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Abstract
Given the adverse impact of image noise on the perception of important clinical 
details in digital mammography, routine quality control measurements should 
include an evaluation of noise. The European Guidelines, for example, employ 
a second-order polynomial fit of pixel variance as a function of detector air 
kerma (DAK) to decompose noise into quantum, electronic and fixed pattern 
(FP) components and assess the DAK range where quantum noise dominates. 
This work examines the robustness of the polynomial method against an explicit 
noise decomposition method. The two methods were applied to variance and 
noise power spectrum (NPS) data from six digital mammography units. Twenty 
homogeneously exposed images were acquired with PMMA blocks for target 
DAKs ranging from 6.25 to 1600 µGy. Both methods were explored for the 
effects of data weighting and squared fit coefficients during the curve fitting, 
the influence of the additional filter material (2 mm Al versus 40 mm PMMA) 
and noise de-trending. Finally, spatial stationarity of noise was assessed.

Data weighting improved noise model fitting over large DAK ranges, 
especially at low detector exposures. The polynomial and explicit 
decompositions generally agreed for quantum and electronic noise but FP 
noise fraction was consistently underestimated by the polynomial method. 
Noise decomposition as a function of position in the image showed limited 
noise stationarity, especially for FP noise; thus the position of the region of 
interest (ROI) used for noise decomposition may influence fractional noise 
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composition. The ROI area and position used in the Guidelines offer an 
acceptable estimation of noise components. While there are limitations to the 
polynomial model, when used with care and with appropriate data weighting, 
the method offers a simple and robust means of examining the detector noise 
components as a function of detector exposure.

Keywords: mammography, image quality assessment, noise decomposition

(Some figures may appear in colour only in the online journal)

1. Introduction

Image noise is a vital concept when describing the quality of mammography images and has 
been shown to obscure object detectability (Saunders et al 2007, Warren et al 2012). In radio-
logical imaging, image noise can be considered to be composed of two principal components: 
‘anatomical noise’ arising from patient structures and ‘system noise’ due to the physical 
nature of the imaging system. System noise has been characterized in numerous studies, from 
theoretical analysis of noise sources in x-ray imaging systems (Barnes 1982, Rabbani et al 
1987, Nishikawa and Yaffe 1990, Hajdok et al 2006) to practical assessment of noise (Scheibe 
and Thomas 1981, Hillen et al 1987, Williams et al 1999, Evans et al 2002, Borasi et al 2003, 
Burgess 2004, Mackenzie and Honey 2007, Al Thali et al 2009, Bouwman et al 2009). This 
work implements an exhaustive procedure to accurately measure the noise components with 
the aim of evaluating the polynomial method for noise characterization and follow-up during 
QC in digital mammography (Perry et al 2013).

The three noise sources associated with digital x-ray imaging systems are electronic, x-ray 
quantum and fixed pattern (FP) noise. These noise components can be analyzed using variance 
(standard deviation) and by noise power spectrum (NPS). Both Borasi et al (2003) and Burgess 
(2004) apply the second order polynomial model to the variance measured in an image and 
expressed as a function of detector exposure. Bouwman et al (2009) have applied this model to 
a number of digital mammography systems and this method now constitutes part of the quality 
assurance measurements prescribed in the European Guidelines (EC 2006, Perry et al 2013) for 
digital mammography. An analogous approach can be applied to the NPS to derive the electronic, 
quantum and fixed pattern NPS (Mackenzie and Honey (2007), Al Thali et al (2009)). The accu-
racy of the model for quantifying electronic, quantum and fixed pattern noise components has 
however not been compared against other approaches. In this work, we verify the second-order 
polynomial model against an explicit noise separation in which non-stochastic noise is used to 
quantify FP noise. The FP noise component can be explicitly separated using a set of many images 
acquired at a given exposure level to form an average image which is then divided or subtracted 
from the image set, as described by Granfors and Aufrichtig (2000) for a digital radiography (DR) 
detector and by Illers et al (2004) for a computed radiography (CR) system. In addition, the influ-
ence of the following factors on noise component estimation was investigated: the filter type—Al 
against PMMA—at comparable beam spectra, the need for background de-trending prior to noise 
decomposition and spatial stationarity of the noise components over the image plane.

2. Background

Analysis of noise components in digital radiographic images is based on a linear-system 
analysis using noise samples obtained from homogeneously exposed images where noise 
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properties are assumed shift invariant (Williams et al 1999, Albert and Maidment 2000, 
Cunningham 2000). A simple three-parameter polynomial model has been proposed to 
describe the image noise as a function of detector x-ray fluence (Q) or detector air kerma 
(DAK) (Borasi et al 2003, Burgess 2004, Bouwman et al 2009). Noise within the image is 
assigned to one of three sources (electronic, quantum and fixed pattern), depending on its 
signal dependency. Electronic noise is assumed to be stochastic additive signal, independent 
of Q, arising from pixel dark current shot noise, noise fluctuations on the gate and data lines 
in the readout process and amplifier noise (Siewerdsen et al 1997). It should be noted that 
electronic noise may have a fixed pattern (FP) component arising from offset variations in 
row/column or pixel amplifiers/switches. The magnitude of FP electronic noise is however 
a small part of the electronic noise and is generally removed by flat fielding. In this study, a 
further distinction has therefore not been made and FP electronic noise was simply included 
in the FP noise component as defined below. The variance due to quantum signal variations, 
assuming Poisson statistics, scales with Q (Rimkus and Baily 1983). Structured or FP noise 
is a superimposed, unwanted static signal due to structural detector response fluctuations, 
variations in pixel-to-pixel sensitivity or linearity, dead pixels and large area non uniformi-
ties from the x-ray beam (heel and geometric effects). The FP variance has a Q2 dependence 
(Scheibe and Thomas 1981, Burgess 2004). In DR, the effect of FP noise can be largely 
removed using a flat-fielding correction. In CR, the correction is currently only applied for 
non-uniformities caused by the scanning and light-collection process during the readout 
(Schnell et al 2012). According to these definitions, electronic noise dominates at low expo-
sure while FP noise at high exposure.

