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Abstract

Background: While some of the variance observed in adiposity and weight change within populations can be
accounted for by traditional risk factors, a new factor, the gut microbiota, has recently been associated with obesity.
However, the causal mechanisms through which the gut microbiota and its metabolites, short chain fatty acids
(SCFAs) influence obesity are unknown, as are the individual obesogenic effects of the individual SCFAs (butyrate,
acetate and propionate). This study, METS-Microbiome, proposes to examine the influence of novel risk factors, the
gut microbiota and SCFAs, on obesity, adiposity and weight change in an international established cohort spanning
the epidemiologic transition.

Methods: The parent study; Modeling the Epidemiologic Transition Study (METS) is a well-established and ongoing
prospective cohort study designed to assess the association between body composition, physical activity, and
relative weight, weight gain and cardiometabolic disease risk in five diverse population-based samples in 2500
people of African descent. The cohort has been prospectively followed since 2009. Annual measures of obesity risk
factors, including body composition, objectively measured physical activity and dietary intake, components which
vary across the spectrum of social and economic development. In our new study; METS-Microbiome, in addition to
continuing yearly measures of obesity risk, we will also measure gut microbiota and stool SCFAs in all contactable
participants, and follow participants for a further 3 years, thus providing one of the largest gut microbiota
population-based studies to date.

Discussion: This new study capitalizes upon an existing, extensively well described cohort of adults of African-
origin, with significant variability as a result of the widespread geographic distributions, and therefore variation in
the environmental covariate exposures. The METS-Microbiome study will substantially advance the understanding
of the role gut microbiota and SCFAs play in the development of obesity and provide novel obesity therapeutic
targets targeting SCFAs producing features of the gut microbiota.

Trial registration: Registered NCT03378765 Date first posted: December 20, 2017.
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Background
Obesity is a complex condition with a multi-faceted etiology.
To date, while some of the variance observed in obesity
within populations can be accounted for by traditional risk
factors such as total energy expenditure, physical activity
(PA) level, dietary intake, genetics, socioeconomic status or
education level [1–6], a new factor, the gut microbiota have
also been recently implicated in obesity [7–9]. This study,
METS-Microbiome, proposes to examine the influence of
the gut microbiota, and its metabolites of carbohydrate di-
gestion, short chain fatty acids (SCFAs), on obesity, and
weight change.
The gut microbes are responsible for breaking down

non-digestible dietary nutrients, such as pectin, cellu-
lose, and resistant starches. Fermentation of these nutri-
ents in the distal gut results in the production of SCFAs,
mainly butyrate, propionate and acetate. Each of these is
absorbed by the human gut and contributes approxi-
mately 200 kcal/day to total body energy expenditure
[10]. SCFAs are a key energy source for the intestinal
epithelium and liver [11], and consequently affect many
metabolically important processes including hepatic glu-
coneogensis and lipogenesis [12, 13], gut barrier function
[14, 15], gut motility [16] and immune responses [17,
18]. Importantly, digestion of resistant starches, with as-
sociated increases in fecal SCFA concentrations, has
been shown to increase satiety, and is associated with
improvements in blood glucose and cholesterol [19, 20].
There are approximately 39 trillion bacterial cells in

the human microbiota in an average-sized man, whereas
there are 30 trillion human cells in the body [21]. Cur-
rently bacteria can be classified in 29 phyla and 5569
taxa, along the List of Prokaryotic names with Standing
in Nomenclature [22]. Three main phyla colonize the
gut; Firmicutes, Bacteroidetes and less abundantly by the
Actinobacteria. In humans, studies indicate an increase
in the Firmicutes and a decrease in the Bacteroidetes
phyla to be associated with obesity [23, 24], although not
all studies have observed this [25, 26]. In one of the
earliest human studies, Ley et al. [23] compared the gut
microbiota of 12 obese individuals, following two differ-
ent low calorie diets over the period of 1 year and found
that at baseline, obesity was associated with fewer Bac-
teroidetes (p < 0.001). However, with subsequent weight
loss, there were increases in the Bacteroidetes, concomi-
tant with decreases in the Firmicutes phyla, and thus an
increased Bacteroidetes/Firmicutes ratio, irrespective of
diet assignment. Ferrer et al. [24] confirmed these find-
ings comparing the gut microbiota in lean and obese in-
dividuals. While many postulated mechanisms of how
the gut microbiota contributes to obesity have been sug-
gested [9, 27–30], the focus of this study will be on ad-
dressing the relationship between the gut microbiota
and SCFAs.

