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Abstract

We study cyclic evolutionary games in a spatial diluted grid environment in which agents strategically interact locally but
can also opportunistically move to other positions within a given migration radius. We find that opportunistic migration can
inverse the cyclic prevalence between the strategies when the frequency of random imitation is large enough compared to
the payoff-driven imitation. At the transition the average size of the patterns diverges and this threatens diversity of
strategies.
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Introduction

Cyclic behavior can be observed in evolutionary games when

there are more than two strategies available to the players, a well-

known case being the Rock-Scissors-Paper (RSP) class of games [1].

This behavior is not only of theoretical interest since it is partly

responsible for the biodiversity on Earth, and has been actually

observed in several biological situations such as the dynamic

behavior of side-blotched lizards populations [2], coral reef

invertebrates [3], and competition among different bacteria

strands [4] among others. These games have been studied

extensively both theoretically and by computer simulations.

Rigorous results are available for well mixed populations in the

infinite population size limit pointing to the fact that the system

may converge toward a stable or Lyapunov stable interior rest

point, or to an unstable rest point leading to an heteroclinic cycle,

depending on the relative values of the payoffs (see, for example,

[1,5,6]). Cyclic behavior has also been found in studies of the

public goods game type when players, besides being able to choose

between cooperating or defecting behavior, also have the choice of

not taking part in the game (so-called ‘‘loner’’ strategy) [7].

Interestingly, a little later this oscillating behavior was actually

observed in an experiment with human subjects by D. Semman

et al. [8]. Likewise, in a spatial setting such as two-dimensional

grids or, more generally, on relational networks, several results

have been obtained. Szabó and Hauert [9] and Szabó and Vukov

[10] studied the Prisoner’s Dilemma on two-dimensional grids

with three strategies: cooperate, defect, and loners and observed

that the three strategies survive in a cyclic dominance way akin to

the RSP game. A similar phenomenon manifests itself on random

graphs but with different characteristics. In [11] Szabó et al.

investigated the behavior of the RSP game on regular small-world

networks. In more recent work A. Szolnoki and coworkers have

further studied the evolutionary Prisoner’s Dilemma on spatial

grids and random graphs showing that with a third tit-for-tat

strategy the system can show a variety of interesting behaviors

including stationary and oscillatory states [12]. When agents can

only cooperate or defect but have time-dependent learning

capabilities Szolnoki et al. [13] showed that cooperator and

defectors can coexist and propagating waves appear in the

spatially extended system.

In another strand of research players also have the possibility of

moving around in space, a feature that is central in ecosystems.

Spatial travelling waves and cyclic dominance are typical features

of these more biologically realistic settings which are often based

on stochastic partial differential equations discretized on a grid to

model random diffusion [14,15]. Another recent paper employs a

continuous time space/time formalism in the RSP game with a

non-diffusive spatial component [16]. The spatial flux is based on

local gradients of relative fitness. In this respect, this study is closer

to our approach described below but if focuses on pattern

formation and dynamics. Indeed, the strategies are distributed at

the start and remain fixed. While the system shows the formation

of spirals in space for some initial conditions, and of strategy

domains for others, since strategy proportions do not change

extinction phenomena are absent. Other important recent works

dealing with migration in diluted grid systems are [17,18].

In this paper we present a new model based on RSP games in

which agents enjoy mobility but their displacements are not

random; rather, they change place in a purposeful manner.

Contingent mobility has previously been used under various forms

in two-strategies evolutionary games of the Prisoner’s Dilemma,

Hawk-Dove, or Stag Hunt types [19–24]. The idea here is that the

agents possess some basic reactive or elementary reasoning

capability that allow them to sense the situation in their local

spatial environment and to employ some simple heuristic to move

accordingly. Heuristics range from very simple ones such as

cooperators moving away from surrounding defectors when the

latter are in the majority [19,23], to more elaborate ones such as

‘‘success-driven migration’’ where agents may try many destina-
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tions in space and choose to jump to the most favorable one in

terms of expected payoff [20,24]. Here agents use a simplified

form of an heuristic introduced in [24] which consists in randomly

trying one single free position in space within a given migration

radius and to move there if it is empty and more profitable than

the starting one. Our setting requires minimal rational capabilities

on the part of the players but it is clearly not adequate for low-level

biological organisms such as bacteria where it is likely that

movements are almost random. On the other hand, the heuristics

used are within the reach of many superior animal populations

and certainly of humans. We show in the paper that the addition

of opportunistic migration notably changes the dynamical

behavior of species. In particular conditions, spatial traveling

waves become much longer and tend to diverge with respect to the

finite system size causing strategy extinction and thus threatening

diversity. On the other hand, in different contexts this result could

be seen as a positive one as it tends to stabilize an oscillating

system.