The three noise components are uncorrelated and can simply be added (Barnes et al 1982, 
Mackenzie and Honey 2007).

 = + +S S S S   e q
2 2 2

fp
2 (1)

where Se
2, Sq

2 and Sfp
2 are respectively the noise variances or NPS for each frequency bin 

due to electronic, quantum and FP noise sources. With the polynomial assumptions regarding 
exposure dependency, we can write

 = + +S k k Q k Q e q
2

fp
2 (2)

where fitting parameters ke, kq and kfp respectively represent electronic, quantum and FP noise 
coefficients. The total un-normalized NPS, calculated from images linearized to number of 
photons per unit area (IEC 2005) can be written as (Nishikawa and Yaffe 1990):

 = + +NPS f Q NPS f NPS f Q NPS f Q( , ) ( ) ( , ) ( , )e q fp (3)

Applying the polynomial model gives

 = + +NPS f Q NPS f NPS f Q NPS f Q( , ) ( )   ( ) ( )e q fp
2 (4)

where NPSe( f ), NPSq( f ) and NPSfp( f ) are respectively the electronic, quantum and FP noise 
power spectra coefficients fitted for each frequency bin.

3. Materials and methods

3.1. Image acquisition

Six standard digital mammography systems were included in the study: five flat-panel detec-
tor based units and a computed radiography system (CR). Basic technical parameters for the 
detectors are given in table 1.
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Images were acquired at the tube voltage and anode/filter combination selected by the AEC 
for 4 cm PMMA placed on the breast support table (grid in). The compression paddle and 
antiscatter grid were systematically removed from the mammography systems and the 4 cm 
PMMA block was suspended at the tube exit port. For the CR system, the storage phosphor 
plate was erased before data acquisition in order to avoid background radiation effects and 
was placed on the bucky table. All images were stored as ‘FOR PROCESSING’ DICOM 
data without post-processing. For the flat-panel detectors, images were corrected using the 
manufacturer’s default flat-field calibrations (offset and gain corrections). Air kerma meas-
urements were made with two dosemeters: a Radcal 9015 monitor (Radcal, Monrovia, USA) 
with a 6 cm3 mammography ionizing chamber (10 × 5–6 M) and an RTI Barracuda (Mölndal, 
Sweden). Calibration of both devices was traceable to national standards. The air kerma was 
measured at the standard position, 6 cm from the chest wall edge and laterally centered, and 
then inverse-square corrected to give the air kerma at the detector surface (DAK). No correc-
tion was made for the transmission through detector covers. For each mammography unit, 
twenty flood images were acquired with open collimation at nine DAK levels, equally spaced 
by a factor of two. Target values were 6.25, 12.5, 25, 50, 100, 200, 400, 800 and 1600 µGy; 
the tube current-exposure time product (mAs) was varied to give the DAK closest to these 
values. When the target value could not be set with 4 cm PMMA, 1 cm of PMMA was added 
or removed to reach the lowest or highest DAK, respectively.

The filter material and thickness has to simulate the spectrum exiting an average breast. In 
mammography, a 2 mm thick Aluminum filter fixed at the output of the x-ray tube is recom-
mended by the IEC standard (IEC 2005) and is therefore commonly used to acquire flood 
images for noise measurements. In a study for general radiography, Ranger et al (2005) 
showed that aluminum structure can add low frequency mottle and hence the use of ultra-
high purity aluminum (>99.9% purity) in NPS estimation should be avoided. The influence 
of filtration type for mammography detectors was therefore compared in terms of noise com-
ponents to the 4 cm thick cast PMMA block using a standard 2 mm thick Aluminium filter of 
99.0% purity known to have some structure.

3.2. Response function

DAK values were converted to units of photon fluence (Q) by means of Boone’s data (Boone 
1998). Detector response curves were established from flood images using mean pixel value 
(PV) and photon fluence (table 2). A square area of 512 × 512 pixels at the centre of each 
image—including the reference dose point at 6 cm from the chest wall edge—was used for 
calculating the mean pixel value. The system response curves were fitted (weighted least 
square regressions with coefficients A, B and C) using linear or logarithmic equations (DR 
systems), or a power function expressed in a logarithmic scale (CR system).

 = + ⋅PV A B Q (5)

Table 1. Characteristics of the mammography detectors.