The gut microbiota in and of itself appears to be influ-
enced by many external factors in the host’s environ-
ment [31], thus when investigating this microbial
ecosystem, other influencing external factors must be
considered [32, 33]. Previous studies [34, 35], however,
are limited by contradictory findings [36], small sample
sizes [37–42], imprecise measurements of obesity [43,
44], and lack of detailed dietary and other environmental
exposures/mediators [38, 41, 45]. The parent study;
Modeling the Epidemiologic Transition Study (NIH
R01-DK080763) is a well-established and ongoing pro-
spective cohort study designed to assess the association
between body composition, PA, and relative weight,
weight gain and cardiometabolic disease risk in five di-
verse population-based samples of African descent. The
five international research sites include Ghana, South
Africa, Jamaica, the Seychelles, and the US. The new
study, METS-Microbiome (NIH R01-DK111848), is
therefore well suited to examine the role a host’s local
environment has in the associations between the gut
microbiota, SCFAs and adiposity. Indeed, each of the 5
METS sites has been well characterized for their own
unique environmental and dietary/lifestyle sources of ex-
posure [2, 46–55]. Notably, sites differ according to
levels of adiposity (measured using dual x-ray absorpti-
ometry), ranging from 28% in Ghana, up to 39% in the
USA, dietary composition (averaged from two 24 h re-
call), where %diet from carbohydrate ranges 46% in the
USA up to 66% in Ghana, as well as differing levels of
physical activity (PA, objective activity monitoring).
Using our epidemiologic model for studying the asso-

ciations between the gut microbiota, SCFAs and the de-
velopment of obesity, we can explore the interplay of
these factors independently and collectively (e.g. dietary
habits, daily PA, socio-economic status, public health
policy as well as access to health care). In fact, this
model has been key to our understanding of obesity and
also other chronic diseases in the modern world [4, 54,
56–69]. However, the human gut microbiota, SCFAs and
its implications for the obesity epidemic, is only now be-
ing considered in detail [37–39, 45]. Interestingly, and to
the best of our knowledge, the gut microbiota and
SCFAs have not been considered in relationship to the
epidemiologic transition model. By exploring these vari-
ables through the epidemiologic transition model, we
will be able to capture these interactions, and provide
novel insight into the obesity epidemic as well as explore
innovative therapeutic targets. In fact, we have just pub-
lished a review justifying the use of this epidemiologic
model to unpack the role of the gut microbiota [70].
In summary, the significance of METS-Microbiome is

that it may clarify the relationships between gut micro-
biota, SCFAs and obesity across diverse environments.
Also, it may provide novel therapeutic targets, which
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might be considered as part of the multi-faceted obesity
treatment approach. Specifically, if SCFAs mediate the
relationship between gut microbiota and obesity, target-
ing them through either dietary, probiotics, or pharma-
ceutical intervention may provide additional therapeutic
tools in treatment of obesity.

METS-microbiome study hypotheses and aims
The METS-Microbiome study was designed to test
three hypotheses associated with the relationship be-
tween novel risk factors, the gut microbiome and
SCFAs, on obesity, adiposity and weight change. We
hypothesized that: 1) there exists a shared gut micro-
biota and SCFAs production are etiological factors in
obesity across populations, 2) gut microbiota and
SCFAs factors cross-sectionally associated with adipos-
ity will be predictive of longitudinal changes in adipos-
ity, 3) The relationship between gut microbiota and
SCFAs production is both shared, yet also reliant on
local environmental stimuli.

Methods
Design and settings
The parent study; METS, is a well-established and on-
going prospective cohort study designed to assess the as-
sociation between body composition, PA, and relative
weight, weight gain and cardiometabolic disease risk in
five diverse population-based samples of African descent
(NIH R01-DK080763). A description of the METS proto-
col for centralized field staff training, data collection,
measurement and laboratory procedures has been pub-
lished [71]. To date, 26 METS-related manuscripts have
been published or in press [2, 18, 46–55, 68, 72–74].

