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SLI, Université de Lausanne, Switzerland

Sylvain Courtain
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Abstract

This work derives closed-form expressions computing the expectation
of co-presence and of number of co-occurrences of nodes on paths sam-
pled from a network according to general path weights (a bag of paths).
The underlying idea is that two nodes are considered as similar when
they often appear together on (preferably short) paths of the network.
The different expressions are obtained for both regular and hitting paths
and serve as a basis for computing new covariance and correlation mea-
sures between nodes, which are valid positive semi-definite kernels on a
graph. Experiments on semi-supervised classification problems show that
the introduced similarity measures provide competitive results compared
to other state-of-the-art distance and similarity measures between nodes.
Link analysis; network data analysis; complex networks; network science;
graph mining; kernel on a graph; bag-of-paths model.

1 Introduction

1.1 General introduction

This work addresses the important problem of defining similarities and distances
between nodes of a network based on its structure, faced in many applications
such as link prediction, community detection, node classification, and network
visualization, among others [3, 17, 18, 25, 29, 53, 58, 67, 72, 81, 88, 91]. It
extends previous work on the randomized shortest paths and the bag-of-paths
frameworks introduced in a series of previous papers [4, 30, 49, 76, 95], and
most notably [64]. This effort was initially inspired by models developed in
transportation science, especially [1, 23].

Of course, different meaningful notions of similarity between nodes can be
defined, depending on the application [91]. The most common one states that
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two nodes are considered as similar if (i) they are both close in the network (in
terms of shortest path distance) and highly inter-connected. In other words, two
nodes are similar when they are highly accessible from each other [15, 16, 57].
Another approach (ii) considers that two nodes are similar when they share
some common properties, for instance they often co-occur on paths or trees
sampled from the network. This is the approach that will be investigated in
this paper by considering a general bag-of-paths approach. A third relevant
idea states that (iii) two nodes could be considered as related when they play
comparable roles in the network, for instance if they influence the network in a
similar way.

In this context, as discussed in [57] (see also [29, 30]), the specificity of our
approach can be understood as follows. Most traditional distances or similarity
measures between nodes are based on two common paradigms about the transfer
of information, or more generally the movement, occurring in the network: opti-
mal communication based on shortest paths and random communication based
on a random walk on the graph. For instance, the shortest path distance is based
on geodesics and the resistance distance ([50], proportional to the commute-time
distance [10, 28]), on random walks. However, both the shortest path and the
resistance distance suffer from some annoying drawbacks [29]: the shortest path
distance does not integrate the amount of connectivity between the two nodes
and produces many ties in unweighted networks, whereas random walks quickly
loose the notion of proximity to the initial node when the graph becomes larger
[89, 90].

Contrarily to these standard measures, the randomized shortest paths frame-
work integrates both proximity and amount of connectivity for defining dis-
tance and betweenness measures between pairs of nodes based on approach (i)
[96, 76, 49, 56, 29]. In its basic form, this model assumes that paths connecting
the two nodes are chosen according to a Gibbs-Boltzmann probability distribu-
tion depending on a temperature parameter balancing the smoothness of the
measure. When the temperature of the model is high, communication occurs
through a random walk while, for low temperatures (close to zero), shorter
paths are promoted. The model has been extended recently by adding a priori
probabilities on the starting and ending nodes, thus allowing to weigh nodes
[37, 39].

In the same spirit, the bag-of-paths based measures aim to quantify the
similarity between the nodes by considering arbitrary paths between all pairs
of nodes (and not only between one pair of predefined nodes) favoring low-
cost, and thus short, paths [64, 30]. Similarity measures can then be derived by
computing number of co-occurrences of nodes on paths, as in approach (ii). The
present work expands this approach by considering a more generic framework
and deriving new measures based on node presence and on hitting paths in
a systematic way. A nice property is that all the quantities of interest can
be computed in closed form by standard matrix operations. Moreover, the
introduced measures have nice, intuitive, interpretations, as explained in the
next subsection.

Other such families of distances were recently introduced and studied, for
instance in [11, 12, 13] by considering the co-occurrences of nodes in forests
or walks on a graph, in [2, 41, 90] based on a generalization of the effective
resistance in electric circuits, in [59, 60] by flow optimization with mixed L1-L2
norms, and in [4, 38] by considering network flows with entropy regularization.
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The originality of our work, in comparison with these previously developed
methods, lies in the fact that we adopt a bag-of-paths formalism; that is, the
quantities of interest are defined on the set of whole paths (or walks, trajectories)
appearing in the network.

For a comprehensive survey of related work on the design of similarity/distance
measures on graphs and networks, see [27, 30, 49, 64] as well as [29]. How-
ever, three closely related and highly relevant works must be emphasized here.
The first work [14, 15, 16] develops new similarity measures based on the co-
occurrence of nodes on the same tree appearing on forests (sets of trees) sampled
from the graph. The main quantity is called the relative forest accessibility be-
tween nodes and measures to which extend two nodes co-occur on the same tree,
and are therefore both close and highly connected. The approach is similar to
(and has inspired) our work but involves different motifs: trees instead of paths.
Another interesting closely related work is [52] which introduces the concept of
co-betweenness. The authors aim to extend node betweenness centrality to sets
of nodes in terms of shortest paths that pass through all nodes in a set. They
then provide an expansion for group betweenness in terms of increasingly higher
orders of co-betweenness. Moreover, they derive an efficient algorithm for com-
puting the pairwise co-betweenness involving two nodes only, which generalizes
the standard shortest-path node betweenness. Our approach is similar in spirit,
but is based on paths sampled from the graph according to a general probability
distribution favoring low-cost paths, instead of shortest paths. Finally, the re-
cent DeepWalk [75] is based on simulating a large number of walks in the graph
and use the vord2vec approach to compute a p-dimensional representation of
the nodes based on their co-occurrences in a sliding time frame. The algorithm
provides a graph representation (or embedding) capturing the association be-
tween the nodes in terms of co-occurrence. In the present paper, the same idea
is exploited, but the association measures between nodes (correlations and co-
variances) are computed in closed form instead of relying on computer-based
path generation. The DeepWalk approach has become very popular in the deep
learning community.

1.2 The main intuition behind the models

The idea behind the introduced node similarity measures is as follows. Let us
assume we can enumerate all paths ℘ ∈ P (the set of all paths) that can be
sampled from a network G. Further consider that a measure of “quality” of
these paths can be easily computed, the weight w(℘), as, e.g., in [12]. This
weight reflects the reward of following the path, and could be based on, e.g.,
the length of the path, the total cost along the path, the time to follow the
path, etc. Moreover, let us assume that paths are indexed and ordered by
decreasing degree of quality, (℘1, ℘2, . . . ). As an example let us consider a corpus
of documents from which a network is extracted (see e.g., [67]). If the nodes of
the network represent terms and the (weighted) links represent co-occurrences of
terms within a given window in the text, then paths in this network correspond
to sequences of words (sentences) where highly likely sequences have a higher
weight.

The paths selection strategy, based on a sampling probability distribution
derived from path weights, naturally favours high-weight paths and the overall
quality level of the chosen paths could be monitored thanks to a temperature
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parameter (see Subsection 2.3.1), depending on the problem. Then, if the pa-
rameter is close to zero, only high-quality paths are considered while, for high
values, all paths are more and more considered equally. The model can thus
be considered as a bag of paths from which paths are drawn [64, 30]. Within
this context, and as already mentioned, our similarity measure has the follow-
ing interpretation: two nodes are considered as highly similar when they often
co-occur on the same paths, when drawn thanks to a probability distribution
favouring high-weight paths. In other words, two nodes are considered as related
if they share the same paths.

Intuitively, this can be captured in the following way based on the enumer-
ation of paths, although some tricks will be used in order to efficiently compute
the quantities. Let X be a data matrix (the path-node matrix, inspired by
the document-term matrix in information retrieval) with rows corresponding to
paths, ℘i ∈ P, and columns to nodes, j ∈ {1 · · ·n}, of G. The entries i, j of
this matrix are binary with a 1 if the node j appears on the path ℘i and zero
otherwise.

Moreover, we further introduce a diagonal matrix weighting the paths, and
containing as diagonal elements i, i the probability P(℘i) of choosing path ℘i ac-
cording to the sampling distribution with

∑∞
i=1 P(℘i) = 1. Thus, as an example,

these two matrices are of the form:

X =



1 2 3 ···

℘1 1 0 1 · · ·
℘2 0 1 0 · · ·
℘3 1 0 1 · · ·
℘4 0 0 0 · · ·
...

...
...

...
. . .

; D =



℘1 ℘2 ℘3 ℘4 ···

℘1 P(℘1) 0 0 0 · · ·
℘2 0 P(℘2) 0 0 · · ·
℘3 0 0 P(℘3) 0 · · ·
℘4 0 0 0 P(℘4) · · ·
...

...
...

...
...

. . .


In this example, we observe that node 1 and node 3 look similar as they appear
on the same paths (℘1 and ℘3). Conversely, nodes 1 and 2 appear quite different.

In other words, nodes are characterized by their appearance on paths so
that a binary feature vector indicating their presence on the different paths, xj ,
is associated to each node1. The xj vectors can therefore be viewed as profile
vectors characterizing each node j with respect to its presence on paths. Thus,
these vectors form the column vectors of the data matrix X. Alternatively, the
data matrix could also contain the number of occurrences of each node on the
different paths, instead of a binary presence value.

Now, a simple, but still meaningful, measure of the similarity between pairs
of nodes i and j is simply the expected frequency of common presence on the
paths. This quantity can be computed by taking the inner product xT

i Dxi for
node i, or XTDX for the result on all pairs of nodes. Such quantities will be
studied and computed in this paper in a relatively general setting.

Note that this kind of similarity measure is closely related to contextual
similarities used in, e.g., information retrieval where two words are considered
as related when they often appear in the same context (same sentence, window
or document) [40], as illustrated by the recent, popular, vord2vec method [68]
and the emerging field of representation learning [5, 99]. Similarly, the context
is represented here by paths of arbitrary length and the measures of association

1Note that all vectors are considered as column vectors.
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are computed directly in closed form from the structure of the graph and its edge
weights. As an example, and as already mentioned, this idea has been exploited
recently in the field of deep learning for computing a graph representation [75]
and is now very popular in that field.

1.3 Contributions and contents

The paper derives closed-form expressions for computing similarity measures
for two types of paths: (i) regular (non-hitting) and (ii) hitting paths. More
precisely, the derived similarities are the covariance and correlation kernels on
a graph (they are positive semidefinite). Moreover, these kernels are defined for
two different measures: based on (i) simple binary common presence of nodes
on paths and (ii) number of co-occurrences on paths. In addition, various
betweenness centrality measures are also derived within the framework.

The material presented in this paper is therefore an extension of the previous
work [64] where a covariance and a correlation kernel were derived for regular
paths based on number of co-occurrences only. The derivation of the different
quantities in the present work is more systematic, comprehensive, and generic.
Moreover, the results involving node presence are new and use a completely
different technique than for those based on number of co-occurrences. The
same is true for the results involving hitting paths (instead of regular paths),
which are more elaborate. Finally, the framework developed in this work is more
general as it can be applied to a large class of weights defined on edges, whereas
it was restricted to the bag-of-paths model based on Kullback-Leibler divergence
regularization in [64]. The introduced framework contains the standard bag-of-
paths model as a special case.

The paper is organized as follows. First, the underlying background, nota-
tion and framework are detailed in Section 2. Then, Section 3 derives various
important expressions computing the weights on sets of paths avoiding or con-
taining some nodes. These results are derived for both regular and hitting paths
and provide the basic support for the definition of the similarity measures. Sec-
tion 4 develops betweenness centrality and node similarity measures based on
the presence and the number of occurrences of nodes on paths, for both regular
and hitting paths. Finally, those measures are assessed and compared in Section
5. Section 6 is the conclusion.

2 Framework and notation

2.1 The generalized bag-of-paths formalism

As already stated in the introduction, the standard bag-of-paths framework
(BoP) [30, 64] sets up a Gibbs-Boltzmann distribution defining the probabil-
ities of drawing a path from the set of all paths in the graph, also named the
bag of paths, by assigning higher probabilities to short paths and lower proba-
bilities to long paths. The standard bag-of-baths formalism will be described
in more details in Section 2.3.1. For the moment, we will define a more generic
framework, namely the generalized bag-of-paths formalism, inspired by [12]. A
summary of main notations appears in Table 1.
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2.1.1 Paths, hitting-paths, and sets of paths

Let G = (V, E) be a weighted, strongly connected, directed graph, with set of
nodes V = {1, 2, . . . , n} and set of edges E = {(i, j)} containing m elements.
This graph is described by its weighted adjacency matrix W = (wij) (or sim-
ply weight matrix ), representing non-negative local affinities between nodes or
rewards on edges, with wij ≥ 0. Moreover, the weights must be equal to zero
for missing links: wij = 0 when there is no link between i and j. This weight
matrix is not simply the usual adjacency matrix A in general, but a function of
it depending on the considered application like, e.g., a substochastic transition
matrix representing a killed random walk (see the end of Subsection 2.1 for some
examples). The weight matrix will be used in order to define path weights and
path probabilities on sets of paths. We will see later that it must satisfy some
simple constraint in order to make sure that probabilities of drawing paths are
well-defined: it should have a spectral radius strictly lower than 1. This point
is discussed in Section 2.1.4.

