure.

(ZIP)

Protocol S3 Scripts and functions for generating simu-
lated data. This file contains the R scripts and functions used for

generating the simulated bimodal populations that were analyzed

in this paper.

(ZIP)

Video S1 Accuracy of subpopulation determination as
quantified by the methods Boxplot1.5 or Boxplot3 from
different simulated bimodal populations. This file contains

a movie showing the results of Boxplot1.5 and Boxplot3 methods of

subpopulation detection tested on simulated bimodal populations

with varying subpopulation proportions, standard deviations and

set mean difference of 137 (see Methods). Method accuracy is

shown as the percentage between estimated and true subpopula-

tion size (z-axis), and as a function of subpopulation standard

deviation (x-axis) and subpopulation proportion (y-axis). The 40

different movie image frames show results for different simulated

subpopulation mean values. A value of zero indicates that

estimated subpopulation size equals true subpopulation size.

Negative or positive values indicate under- or over-estimation of

subpopulation size in comparison to true subpopulation size,

respectively. Instances where the method fails to detect any

subpopulation size are indicated as solidly coloured squares at the

top surface of the co-ordinate system (also see NA annotations in

Figure 7, 9).

(MOV)

Video S2 As Video S1 but with set standard deviation of
10.

(MOV)

Video S3 As Video S1 but with set subpopulation
proportion of 40%.

(MOV)

Video S4 Boxplot1.5 method accuracy as tested on
simulated bimodal populations with low subpopulation
proportions (0.1–1.2%). This file contains a movie showing

the results of the Boxplot1.5 method of subpopulation detection

tested on simulated bimodal populations of three different

population sizes (n = 26103, n = 26104, and n = 26105) with

simulated small subpopulation proportions ranging between 0.1

and 1.2% of the large subpopulation (see Methods). Set mean

difference = 2.

(MOV)

Video S5 As Video S4 but with set subpopulation
proportion of 0.1%.

(MOV)

Video S6 As Video S4 but with set standard deviation of
10.

(MOV)
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Video S7 Boxplot3 method accuracy as tested on
simulated bimodal populations with low subpopulation
proportions (0.1–1.2%). This file contains a movie showing

the results of the Boxplot3 method of subpopulation detection tested

on simulated bimodal populations of three different population

sizes (n = 26103, n = 26104, and n = 26105) with simulated small

subpopulation proportions ranging between 0.1 and 1.2% of the

large subpopulation (see Methods). Set mean difference = 2.

(MOV)

Video S8 As Video S7 but with set subpopulation
proportion of 0.1%.

(MOV)

Video S9 As Video S7 but with set standard devia-
tion = 10.
(MOV)
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