Detector name Technology
Pixel pitch 
(µm) Pixel matrix

Carestream SNP-M1 single-side needle CR 49 3584 × 4684
Fuji Amulet a-Se/optical switch 50 3540 × 4740
GE Essential CsI/a-Si TFT switch 100 2394 × 3062
Hologic Selenia Dimensions a-Se/TFT switch 70 3328 × 4096
IMS Giotto a-Se/TFT switch 85 2816 × 3584
Siemens Inspiration a-Se/TFT switch 85 2658 × 3318
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 = + ⋅PV A B Qlog (6)

 = + ⋅PV A B Q(log )C (7)

3.3. Noise assessment (variance and NPS)

Before noise analysis, all pixel values were converted to photon fluence values using the 
detector response curves. For the CR detector, slight shifts in plate alignment during plate 
reading destroy the pixel-to-pixel correspondence of FP noise between successive CR images, 
leading to an underestimate of FP noise. Plate-specific maps of fixed pattern signal can be gen-
erated for a pixel-to-pixel gain correction in CR (Schnell et al 2012); we used the method of 
Illers et al (2004) in which each CR series for a given DAK and plate was spatially registered 
before noise calculation. The degree to which two CR images were spatially correlated was 
estimated using the cross correlation coefficient, computed between a reference image and the 
19 successive images, for a shift range between −6 and +6 pixels in the horizontal and vertical 
directions. The shifts corresponding to the positions of the cross correlation peak were used to 
register the 19 CR images in each DAK series before noise calculation.

Each 512 × 512 ROI was shifted by 50 pixels between successive images for the 20 images 
at a given DAK level, starting from the image centre, ensuring that a fresh sample of FP noise 
was included in each ROI to improve ergodicity. In this way, average variance and NPS for 
the 20 different ROIs are presumed to provide an average noise estimation over many realiza-
tions of FP noise. If this were not done then noise averaged from a sequence of static ROIs on 
successive images (temporal average) may yield a different result from a spatial average over 
many ROIs performed on one image of the sequence (Dobbins 2000).

The large area spatial variations due to variations in signal from the heel effect and vari-
ations in x-ray path length through air are not representative of detector FP noise and hence 
should be removed before noise measurement (Dobbins 2000). For this reason, low-frequency 
signal trends were systematically removed by fitting and subtracting a 2D second-order poly-
nomial to each 512 × 512 ROI before noise calculation.

The variance was then calculated by taking the arithmetic mean of the squared differences 
between each pixel value and the mean pixel value within the 512 × 512 ROIs. The NPS was 

Table 2. Acquisition parameters and photon fluences, the response type and fit 
 coefficients A, B and C for the response curves according to equations (5)–(7).

Detector name

Tube 
poten-
tial

Anode / 
filter q0 (mm−2 µGy−1)

Detector 
response 
curve A B C

Carestream  
SNP-M1

28 kV Mo/Mo 5167 (40 mm PMMA) 
4878 (30 mm PMMA)

Log-
arithmic

−2543 34 931 −1.2717

Fuji Amulet 29 kV W/Rh 6189 (40 mm PMMA) 
5957 (30 mm PMMA)

Log-
arithmic

−3963 1051 -

GE Essential 29 kV Rh/Rh 6275 (40 mm PMMA) 
5990 (30 mm PMMA) 
6511 (50 mm PMMA)

Linear 0 0.0012814 -

Hologic Selenia 
Dimensions

29 kV W/Rh 6189 (40 mm PMMA) 
5957 (30 mm PMMA)

Linear 50 0.00047558 -

IMS Giotto 28 kV W/Ag 6734 (40 mm PMMA) Linear 1.6 0.00065555 -
Siemens  
Inspiration

29 kV W/Rh 6189 (40 mm PMMA) 
5957 (30 mm PMMA)

Linear 50 0.00058771 -
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assessed as prescribed by the IEC protocol 62220-1-2 (IEC 2005). From each 512 × 512 ROI, 
nine spectra were averaged from 256 × 256 sub-ROIs, giving 180 spectra at each DAK level. 
The axial (0° and 90°) zero-frequency NPS components in the Fourier plane were systemati-
cally excluded to meet the assumption of spatial stationarity for noise measurements. This can 
further reduce FP noise such as the heel effect. This operation cannot be extended to the vari-
ance measurements, unless one calculates the variance by integrating the NPS. The averaged 
data from the 2D NPS were then rearranged in a radially averaged 1D vector as a function of 
spatial frequency.

3.4. Noise decomposition

In this section, the term noise and the variable S2 are used for either the variance or the NPS 
for each frequency bin, referring to equations (2) or (4), respectively.

3.4.1. Polynomial method. Noise was decomposed using a second-order polynomial func-
tion of Q that was fitted to the noise data using least squares regressions. The treatment of 
uncertainties—and more specifically the weighting of the fitted data—can have a strong 
influence on the accuracy of the results, but as far as we know, this was not discussed in 
previous implementations (Borasi et al 2003, Burgess 2004, Bouwman et al 2009). Vari-
ance decomposition using equation (2) was therefore tested for each mammography system 
applying a least squared fit with weighted and unweighted data. The choice of weights was 
made such that each noise data provides equally precise information during the fitting. The 
error term minimized during the fitting was weighted as a function of the variability of noise 
data at the different DAK values by using a weight inversely proportional to the variance 
of the noise data at each dose level. This requires measurement of variance of the noise 
samples at each DAK (many images at each DAK). This weighting is based on the assump-
tion that the weights are known exactly, but in practice this is never the case since an infinite 
set of noise measurements at a given dose level would be required. When the sample vari-
ance is not known with sufficient precision, estimated weights must be used instead—we 
suggest that photon fluence gives an estimate of the weighting instead of measured variance 
of noise. This choice of weights was tested and the precision of the fit compared. While 
investigating the fitting procedures, we also examined the use by some authors of squared 
fit coefficients in the polynomial equation (ke

2, kq
2 and kfp

2 in equation (2)) (Young et al 
2006, Bouwman et al 2009).