Methods

We investigate a class of two-person, three-strategy, symmetric

rock-scissors-paper game as a metaphor for cyclic behavior. These

games have the generic payoff matrix M (equation 1) which refers

to the payoffs of the row player. The payoff matrix for the column

player is simply the transpose MT since the game is symmetric.

S1 S2 S3

S1 0 b2 {b1

S2 {b1 0 b2

S3 b2 {b1 0

0
BBB@

1
CCCA

ð1Þ

Where b1 and b2 are positive. The set of strategies is

~fS1,S2,S3g.
The Euclidean two-dimensional space is modeled by a discrete

square lattice of side L with toroidal borders. Each vertex of the

lattice can be occupied by one player or be empty. The density is r
and N is the number of players. Players can interact with k

neighbours which lie at an Euclidean distance smaller or equal

than a given constant Rg. Players can also migrate to empty grid

points at a distance smaller than Rm. We use three neighborhood

sizes with radius 1:5, 3, and 5; they contain, respectively, 8, 28,
and 80 neighbours around the central player.

Figure 1. Average diversity levels with random migration (first row) and opportunistic migration (second row) as a function of the
game radius Rg and the migration radius Rm. The size of the grid is L~50 and the density r is 0:5. In all cases the initial strategies of the players
are attributed uniformly at random. Diversity is maximal for light tones and disappears for black tones as can be seen in the color code bar of Fig. 2.
doi:10.1371/journal.pone.0098190.g001
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Figure 2. Diversity phase space in a well-mixed population as a
function of the game’s payoffs b1 and b2 with a~0. Diversity is
maximal for light tones and disappears for black tones.
doi:10.1371/journal.pone.0098190.g002
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Each agent i interacts locally with a set of neighbours Vi lying

closer than Rg. Let si(t) be a vector giving the strategy profile at

time t with S1~(1,0,0), S2~(0,1,0), and S3~(0,0,1), and let M

be the payoff matrix of the game (equation 1). The quantity

i(t)~
X
j[Vi

si(t) M sTj (t) ð2Þ

is the cumulated payoff collected by player i at time step t.

We use the imitative strategy update called the Fermi rule [5] in

which the focal player i is given the opportunity to imitate a

randomly chosen neighbour j with probability:

p(si?sj)~
1

1zexp({b( j{ i))
ð3Þ

where j{ i is the difference of the payoffs earned by j and i

respectively and b is a constant corresponding to the inverse

temperature for the imitation update. When b?0 (high temper-

ature) the probability of imitating j tends to a constant value 0:5
and when b?? (low temperature) the rule becomes deterministic:

i imitates j if ( j{ i)w0, otherwise it doesn’t. In between these

two extreme cases the probability of imitating neighbour j is an

increasing function of .

We use an asynchronous Monte Carlo [5] scheme for strategy

update and migration, i.e. players are updated one by one by

choosing a random player in each step with uniform probability

and with replacement. Then the player migrates with probability

1=2, otherwise it updates its strategy.

If the pseudo-random number drawn dictates that i should

migrate, then the player considers a randomly chosen position in

the disc of radius Rm around itself. If the position is already

occupied the player does not migrate, otherwise the player

computes the payoff that it would obtain in that place with its

current strategy. Then player i stays at its current position if it

obtains higher payoff there, or migrates to the trial position in the

opposite case. In order to introduce noise in the migration player i

can decide to migrate with probability :

p(xk?xl )~
1

1zexp({bm(
l
i{

k
i ))

ð4Þ

where l
i{

k
i is the difference of the payoffs earned by player i

in the positions xl and xk , where xk is the original position of

player i and bm is a constant corresponding to the inverse

temperature for the migration. We call these migrations opportu-

nistic or fitness-based.

We use two measures in order to assess diversity. The first one is

called diversity and is simply the normalized product of the

strategy frequencies : (n1n2n3)=(1=3)
3. It is proportional to the

probability that three randomly chosen players adopt different

strategies. Here the highest value of the product is reached when

the distribution of the strategies is homogeneous, and if one or

more strategy has vanished diversity becomes zero. Indeed, when

there are only two strategies remaining, dominance will cause one

of the two to disappear afterwards.

The second measure is called the wavelength. It is a rough

empirical approximation for the wavelength of a traveling wave or

simply for the size of a domain where more than half of the players

adopt locally the same strategy. We compute the width of a

domain surrounding a player along the x axis dx and y axis dy and

then choose the shortest width among dx and dy and take the

average over all players p. Note that we could obtain similar results

by taking the average over dx and dy. In order to obtain the

wavelength around a player p with strategy s we compute the

distance to the border of the s domain along the x and y axis in the

positive and negative direction around the player p. In order to

detect if a site i is inside a domain of players adopting strategy s,
we compute the frequency of players with that strategy inside the

Moore neighborhood (Rg~1:5) of i, including i. If the frequency is
smaller than 0:5, i is considered to be out of the domain.