A `-length (regular) path on the graph G, denoted by ℘, is a sequence of
nodes ℘ = (i0, i1, . . . , i`−1, i`), where ` ≥ 0 and (iτ , iτ+1) ∈ E for all τ =
0, . . . , `− 1. Note that 0-length paths are allowed by convention. We denote by
the variable ℘st a path whose starting node is s and ending node is t. A hitting
path, denoted by the superscript h in ℘h, is defined as a path such that the final
node i` appears only once on the path, i.e., i` 6= iτ , ∀τ = 1, . . . , ` − 1 and of 0
length if i0 = i`. In other words, for hitting paths, the final node is considered
as an absorbing node: it can thus only appear once, at the end of the path.

The set of all paths in G, also called the bag-of-paths, is denoted by P. This
set P = ∪ns,t=1Pst is the union of the subsets Pst of all regular (non-hitting)
paths starting in node s and ending in target node t. Several subsets of the
bag of paths will be used in the sequel and, for the sake of clarity in further
developments, we will use special symbols for these different subsets.

The superscript in Ph will refer to the set of hitting paths, also named the
bag-of-hitting-paths. Still another type of superscript has the form P(+I) or
P(−I), where I ⊂ V is a subset of nodes. This superscript indicates that the set
is composed of paths containing (with a + symbol), and respectively avoiding
(with a −), all of the nodes in I. Note that we will usually simply write P(+i)

instead of P(+{i}) when there is only one node i in the set. Of course, all

these notations can be combined. For example, Ph(−{i,j})
st refers to the subset

of hitting paths connecting s to t and avoiding nodes i and j.
Note that the set of all paths P is equipped with a composition rule for

two paths where the ending node of one path corresponds to the starting node
of the other, i.e., if ℘sk = (s, i1, . . . , k) and ℘kt = (k, j1, . . . , t), then ℘sk ◦
℘kt = (s, i1, . . . , k, j1, . . . , t). By extension, let Psk ◦ Pkt denote the set of all
compositions between sets of paths Psk and Pkt.

2.1.2 Paths weights

Paths weights are defined from the n×n non-negative weighted adjacency matrix
W of the graph (an example is provided later) and are used to define the bag-
of-paths probabilities. The weight of a path ℘ = (i0, . . . , i`), noted w(℘), is
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wij = [W]ij element i, j of the weight matrix of graph G
℘ a particular path visiting nodes s = i0, i1, . . . , i` = t

w(℘) =
∏`−1
τ=0 wiτ ,iτ+1 the total weight along path ℘ (product of edge weights)

w(Q) =
∑
℘∈Q w(℘) the total weight for paths ℘ in set of paths Q, ℘ ∈ Q

Pst(`) set of regular paths connecting s to t in exactly ` steps
Pst set of regular paths of arbitrary length connecting s to t

P(+i)
st set of regular paths from s to t visiting intermediate node i

P(−i)
st set of regular paths from s to t avoiding node i

P = ∪ns,t=1Pst set of all regular paths of arbitrary length

P(+I) set of regular paths from s to t visiting all nodes in set I
P(−I) set of regular paths from s to t avoiding all nodes in set I
Ph
st set of hitting paths of arbitrary length connecting s to t

Ph = ∪ns,t=1Ph
st set of all hitting paths of arbitrary length

Ph(+i)
st set of hitting paths from s to t visiting intermediate node i

Ph(−i)
st set of hitting paths from s to t avoiding node i

Ph(+I) set of hitting paths from s to t visiting all nodes in set I
Ph(−I) set of hitting paths from s to t avoiding all nodes in set I

Table 1: Summary of notation for the enumeration of paths in a graph G for
both regular and hitting paths.

defined as the product of the weights on its edges, i.e.,

w(℘) ,
`−1∏
τ=0

wiτ ,iτ+1 . (1)

where we recall that ` is the length (number of edges) of the path. By convention,
we assume that all 0-length paths have a weight of one. Note that this definition
favors shorter paths over longer ones because it will be shown below that the
property Wτ τ→∞−→ 0 of the weight matrix must hold for consistency. Therefore,
the weight of a path decreases with its length, at least in the long term.

We also define the weight of any subset of the bag of paths Q ⊆ P as the
sum of the weights of its elements (paths),

w(Q) ,
∑
℘∈Q

w(℘). (2)

Therefore, if two subsets, Q and R, are disjoint, we have w(Q ∪R) = w(Q) +
w(R).

2.1.3 Bag-of-paths probabilities

We now consider the bag of paths P and we would like to draw paths from P
with probabilities P(℘) proportional to path weights. This is easily obtained by
normalizing the weight of the path by the total weight of the bag-of-paths. In
short, the generalized bag-of-paths probabilities of drawing a path ℘ are defined
as

P(℘) ,
w(℘)∑

℘′∈P w(℘′)
=
w(℘)

w(P)
. (3)

Note that the generalized bag-of-paths probabilities P(℘) are non-null if and
only if the normalizing constant, the weight of the bag-of-paths, i.e., w(P), is
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finite. This kind of measure is the object of interest of the present work. We
will detail in the next section what are the requirements on the weights in order
to satisfy this property.

More generally, if we want the conditional probability of drawing a path
from a subset Pa ⊆ P knowing that we are in Pb ⊆ P (with Pa ⊆ Pb), we will
use

P(Pa|Pb) , P(℘ ∈ Pa|℘ ∈ Pb) =
w(Pa)

w(Pb)
. (4)

As probabilities restrained on the bag-of-hitting-paths form an important part
of this work, we will often use the notation Ph(Qh) , P(Qh|Ph) for any sub-
set Qh ⊆ Ph. In other words, we define the generalized bag-of-hitting-paths
probabilities of drawing the hitting-path ℘h by

Ph(℘h) =
w(℘h)∑

℘̃h∈Ph w(℘̃h)
=
w(℘h)

w(Ph)
. (5)

2.1.4 Consistency condition on the weighted adjacency matrix W

As stated before, we require non-null bag-of-paths probabilities, which means a
finite weight for the whole bag of paths P. Note that the subsets of paths Pst
with s, t = 1, . . . , n form a partition of the bag-of-paths, which implies

w(P) =
∑
s,t∈V

w(Pst) =
∑
s,t∈V

∑
℘st∈Pst

w(℘st) =
∑
s,t∈V

[ ∞∑
τ=0

Wτ

]
st

. (6)

This shows that w(P) is finite if and only if
∑∞
τ=0 Wτ converges. Let ρ(W) be

the spectral radius of this weighted adjacency matrix, i.e., the largest modulus
of its eigenvalues [66],

ρ(W) , max
λ∈σ(W)

|λ|, (7)

where σ(W) is the spectrum of W. By the Perron-Frobenius theorem (see, e.g.,
[55, 66]), the non-negativity of the components of W implies that the largest
eigenvalue is real and positive, and thus λ1 , ρ(W) ≥ 0. λ1 is also called the
Perron eigenvalue.

The series
∑∞
τ=0 Wτ = I + W + W2 + · · · is called the Neumann series of

W [66]. Concerning Neumann series, the following statements are equivalent
[66]

1. ρ(W) < 1,

2. limτ→∞Wτ = 0,

3.
∑∞
τ=0 Wτ converges.

In this case, (I−W)−1 exists with
∑∞
τ=0 Wτ = (I−W)−1, and we can define

Z = (zij), the fundamental matrix of the bag-of-paths system, as

Z , (I−W)−1. (8)
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Thus, by restricting ourselves to graphs with a weighted adjacency matrix ver-
ifying ρ(W) < 1, we ensure that bag-of-paths probabilities are well-defined.
Now, it is known that each irreducible (non-negative) substochastic matrix has
this property (see [66], p. 685, exercise 8.3.7). Therefore, the property holds
for strongly connected graphs with a substochastic weight matrix W which, in-
stead otherwise stated, will be assumed for now. More generally and intuitively,
ρ(W) < 1 should hold provided that each node of G is connected through di-
rected links to at least one killing node – a node whose (weighted) outdegree
is strictly less than one. Another interesting property of an irreducible sub-
stochastic weight matrix W is that all of its elements are smaller or equal to 1,
because its row sums are lesser or equal to 1.

In the case of a strongly connected graph and a weight matrix smaller than
1, several important quantities defined on subsets of the bag-of-paths can be
expressed through the components of the fundamental matrix, as will be shown
in Section 3.

2.2 Nodes (co-)presence and (co-)occurrences on paths

The introduced similarity measures between nodes will be based on node pres-
ences and node occurrences on paths. We now introduce some notations related
to these quantities that will be used all along the paper. Let the presence
variable of node i on a given observed path ℘ be

δ(i ∈ ℘) ,

{
1 if i ∈ ℘,
0 otherwise.

(9)

Moreover, let the number of occurrences, or simply occurrences, variable for
node i on path ℘ = (i0, . . . , i`) be

η(i ∈ ℘) ,
∑̀
τ=0

δiiτ , (10)

where δiiτ is the Kronecker delta between i and iτ , i.e., δiiτ = 1 if iτ = i (node at
position τ on path ℘ is equal to node i) and δiiτ = 0 otherwise. These variables
are also used to signify the report the presence of two nodes: let co-presences
and co-occurrences of nodes i and j on path ℘ be, respectively, δ(i ∈ ℘)δ(j ∈ ℘)
and η(i ∈ ℘)η(j ∈ ℘).

In this work, we will mainly be interested in computing covariances and
correlations of presence and occurrence variables between nodes, defined with
respect to either bag-of-paths or bag-of-hitting-paths probabilities. These co-
variances and correlations between nodes are semi-definite positive by definition
as they are inner product, or Gram, matrices [74]. They will be used in Sec-
tion 5 as kernel matrices in order to, e.g., perform semi-supervised classification
tasks. Note that expected values of presence and occurrences also define central-
ity indices, generalizing some other centrality measures such as the betweenness
centrality [31, 32] or the random walk centrality [7, 70]. However, studying these
centrality indices is out of the scope of this work, and were already investigated
in [47].
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2.3 Some examples of weight matrix

2.3.1 A particular case: the standard bag-of-paths framework

The standard bag-of-paths framework is a good example of such a weighting
scheme [30, 56, 64]. In that context, graph G is represented by its weighted
adjacency matrix, A = (aij), with no special requirement except that aij ≥ 0
and the fact that the graph is strongly connected. This also allows us to derive a
reference transition probabilities matrix Pref = D−1A of a natural random walk
on G with elements prefij , where D is the diagonal matrix containing node out-
degrees. Moreover, we assume a cost matrix C = (cij), which can be defined
either independently from weights aij , or thanks to cij = 1/aij or cij = 1
(among others). In this context, any observed path ℘ = (i0, . . . , i`) induces a
likelihood πref(℘), defined by πref(℘) , Π`−1

τ=0p
ref
iτ ,iτ+1

and a cost c(℘) defined by

c(℘) ,
∑`−1
τ=0 ciτ ,iτ+1

. The bag-of-paths probabilities are constructed in order
to favor paths of low cost subject to a Kullback-Leibler divergence (KL) level,
i.e., by solving the following problem, minimizing free energy [30, 64]:

minimize
{P(℘)}℘∈P

∑
℘∈P

P(℘)c(℘) + T
∑
℘∈P

P(℘) log(P(℘)/Pref(℘)),

subject to
∑
℘∈P P(℘) = 1,

(11)

where T > 0, the temperature is a free parameter monitoring the KL level, and
Pref(℘) is the random walk reference probability of a path ℘ proportional to its
likelihood, i.e, Pref(℘) = πref(℘)/

∑
℘′∈P π

ref(℘′).
As for maximum entropy problems [19, 43, 44], solving this problem yields

a Gibbs-Boltzmann probability distribution [30, 64]

P?(℘) =
πref(℘) exp(−βc(℘))∑

℘′∈P π
ref(℘′) exp(−βc(℘′))

, (12)

where β , 1/T is the inverse temperature parameter. This solution allows us to
choose paths according to Pref(℘) when the temperature T is high, and increases
the probability of choosing low-cost paths as the temperature decreases, up to
eventually selecting shortest paths only when T → 0+.