3.4.2. Explicit method. The explicit method involves several steps with minimal assump-
tions regarding the signal dependency of the three noise components. The first step is 
to isolate the non-stochastic component of the noise. First, for a given DAK level, each 
512 × 512 ROI was de-trended using a 2D polynomial and the total noise was calculated 
(S2). An average ROI was then calculated from all twenty 512 × 512 ROIs at the given 
DAK. This average ROI was considered to represent the structured noise of the detector to 
some reasonable precision. Then, division of each of the twenty ROIs (on a pixel by pixel 
basis) by the averaged ROI suppressed fixed pattern (non-stochastic) noise of the detector 
S( )2

div  (Aufrichtig et al 2001). This operation is the same to that used to remove background 
intensity variations by flat-field techniques (Kwan et al 2006, Schmidgunst et al 2007). 
Division was preferred to subtraction by the average image as the latter approach may add 
noise if there are small exposure variations among the images. The averaged image con-
tains a fraction of stochastic noise correlated to each of the twenty images, hence S2

div has 
to be corrected by the factor N/(N − 1) to give the stochastic noise S( ) ,2

st   where N is the 
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number of images. The choice of N = 20 images was sufficient to have a signal-to-noise 
ratio larger than 25 for the averaged image, even for the lowest DAK of 6.25 µGy, and to 
give an error in NPS due to the division of less than 1% (Aufrichtig et al 2001). The detec-
tor FP noise (S2

fp) was taken as the difference between total and stochastic noises:

 =
−

S
N

N
S

1
 st

2
div

2 (8)

 = −
−

S S
N

N
S 

1
 fp div

2 2 2 (9)

Electronic and quantum noise are independent (stochastic) noise sources. Electronic 
noise is exposure independent and hence is present even in the absence of x-ray signal. 
One option in estimating electronic noise is to calculate this directly from dark images 
(acquired with a shielded detector), however pixel values close to zero may be strongly 
affected by truncation or rounding operations performed by the different systems, or by 
threshold operations necessary to avoid negative pixel values. Histograms of zero-dose 
images for the six systems involved in this study were not Gaussian distributed (Poisson-
distributed noise tends to Gaussian noise for large samples) whereas this was the case for 
the images at the other DAK levels (data not shown). For this reason, a linear extrapola-
tion to stochastic noise data (S )st

2  in the low and middle dose range (6–100 µGy) was used 
to find the electronic noise component. The linear fit for electronic noise was made using 
weights equal to the inverse of the variance of the noise data at each DAK. Quantum 
noise was taken as the residual stochastic noise after subtracting the electronic noise 
component.

 =
→

S S Qlim ( )e
Q

2

0
st

2
(10)

 = −S S S   q e
2

st
2 2 (11)

3.4.3. Quantum limited range. The quantum limited range is defined as the exposure range 
in which the quantum noise component is greater than the electronic or FP noise components. 
Using the polynomial decomposition method, the limits of this range can be easily calculated 
from the ratios between the noise coefficients:

 < <k

k
Q

k

k
 e

q

q

fp
(12)

3.5. Noise stationarity

Spatial stationarity of noise after 2D second-order polynomial de-trending was measured by 
calculating noise maps across the image plane using 5 × 5 mm2 ROIs spaced with a pitch of 
10 pixels in both directions in space. For the sake of comparison between the systems, the 
standard deviation was normalized by the standard deviation measured in a 5 × 5 mm2 ROI at 
the centre of the images. Variance for each 5 × 5 mm2 ROI was then decomposed by apply-
ing the explicit method (with weighted least square regressions) described in section 3.4. The 
fraction of total noise for a given noise component was calculated by dividing the variance for 
the component by total variance, on an ROI by ROI basis.
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4. Results and discussion

4.1. Response function

Tube potential and anode/filter settings selected by the AEC device for a 4 cm PMMA block 
used for the response curve and noise decomposition are given in table 2, with the fitted coef-
ficients A–C in equations (5)–(7). A weighted method was required to achieve an accurate 
fit at low DAK. Averaged deviations between the measured mean pixel values and the corre-
sponding fitted values were between 1.1% and 4.3% for the six mammography systems, with 
maximum deviations lower than 8.8%. The fitted equations were used to re-express the pixel 
values as units of photon fluence (Q) at the detector entrance.

4.2. Influence of polynomial fit method

Given that the noise data at each dose level have a different uncertainty, we expect that using 
weights inversely proportional to the variance of the noise data would yield the most precise 
parameter estimates. The fitting data in table  3 confirm this, with the weighted least squares 
method giving the best mean precision (mean absolute deviation) and the lowest maximal devia-
tion for three of the six detectors. Using the weighted method was necessary to achieve a suf-
ficiently accurate fit at low DAK (below 25 µGy) and hence find the electronic noise component 
(see figure 1). The effect of using estimated weights is difficult to generalize, but the results 
obtained for the six detectors indicated that weights chosen to be equal to the inverse of the photon 
fluence did not significantly affect the regression analysis compared to exact weighting (table 3).