In the original METS study, 2,506 (N = 2,506) young
adults, age 25–45 years, were enrolled at baseline between
January 2010 and September 2011 with 500 participants
(~ 50% male) from each of five sites: rural Ghana (Ku-
masi), peri-urban Republic of South Africa (Cape Town),
island nation Seychelles (Mahé), urban Jamaica (Kingston)
and suburban Chicago (Maywood, IL) in the United States
(USA). These five sites were chosen to represent the
spectrum of the ‘epidemiologic transition’ with Ghana and
the USA representing the two extremes. Populations sam-
pled represent a range of social and economic develop-
ment as defined by the United Nations Human
Development Index (HDI)(UN [75]). Baseline characteris-
tics of the cohort, are presented by HDI site ranking in
Table 1. As a result of the cohort design, average baseline
BMI varied widely across sites and obesity (BMI ≥ 30)
prevalence ranged from 1.4% (Ghanaian men) to 63.8%
(USA women).
For the new study; METS-Microbiome (R01-DK111848),

data and biological samples collected during subsequent
years of follow-up examinations will be utilized for year 8–
10 follow up (2018–2021). As indicated, a total of 2506 par-
ticipants were recruited at baseline (2010–2011). At
present, across all sites, we have approximately 65% reten-
tion of the original cohort. Recruitment and replacement of
participants lost to follow-up has begun in the sites.

Ethics approval
The protocol for METS-Microbiome was approved by
the Institutional Review Board of Loyola University Chi-
cago, IL, USA; the Committee on Human Research Pub-
lication and Ethics of Kwame Nkrumah University of
Science and Technology, Kumasi, Ghana; the Research

Table 1 Baseline Characteristics of the Original METS Cohort (2506) by Sitea (mean ± SD, %)

Ghana (n = 500) South Africa (n = 504) Jamaica (n = 500) Seychelles (n = 500) USA (n = 502)

Age (y) 34.3 ± 6.7 33.4 ± 5.8 34.4 ± 6.1 36.1 ± 5.6 35.3 ± 6.3

BMI (kg/m2) 24.1 ± 4.6 27.5 ± 8.1 26.5 ± 6.4 27.1 ± 5.7 31.9 ± 8.5

Fat Mass (kg) 18.5 ± 9.2 29.0 ± 16.0 24.7 ± 13.4 25.8 ± 11.1 37.7 ± 18.3

Body Fat (%) 28.3 ± 10.3 36.8 ± 11.4 31.0 ± 11.4 33.1 ± 9.2 39.1 ± 11.0

Plasma Glucose (mg/dL) 99.7 ± 12.1 84.0 ± 23.0 93.1 ± 9.4 100.7 ± 29.1 100.1 ± 34.8

% Carbohydrate (%Energy) 65.8 ± 10.4 54.9 ± 11.8 58.5 ± 8.5 51.2 ± 9.3 45.9 ± 9.4

% Protein (%Energy) 11.9 ± 4.0 16.6 ± 4.8 14.8 ± 4.1 18.4 ± 4.7 15.5 ± 4.1

% Fat (%Energy) 21.7 ± 9.2 26.4 ± 9.3 25.6 ± 6.6 28.4 ± 7.6 36.6 ± 7.0

Fiber (g/day) 25.0 ± 9.7 8.7 ± 4.0 16.5 ± 8.4 13.5 ± 6.7 14.2 ± 7.1

Soluble Fiber (g/day) 6.0 ± 2.8 2.9 ± 1.4 4.9 ± 2.7 3.9 ± 2.1 4.6 ± 2.4

Insoluble Fiber (g/day) 18.9 ± 7.5 5.8 ± 2.9 11.6 ± 6.1 9.6 ± 5.1 9.5 ± 5.38

Obesity (%) 9.8 32.1 27.6 26.4 52.4

Diabetes (%) 1.0 2.4 0.2 3.4 9.6
aSites are presented according to their level of Epidemiologic Transition, using Human Development Index rankings. Diabetes, random glucose > 140 mg/dL or
currently taking diabetes medication
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Ethics Committee of the University of Cape Town,
South Africa; the Board for Ethics and Clinical Research
of the University of Lausanne, Switzerland; the Health
Research and Ethic Committee of the Ministry of Health
of Seychelles, and the Ethics Committee of the Univer-
sity of the West Indies, Kingston, Jamaica. The study
strictly adheres to the principles and protocols from the
Declaration of Helsinki. The study was registered pro-
spectively with the U.S. National Library of Medicine
ClinicalTrials.gov website on December 20, 2017, and
began recruiting in January 2018. The study was
assigned the following ClinicalTrials.gov identifier:
NCT03378765, and is funded by the National Institutes
of Health R01 mechanism (R01-DK111848).