Practically we move gradually on the axis until we reach the end of

the domain. The next steps take into account the case where the

spatial distribution of the population contains empty regions, i.e

the frequencies of strategies cannot be computed. In that case, if

there are no players in the neighborhood of i, the position of i is
incremented. Then, if the new place is in a domain with the same

strategy we consider that it is still the same domain and continue to

Figure 3. Average wavelength after time T~5000 as a function of b with random migration and opportunistic migration. Rg~1:5,
Rm~1:5,3,5. Left image : b1~1:5, b2~0:5 (game 1). Right image : b1~0:5, b2~1:5 (game 2). The size of the grid is L~200 and the density r is 0:5. In
all cases the initial strategies of the players are randomly attributed.
doi:10.1371/journal.pone.0098190.g003
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increment the test position. Otherwise, the position is considered

to be out of the domain and the width of the region without

players is subtracted from the total width.

Next, we present here the measure for the invasion speed. We

call this measure cyclicity and it takes values [½{1,1�. The

cyclicity measure for a player at a given time step t is 1 if the

strategy has changed according to the natural cycling order

(S1?S2?S3?S1) between t{1 and t, 0 if the strategy has not

changed and {1 if the strategy changed in the opposite way. The

global cyclicity is the average of this quantity over the players

during a time interval t after the system has evolved for t time

steps.

For the numerical simulations, the diversity phase-space

generated by b1 and b2 has been sampled with a step of 0:1 and

each value in the phase space reported in the figures is the average

of n~50 independent runs. For the wavelength plots the number

of independent runs is n~200. The evolution proceeds by first

initializing the population by adding players on grid cells with

probability r. Then the players’ strategies are initialized uniformly

at random such that each strategy has a fraction of approximately

1=3. We let the system evolve for a period of t~1000 time steps

for phase-space diagrams and t~5000 for wavelength plots. In

each time step N players are chosen for update. We then let the

system evolve for t further steps and take the average measure

Figure 4. Screenshots with random migration (upper images) compared with opportunistic migration (lower images) as a function
of b, Rg~1:5, Rm~1:5, b1~1:5, and b2~0:5 (game 1). The size of the grid is L~400 and the density r is 0:5. In all cases the initial strategies of the
players are randomly attributed. Each color is associated with a different strategy: S1 is yellow, S2 corresponds to blue, and S3 is depicted in orange.
doi:10.1371/journal.pone.0098190.g004

Figure 5. Average cyclicity after time T~5000 as a function of b with random and opportunistic migration. Rg~1:5, Rm~1:5,3,5. Left
image : b1~1:5, b2~0:5 (game 1). Right image : b1~0:5, b2~1:5 (game 2). The size of the grid is L~200 and the density r is 0:5. In all cases the initial
strategies of the players are randomly attributed.
doi:10.1371/journal.pone.0098190.g005
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value in this interval. Finally we report the average diversity or

wavelength values over the n repetitions.

Results

In order to obtain an overview of the effect of opportunistic

migration, the diversity measure is displayed as a function of the

game parameters b1 and b2 for several values of b. Fig. 1 depicts

the diversity phase-space for a lattice of size L~50 after time

T~1000 as a function of b, Rg and Rm. The upper images refer to

the random migration case, used here as a benchmark case, and

the lower images refer to the opportunistic migration case. By

comparing with the well-mixed case shown in Fig. 2, it can be

observed that diversity can thrive in adverse games (lower left

quadrant) when the interactions radius Rm and Rg are short

(Rg,Rmv5). However this does not hold in the opportunistic

migration case for all values of b as can be seen in Fig. 1. For

b~0:1 and 0:01 a small game radius Rg creates the opposite effect

for Rm~1:5,3,5 : extinction extend in the upper right quadrant

where diversity thrives in the ideal well-mixed case such that

nearly all the games of the phase-space lose diversity. For higher

game radius Rg~5 the game space where full diversity thrives is

similar to the one found in the random migration case. However

this does not imply that the wavelength is similar in the extinction

region. Although the small system size used for this exploratory

analysis may cause finite-size effects i.e., extinction due to

fluctuations, the results show that there is perhaps an interesting

phenomenon occurring when b is tuned and thus we try to

elucidate it further in the following.