Interestingly, for a path ℘ = (i0, . . . , i`), the numerator in (12) can be written

as πref(℘) exp(−βc(℘)) =
∏`−1
τ=0 p

ref
iτ ,iτ+1

exp
(
−βciτ ,iτ+1

)
, which means that it

corresponds to a generalized path weight w(℘) built from the matrix W defined
by

W , Pref ◦ exp[−βC], (13)

where exp[−βC] is the component-wise exponential and ◦ the Hadamard prod-
uct. We observe that if the cost matrix has at least one non-zero value for a given
edge, the matrix W is substochastic. Moreover, when the graph is strongly con-
nected, we saw that the substochastic weight matrix verifies ρ(W) < 1, which
implies that the standard bag-of-paths model is indeed a particular case of the
generalized one. In the case studies of Section 5, this standard bag-of-paths
framework will be used in the two considered applications.
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2.3.2 Another particular case: absorbing Markov chains

Let us now consider absorbing Markov chains. In this context, some nodes,
called absorbing nodes A, are trapping the random walker so that the corre-
sponding rows of the transition matrix of the Markov chain P are set to 0,
except on the diagonal where we find a 1 [46, 24, 36, 73, 87]. However, in that
case, the matrix (I−P), which would be a good candidate for the fundamental
matrix of the process, is not of full rank and its inverse is not defined. Then,
one has to rely on pseudo-inverses which introduces an extra level of complexity
to the theory of finite Markov chains [46, 24, 36].

One simple trick solving this issue is to consider killing, absorbing, nodes,
which simply aims at setting the corresponding rows of the original transition
matrix (considered as stochastic and irreducible) to 0 [29, 51]. Thus, we consider
that the random walker stops its walk after reaching such a killing, absorbing,
node. The matrix of this killed process, denoted by W, is then substochastic
and has a spectral radius lesser than one, even if the corresponding graph is
not strongly connected any more. Then, the fundamental matrix is simply
Z = (I −W)−1 and all the quantities of interest can be computed from its
elements. For instance, the probability of being killed in node t ∈ A when
starting a random walk from node s is∑

℘st∈Pst w(℘st)∑
a∈A

∑
℘sa∈Psa w(℘sa)

=
zst∑
a∈A zat

which relies on Result (R.1) stated later, and is quite intuitive. Let us now turn
to the computation of the various quantities of interest.

3 Basic expressions for computing weights of
various subsets of paths

We saw how the generalized bag-of-paths formalism revolves around computing
weights associated to subsets of paths in order to compute quantities of interest.
In this section, we assume a strongly connected graph as well as ρ(W) < 1.
In this case, we show that weights of various paths subsets can be computed
directly from the components of the fundamental matrix Z = (I−W)−1. When
expressed properly, these results are quite intuitive, although their derivations
can be rather tedious. Therefore, all proofs are reported in Appendix A.

Note that these developments only concern subsets where the starting and
ending nodes are known exactly. However, the weights of subsets with unde-
termined starting and ending location are easily found. Indeed, sets Pst form a
partition of P, implying w(P) =

∑
s,t∈V w(Pst). All subsets defined by a par-

ticular superscript can be handled in exactly the same way, e.g., w
(
Ph(−i)) =∑

s,t∈V w
(
Ph(−i)
st

)
. The results (numbered (R.1)-(R.18)) are presented in a se-

quential way, from the most obvious to the most complex. Moreover, each
derived quantity usually depends on the previous ones.

3.1 Key relationships

As a starting point, the following closed-form expressions, already known in the
standard bag-of-paths and RSP frameworks [30, 49], are derived in Appendix A

11



wij = [W]ij element i, j of the weight matrix of graph G
zst = [Z]st = w(Pst) element s, t of the fundamental matrix Z computing the total weight on regular paths

zhst = w
(
Ph
st

)
total weight of hitting paths connecting s to t

z
(+i)
st = w

(
P(+i)
st

)
total weight of regular paths connecting s to t and visiting intermediate node i

z
h(+i)
st = w

(
Ph(+i)
st

)
total weight of hitting paths connecting s to t and visiting intermediate node i

z
(−i)
st = w

(
P(−i)
st

)
total weight of regular paths connecting s to t and avoiding node i

z
h(−i)
st = w

(
Ph(−i)
st

)
total weight of hitting paths connecting s to t and avoiding node i

z
(+{i,j})
st = w

(
P(+{i,j})
st

)
total weight of regular paths connecting s to t and visiting intermediate nodes i, j

z
h(+{i,j})
st = w

(
Ph(+{i,j})
st

)
total weight of hitting paths connecting s to t and visiting intermediate nodes i, j

z
(−{i,j})
st = w

(
P(−{i,j})
st

)
total weight of regular paths connecting s to t and avoiding nodes i, j

z
h(−{i,j})
st = w

(
Ph(−{i,j})
st

)
total weight of hitting paths connecting s to t and avoiding nodes i, j

z
(+I)
st = w

(
P(+I)
st

)
total weight of regular paths connecting s to t and visiting intermediate nodes in set I

z
h(+I)
st = w

(
Ph(+I)
st

)
total weight of hitting paths connecting s to t and visiting intermediate nodes in set I

z
(−I)
st = w

(
P(−I)
st

)
total weight of regular paths connecting s to t and avoiding nodes in set I

z
h(−I)
st = w

(
Ph(−I)
st

)
total weight of hitting paths connecting s to t and avoiding nodes in set I

Table 2: Notation for the z auxiliary variables computing total weights of subsets
of paths on G, for both regular and hitting paths.

for both regular and hitting paths,

zst = w(Pst) = [Z]ij =
∑
℘∈Pst

w(℘), (R.1)

zhst , w
(
Ph
st

)
=
∑
℘∈Ph

st

w(℘) =
zst
ztt
, (R.2)

and we observe that zhtt = 1 from (R.2). Moreover, we have zst = zhstztt which
will be useful later. Thus, the sum of the weights of regular paths between two
nodes is given by the corresponding element of the fundamental matrix (8).

3.2 Computing weights for sets of paths containing or
avoiding nodes

In this subsection, a number of auxiliary z-quantities computing total weights
of subsets of paths are defined and calculated. They serve as building blocks for
computing association measures between nodes, like covariance and correlation.
We start with quantities involving visits to one intermediary node, then we
consider visiting two nodes, and we finally extend the results to an arbitrary
number of nodes. A summary of the relevant notation appears in Table 2.

3.2.1 Path weights containing or avoiding one node

Expressions computing the total weight for sets of paths containing or avoiding
a particular node i can be further developed for both regular and hitting paths
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(see Appendix A for derivations and details). For regular paths,

z
(+i)
st , w

(
P(+i)
st

)
=
∑
℘∈Pst

δ(i ∈ ℘)w(℘) = zhsizit, (R.3)

and we recall that indicator function δ(i ∈ ℘) = 1 when path ℘ contains node

i and 0 otherwise. It can be observed that z
(+i)
st reduces to zst when i = s and

when i = t, which is natural.
From Equation (R.3), we further obtain, when avoiding i,

z
(−i)
st , w

(
P(−i)
st

)
=
∑
℘∈Pst

(1− δ(i ∈ ℘))w(℘)

= zst − z(+i)st = zst − zhsizit, (R.4)

and this time, by (R.2), z
(−i)
st = 0 when i = s and when i = t, as should be. For

hitting paths now,

z
h(−i)
st , w

(
Ph(−i)
st

)
=
∑
℘∈Ph

st

(1− δ(i ∈ ℘))w(℘)

=


z
(−i)
st

z
(−i)
tt

0

=


zhst − zhsizhit
1− zhtizhit

if i 6= t,

0 if i = t,

(R.5)

where z
h(−i)
st = 0 when i = s, as should be. Observe the similarity with (R.2).

Note that when s = t, the result is equal to 1. Considering now the presence of
node i,

z
h(+i)
st , w

(
Ph(+i)
st

)
=
∑
℘∈Ph

st

δ(i ∈ ℘)w(℘) =

{
z
h(−t)
si zhit if i 6= t,

zhst if i = t,
(R.6)

and we naturally obtain z
h(+i)
st = zhst when i = s.

3.2.2 Path weights containing or avoiding two nodes

In this subsection, we consider that i 6= j and the expressions are only valid in
this situation. When this is not the case, the problem is reduced to the task of
finding only one node on paths, and its solution is given in the previous section

with, e.g, w
(
P(+{i,i})
st

)
= w

(
P(+i)
st

)
. In Appendix A, the expressions computing

the total weight on sets of paths containing or avoiding two nodes of interest
i and j, for both regular and hitting paths, are derived. The main results are
summarized in (R.7)-(R.10),

z
(+{i,j})
st , w

(
P(+{i,j})
st

)
=
∑
℘∈Pst

δ(i ∈ ℘)δ(j ∈ ℘)w(℘)

= z
h(+i)
sj zjt + z

h(+j)
si zit if i 6= j. (R.7)

Notice that this expression is coherent when i = s, j = s, i = t and j = t
as it reduces to the expressions involving only one node (R.3). Three different
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expressions (R.8.1)-(R.8.3) can be derived for computing the next quantity,

z
(−{i,j})
st , w

(
P(−{i,j})
st

)
=
∑
℘∈Pst

(1− δ(i ∈ ℘))(1− δ(j ∈ ℘))w(℘)

= zst − zh(−j)si zit − zh(−i)sj zjt if i 6= j (R.8.1)

= z
(−j)
st − zh(−j)si z

(−j)
it if i 6= j (R.8.2)

= z
(−i)
st − zh(−i)sj z

(−i)
jt if i 6= j. (R.8.3)

The following results (R.9) and (R.10) for hitting paths assume that i 6= j 6= t.
If either i = t or j = t, the quantity (R.9) must be equal to 0 (the destination
node t cannot be avoided). When i = j (only one node is present or absent), the
Equations (R.5) and (R.6) must be used instead. Once again, three alternative
expressions (R.9.1)-(R.9.3) can be derived from the more general result (R.9)
for computing the equivalent quantity for hitting paths,

z
h(−{i,j})
st , w

(
Ph(−{i,j})
st

)
=
∑
℘∈Ph

st

(1− δ(i ∈ ℘))(1− δ(j ∈ ℘))w(℘)

=
z
(−{i,j})
st

z
(−{i,j})
tt

if i, j 6= t ∧ i 6= j (R.9)

=
zhst − z

h(−j)
si zhit − z

h(−i)
sj zhjt

1− zh(−j)ti zhit − z
h(−i)
tj zhjt

if i, j 6= t ∧ i 6= j (R.9.1)

=
z
h(−j)
st − zh(−j)si z

h(−j)
it

1− zh(−j)ti z
h(−j)
it

if i, j 6= t ∧ i 6= j (R.9.2)

=
z
h(−i)
st − zh(−i)sj z

h(−i)
jt

1− zh(−i)tj z
h(−i)
jt

if i, j 6= t ∧ i 6= j (R.9.3)

= 0. if i = t ∨ j = t, (R.9)

Note also that the result is 1 when s = t. Finally, for node presence, we obtain

z
h(+{i,j})
st , w

(
Ph(+{i,j})
st

)
=
∑
℘∈Ph

st

δ(i ∈ ℘)δ(j ∈ ℘)w(℘)

= z
h(−{j,t})
si z

h(+j)
it + z

h(−{i,t})
sj z

h(+i)
jt if i, j 6= t ∧ i 6= j

(R.10)

and, again, this expression is coherent when i = s, j = s, i = t and j = t as it
reduces to (R.6). When s = t, the result is simply 0.

3.2.3 Path weights containing or avoiding sets of nodes

Up to now, we were mainly interested in computing weights on subsets of paths
containing or avoiding one or two nodes. However, it is possible to deal with
subsets with higher numbers of nodes through some recurrence formulae.

Let us assume we have a set of distinct nodes I, where s, t /∈ I, and let S
be a subset of I, i.e., S ⊂ I. The weight of the regular paths avoiding all nodes

in S is denoted as z
(−S)
st = w

(
P(−S)
st

)
and the corresponding weight for hitting
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paths by z
h(−S)
st = w

(
Ph(−S)
st

)
. The same convention, but with a + sign this

time, is used for paths containing a set of nodes S (all nodes in S present). We

would like to compute quantities like z
(+I)
st , z

h(+I)
st , z

(−I)
st and z

h(−I)
st for the set

I in function of some subsets Si of I.
First, let us compute the weights of avoiding paths. Let Si , I \ i, ∀i ∈ I,

meaning that I = Si ∪ {i}. We obtain (see Appendix A)

z
(−I)
st , w

(
P(−I)
st

)
= z

(−Si)
st − zh(−Si)si z

(−Si)
it ∀i ∈ I, (R.11)

z
h(−I)
st , w

(
Ph(−I)
st

)
=
z
(−I)
st

z
(−I)
tt

=
z
h(−Si)
st − zh(−Si)si z

h(−Si)
it

1− zh(−Si)ti z
h(−Si)
it

∀i ∈ I. (R.12)

Conversely, weights on sets of paths containing some predefined nodes in
I can be obtained (see Appendix A) from the previously computed quantities
(R.11) and (R.12) thanks to

z
(+I)
st , w

(
P(+I)
st

)
= zst +

∑
S⊆I
S6=∅

(−1)|S|z
(−S)
st =

∑
S⊆I

(−1)|S|z
(−S)
st , (R.13)

z
h(+I)
st , w

(
Ph(+I)
st

)
= zhst +

∑
S⊆I
S6=∅

(−1)|S|z
h(−S)
st =

∑
S⊆I

(−1)|S|z
h(−S)
st ,

(R.14)

where the summation on S ⊆ I with S 6= ∅ means a summation on all subsets
S of I, except the empty set. Moreover, by convention, (−1)0 = 1.