Biological samples and measurements
For METS-Microbiome, 3 years of data will be collected,
coinciding with years 8–10 of the original METS study.
Project coordinators for each field site were trained and
certified in all measurement protocols by coordinating
center staff; the measurements included in the
METS-Microbiome study are summarized in Table 2. In
brief, anthropometrics including weight, height, waist and
hip circumferences have been collected using standardized
methods and the same equipment [68]. Blood pressure is
measured in triplicate at two-time points during each
examination using an automatic digital monitor (model
HEM-747Ic, Omron Healthcare, Bannockburn, IL USA).
Body composition is assessed in all participants at each

examination using bioelectrical impedance analysis and
study-specific Eqs. (55). Fasting plasma glucose will be
measured; insulin, leptin and adiponectin will be mea-
sured in fasting plasma samples using radioimmunoassay
kits (Linco Research, Inc., St. Charles, MO). Spot urines
will be collected at baseline and assayed for urinary albu-
min and creatinine levels. Unused whole blood, plasma,
serum and urine samples are stored at -80C for use in fu-
ture analyses. Fecal samples will be analyzed for both gut
microbiota and SCFAs, in all participants from Year 8–10
samples.

Year 8–10 follow-up examination
All participants, including the original cohort and the
new recruits, will undergo the Year 8–10 examination,
and as described in the original METS protocol manu-
script [49]. Anthropometrics, blood pressure, body com-
position by BIA, physical activity by accelerometry
(Actical; Philips Respironics, Bend OR), and health and
medication history by questionnaire will be collected.
Extensive information is collected at each examination
regarding self-reported health history, focusing on
changes to health status since prior visits. Data on drink-
ing, smoking and drug use, prescribed, over-the-counter
and illicit, are collected at each examination, along with
measures of socioeconomic status, education, employ-
ment status and history [76], and physical activity by
questionnaire [77]. Site-specific food frequencies will be
administered to participants by trained study staff. All

Table 2 Proposed Study Measures

Baseline Follow-Up Examinations

Years 1–5 Year 8 Years 9–10

METS

Physical Activity

Accelerometer X X X X

Questionnaire X X X

Body Composition

BIA X X X X

Isotope Dilution X X

DXAa X

Dietary Intake X X

Anthropometrics X X X X

Serum & Urine Measuresb X X X X

Health history, Demographics, etc. X X X X

METS-Microbiome

Blood SCFAs X X X

OGTT X

Gut Microbiota X X
aDXA for body composition and bone mineral density measures not available only in Seychelles
bSerum measures include fasting glucose, insulin, adiponectin, leptin, lipids, CRP, cystatin C at baseline and glucose, adiponectin and leptin at
follow-up examinations
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participants will undergo an oral glucose tolerance test
(OGTT) to assess glucose tolerance and insulin secre-
tion and sensitivity using Minimal Model analysis Partic-
ipants will be asked to provide a fecal sample using a
standard collection kit (EasySampler stool collection kit,
Alpco, NH).

Oral glucose tolerance test
Participants will be instructed to fast overnight and re-
frain from exercise prior to the test. A standard 75-g
OGTT will be performed and blood samples will be
drawn at 0, 30, 60, 120 min for subsequent determin-
ation of plasma glucose, and serum insulin and
C-peptide concentrations. Impaired glucose metabolism
will be defined using standard criteria as suggested by
the ADA [78] in accordance with the IDF [79] and
WHO [80].

Measurement of short chain fatty acids in stool
SCFAs (acetate, propionate, butyrate, formic acid, and
isovaleric acid) will be isolated from 10 mg fecal ali-
quots, and measured using gas chromatography-mass
spectrometry (GC/MS), according to the methods out-
lined in Moreau et al. [81] and Richardson et al. [82].
Briefly, in an aliquot of 10 mg fecal matter sample (with
total protein content analysis by Bradford assay for
normalization), add 2-ethylbutyrate internal standard in
0.5 ml water and 0.1 ml concentrated hydrochloric acid,
shake 30 min with 1 ml MTBE including methylbutyrate
internal standard. Decant MTBE phase, dry over sodium
sulfate, derivatize with MTBSTFA at 80 °C for 30 min,
inject 1 μl onto a 30 m 0.25 mm, 0.25 um DB5 dura-
guard column in a GC/MS with temperature gradient
50–290 °C, scanning 50–550 Da. Spiked recoveries in
fecal matter range from 65 to 110% for formic acid to
valerate. All short chain fatty acids had better than 7%
within- and between-batch reproducibility and quantifi-
cation limits < 10 pmol injected onto the column. Fecal
samples will be centrally stored at -80°C at Loyola Uni-
versity Chicago after shipment from the field sites.