We study the wavelength on larger lattices as a function of b
since too small lattices do not let us appreciate large wavelengths

due to finite size effects. Since the systematic study of the full game

phase space would be computationally too heavy, we report the

wavelength for two representative games in the plane. The first

game (game 1) is in the middle of the left lower quadrant of the

phase space, b1~1:5; b2~0:5, and the second game (game 2) is in
the middle of the right upper quadrant, b1~0:5; b2~1:5. Fig. 3
depicts the wavelength as a function of Rm and b for game 1 and

game 2, and Rg~1:5, and a frequency of migration of 1=2. In the

opportunistic migration case a marked peak appears for values of b
between 0:01 and 0:1. Results for a frequency of migration of 1=4
and of 3=4 respectively are reported in Material S1. Fig. 4 displays

some typical snapshots around the phase transition for random

and opportunistic migration. In the central image of the lower row

it is clearly visible how domains become larger and extinction sets

in for b~0:03 with opportunistic migration. In Fig. 5 the average

cyclicity is plotted as a function of b for the opportunistic and

random migration cases. It can be seen in the opportunistic

migration case that the cyclicity vanishes at the peak and is slightly

reversed on the left of the transition so that the position of the peak

corresponds to the inversion of the cycling order. This effect can

be explained in the extreme case b?0 where the imitation tends to

be random but the migration is opportunistic. In that case, the

players adopting a strategy si which is payoff-dominated by a

strategy si{1 form clusters at the border between the two strategy

regions since they try to minimize the number of si{1 players in

their neighborhood. Meanwhile the players adopting the strategy

si{1 are attracted toward the si clusters and surround them with a

smaller density. Since the strategy update rule is almost random

imitation for very small b the more clustered players spread their

strategy faster than the surrounding players. In fact this effect can

be understood in a bipartite population with two degree

homogeneous sub-populations p1 and p2 where players imitate

randomly their neighbors. A quick calculation shows that the size

of the sub-population which has the largest average degree spreads

its strategy faster (see Material S1). Also in Material S1it is

explained how the effect works using the example of a specific
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Figure 6. Average wavelength for opportunistic migration after T~5000 as a function of b for game 1: b1~1:5, b2~0:5. L~400 and
Rm~1:5,3,5. In all cases the density r is 0:5 and the initial strategies of the players are randomly attributed.
doi:10.1371/journal.pone.0098190.g006
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spatial configuration consisting of two neighboring infinite regions

with different strategies. In the random migration case it is more

difficult to find an explanation since there is no clustering, but the

phenomenon is weaker and the peak is less marked. The increase

of the wavelength when the cyclicity vanishes is not new and has

been studied in [25] in a cyclic voter model with three strategies

and a probability to imitate the dominant (dominated) strategy P
respectively (1{P) but the phenomenon is not caused by

migration, as in our case, since agents don’t move and only the

P parameter varies. In [26] authors study a spatial five-species

predator-prey model with site exchange and invasions between

neighbors according to the Rock-Paper-Scissors-Lizard-Spock

game. They study the invasion velocities and species density

fluctuations as a function of the invasion rates. It is reported that

the fluctuations of species frequency diverge and invasion velocities

between associations of strategies vanish when tuning the invasion

rates. Coming back to the opportunistic migration case, we have

checked that the inversion is stable with growing system size. Using

short simulation times, such that the system has not reached

extinction which means that this data is about the (initial) transient

period of the system and not yet at the stationary state, cyclicity

can be measured we show that the inversion is similar for all

system sizes studied (see figures in Material S1). In Fig. 6 we

display the average wavelength for L~400, Rm~1:5,3,5 and for

game 1: b1~1:5, b2~0:5. By comparing with the corresponding

curve in fig. 3 where L~200 we remark that the peak becomes

sharper for L~400 thanks to the larger system size. This is due to

the fact that the system can reach extinction before the end of the

simulation due to fluctuations of the wavelength even if the mean

wavelength is smaller than the system size.

Finally, we study the effect of noise on the migration process

using the Fermi rule with parameter bm (see Methods section). We

observe that, as bm is decreased, the system undergoes a transition

inside an interval where the phenomenon gradually disappears.

(See Fig. S3 in Material S1). Thus, the global effect of migration

noise is to prevent extinction provided that it is high enough, i.e.

bm less than 0:2. Of course, as migration noise increases, the

situation resembles more and more to random walk migration, as

it should.

Discussion

We studied the diversity of strategies in a RSP game in a spatial

layout where players migrate opportunistically to more favorable

places in their neighborhood. Differently from the many RSP-like

systems that have been studied previously in which diffusion is

either absent or is random, we found that the diversity is not

maintained for large areas of the games’ phase space, leading to

strategy extinction, when the exponent of the strategy update rule

is such that the imitative update is sufficiently noisy. Furthermore,

studying the size of the patterns for two representative games as a

function of b we found that a transition occurs where the size of

the patterns diverges and the prevalence of the strategies is

reversed. Finally, we also introduced a migration noise and we

found that if this noise is larger than a threshold the divergence of

the wavelength disappears.

Supporting Information

Material S1

(PDF)
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