Let us take an example with set I = {i, j} and regular paths. We easily
obtain from (R.13)

z
(+{i,j})
st = zst − z(−i)st − z(−j)st + z

(−{i,j})
st ,

and z
(−{i,j})
st is computed with (R.11), z

(−{i,j})
st = z

(−j)
st − z

h(−j)
si z

(−j)
it , which

corresponds to (R.8.2). It can be easily verified numerically that the obtained

expression for z
(+{i,j})
st provides the same results as (R.7).

We now turn to the computation of related quantities involving, this time,
the number of visits (instead of presence) to some set of predefined nodes.

3.3 Computing weights of node (co)-occurrences on sets
of paths

This section will derive equivalent results for the number of occurrences of nodes
(and not simply the presence of the node as in the previous section) on paths
of the graph. The first moments of occurrence variables of the type η(i ∈ ℘),
i.e., the number of times node i is visited on path ℘, can be obtained, but
in a very different way than in the previous subsections. Indeed, most of the
results of this subsection are calculated by taking some partial derivatives with
respect to path weights, as shown in Appendix B and already exploited in [64]
for the standard bag-of-paths framework and regular paths. Note that we are
not interested in paths avoiding nodes in this section as they correspond to
paths with zero presence, which was covered in the previous section.
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We now compute the weighted number of occurrences of some nodes on
the sets of regular paths P and hitting paths Ph, expressed in function of the
fundamental matrix. This provides (see Appendix B for details), for regular
paths,∑

℘st∈Pst

η(i ∈ ℘st)w(℘st) = zsizit, (R.15)

∑
℘st∈Pst

η(i ∈ ℘st)η(j ∈ ℘st)w(℘st) = zsizijzjt + zsjzjizit − δijzsizjt. (R.16)

Note that this expression includes the i = j case. For hitting paths, we have∑
℘h
st∈Ph

st

η(i ∈ ℘h
st)w(℘h

st) = z
(−t)
si zhit + δitz

h
st, (R.17)

and this quantity is equal to zhst when i = t. Moreover, for two nodes,∑
℘h
st∈Ph

st

η(i ∈ ℘h
st)η(j ∈ ℘h

st)w(℘h
st) = z

(−t)
si z

(−t)
ij zhjt + z

(−t)
sj z

(−t)
ji zhit

− δijz(−t)si zhjt + δjtz
(−t)
si zhit + δitz

(−t)
sj zhjt + δitδjtz

h
st. (R.18)

These various quantities will now be used in order to define centrality and
association measures on nodes.

4 Betweenness and association measures

In this section, we will be interested in computing the expected value of (co-
)presence as well as number of (co-)occurrences of nodes on paths (moments and
co-moments), with respect to the generalized bag-of-paths and bag-of-hitting-
paths probabilities. These quantities will allow us to compute the covariance
and the correlation between node presence and occurrences. It is also shown that
distance measures, extending the free energy distance [49, 30], can be derived
from the quantities introduced so far. Note that still other similarity measures
could be computed from the same expressions, like cosine measure, Jaccard
index, etc.

First, let us calculate the weights of the set of all paths P and the set of
all hitting paths Ph, as these will be used as normalizing factors in order to
compute our probabilities. We readily obtain from (R.1) and (R.2)

w(P) =
∑
s,t∈V

w(Pst) = z••, w(Ph) =
∑
s,t∈V

w(Ph
st) = zh••, (14)

where • indicates the summation over the corresponding index.
Then, recall that the probabilities of choosing a particular, regular, path ℘

(see Equation (3)) or a hitting path ℘h (see Equation (5)) are simply

P(℘) =
w(℘)

w(P)
, Ph(℘) =

w(℘h)

w(Ph)
. (15)

Let us now compute the quantities of interest.
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4.1 Covariance and correlation for node presence

From (R.1), (R.2), (R.3), (R.6), the expectation of node presence, regarding
P(℘) (regular paths framework) and Ph(℘h) (hitting paths framework), is easily
obtained thanks to

E[δ(i ∈ ℘)] =
∑
℘∈P

δ(i ∈ ℘) P(℘) =
∑
℘∈P

δ(i ∈ ℘)
w(℘)

w(P)

=
w
(
P(+i)

)
w(P)

=

∑
s,t∈V w

(
P(+i)
st

)
∑
s,t∈V w(Pst)

=
zh•izi•
z••

, (16)

Eh[δ(i ∈ ℘h)] =
∑

℘h∈Ph

δ(i ∈ ℘h) P(℘h) =
w
(
Ph(+i)

)
w(Ph)

=

∑
t∈V
t6=i

(
z
h(−t)
•i zhit

)
+ zh•i

zh••
(17)

where the last term is the contribution for t = i as given in (R.6).
These two quantities define betweenness measures based on node presence,

quantifying to which extend each node is an important intermediary with respect
to the communication (along paths) between pairs of nodes [47]. Communica-
tion along short paths is usually promoted by putting more weight on them, as
in the standard bag of paths.

Similarly, from (R.7) and (R.10), the expected values of co-presence are

E[δ(i ∈ ℘)δ(j ∈ ℘)] =
∑
℘∈P

δ(i ∈ ℘)δ(j ∈ ℘) P(℘) =
w
(
P(+{i,j}))
w(P)

=
z
h(+i)
•j zj• + z

h(+j)
•i zi• − δijzh•izi•
z••

, (18)

Eh[δ(i ∈ ℘h)δ(j ∈ ℘h)] =
∑

℘h∈Ph

δ(i ∈ ℘h)δ(j ∈ ℘h) P(℘h) =
w
(
Ph(+{i,j}))
w(Ph)

=

∑
t∈V
t6=i,j

(
z
h(−{j,t})
•i z

h(+j)
it + z

h(−{i,t})
•j z

h(+i)
jt − δijzh(−t)•i zhit

)
zh••

+
z
h(−j)
•i zhij + z

h(−i)
•j zhji + δijz

h
•i

zh••
, (19)

where terms like −δijzh•izi•, δijz
h(−t)
•i zhit and δijz

h
•i were added in order to take

into account special cases where i = j. Indeed, (R.7) and (R.10) concern only
the situation where i 6= j and must be extended in order to compute these
diagonal terms.

In the first case (18), i.e., regular paths, when i = j, the expression in (R.7)

provides 2z
h(+i)
si zit. However, the result should instead provide Equation (R.3),

that is, the expression for the total weight computed on paths containing only

17



one node i. But this expression (R.3) is equal to z
h(+i)
si zit so that we have to

remove one time this quantity to (R.7) in order to obtain (R.3) when i = j.

Hence, the subtraction of z
h(+i)
si zit appearing in Equation (18).

For the second case (19), i.e. hitting paths, the expression in (R.10) provides
0 when i = j (and i 6= t). However, the result should instead be Equation (R.6),
the corresponding expression for the total weight computed on hitting paths

containing only one node i. This expression (R.6) is equal to z
h(−t)
si zhit so that

we have to add this quantity to (R.10) in order to obtain (R.6) when i = j (and

i 6= t). Hence, the addition of z
h(−t)
si zhit appearing in the first line of Equation

(19).
The last line of Equation (19) aims at taking care of the special cases i = t

and j = t, which are also prohibited in (R.10). In the situation i = t, i is

automatically part of the paths and the quantity z
h(+{i,j})
st should reduce to

z
h(+{t,j})
st = z

h(+j)
st = z

h(+j)
si , that is, to (R.6 with t 6= i). Hence the addition of

the term z
h(−i)
sj zhji in the last line of (19). Symmetrically, the same holds for the

case j = t, with the introduction of z
h(−j)
•i zhij in the last line of (19).

Finally, as both z
h(−i)
sj zhji and z

h(−j)
•i zhij are equal to zero when i = j, we

still need to handle the case i = j = t and add the corresponding contribution.

In that situation, the contribution is z
h(+j)
si = z

h(+i)
si , that is, (R.6 with t = i)

which provides zhsi. This corresponds to the last term of Equation (19).
These expected values are the building blocks needed to compute the co-

variance and the correlation measures between the common presence of two
nodes on paths (the random variables δ(i ∈ ℘) and δ(j ∈ ℘)). This provides,
for regular paths,

cov(δ(i ∈ ℘), δ(j ∈ ℘)) = E[δ(i ∈ ℘)δ(j ∈ ℘)]− E[δ(i ∈ ℘)]E[δ(j ∈ ℘)], (20)

cor(δ(i ∈ ℘), δ(j ∈ ℘)) =
cov(δ(i ∈ ℘), δ(j ∈ ℘))√

cov(δ(i ∈ ℘), δ(i ∈ ℘)) cov(δ(j ∈ ℘), δ(j ∈ ℘))
,

(21)

and the expressions for hitting-paths probabilities are similar, with ℘ replaced
by ℘h. The intuition behind these quantities is that two nodes are correlated
when they often appear on the same, preferably short, paths.

4.2 Covariance and correlation for the number of occur-
rences of nodes

We now derive the same quantities for the number of occurrences of nodes on
paths. From (R.15) and (R.17), we have for regular paths

E[η(i ∈ ℘)] =
∑
℘∈P

η(i ∈ ℘)P(℘) =
∑
℘∈P

η(i ∈ ℘)
w(℘)

w(P)

=
∑
s,t∈V

∑
℘st∈Pst

η(i ∈ ℘st)
w(℘st)

w(P)
=
z•izi•
z••

, (22)

Eh[η(i ∈ ℘h)] =
∑
s,t∈V

∑
℘h
st∈Ph

st

η(i ∈ ℘h
st)
w(℘h

st)

w(Ph)
=

∑
t 6=i z

(−t)
•i zhit + zh•i

zh••
. (23)
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As before, these two quantities define betweenness measures based on node
occurrences.

For the expected values of co-occurrences, (R.16) and (R.18) provide

E[η(i ∈ ℘)η(j ∈ ℘)] =
∑
s,t∈V

∑
℘st∈Pst

η(i ∈ ℘st)η(j ∈ ℘st)
w(℘st)

w(P)

=
z•izijzj• + z•jzjizi• − δijz•izj•

z••
, (24)

Eh[η(i ∈ ℘h)η(j ∈ ℘h)] =
∑
s,t∈V

∑
℘h
st∈Ph

st

η(i ∈ ℘h
st)η(j ∈ ℘h

st)
w(℘h

st)

w(Ph)

=

∑
t∈V
t 6=i,j

(
z
(−t)
•i z

(−t)
ij zhjt + z

(−t)
•j z

(−t)
ji zhit − δijz

(−t)
•i zhit

)
zh••

+
z
(−j)
•i zhij + z

(−i)
•j zhji + δijz

h
•i

zh••
, (25)

which, again, allows us to compute the covariance and the correlation, but now
for number of co-occurrences of nodes on paths, with

cov(η(i ∈ ℘), η(j ∈ ℘)) = E[η(i ∈ ℘)η(j ∈ ℘)]− E[η(i ∈ ℘))E(η(j ∈ ℘)],

(26)

cor(η(i ∈ ℘), η(j ∈ ℘)) =
cov(η(i ∈ ℘), η(j ∈ ℘))√

cov(η(i ∈ ℘), η(i ∈ ℘)) cov(η(j ∈ ℘), η(j ∈ ℘))
.

(27)

The expressions considering hitting-paths probabilities are similar. It is well
known that such covariance and correlation matrices are positive semi-definite
(Gram matrices [74]) and are therefore valid kernels on a graph representing
similarities between nodes (see [35, 79, 80] for kernels in general and, e.g., [27, 29]
for kernels on a graph).

Note that for all these formulae, computing the results for hitting paths re-
quires an iteration over nodes t, which is more computationally intensive than
for the non-hitting case. However, in the experiments, covariance and correla-
tion coefficients derived from hitting paths usually performed better than their
non-hitting counterparts.