Measurement of gut microbiota

DNA extraction, multiplex 16S allele PCR and se-
quencing We will quantify microbiome features from
amplicon data using existing pipelines [83] to identify
strain-level taxonomic markers for all samples. Microbial
DNA will be extracted using the PowerSoil-htp 96-well
Soil DNA Isolation Kit (MoBio). The 16S rRNA V4 regions
will be PCR-amplified and sequenced using the Illumina
HiSeq 2500 platform to generate ~ 100,000,250 bp
paired-end reads per sample [84]. All amplicon sequencing
data will be quality filtered and de-multiplexed and then
subjected to de novo operational taxonomic unit (OTUs)

picking, and subOTU characterization using DeBlur [85]),
via the QIIME platform.

Bioinformatics data analysis
We will perform a Microbiome Wide Association Study
(MWAS; [86]) to determine whether fecal microbial bio-
markers are predictive of participant variables. Microbial
16S rRNA diversity will be summarized using Chao1 es-
timator and Shannon index, and the relative proportions
of specific taxa. Significant relationships will be tested
using generalized linear modeling. UniFrac distances
(between-sample beta-diversity), microbial 16S rRNA di-
versity (alpha diversity, including evenness) will be cor-
related against the obesity and SCFA variables using
multivariate methods such as principal coordinate ana-
lysis (PCoA), Analysis of the Composition of Micro-
biomes (ANCOM; [87]), and permutational multivariate
analysis of variance (PERMANOVA). We will also em-
ploy correlative network modeling, including correction
of multiple testing, to determine if the network associa-
tions (based on relative abundance correlation) differs
with population, obesity and SCFA concentrations; such
differences in node-level topological features of the net-
work can help with interpreting ecological variability in
the stability of each microbiome [88, 89]. We will
characterize the modularity of these networks using a ran-
dom walk approach and link these community structures
to sample type via random forest modeling and multi-
nomial logistic regression. Relative abundance of bacterial
species will be characterized using sub-operational taxo-
nomic unit level [85] . Based on DESeq2 results [90], lo-
gistic models will be fit using patient characteristics and
SCFA concentrations as dependent variable and micro-
biome data as independent variables. Variable selection
will be integrated to avoid over-fitting. Classification per-
formance will be evaluated using ROC curve and the
0.632+ bootstrap method [91]. Random Forests will also
be applied to determine whether the microbiome is pre-
dictive of participant variables [92].

Shotgun sequencing
We will perform shotgun metagenomic sequencing (20
million reads per sample) to characterize the functional
metabolic pathways that may be enriched or depleted in
different populations, obesity groupings, or SCFA con-
centrations. Libraries will be generated using 1 ng of in-
put DNA with the Nextera XT protocol (Illumina), and
sequenced on the Illumina HiSeq platform (150 bp × 2,
10 samples per lane, Insert size range = 300 bp to
1200 bp). Raw metagenome reads will be quality
trimmed using the nesoni pipeline [93]. Phylogeny will
be assigned to reads using MetaPhlAn [94]. Reads will
be assembled using IDBA_UD [95], and population ge-
nomes will be binned using MetaBAT [96]. Single copy
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marker gene based copy number variation analysis [97]
will be used to estimate completion and intra-species
contamination in each genome. Reconstructed genomes
will be annotated using RAST [98]. These genomes will
be cross-referenced against the 16S rRNA amplicon re-
sults and comparative genomes between different strains
will be regressed against participant variables (e.g. BMI,
SCFAs, etc). Functional genes and metabolic pathways
will be identified and statistically analyzed using HU-
MAN [99], and Hidden Markov Models [100] with DIA-
MOND [101] and the KEGG database [102]. Relative
abundance will be assign to each KEGG Ortholog de-
tected. Finally, we will apply Predicted Relative Metabo-
lomic Turnover [103] to produce a predicted metabolite
profile based on pathway reconstruction. The relative
proportions of specific taxa, genes, or predicted metabo-
lites associated with outcomes will be tested by regres-
sion analysis and generalized linear modeling. UniFrac
distances (between-sample diversity) will be correlated
with participant variables in principal coordinate analysis
(PCoA), permutational multivariate analysis of variance
(PERMANOVA).