Using squared coefficients did not influence the proportions of noise sources when the non-
squared method gave positive coefficients. For the Inspiration system, this avoided a nega-
tive second order (FP noise) coefficient but at the expense of precision (table 3). When the 

Table 3. Quantum (kq), electronic (ke) and FP (kfp) noise coefficients according to equa-
tion (2) for the polynomial noise decomposition obtained for different weighted least 
square regressions, mean and maximal deviations between the measured points and the 
fitted curves.

Detector name Weighting
Fit  
coefficients kq ke kfp

Mean abso-
lute devia-
tion [%]

Maximal 
deviation 
[%]

Carestream SNP-M1 1/Var(σ2) not squared 113.5 6.41e5 2.11e-5 3.1 8.0
1/Q 95.0 2.27e6 2.61e-5 8.2 25.9
None 77.1 1.22e7 2.83e-5 47.6 238.9

Fuji Amulet 1/Var(σ2) not squared 26.2 3.91e6 6.44e-6 11.7 69.4
1/Q 23.4 4.32e6 7.12e-6 12.1 76.3
None 20.3 5.36e6 7.78e-6 16.3 82.5

GE Essential 1/Var(σ2) not squared 27.3 2.17e6 6.61e-7 2.2 4.3
1/Q 28.6 2.03e6 4.06e-7 2.4 5.1
None 29.9 1.17e6 2.69e-7 7.1 28.1

Hologic Selenia  
Dimensions

1/Var(σ2) not squared 149.0 2.44e7 1.35e-5 1.4 7.3
1/Q 150.3 2.45e7 1.36e-5 1.6 6.7
None 155.7 2.41e7 1.25e-5 2.2 5.4

IMS Giotto 1/Var(σ2) not squared 134.8 2.45e7 4.90e-6 0.7 2.2
1/Q 136.0 2.44e7 4.57e-6 0.7 1.7
None 135.9 2.44e7 4.59e-6 0.7 1.7

Siemens Inspiration 1/Var(σ2) squared 160.0 1.70e7 2.45e-11 7.7 38.4
not squared 151.5 1.81e7 0.00 5.9 31.2

1/Q 128.4 2.10e7 0.00 9.0 13.7
None 117.6 4.34e7 0.00 31.9 104.1
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non-squared method gives a negative coefficient, the fit using squared coefficient gives (posi-
tive) coefficients close to zero, for example kfp = 2.45 × 10−11 for the Inspiration. It is of note 
that for the Siemens system, the negative second order coefficient did not mean that FP noise 
was not present; the reason was simply that the structured noise has a different dose depend-
ency than assumed by the model. There does not appear to be a physical reason to square the 
coefficients—in fact negative coefficients can provide information on whether the three compo-
nent model is suitable or valid for a given detector. A degree of consistency within the methods 
is also achieved by using non-squared coefficients for the variance and NPS fits (Mackenzie 
et al 2012). Practically, squared coefficients can be more difficult for the software to control 
during the fitting procedure; squared coefficients may be more sensitive to starting conditions.

4.3. Influence of de-trending

Variance decomposition performed without de-trending showed a FP noise that dramatically 
increased with ROI size and dose (figure 2). The variance compared to the integral of NPS cal-
culated without the Fourier axes (Parseval’s theorem) showed an increasing bias with the ROI 
size from very low frequency trends present in the image noise (< 0.2 mm−1). After 2D second-
order polynomial fit subtraction the variance remained largely independent of ROI size and 
close to the integral of NPS. The use of an efficient de-trending method is therefore neces-
sary to combine the higher statistical precision due to a larger ROI together with an accurate 
evaluation of variance. An optimal ROI size that corresponds to the best compromise should 
otherwise be used (Bouwman et al 2009). The European guidelines recommend an ROI size 
of 5 × 5 mm2 for variance analysis and this effectively places a lower frequency bound of 
0.2 mm−1. Results from this study suggest that even the 5 × 5 mm2 ROI tends to overestimate 
FP noise at high DAK compared to analysis with de-trending and this will subsequently affect 
fitted noise coefficients and the quantum limited dose range.

4.4. Influence of additional filter

Low frequency mottle in images acquired with the additional Aluminium filter resulted in an 
overestimation of the NPS at low spatial frequencies, especially below 0.5 mm−1, compared to 

Figure 1. Influence of the polynomial fit method on the precision of the noise model 
(data: GE Essential).
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data from the PMMA images. These results were similar to those found for an RQA5 beam in 
conventional radiography (Ranger et al 2005). The noise decomposition in this work showed 
that 1) stochastic noise was not modified by the filter type and 2) FP noise was increased 
by an additional amount of structure coming from the Aluminum plate (figure 3). In this 
example, the polynomial method using the Al filter would give a quantum dominant range 
of 12.5–1450 µGy compared to 17.8–2720 µGy for the PMMA. De-trending was not entirely 
effective in removing this low-frequency structured mottle and a hence a PMMA filter would 
offer a more accurate representation of detector noise, compared to the Al plate used here 
(known to have structured noise). For QC measurements, the use of a PMMA filter is difficult 
given the practical difficulty of safely and quickly suspending the PMMA at the tube exit port. 
Before routine use of an Al filter in QC, we recommend that the filter should be checked for 
structured noise.