4.3 A distance measure between nodes

When the elements of the matrix W represent local affinities between linked
nodes, a useful distance measure – that was called the free energy potential
distance in the standard bag-of-paths framework [49, 30] – can be computed
from previous result (R.6). The directed distance is defined as

φ(i, j) = − log
(
zhst
)
. (28)

It was shown in [30] that this quantity can be interpreted as minus log the
probability of surviving during a killed random walk from i to j, for a random
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walker moving according to the sub-stochastic transition matrix W. Then, the
bag-of-paths distance measure can immediately be deduced from the previous
quantity,

∆
bop
ij ,

{
1
2

(
φ(i, j) + φ(j, i)

)
if i 6= j,

0 if i = j.
(29)

The quantity is non-negative because it represents probabilities. Moreover, it
can easily be shown that the triangle inequality is satisfied. Indeed, from result

(R.3), zhst = zst/ztt ≥ z
(+i)
st /ztt (because P(+i)

st ⊆ Pst). Then, from (R.3) and

(R.2), the quantity on the right side of the inequality becomes z
(+i)
st /ztt =

zhsizit/ztt = zhsiz
h
it. Therefore, zhst ≥ zhsiz

h
it and taking − log of this inequality

proves the triangle inequality for the directed distance, and thus also for the
distance. In the standard bag-of-paths formalism, this distance provided good
results in semi-supervised and clustering tasks [30, 82, 83].

5 Case study: application to semi-supervised
classification

For illustration, the accuracy of the introduced methods will be compared on
semi-supervised classification tasks. However, we have to stress that our goal
here is not to propose new graph-based semi-supervised classification algorithms
outperforming state-of-the-art techniques. Rather, the aim is to investigate if
the introduced similarity measures are able to capture the community structure
of networks in an accurate way, compared to other state-of-the-art dissimilarity
measures between nodes. In our case, the main baseline method will be the free
energy potential distance based on the bag-of-paths framework which performed
best in a number of pattern recognition tasks. Thus, the experiments will tell
us if the introduced similarity measures are competitive with respect to this
free energy distance. But before going into the details of the experiments, let
us first introduce the different similarity measures that are derived from the
studied models.

Following the discussion in the introduction (Subsection 1.2), our introduced
measures can also be interpreted as inner products in the (usually infinite-
dimensional) vector space of paths in which each node x ∈ V has a coordinate
φi(x) = φ(x, ℘i), for paths ℘i ∈ P which have been numbered as in Section
1.2, (℘1, ℘2, . . . ) by decreasing weight, so that P becomes a totally ordered set.
For two arbitrary nodes x, y ∈ V, 〈x|y〉 =

∑∞
i=1 φi(x)P(℘i)φi(y) where φi(x)

is a function of node x and path ℘i; in our case, the presence of node x on
path ℘i ∈ P (φi(x) = δ(x ∈ ℘i)) or the number of occurrences of node x on ℘i
(φi(x) = η(x ∈ ℘i)).

Using this property, we can define 8 different kernel matrices (see Table 3).
All of these similarity measures will be used in a semi-supervised classification
task and compared to 8 state-of-the-art methods on various datasets, in order to
investigate if these new kernel matrices are able to accurately capture meaningful
information from the graph structure. The kernels and the semi-supervised
classification technique are described in detail in the following subsections.
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Acronym Method and simularity matrix
BoPP Free energy distance
RSP Randomized shortest path dissimilarity
SP Shortest path distance
LF Logarithmic forest distance
SoS Sum-of-similarities method
Q Modularity matrix
LogCom Logarithmic communicability kernel
Katz Neumann kernel
Cov Covariance matrix (presence on regular paths)
Cor Correlation matrix (presence on regular paths)
CovH Covariance matrix (presence on hitting paths)
CorH Correlation matrix (presence on hitting paths)
NCov Covariance matrix (number of occurrences on regular paths)
NCor Correlation matrix (number of occurrences on regular paths)
NCovH Covariance matrix (number of occurrences on hitting paths)
NCorH Correlation matrix (number of occurrences on hitting paths)

Table 3: The different similarity matrices compared in this experimental section. The first
eight methods are the baselines and the remaining eight are the association (covariance and
correlation) measures introduced in this paper.

5.1 Investigated kernels and method

As most of the datasets used in this section are defined from their adjacency
matrix A = (aij), thus without costs assigned to edges, we define the cost matrix
simply as C = (cij) = (1/aij) [30], therefore interpreting the elements of the
adjacency matrix as conductances and costs as resistances. As in the standard
randomized shortest paths and bag-of-paths formalism [4, 27, 30, 49, 64, 76, 95],
the weighted adjacency matrix is defined as (see Equation (13))

W = Pref ◦ exp[−βC], with Pref = Diag(Ae)−1A,

where Pref is the transition probabilities matrix of the natural random walk
on the graph, Diag(v) is a diagonal matrix with vector v on its diagonal, e
is a column vector full of 1’s, ◦ is the element-wise product, and β > 0 is
a hyperparameter (the inverse temperature) which will be tuned by internal
cross-validation.
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5.1.1 Kernel matrices and their computation

The 8 different kernel matrices (see Table 3 for the definition of the acronyms)
that will be compared to baseline methods are then defined as

Kcov = (kcovij ) , (cov(δ(i ∈ ℘), δ(j ∈ ℘))) (30)

Kcor = (kcorij ) , (cor(δ(i ∈ ℘), δ(j ∈ ℘))) (31)

KcovH = (kcovHij ) ,
(
cov(δ(i ∈ ℘h), δ(j ∈ ℘h))

)
(32)

KcorH = (kcorHij ) ,
(
cor(δ(i ∈ ℘h), δ(j ∈ ℘h))

)
(33)

KNcov = (kNcov
ij ) , (cov(η(i ∈ ℘), η(j ∈ ℘))) (34)

KNcor = (kNcor
ij ) , (cor(η(i ∈ ℘), η(j ∈ ℘))) (35)

KNcovH = (kNcovH
ij ) ,

(
cov(η(i ∈ ℘h), η(j ∈ ℘h))

)
(36)

KNcorH = (kNcorH
ij ) ,

(
cor(η(i ∈ ℘h), η(j ∈ ℘h))

)
(37)

The procedure for computing these kernels follows four different steps,

1. First, calculate the fundamental matrix Z = (I −W)−1 and choose the
kernel that must be computed among (30)-(37).

2. Then, depending on the kernel that is investigated, compute the needed
auxiliary z quantities from Results (R.2)-(R.12) or (R.15)-(R.18).

3. Depending on the kernel, compute the needed statistical moments and
co-moments from Equations (16)-(19) or (22)-(25).

4. Finally, compute the kernel from Equations (20)-(21) or (26)-(27).

These eight kernels will be compared in our experiments, as detailed in the next
subsections.

5.1.2 Other investigated methods

In this context, the introduced covariance and correlation kernels (30-37) will
be compared to eight state-of-the-art methods, some of which were already
investigated in previous semi-supervised and clustering tasks [30, 42, 82, 83, 84,
85, 86, 97, 98]:

• The bag-of-paths potential distance [30], also known as the free energy
distance [49], and the randomized shortest path distance [48, 76], both
defined in the bag-of-paths framework. These methods are respectively
denoted here by BoPP and RSP, and have one hyperparameter β. In
[30], it was found that the BoPP distance provided the best results overall
(using almost the same methodology and datasets as those investigated in
this paper). It is therefore a chalenging competitor for the 8 covariance
and correlation kernels defined above.

• The shortest path distance between two nodes i and j corresponds to the
total cost along the least cost path, derived from the cost matrix C. This
method is denoted by SP and has no hyperparameter.
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• The logarithmic forest distance introduced in [11], is based on the matrix
forest theorem [15]. This method is denoted by LF and has one hyperpa-
rameter α.

• The Neumann kernel [78], initially proposed in [45] by Katz as a method
of computing similarities, is defined as K = (I−αA)−1− I. This method
is denoted by Katz and has one hyperparameter α which has to be chosen
positive and smaller than the inverse of the spectral radium of A, ρ(A).

• The logarithmic communicability kernel [42] is the logarithmic version of
the exponential diffusion kernel [54], closely related to the communicability
measure [26], and defined as K = ln(expm(αA)), where expm is the matrix
exponential. This method is denoted by LogCom and has one positive
hyperparameter α.

• The modularity matrix Q [71, 72] defined as Q = A − ddT

vol where d
contains the node degrees and vol is the volume of the graph. This method
is denoted by Q and has no hyperparameter.

• The sum-of-similarities method [27, 65], which is based on the regularized
commute time kernel. This method differs from the previous ones, as it
uses a simple label propagation technique in order to classify nodes. It
is both computationally efficient and competitive in terms of accuracy
[27, 65, 30]. This method is denoted by SoS and has one hyperparameter
α.

5.1.3 The semi-supervised classification task

The methodology for comparing the different measures on semi-supervised tasks
closely follows2 [30]. Therefore the procedure is summarized; for a more com-
plete description of the methods, see reference [30], Section 7.

The classification method consists in extracting 5 graph feature vectors3 from
these kernel and similarity/dissimilarity matrices by classical multidimensional
scaling in order to use them as input to a linear support vector machine (SVM)
for classification. Thus, information is extracted from the structure of the graph
in an unsupervised way.

More precisely, first, following classical multidimensional scaling [6, 20],
each dissimilarity matrix D is transformed into a kernel matrix by centering,
K = − 1

2HD(2)H where H = I − eeT/n is the centering matrix, e is a col-

umn vector full of 1’s and D(2) is the matrix of (elementwise) squared distances
[6, 20]. Then, the spectral decomposition of each kernel and similarity matrix
is computed and the p dominant eigenvectors uk (column vectors) are sorted
by decreasing eigenvalue λ1 ≥ λ2 ≥ · · · ≥ λp. Eigenvectors corresponding to
negative eigenvalues are then eliminated. At this stage, we tested two different
options for extracting the node features.

• Either the dominant eigenvectors uk are weighted by the square root
of their corresponding eigenvalues,

√
λk, and concatenated in order to

2We thank the authors of this paper for providing the code and the datasets.
3We arbitrarily extracted 5 dimensions but performed experiments with more dimensions

with similar conclusions.
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build the data matrix X containing node features on its rows, X =
[
√
λ1u1,

√
λ2u2, . . . ], to be injected as input to a SVM. This is exactly

multidimentional scaling limited to p dimensions.

• Or the eigenvectors are simply concatenated X = [u1,u2, . . . ] and then
each row of X is normalized, xi ← xi/‖xi‖2, so that each node feature
vector is of unit length. This corresponds to the projection of the feature
vector on the sphere of radius 1 centered at the origin. This way of defining
the node feature vectors removes the effect of the size of the vector, which
works better when the angle between the node vectors is more relevant
than their distance, like, for instance, for covariance measures.

For simplicity, we only report the results of the best option for each method,
according to the Nemenyi test described later.

This setting is inspired by the work of Zhang et al. [97, 98] as well as Tang
et al. [84, 85, 86] who compute the dominant eigenvectors (a “latent space”)
of graph kernels or similarity matrices and then input them into a supervised
classification method, such as a logistic regression or a SVM, to categorize the
unlabeled nodes. Notice that these techniques based on similarities and eigen-
vectors extraction sometimes allow to scale to large graphs, depending on the
kernel [22].

5.2 Experimental settings

As already mentioned, the experimental methodology is inspired by [30] and
briefly summarized here; see this reference for further details.

5.2.1 datasets

The different classification methods will be compared on 14 well-known network
datasets, already used in previous experimental comparisons.

• WebKB (4 datasets). These datasets [62] come from networks of co-
citation between webpages of computer science departments of 4 different
universities: webKB-texas, webKB-washington, webKB-wisconsin
and webKB-cornell. Each page of these website has been labeled man-
ually to form six different classes: course, department, faculty, project,
staff and student.

• 20 Newsgroups (9 subsets). The Newsgroup dataset consists of 20.000
documents taken from 20 discussion groups of the Usenet diffusion list
[61]. Nine subsets have been extracted from this data (for details, see [93,
94]): news-2cl-1, news-2cl-2, news-2cl-3, news-3cl-1, news-3cl-2,
news-3cl-3, news-5cl-1, news-5cl-2, and news-5cl-3. As their names
suggest, there are different numbers of classes/topics in these datasets
(e.g., news-3cl-1 contains documents from 3 different topics considered
as classes). For each of these datasets, a sparse graph structure was derived
from the term-document matrix T , (tij), with tij being the tf-idf score
[63] of term i in document j. The corresponding adjacency matrix is then
obtained by A = T>T.
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• IMDB. This dataset comes from the well-known Internet Movie Database
[62]. Nodes represent movies and the adjacency matrix contains the num-
ber of production companies two movies have in common. There are only
two labels in this dataset: box-office hit or not.

5.2.2 Comparisons on semi-supervised classification

The different classification methods are compared in terms of classification ac-
curacy on semi-supervised tasks where a subset of nodes of the graph is kept
unlabeled (their label is hidden to the classifier). The classification model then
predicts the label of these unlabeled nodes and its prediction is compared to the
true label which was hidden.