Data management
Loyola University Chicago is the coordinating center for
the current study. All data forms, questionnaires and
dietary recall instruments are scanned and, along with
electronic Actical data files, sent via secure transfer to
the data manager at the coordinating center. Scanned
forms are coded and double data entered by experi-
enced, trained study staff. A series of logic checks are
then performed and, when outliers are encountered, dis-
crepancies are followed up with staff at the appropriate
field site.

Statistical considerations
Overall approach and preliminary analysis
To ensure optimal model selection and protect against
model overfitting, cross-validation techniques will be
used to develop the models. The entire dataset will be
randomly split into a training (60% of data) dataset and
a test dataset (40%). Data will be divided using block
randomization by site and gender to ensure equal contri-
butions from the five sites. Models from each statistical
approach will be fit using the training dataset and asso-
ciations/predictions will be estimated on the validation
set. Optimization of models and variable selection will
involve a combination of stepwise selection and AIC cri-
terion via 5-fold cross-validation [104]. The average val-
idation error will also be used to assess model
performance among the different statistical approaches
and to choose the best approach for modeling this data.
Univariate and bivariate summary statistics and distribu-
tional plots will be examined for all variables and

appropriate transformations considered. Outliers will be
identified using the “letter value” procedure which displays
mild and severe outliers at the tails of the distribution
[105, 106]. Associations between variables of interest will
initially be explored with use of smooth scatter plots for
continuous variables and cross-tabulations for discrete
variables. Participant characteristics and baseline SCFAs
values will be summarized by sex: overall and by site.
Additionally, SCFAs concentrations will be examined
by participant characteristics representing demo-
graphic and lifestyle factors that may be associated
with exposure and outcomes of interest. Univariable
comparisons will be examined via Pearson’s chi-square
tests, Pearson’s correlation coefficients and Student’s
t-tests, as appropriate. To account for potential differences
in SCFAs levels by site, all modeling will adjust for site
(in addition to age and gender) and, when feasible,
modeling will be conducted within site to determine
site-specific effects. All analyses will be performed
using SAS version 9.4 (SAS Institutes, Cary, NC) and
computing environment R (R Development Core
Team, 2005).

Covariates of interest
Based on biological considerations, it will be important
to consider the following variables, among others, as co-
variates of interest in our analyses: age, sex, site, BMI,
family or previous history of diabetes or currently taking
medications for diabetes or hypertension, blood pres-
sure, nutritional status indicators (e.g., dietary nutrient
and specific food intakes), smoking, alcohol use, educa-
tion, occupation and employment status, marital status,
parity (females) and physical activity.

Discussion
This study capitalizes upon an existing, extensively well
described cohort of adults of African-origin initiated in
2009, with significant variability as a result of the wide-
spread geographic distributions, and therefore variation
in the environmental covariate exposures. The
METS-Microbiome study will substantially advance the
understanding of the role gut microbiota and SCFAs
play in the development of obesity and provide novel
obesity therapeutic targets targeting SCFAs producing
features of the gut microbiota. Specifically Studying
unique populations as they span the epidemiologic tran-
sition, allows us to investigate several risk factors simul-
taneously, including environmental co-variates, (e.g.
local diet/PA), which have been shown to impact both
gut microbiota and SCFAs. In addition, continuing
follow-up in a previously established, longitudinal cohort
of African-origin adults, and considered high-risk for the
development of obesity and metabolic disorders will
allow us to capitalize on identifying causal factors.
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Notably, we can leverage up to 10 years of detailed
phenotype information already collected in the parent
study, METS, including yearly weight change, to model
the contribution of these on the gut microbiota and
SCFAs. METS-Microbiome will utilize observational
measures include gold-standard techniques such as DXA
body composition and objective PA monitoring, in a
large, well characterized population cohort and thus ad-
dress potential confounding such as diet/PA, as well
local environmental stimuli.
The investigative team, with its geographic diversity,

existing data, established partnerships, and multidiscip-
linary expertise, is uniquely positioned to conduct this
type of research. With this study, we have enriched the
existing METS investigative team of epidemiologists,
biostatisticians, nutritionists and exercise physiologists
with expertise in endocrinology, microbiology, metabo-
lomics and bioinformatics. This transdisciplinary ap-
proach will allow for careful and thorough examination
of every phase of the study.
In conclusion, the proposed study will explore the un-

known causal mechanisms though which SCFAs mediate
the relationship between the gut microbiota and adipos-
ity. As a result of the large and diverse cohort, as well as
the comprehensive study design, METS-Microbiome has
the potential to uncover several new potential mecha-
nisms involved with development of obesity across pop-
ulations spanning the epidemiologic transition.
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