4.5. Noise decomposition

Figures 4(a)–(f) compare variance decomposition by the polynomial and explicit methods 
on the six digital mammography systems. In general, FP noise from the polynomial model 
corresponded to non-stochastic noise for the explicit decomposition method, while stochastic 
noise for the explicit decomposition equaled the sum of electronic and quantum noise from 
the polynomial model. However, some notable differences were seen, especially for FP noise. 
The explicit method showed that FP noise is not always proportional to photon fluence at the 
detector within all or part of the dose range tested. For the five DR systems, the deviation from 
proportionality is particularly noticeable at low DAK where FP noise reaches a threshold and 
does not decrease as rapidly as required by the polynomial model. For these systems, the poly-
nomial decomposition underestimates FP noise at low DAK, sometimes by more than an order 

Figure 2. FP variance fraction measured as a function of ROI size without de-trending, 
and after the 2D polynomial de-trending. Comparison of the variance to the integral of 
NPS calculated as described in section 3.3 (data: GE Essential).
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of magnitude (GE Essential, IMS Giotto and Fuji Amulet at 6.25 µGy). The extreme case is 
for the Siemens Inspiration, where no FP noise is found by the polynomial method. However, 
because of the small fraction of FP noise at low DAK (less than 5% of total noise for a DAK 
below 25 µGy for all the systems), any error in FP noise estimation has only a limited impact 
on the total accuracy of noise component assessment if the polynomial method is used.

The discrepancy in FP noise at low DAK may arise from several reasons. Since the mask 
used for flat field correction is generated from several high dose x-ray images, as opposed to 
an ideal noise free condition, it contains a residual amount of stochastic noise that will add 
FP noise to the mammograms when the correction is applied. In (clinical) practice, even more 
deviations may occur. Variations in signal caused by the heel effect, x-ray path lengths through 
air, beam filter, compression plate and antiscatter grid will ideally be removed during the flat 
field correction. Since the flat fielding calibration is performed under one set of conditions, but 
images for noise analysis are acquired under another (e.g. differences in kV, target/filter mate-
rial, grid in/out, PMMA thickness), differences in flat fielding geometries will generate struc-
tured noise. Moreover the flat fielding is generally based on the assumption that the detector 
responds linearly to exposure. The calibration of the flat field correction is done at one DAK, 
typically around 100 µGy. If the detector elements (dels) have a non-linear response, the two-
constant (slope and intercept) correction applied in flat fielding will only operate properly 
under exposure conditions close to the calibration conditions. At low DAK, potentially differ-
ent non-linearities of the del responses or of the gain correction for the readout electronics will 
result in image inhomogeneities measured as FP noise. Moreover, on images acquired at low 
DAK (< ~25 µGy) detector structures become visible—for example amplification steps, lines 
due to capacitive coupling between gate lines, defective lines/columns or clusters of pixel not 
properly corrected. These are structured noise components, yet are present in images acquired 
at DAK levels where electronic noise often forms the highest fraction.

For the Essential, Giotto and Selenia Dimensions, the two methods of noise decomposi-
tion showed close results for quantum and electronic variances, while for the other detectors, 

Figure 3. Influence of additional filter material on the noise components as a function 
of DAK (data: GE Essential).
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Figure 4. Fractions of the three noise components obtained with the explicit decompo-
sition (filled symbols for the NPS and plain lines for the variance) and the polynomial 
decomposition (open symbols for the FP NPS and dotted lines for the variance). (a) 
Carestream SNP-M1. (b) Fuji Amulet. (c) GE Essential. (d) Hologic Selenia Dimen-
sions. (e) IMS Giotto. (f) Siemens Inspiration (Continued).
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Figure 4. Continued.
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the polynomial decomposition deviated over the entire DAK range. The polynomial decomposi-
tion gave a negative FP noise for the Inspiration. Forcing the second order coefficient to zero gave 
a good overall quality of the fit, except at high DAK where the polynomial decomposition yielded 
a quantum noise component higher than the total noise measured on the image (+22% at 800 μGy 
and +45% at 1600 μGy). For this system, FP noise deviated strongly from the behaviour expected 
with the polynomial model, constant below 200 µGy and with strong growth above 200 μGy. The 
Amulet showed quantum and FP noise components whose characteristics were far from those 
expected from the polynomial model. For this system, the filtering of ‘FOR PROCESSING’ data 
during the reading step may alter the raw image characteristics (Aufrichtig et al 2001, Rivetti 
et al 2009). For the CR system, the polynomial method gave a low (but non-zero) electronic noise 
component while the explicit decomposition found a stochastic noise strictly proportional to the 
photon fluence but no electronic noise. The polynomial decomposition gave a poor estimation of 
FP noise for the SNP-M1 with differences between −13 and +195% depending on DAK, and an 
underestimation of quantum noise (between −1% and −48% depending on DAK).