In order to reduce variance in accuracy, methods are tested by using a stan-
dard 5× 5 nested cross-validation methodology. Each external cross-validation
contains 5 folds, and methods are tested with a labelling rate of 20% (80% of
the labels are hidden and then predicted by the classifier trained on the labeled
20%). To tune hyperparameters, an internal 5-fold cross-validation on the train-
ing fold is performed, by taking 4/5 of the training fold as labelled and 1/5 as
unlabelled. The average accuracy obtained from the external cross-validation
folds is then computed for each method. The whole cross-validation procedure
is repeated 5 times for different random permutations of the data, inducing dif-
ferent sets of labeled/unlabeled nodes. The final accuracy of the classifier on
the investigated dataset is then obtained by averaging the results over the five
repetitions, and is reported in Table 4.

Concerning the hyperparameters, the bag-of-paths-type methods and loga-
rithmic forest distance (LF) investigate tuning values of {10−6, 10−5, 10−4, 10−3,
10−2, 10−1, 1, 10}, the Katz kernel and the sum-of-similarities (SoS) method
{0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9} and the logarithmic communicability ker-
nel (LogCom) {0.01, 0.1, 0.5, 1, 5, 10}. For the SVM, the margin hyperparame-
ter is tuned on the set of values {10−2, 10−1, 1, 10, 100}. External and internal
cross-validation folds are kept identical for all methods and all repetitions.

5.3 Results and discussion

As already mentioned, Table 4 reports average classification accuracy in percent
for all the investigated methods on the different datasets, for labeling rates of
20%. The method performing best is highlighted in boldface for each dataset.
Moreover, a simple Borda ranking of the methods is performed and shown in
Table 5. This ranking provides a score to each method equal to the sum of its
ranks over all the datasets, where the methods are sorted in ascending order
of classification accuracy. Thus, the higher the rank, the higher the accuracy
on the dataset. The best method overall in this context is the one showing the
highest Borda score.

As can be seen in Table 5, the covariance matrix based on the presence of
nodes on hitting paths (CovH), the correlation matrix based on the presence of
nodes on regular paths (Cor) and the bag-of-paths free energy potential distance
(BoPP) obtain the best results overall. Besides, the randomized shortest path
dissimilarity (RSP), the logarithmic communicability kernel (LogCom) and the
other covariance and correlation measures, except the covariance matrix based
on the number of occurrences on regular paths (NCov), provide good results
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Classif. method: BoPP RSP SP LF SoS Q LogCom Katz
Dataset:
webKB-texas 73.35 75.82 64.75 75.28 73.26 73.01 75.45 64.98
webKB-washington 68.15 70.35 56.47 71.19 61.72 62.52 69.92 67.25
webKB-wisconsin 74.33 74.02 63.99 74.45 73.88 73.42 74.99 73.46
webKB-cornell 57.20 57.31 48.76 58.24 57.43 50.71 59.16 52.88
imdb 75.31 76.68 75.22 76.41 78.12 74.37 76.28 73.75
news-2cl-1 96.79 96.14 93.46 96.83 91.09 95.85 96.18 95.84
news-2cl-2 91.21 90.16 90.15 89.62 87.70 91.22 91.18 91.49
news-2cl-3 95.98 95.66 95.90 95.14 94.20 95.78 95.43 95.50
news-3cl-1 92.53 93.08 93.18 93.00 88.93 93.02 94.00 93.56
news-3cl-2 93.45 92.56 89.53 91.33 88.01 92.63 92.17 93.30
news-3cl-3 93.66 93.06 91.71 91.19 88.29 91.20 91.49 90.37
news-5cl-1 88.70 87.81 86.34 86.63 84.84 77.04 86.30 79.49
news-5cl-2 82.32 81.81 78.42 80.49 78.80 75.97 79.04 69.25
news-5cl-3 80.27 80.30 73.11 79.45 79.22 76.51 78.65 68.65

Classif. method: Cov Cor CovH CorH NCov NCor NCovH NCorH
Dataset:
webKB-texas 75.52 75.76 76.57 76.48 75.63 75.54 76.90 76.65
webKB-washington 69.47 66.59 67.21 67.30 68.09 68.57 66.44 66.62
webKB-wisconsin 74.25 75.56 74.37 74.07 73.21 73.13 74.14 73.85
webKB-cornell 55.75 58.83 58.86 58.13 52.90 53.32 58.02 58.97
imdb 76.04 77.57 77.00 76.57 76.42 76.39 76.67 76.67
news-2cl-1 96.61 96.73 96.83 96.53 96.05 96.05 96.80 97.26
news-2cl-2 91.42 91.86 91.07 90.84 91.66 91.83 90.67 91.17
news-2cl-3 96.49 96.45 96.45 96.30 96.53 96.75 96.42 96.55
news-3cl-1 93.72 93.74 93.76 93.68 93.43 94.06 93.80 93.60
news-3cl-2 93.72 93.39 93.11 93.04 93.79 93.78 92.98 92.87
news-3cl-3 91.69 91.45 91.51 91.81 91.90 91.85 91.76 91.92
news-5cl-1 83.28 83.43 86.38 86.45 82.91 82.48 86.33 86.18
news-5cl-2 75.03 75.06 77.07 77.56 73.18 75.02 77.25 77.50
news-5cl-3 78.39 78.35 76.56 76.56 76.86 76.85 76.26 76.22

Table 4: Classification accuracy in percent for the various classification methods obtained
on the different datasets. For each dataset and method, the final accuracy is obtained by
averaging over 5 repetitions of a standard cross-validation procedure. Each repetition consists
of a nested cross-validation with 5 external folds (test sets, for validation) on which the
accuracy of the classifier is averaged, and 5 internal folds (for parameter tuning). The best
performing method is highlighted in boldface for each dataset.

Method Position Score
CovH 1 152
Cor 2 149
BoPP 3 147
NCorH 4 144
RSP 5 143
LogCom 6 137
CorH 7 136
NCovH 7 136
Cov 8 131
NCor 8 131
LF 9 128
NCov 10 121
SoS 11 76
Katz 12 64
Q 13 61
SP 14 60

Table 5: Overall position of the different classification techniques (see Table 3) according to
Borda′s method performed across all datasets (the higher the score, the better).

superior to those obtained by the logarithmic forest distance (LF) baseline. We
can also observe that the sum-of-similarities (SoS), the Neumann kernel (Katz),
the modularity matrix (Q) and the shortest path distance (SP) obtain much
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worse results in comparison with the other methods. However, when examining
the raw results of Table 4, it can be seen that the best method is dataset-
dependent and that no obvious pattern is present.

Consequently, in order to rate globally the results of each method, a non-
parametric Friedman-Nemenyi statistical test [21] allowing to make comparisons
across all the datasets is investigated. At first, we run a Friedman test [33, 34]
on our results. This will tell us whether at least one classification method is sig-
nificantly different from the others. We obtain a p-value of 5 10−6. This p-value
is lower than the threshold α of 0.05 and we can reject the null hypothesis, at
least at this level.

Then, we perform a multiple comparison with the Nemenyi test [21, 69].
The results of this test are illustrated in Figure 1 and are similar to those
provided by the Borda ranking. The figure confirms that the CovH, the Cor and
the BoPP provide good results, which are significantly superior to the results
obtained by the modularity matrix Q and the shortest path distance SP. As
concerns the other covariance and correlation measures, we cannot say that
they are significantly different from the other baselines. This is partly because
the Friedman-Nemenyi test is rather conservative, especially when comparing
many different models.

Therefore, to obtain more precise information concerning the relative per-
formance of the methods, we decided to also perform a Wilcoxon signed-ranks
tests [21, 92] for matched data with a threshold α of 0.05.

These paired tests show that all the introduced covariance and correlation
methods, the BoPP, the RSP, the LF and the LogCom are significantly better
than the modularity matrix Q, the shortest path distance SP and the Neumann
kernel (Katz). The tests also show that all these methods except the Cov, the
NCov and the NCor obtain significantly better results than the SoS.

In summary, the experiments showed that the majority of the introduced
covariance and correlation measures achieve good results in comparison with our
eight baselines on the investigated datasets. However, we cannot conclude that
the introduced methods perform better than the other baselines (BoPP, RSP,
LF and LogCom): only some of these methods (CovH and Cor) are globally
better ranked than them. Nevertheless, we can state that they perform at
least as well as these baselines on the investigated datasets, which is already
an excellent result as some of the baselines performed very well in previous
experimental comparisons, in both semi-supervised classification and clustering
tasks [30, 42, 82, 83, 84, 85, 86, 97, 98] .

6 Conclusion

This paper derived a series of useful mathematical expressions for computing the
expectation of (co-)presence and of the number of (co-)occurrences of nodes on
paths sampled from a network. These quantities can then be used for defining
similarity measures between nodes as well as betweenness centrality measures.
Most of the derived similarity measures are positive semi-definite and can there-
fore be considered as kernels on a graph and used with kernel-based methods
for solving pattern recognition tasks such as node clustering and supervised
classification. The main intuition behind these measures is that two nodes
are considered as closely related if they often co-occur on the same (preferably
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Figure 1: Mean ranks and 95% Nemenyi confidence intervals for the 16 methods (see Table 3)
across the 14 datasets. Two methods are considered as significantly different if their confidence
intervals do not overlap. The higher the rank, the best the method. The worse method (SP)
and the best method (CovH) overall are highlighted.

short) paths in the network. Experiments on semi-supervised classification tasks
have shown that the introduced quantities provide competitive results on the
investigated datasets, within a clear theoretical framework.

Note that, as in [29, 56], the different methods could easily be extended in
order to provide similarity and centrality measures between groups of nodes,
which is left for further work.

Another application that is left for future work is the task of embedding
graphs in low-dimensional spaces [9, 99]. Indeed, such a representation can eas-
ily be deduced from our measures by applying, e.g., classical multidimensional
scaling to the defined kernels. Interestingly, the recently introduced DeepWalk
technique [75] (an example of representation learning applied to graphs) and
variants seem to provide accurate low-dimensional representations of the nodes
of the network. Quoting [75], “DeepWalk uses local information obtained from
truncated random walks to learn latent representations by treating walks as
the equivalent of sentences” (in natural language processing). This is similar
in spirit to the techniques studied in this paper with an important difference:
our measures are computed in closed form through matrix operations whereas
DeepWalk uses sampled paths and a neural network to build the representa-
tion. Therefore, we plan to work on a thorough experimental comparison be-
tween representation learning based techniques and our proposed methods, on
semi-supervised classification and graph embedding tasks.

However, the main drawback of the introduced techniques is the fact that
they require the inversion of a n × n matrix so that they do not scale well on
large graphs. Thus, another interesting further work would be the study of co-
occurrence measures, defined this time on truncated paths, such as in [65, 77].
This should allow to scale to medium to large, sparse, graphs.
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Appendix: proofs of the main results

A Proofs of results of Section 3

This appendix contains the proofs of the results stated in Section 3.

A.1 Results involving one intermediary node

(R.1). Let Pst(`) be the set of all regular paths from s to t of length exactly
equal to `. We easily obtain that

∑
℘`st∈Pst(`)

w(℘`st) =

n∑
i1,i2,...,i`−1=1

wsi1wi1i2 · · ·wi`−1t = [W`]st. (A.1)

Therefore, from (8),

w(Pst) =
∑

℘st∈Pst

w(℘st) =

∞∑
`=0

∑
℘`st∈Pst(`)

w(℘`st)

=

∞∑
τ=0

[Wτ ]st =

[ ∞∑
τ=0

Wτ

]
st

= [Z]st = zst (R.1)

(R.2). Observe that there is a bijection between Pst and Ph
st ◦ Ptt. In other

words, any regular path from s to t can be decomposed uniquely into a hitting
sub-path from s to t, where node t is reached for the first time, followed by
a regular sub-path (a cycle) connecting t to itself. We then have w(℘st) =
w(℘h

st)w(℘tt) for the weight of corresponding paths. This implies that

w(Ph
st)w(Ptt) =

( ∑
℘h
st∈Ph

st

w(℘h
st)

)( ∑
℘tt∈Ptt

w(℘tt)

)

=
∑

℘h
st∈Ph

st

∑
℘tt∈Ptt

w(℘h
st)w(℘tt) =

∑
℘st∈Pst

w(℘st) = w(Pst),

and, from (R.1), we get the result (R.2), i.e., zhst = zst/ztt.
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(R.3). Similarly to (R.2), there exists a bijection between Ph
si ◦Pit and P(+i)

st .
Indeed, any path from s to t visiting i can be decomposed uniquely into a hitting
sub-path from s to i, where node i is visited for the first time, followed by a
regular sub-path from i to t. Consequently, we have w(℘st) = w(℘h

si)w(℘it) for
corresponding paths. Thus,

w
(
P(+i)
st

)
=

∑
℘st∈Pst

δ(i ∈ ℘st)w(℘st)

=
∑

℘h
si∈Ph

si

∑
℘it∈Pit

w(℘h
si)w(℘it) = zhsizit. (R.3)

(R.4). From (R.3), we observe that

w
(
P(−i)
st

)
=

∑
℘st∈Pst

δ(i /∈ ℘st)w(℘st)

=
∑

℘st∈Pst

(1− δ(i ∈ ℘st))w(℘st) = zst − zhsizit. (R.4)

and the result is also valid for s = t.

(R.5). Let us now consider results involving hitting paths. The derivation is
similar to the proof of (R.4) and (R.2). Considering i 6= t,

w
(
P(−i)
st

)
=

∑
℘st∈Pst

δ(i /∈ ℘st)w(℘st)

=
∑

℘h
st∈Ph

st

∑
℘tt∈Ptt

δ(i /∈ ℘h
st)w(℘h

st) δ(i /∈ ℘tt)w(℘tt)

= w
(
Ph(−i)
st

)
w
(
P(−i)
tt

)
.

Therefore, by isolating w
(
Ph(−i)
st

)
and using (R.4) as well as (R.2),

w
(
Ph(−i)
st

)
=
z
(−i)
st

z
(−i)
tt

=
zst − zhsizit
ztt − zhtizit

=
zhst − zhsizhit
1− zhtizhit

, (R.5)

where we divided the numerator and the denominator by ztt. Now, if i = t, we

trivially have that δ(i /∈ ℘h
st) = 0 and therefore z

h(−t)
st = 0.

(R.6). Still for hitting paths, if i 6= t, we obtain from w
(
Ph
st

)
= w

(
Ph(+i)
st

)
+

w
(
Ph(−i)
st

)
and from the previous result (R.5),

w
(
Ph(+i)
st

)
= w

(
Ph
st

)
− w

(
Ph(−i)
st

)
= zhst − z

h(−i)
st

=
(1− zhtizhit)zhst

1− zhtizhit
− zhst − zhsizhit

1− zhtizhit

=
(zhsi − zhstzhti)zhit

1− zhtizhit
= z

h(−t)
si zhit. (R.6)

Moreover, if i = t, obviously z
h(+i)
st = zhst.
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A.2 Results involving two intermediary nodes

(R.7). Assuming i 6= j, let P(i<j)
st be the set of all regular paths containing i

and j with node i appearing first on the path, that is, before the first visit to
node j. Then

w
(
P(+{i,j})
st

)
= w

(
P(i<j)
st

)
+ w

(
P(j<i)
st

)
We can observe that there exists a bijection between P(i<j)

st and (Ph(−j)
si ◦ Ph

ij ◦
Pjt) with corresponding weights. Indeed, each path ℘ from s to t, visiting node
i first and then node j, can be decomposed into a first hitting sub-path from
s to the first occurrence of node i on ℘, followed by a second hitting sub-path
from i to the first occurrence of node j, and finally a third regular sub-path
from j to t. Thus,

w
(
P(i<j)
st

)
= w

(
Ph(−j)
si

)
w
(
Ph
ij

)
w(Pjt) = z

h(−j)
si zhijzjt.

We therefore obtain from (R.6), for i 6= j,

w
(
P(+{i,j})
st

)
= z

h(−j)
si zhijzjt + z

h(−i)
sj zhjizit = z

h(+i)
sj zjt + z

h(+j)
si zit, (R.7)

which is the desired result.

(R.8). We will derive three different expressions for computing the same quan-
tity. For the first expression, by assuming i 6= j and using (R.1), (R.3) and (R.7),
we obtain

w
(
P(−{i,j})
st

)
=

∑
℘st∈Pst

(1− δ(i ∈ ℘st))(1− δ(j ∈ ℘st))w(℘st)

= zst − zhsizit − zhsjzjt + w
(
P(+{i,j})
st

)
= zst − zhsizit − zhsjzjt + (z

h(+i)
sj zjt + z

h(+j)
si zit)

= zst − (zhsi − z
h(+j)
si )zit − (zhsj − z

h(+i)
sj )zjt (A.2)

= zst − zh(−j)si zit − zh(−i)sj zjt. (R.8.1)

Note that expression (A.2) is obtained by rearranging the terms. Moreover, the
last expression (R.8.1) is either obtained by direct calculation, or by observing

that zhsi = z
h(+j)
si + z

h(−j)
si .

Let us derive still another expression for this quantity. As a regular path
from s to t visiting node j can be decomposed uniquely into a hitting path from
s to j (visiting j for the first time) followed by a regular path from j to t, we
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have

w
(
P(−{i,j})
st

)
=

∑
℘st∈Pst

(1− δ(i ∈ ℘st))(1− δ(j ∈ ℘st))w(℘st)

=
∑

℘st∈Pst

(1− δ(i ∈ ℘st))w(℘st)

−
∑

℘st∈Pst

(1− δ(i ∈ ℘st))δ(j ∈ ℘st)w(℘st)

= w
(
P(−i)
st

)
−

∑
℘st∈Pst

δ(i /∈ ℘st)δ(j ∈ ℘st)w(℘st)

= w
(
P(−i)
st

)
−

∑
℘h
sj∈Ph

sj

∑
℘jt∈Pjt

δ(i /∈ ℘h
sj)w(℘h

sj) δ(i /∈ ℘jt)w(℘jt)

= w
(
P(−i)
st

)
− w

(
Ph(−i)
sj

)
w
(
P(−i)
jt

)
= z

(−i)
st − zh(−i)sj z

(−i)
jt . (R.8.2)

It can be shown in the same way that, symmetrically,

w
(
P(−{i,j})
st

)
= z

(−j)
st − zh(−j)si z

(−j)
it . (R.8.3)

(R.9). Let us consider hitting paths now. It is obvious that w
(
Ph(−{i,j})
st

)
= 0

if i = t or j = t. Therefore, let us consider t 6= i 6= j 6= t. Similarly to (R.2), we
decompose paths ℘st in ℘h

st ◦ ℘tt,

w
(
P(−{i,j})
st

)
=

∑
℘st∈Pst

δ(i /∈ ℘st)δ(j /∈ ℘st)w(℘st)

=
∑

℘h
st∈Ph

st

δ(i /∈ ℘h
st)δ(j /∈ ℘h

st)w(℘h
st)

∑
℘tt∈Ptt

δ(i /∈ ℘tt)δ(j /∈ ℘tt)w(℘tt)

= z
h(−{i,j})
st z

(−{i,j})
tt .

Consequently, z
h(−{i,j})
st = z

(−{i,j})
st /z

(−{i,j})
tt which proves (R.9); thus, with the

help of (R.8.1)-(R.8.3),

z
h(−{i,j})
st =

zst − zh(−j)si zit − zh(−i)sj zjt

ztt − zh(−j)ti zit − zh(−i)tj zjt
(obtained from (R.8.1))

=
z
(−i)
st − zh(−i)sj z

(−i)
jt

z
(−i)
tt − zh(−i)tj z

(−i)
jt

, (obtained from (R.8.2))

=
z
(−j)
st − zh(−j)si z

(−j)
it

z
(−j)
tt − zh(−j)ti z

(−j)
it

(obtained from (R.8.3))

and by dividing numerators and denominators by, respectively, ztt, z
(−i)
tt and

z
(−j)
tt , we get the results (R.9.1)-(R.9.3).
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(R.10). This result can be obtained by developing expressions in terms of zkl
and zhkl, and grouping them differently. However, we will use a more intuitive

argument here, similar to (R.7). Assuming t 6= i 6= j 6= t, let Ph(i<j)
st be the set

of all hitting paths containing i and j with node i appearing first (before node
j) on the paths. We have

w
(
Ph(+{i,j})
st

)
= w

(
Ph(i<j)
st

)
+ w

(
Ph(j<i)
st

)
As for (R.7), observe that there is a bijection between Ph(i<j)

st and (Ph(−{j,t})
si ◦

Ph(−t)
ij ◦ Ph

jt), with corresponding weights. Thus,

w
(
Ph(i<j)
st

)
= w

(
Ph(−{j,t})
si

)
w
(
Ph(−t)
ij

)
w
(
Ph
jt

)
= z

h(−{j,t})
si z

h(−t)
ij zhjt.

Moreover, from (R.6),

w
(
Ph(+{i,j})
st

)
= z

h(−{j,t})
si z

h(−t)
ij zhjt + z

h(−{i,t})
sj z

h(−t)
ji zhit

= z
h(−{j,t})
si z

h(+j)
it + z

h(−{i,t})
sj z

h(+i)
jt . (R.10)

When j = t, w
(
Ph(+{i,j})
st

)
= w

(
Ph(+i)
st

)
= z

h(−t)
si zhit, from (R.6). It corre-

sponds to the formula above knowing that the first term gives z
h(−{t,t})
si z

h(+t)
it =

z
h(−t)
si zhit and that the second term is zero. The same applies for i = t.

A.3 Results involving any number of intermediary nodes

(R.11). Recall that Si = I \ i, ∀i ∈ I or, in other words, I = Si ∪ {i}.
Similarly to the proof of (R.3), we notice that there is a bijection between the

set of paths Ph(−Si)
si ◦P(−Si)

it and the set of paths in P(−Si)
st containing i. Thus,

w
(
P(−I)
st

)
= w

(
P(−Si∪{i})
st

)
=

∑
℘

(−Si)
st ∈P(−Si)

st

(
1− δ(i ∈ ℘(−Si)

st )
)
w
(
℘
(−Si)
st

)
= z

(−Si)
st −

∑
℘

h(−Si)
si ∈Ph(−Si)

si

∑
℘

(−Si)
it ∈P(−Si)

it

w
(
℘
h(−Si)
si

)
w
(
℘
(−Si)
it

)
= z

(−Si)
st − zh(−Si)si z

(−Si)
it . (R.11)

(R.12). Similarly to (R.2), with the bijection between (Ph(−I)
st ◦ P(−I)

tt ) and

P(−I)
st , we have

w
(
P(−I)
st

)
= w

(
Ph(−I)
st

)
w
(
P(−I)
tt

)
= z

h(−I)
st z

(−I)
tt .

So, z
h(−I)
st = z

(−I)
st /z

(−I)
tt , and we get the result (R.12) by using (R.11) and

dividing the numerator and the denominator by z
(−Si)
tt .

(R.13) – (R.14). We already know how to calculate weights of sets of paths
avoiding a set of nodes. Conversely, let us now compute weights on path con-

taining a set of nodes I = Si ∪ {i} from these quantities. Indeed, z
(+I)
st =
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w
(
P(+I)
st

)
= w

(
P(+Si∪{i})
st

)
can be obtained through the inclusion-exclusion

principle (see, e.g., [8]) as follows. In this context, the properties that are stud-
ied are the (mutually exclusive) presence or absence of nodes on the paths.

Observe that the total weight of the union of all sets of paths from s to t

avoiding at least one node in I, i.e., w
(⋃

i∈I P
(−i)
st

)
, can be computed by (see

[8], Eq. (6.3))

w
(⋃

i∈IP
(−i)
st

)
=
∑
S⊆I
S6=∅

(−1)(|S|−1)w
(
P(−S)
st

)
= −

∑
S⊆I
S6=∅

(−1)|S|w
(
P(−S)
st

)
,

where the summation on S ⊆ I with S 6= ∅ means a summation on all subsets
S of I, except the empty set. In the last equation, if we denote some subset
S = {i1, i2, . . . , im} (where all nodes are distinct) then the set of paths avoiding

all nodes in S is P(−S)
st = P(−i1)

st ∩ P(−i2)
st ∩ . . . ∩ P(−im)

st =
⋂
i∈S P

(−i)
st .

Now it is clear that the set of paths visiting all nodes in I (the set we are
interested in) is equal to the set of all paths between s and t minus the set of
paths avoiding at least one node in I (the quantity in the last equation). In

other words, w
(
Pst
)

= w
(
P(+I)
st

)
+ w

(⋃
i∈I P

(−i)
st

)
.

Therefore, from the additivity of weights on disjoint subsets, w
(
Pst
)

=

w
(
P(+I)
st

)
+w
(⋃

i∈I P
(−i)
st

)
. We deduce that w

(
P(+I)
st

)
= w

(
Pst
)
−w
(⋃

i∈I P
(−i)
st

)
;

thus, knowing that w
(
Pst
)

= zst and w
(
P(−S)
st

)
= z

(−S)
st , we get the result

(R.13). The same reasoning applies to hitting paths in order to derive (R.14).

B Proofs of results of Section 3.3

First, let us recall that the number of occurrences of an edge (i, j) on path ℘
is η((i, j) ∈ ℘st). Observe that node occurrences can be computed from edge
occurrences by using either

η(i ∈ ℘st) =
∑
j∈V

η((i, j) ∈ ℘st) + δit =
∑
j∈V

η((j, i) ∈ ℘st) + δis, (B.1)

where δit is the Kronecker delta. As a matter of fact, the total number of visits
will be missing one unit if the node i is at the end (resp. the beginning) of the
path as only outgoing (resp. ingoing) edges are counted in (B.1). Notice that
these expressions are also valid for hitting paths.

Thus, in order to compute η(i ∈ ℘st), we need to compute η((i, j) ∈ ℘st) in
function of the elements of the fundamental matrix Z. To this end, let us first
prove a preliminary result.