The generalization of the polynomial method from variance to NPS decomposition allows 
a direct comparison between the different noise components for systems with different pixel 
pitches, and has been described previously (Mackenzie and Honey 2007, Mackenzie et al 
2012). Several other studies have used different analytical methods based on cascaded linear 
system analysis for NPS decomposition (Hillen et al 1987, Williams et al 1999, Evans et al 
2002, Illers et al 2004, Al Tahli et al 2009). In this study, NPS decomposition agreed closely 
with variance decomposition (figures 5(a)–(c)). As for the variance, the polynomial method 
was likely to give a poor estimate of the FP NPS, especially an underestimate at low DAK. 
Figure 5(c) allows the comparison between the FP NPS calculated with the two decomposi-
tion methods for the target DAK of 100 µGy. For this DAK and with the exception of the 
Selenia, both methods gave systematically different FP NPS results. The differences in FP 
NPS are similar to those obtained for the variance decomposition, apart from the Amulet. The 
polynomial method gave a negative FP NPS for the Amulet except in the neighbourhood of 
the Nyquist frequency. This also occurred for the Inspiration over the entire spatial frequency 
range. For these two specific cases, the FP coefficient was forced to zero within the affected 
frequency range and the fit then gave results in close agreement with the explicit method for 
quantum and electronic components. This can be explained as FP NPS being just a small 
fraction of total noise. It has to be mentioned that the polynomial model applied on the NPS 
also failed to give reasonable values for quantum or electronic noise, in particular cases. The 
second-order polynomial fit sometimes diverged to meaningless values for low frequency 
NPS—this occurred for the quantum and electronic NPS below 0.5 mm−1 for the Essential, 
and for the quantum NPS for the Inspiration and Selenia (figures 5(a) and (b)).

The quantum NPS at zero frequency is determined by the quantum efficiency of the detec-
tor, and its shape is influenced by the square of the modulation transfer function (MTF2) 
and the aliasing (Rabbani et al 1987, Granfors and Aufrichtig 2000). The correlation of light 
photons within the scintillator for the indirect conversion detector (GE Essential) results in 
a greater reduction of quantum NPS as a function of spatial frequency compared to the a-Se 
detectors (Samei 2003). The quantum NPS decreases much more quickly for the Amulet than 
for the other systems, which is surprising for an a-Se based system. One possible explanation 
is that filters applied during the readout result in a quantum NPS that does not represent the 
physical characteristics of this detector (Rivetti et al 2009).

Electronic noise is not correlated by the presampling MTF and we therefore expect this NPS 
to be white (Cunningham 2000). A pronounced low-frequency bump was however obtained 
for the Inspiration especially, the Giotto and to a lesser extent for the Selenia Dimensions. 
The electronic NPS was however measured from images acquired with the whole x-ray chain 
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activated. An assessment of detector electronic noise alone would have needed measurements 
on raw dark frames. Once more, the shape of the electronic NPS for the Amulet indicates some 
correlation and hence probable post-acquisition filtering.

Figure 5. NPS components obtained with the explicit and polynomial decomposition 
methods for a target DAK of 100 µGy. (a) Quantum NPS. (b) Electronic NPS. (c) Fixed 
pattern NPS.
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The fixed pattern NPS shows various shapes reflecting intrinsic differences in converter 
materials, with more or less pronounced single spikes well localized in the frequency space. 
This corresponds to periodic signals in well-defined directions on the images (e.g. periodic 
lines). The systematic increase of FP NPS towards a peak at zero frequency is due to back-
ground trends incompletely corrected by the flat fielding.

4.6. Noise stationarity

The statistical description of a random process like image noise is determined by consider-
ing an ensemble of pixel values over a finite spatial area, often averaging several realizations 
that are spatially and/or temporally spaced. Efficient noise measurement therefore requires 
two conditions: stationarity and ergodicity. De-trending using the 2D polynomial subtraction 

Figure 6. Maps of standard deviation using 5 × 5 mm2 ROIs spaced with a pitch of 
10 pixels in both directions across the image plane, for a target DAK of 100 µGy. The 
reference 5 × 5 mm2 ROI at 6 cm from the chest wall edge was used for normalization 
(target DAK = 100 µGy). (a) Carestream SNP-M1. (b) Fuji Amulet. (c) GE Essential. 
(d) Hologic Selenia Dimensions. (e) IMS Giotto. (f) Siemens Inspiration.
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will reduce the large-scale image variations not explicitly related to the x-ray detector but not 
the complex spatial non-uniformities due to more localized signal variability. The European 
guidelines recommend a single small reference ROI of 5 × 5 mm2 localized at 6 cm from the 
chest-wall side for variance analysis.

Figures 6(a)–(f) show maps of standard deviation obtained for the mammography systems 
for a target DAK of 100 µGy. It can be seen that the noise is not nearly constant over the entire 
image plane, with higher levels in the periphery of the image plane compared to the regions 
usually covered by the breast. Noise generally increases from the chest wall side to the nipple 
side. For DR systems with flat fielding, this can be explained as follows. Without flat field cor-
rection, the PV would be ~30% higher at the chest wall edge due to the heel effect and vari-
ations in x-ray path length through air. The flat field correction is a multiplicative correction 
that applies the inverse of this shape to form the corrected image, increasing PV (and hence 
variance) at the nipple edge and reducing PV (and variance) at the chest wall edge (Marshall 
2006). The ratio in standard deviation between the areas of highest and lowest noise in the 
image can easily reach a factor of two. However the area of the detector usually covered by 
the breast, which includes the ROI recommended by the Guidelines, is close to the average 
noise level of the image. The noise level in the ROI used by the Guidelines is thus representa-
tive of the noise level in the region typically occupied by the breast but should not be taken to 
represent noise over the whole image plane.

For all the systems involved in this study, the noise level pattern across the image plane 
varied with DAK, implying that the three noise components are both non-stationary and dif-
ferently distributed across the image plane as DAK changes. A variance decomposition per-
formed across the image plane was used to examine this phenomenon. Figure 7 compares 
mean noise fraction (the solid bar) measured across the whole image to the noise fraction 
measured in the 5 × 5 mm2 ROI used by the Guidelines (circular symbols) for the target DAK 
of 100 µGy (figures 7(a)–(c) respectively for the quantum, electronic and FP noise fractions). 
The error bars in these figures show the standard deviation for the noise fractions measured 
over the whole image. The three noise components are not stationary across the image plane 
for the six mammography systems. Quantum noise has systematically the least variation of the 
three noise components while FP noise has by far the highest variability, even for systems with 
flat fielding. Electronic noise stationarity is intermediate for the six mammography systems. A 
large range in quantum noise was found for the SNP-M1 and the Essential.

Figures 8(a)–(f) show some examples of the fractional noise components across the 
image for a target DAK of 100 µGy. For the Essential, the variability in quantum noise 
is due to particularly low values at the image sides and is not relevant for clinical regions 
(figure 8(a)). The CR system shows a quantum noise fraction varying between 20% and 
100% along the direction perpendicular to the chest wall edge (figure 8(b)). This is different 
behaviour from that seen for the DR detectors, where quantum noise fraction is generally 
highest at the chest wall edge. For these detectors, the quantum noise fraction varies from 
side to side across the image plane, with the largest variation from 55%–85% for the Giotto 
(figure 8(c)). The Giotto showed the lowest spatial stationarity for the electronic noise frac-
tion, varying between 15% and 40% of total noise depending on the location on the image 
(figure 8(d)). The FP noise fraction varies strongly in the image plane for the Selenia and 
SNP-M1. FP noise increases strongly at the edges of the image for the Essential but remains 
spatially uniform elsewhere on the image. For the Selenia, a random variation is superim-
posed to a low-frequency trend from side to side giving FP noise fractions between 2% and 
10% across the whole pixel array (figure 8(e)). The SNP-M1 system has lowest stationarity 
for FP noise whose fraction varies from 10%–80% along the direction perpendicular to 
the chest wall edge (figure 8(f)). FP noise fraction is highest at the chest wall for the CR 
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Figure 7. Mean fraction for the three noise components measured within 5 × 5 mm2 
ROIs over the whole image plane (bars with error bars equal to ± one standard deviation 
and the coefficient of variation) and within the 5 × 5 mm2 reference ROI localized at 
6 cm from the chest-wall side (circular points) for a target DAK = 100 µGy. (a) Quan-
tum. (b) Electronic. (c) Fixed pattern.
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system. This result may be explained by the absence of correction for structured signal for 
CR systems.

Returning to figure  7, the noise fractions measured within the Guidelines reference 
5 × 5 mm2 ROI are given by the circular symbols in these figures. They are in most cases 
reasonably close to the mean noise fractions measured over the whole image plane (the bar 
in these figures). As already mentioned, differences seen for the Essential are due to the 
noise fractions at the sides of the images, distinctly different from the fractions measured 
throughout the remainder of the image, which is much more homogeneous. The large spatial 
variations in noise fractions for the CR system indicate that the fitted noise coefficients will 
depend strongly on the position and size of the ROI used for noise decomposition, which 
may in turn influence the quantum limited dose range. When determining noise coefficients, 
it is therefore important to use the same ROI for each measurement for a given DAK and in 

Figure 8.  Fractional noise components across the image plane for a target DAK of 
100 µGy. (a) Essential (quantum). (b) SNP-M1 (quantum). (c) Giotto (quantum). (d) 
Giotto (electronic). (e) Selenia Dimensions (fixed pattern). (f) SNP-M1 (fixed pattern).
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the ensemble of measurements for different DAK settings. Results from this study suggest, 
however, that the ROI area and position recommended by the Guidelines will provide a good 
estimation of the averaged noise fractions across the important diagnostic regions of mam-
mography DR detectors.

5. Conclusion

This study compared the commonly used second order polynomial model to give the quantum, 
electronic and fixed pattern noises against a more involved method that explicitly separated 
noise into these three components. The polynomial decomposition was often close to the 
explicit noise splitting method but occasionally failed to give accurate estimates of the dif-
ferent noise components. Furthermore, this method typically underestimated FP noise below 
25 µGy and could generate negative noise coefficients in some cases. The polynomial model 
applied to the NPS could also give a sharp fall-off in a given noise component at low spatial 
frequencies or negative coefficients. The 5 × 5 mm2 ROI localized at 6 cm from the chest wall 
side as recommended for noise separation in the European Guidelines will give in most cases 
noise fractions relevant for the area covered by the breast but as we might expect, noise com-
ponents may differ strongly from one location to another across the image plane. Spatial varia-
tions in noise components across the image plane also differ between systems: quantum noise 
was found to be the most stationary component whereas FP noise had the lowest stationarity, 
especially for the CR system. This study found that the accuracy and validity of the polyno-
mial model can be improved by the use of weighted fits, an efficient de-trending method and 
optionally a PMMA filter rather than using Al. These limitations cannot be overcome when 
the system noise behaviour is far removed from that expected by the polynomial model; in 
this case explicit noise splitting is an option and could be performed for type test procedures 
or at acceptance tests.
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