B.1 Number of occurrences in terms of partial derivatives
of path weights

From the definition of w(℘st) (Equation (1)),

w(℘st) =

`−1∏
τ=0

wiτ iτ+1
=

n∏
α,β=1

(wαβ)η((α,β)∈℘st).
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Taking the partial derivative of this expression provides

∂(w(℘st))

∂wij
= η((i, j) ∈ ℘st) (wij)

η((i,j)∈℘st)−1
n∏

α,β=1
(α,β) 6=(i,j)

(wαβ)η((α,β)∈℘st)

= η((i, j) ∈ ℘st)
(wij)

η((i,j)∈℘st)

wij

n∏
α,β=1

(α,β) 6=(i,j)

(wαβ)η((α,β)∈℘st)

= η((i, j) ∈ ℘st)
w(℘st)

wij
. (B.2)

From this last result, the following relationship holds

η((i, j) ∈ ℘st)w(℘st) = wij
∂(w(℘st))

∂wij
. (B.3)

Taking once more the partial derivative of w(℘st) with respect to wkl, (k, l) 6=
(i, j), yields

∂2(w(℘st))

∂wkl∂wij
= η((i, j) ∈ ℘st) (wij)

η((i,j)∈℘st)−1η((k, l) ∈ ℘st) (wkl)
η((k,l)∈℘st)−1

×
n∏

α,β=1
(α,β) 6={(i,j),(k,l)}

(wαβ)η((α,β)∈℘st)

= η((i, j) ∈ ℘st)η((k, l) ∈ ℘st)
w(℘st)

wijwkl
. (B.4)

Therefore, for (k, l) 6= (i, j),

η((i, j) ∈ ℘st)η((k, l) ∈ ℘st)w(℘st) = wijwkl
∂2(w(℘st))

∂wkl∂wij
.

Now, proceeding in the same way for (i, j) = (k, l), we obtain from Equation
(B.2)

∂2(w(℘st))

(∂wij)2
= η((i, j) ∈ ℘st)η((i, j) ∈ ℘st)

w(℘st)

(wij)2
− η((i, j) ∈ ℘st)

w(℘st)

(wij)2

(B.5)

After multiplying this last equation by (wij)
2 and then using (B.3), this

provides an additional term, leading to the following, more general, expression,

η((i, j) ∈ ℘st)η((k, l) ∈ ℘st)w(℘st) = wijwkl
∂2(w(℘st))

∂wkl∂wij
+δikδjlwij

∂(w(℘st))

∂wij
.

(B.6)

which is also valid when (i, j) = (k, l). Equations (B.3) and (B.6) are the first
needed preliminary results. Note that these two expressions also hold for hitting
paths.
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B.2 Number of occurrences in terms of the fundamental
matrix

From here, results for the non-hitting and hitting paths will differ. Before
proceeding, we still need another useful result showing that

∂zst
∂wij

= zsizjt, (B.7)

∂2zst
∂wkl∂wij

= zskzlizjt + zsizjkzlt. (B.8)

These expressions are obtained by using the standard formula computing the

partial derivative of a matrix inverse, ∂M−1

∂mij
= −M−1 ∂M

∂mij
M−1 (details and

similar approaches can be found in [30, 47, 49, 64]). When applying this formula
to the fundamental matrix Z = (I−W)−1,

∂zst
∂wij

= e>s
∂Z

∂wij
et = −e>s Z

∂(I−W)

∂wij
Zet

= e>s Zeie
>
j Zet = zsizjt,

which is the first result (B.7). Taking once more the partial derivative provides
(B.8),

∂2zst
∂wkl∂wij

=
∂(zsizjt)

∂wkl
=
∂(zsi)

∂wkl
zjt + zsi

∂(zjt)

∂wkl
= zskzlizjt + zsizjkzlt.

We are now ready to prove the next results (R.15)-(R.18).

B.2.1 Results for regular paths

(R.15) – (R.16). For regular paths, following (B.3), (R.1), and (B.7), we find
for edge occurrences

∑
℘st∈Pst

η((i, j) ∈ ℘st)w(℘st) =
∑

℘st∈Pst

∂w(℘st)

∂wij
wij =

∂
(∑

℘st∈Pst w(℘st)
)

∂wij
wij

=
∂zst
∂wij

wij = zsiwijzjt. (B.9)

Moreover, from (B.6), (R.1) and (B.7)-(B.8),∑
℘st∈Pst

η((i, j) ∈ ℘st)η((k, l) ∈ ℘st)w(℘st)

=
∑

℘st∈Pst

∂2w(℘st)

∂wkl∂wij
wijwkl + δikδjl

∑
℘st∈Pst

∂w(℘st)

∂wij
wij

=
∂2zst

∂wkl∂wij
wijwkl + δikδjl

∂zst
∂wij

wij

= zsiwijzjkwklzlt + zskwklzliwijzjt + δikδjlzsiwijzjt. (B.10)

This is almost the expected result, as we are mainly interested in the closely
related quantities involving node occurrences instead of edge occurrences,

∑
℘st∈Pst η(i ∈
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℘st)w(℘st) and
∑
℘st∈Pst η(i ∈ ℘st)η(k ∈ ℘st)w(℘st). For the first expression,

using (R.1), (B.1), (B.9) and (I−W)Z = I, i.e.,
∑
i∈V wsizit = zst− δst, finally

provides (R.15)∑
℘st∈Pst

η(i ∈ ℘st)w(℘st) =
∑

℘st∈Pst

(∑
j∈V

η((i, j) ∈ ℘st) + δit

)
w(℘st)

=
∑
j∈V

∑
℘st∈Pst

η((i, j) ∈ ℘st)w(℘st)

zsiwijzjt

+δit
∑

℘st∈Pst

w(℘st)

zst

=
∑
j∈V

zsiwijzjt + δitzst

= zsi(zit − δit) + δitzst = zsizit. (R.15)

Let us now compute the second expression,∑
℘st∈Pst

η(i ∈ ℘st)η(k ∈ ℘st)w(℘st)

=
∑

℘st∈Pst

(∑
j∈V

η((i, j) ∈ ℘st) + δit

)(∑
l∈V

η((k, l) ∈ ℘st) + δkt

)
w(℘st)

=
∑

℘st∈Pst

(∑
j∈V

η((i, j) ∈ ℘st)
)(∑

l∈V

η((k, l) ∈ ℘st)
)
w(℘st)

+
∑

℘st∈Pst

(∑
j∈V

η((i, j) ∈ ℘st)
)
δkt w(℘st)

+
∑

℘st∈Pst

(∑
l∈V

η((k, l) ∈ ℘st)
)
δit w(℘st)

+
∑

℘st∈Pst

δitδkt w(℘st)

=
∑
j∈V

∑
l∈V

( ∑
℘st∈Pst

η((i, j) ∈ ℘st)η((k, l) ∈ ℘st)w(℘st)

)

+ δkt
∑
j∈V

( ∑
℘st∈Pst

η((i, j) ∈ ℘st)w(℘st)

)

+ δit
∑
l∈V

( ∑
℘st∈Pst

η((k, l) ∈ ℘st)w(℘st)

)

+ δitδkt

( ∑
℘st∈Pst

w(℘st)

)
. (B.11)

From this last result, further using Equations (B.9)-(B.10), (R.1) and, again,
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∑
i∈V wsizit = zst − δst provides (R.16):∑
℘st∈Pst

η(i ∈ ℘st)η(k ∈ ℘st)w(℘st)

=
∑
j∈V

∑
l∈V

(zsiwijzjkwklzlt + zskwklzliwijzjt + δikδjlzsiwijzjt)

+ δkt
∑
j∈V

(zsiwijzjt) + δit
∑
l∈V

(zskwklzlt) + δitδkt zst

=
(
zsi(zik − δik)(zkt − δkt) + zsk(zki − δki)(zit − δit) + δikzsi(zit − δit)

)
+ δktzsi(zit − δit) + δitzsk(zkt − δkt) + δitδkt zst

= zsizikzkt + zskzkizit − δikzsizkt. (R.16)

B.2.2 Results for hitting paths

(R.17) – (R.18). We proceed in the same way for hitting paths. By using
the expressions (B.7)-(B.8) for computing the partial derivative of zhst = zst/ztt
(see Equation (R.2)), and using (R.4), we get

∂zhst
∂wij

=
∂zst
∂wij

z−1tt + zst
∂z−1tt
∂wij

=
(
zsi − zhstzti

)
zhjt = z

(−t)
si zhjt, (B.12)

∂2zhst
∂wkl∂wij

= (zsi − zhstzti)(zjk − zhjtztk)zhlt + (zsk − zhstztk)(zli − zhltzti)zhjt

= z
(−t)
si z

(−t)
jk zhlt + z

(−t)
sk z

(−t)
li zhjt. (B.13)

As for the previous subsection (see Equations (B.9)-(B.10)), by using (B.3)-
(B.6), (R.2), and the previous expressions for the partial derivatives of zhst, we
obtain the equivalent of (B.9) and (B.10) for hitting paths,

∑
℘h
st∈Ph

st

η((i, j) ∈ ℘h
st)w(℘h

st) =
∑

℘h
st∈Ph

st

∂w(℘h
st)

∂wij
wij =

∂zhst
∂wij

wij = z
(−t)
si wijz

h
jt,

(B.14)

and ∑
℘h
st∈Ph

st

η((i, j) ∈ ℘h
st)η((k, l) ∈ ℘h

st)w(℘h
st)

=
∑

℘h
st∈Ph

st

∂w(℘h
st)

∂wkl∂wij
wijwkl + δikδjl

∑
℘h
st∈Ph

st

∂w(℘h
st)

∂wij
wij ,

=
∂zhst

∂wkl∂wij
wijwkl + δikδjl

∂zhst
∂wij

wij

= z
(−t)
si wijz

(−t)
jk wklz

h
lt + z

(−t)
sk wklz

(−t)
li wijz

h
jt + δikδjlz

(−t)
si wijz

h
jt,

(B.15)

These results are surprisingly similar to the equivalent results for regular paths,
displayed in Equations (B.9) and (B.10).
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But, as before, we are in fact interested in the closely related quantities
involving node occurrences,

∑
℘h
st∈Ph

st
η(i ∈ ℘h

st)w(℘h
st) and

∑
℘h
st∈Ph

st
η(i ∈

℘h
st)η(k ∈ ℘h

st)w(℘h
st). For the first expression, using (R.1), (R.2), (B.1), (B.14),

and
∑
i∈V wsizit = zst − δst, finally provides result (R.17):

∑
℘h
st∈Ph

st

η(i ∈ ℘h
st)w(℘h

st) =
∑

℘h
st∈Ph

st

(∑
j∈V

η((i, j) ∈ ℘h
st) + δit

)
w(℘h

st)

=
∑
j∈V

∑
℘h
st∈Ph

st

η((i, j) ∈ ℘h
st)w(℘h

st)

z
(−t)
si wijzhjt

+δit
∑

℘h
st∈Ph

st

w(℘h
st)

zhst

=
∑
j∈V

z
(−t)
si wijz

h
jt + δitz

h
st = z

(−t)
si

∑
j∈V

wij
zjt
ztt

+ δitz
h
st

= z
(−t)
si

(zit − δit)
ztt

+ δitz
h
st = z

(−t)
si zhit + δitz

h
st,

(R.17)

where we used z
(−t)
si δit = 0 (see (R.5)) in the last equality.

Let us now compute the second expression by proceeding in the same way
as in the previous section for non-hitting paths (see Equation (B.11)),∑

℘h
st∈Ph

st

η(i ∈ ℘h
st)η(k ∈ ℘h

st)w(℘h
st)

=
∑

℘h
st∈Ph

st

(∑
j∈V

η((i, j) ∈ ℘h
st) + δit

)(∑
l∈V

η((k, l) ∈ ℘h
st) + δkt

)
w(℘h

st)

=
∑

℘h
st∈Ph

st

(∑
j∈V

η((i, j) ∈ ℘h
st)

)(∑
l∈V

η((k, l) ∈ ℘h
st)

)
w(℘h

st)

+
∑

℘h
st∈Ph

st

(∑
j∈V

η((i, j) ∈ ℘h
st)

)
δkt w(℘h

st)

+
∑

℘h
st∈Ph

st

(∑
l∈V

η((k, l) ∈ ℘h
st)

)
δit w(℘h

st)

+
∑

℘h
st∈Ph

st

δitδkt w(℘h
st). (B.16)
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Further using Equations (B.14)-(B.15), (R.1), (R.4) provides∑
℘h
st∈Ph

st

η(i ∈ ℘h
st)η(k ∈ ℘h

st)w(℘h
st)

=
∑
j,l∈V

(
z
(−t)
si wijz

(−t)
jk wklz

h
lt + z

(−t)
sk wklz

(−t)
li wijz

h
jt + δikδjlz

(−t)
si wijz

h
jt

)
+ δkt

∑
j∈V

(
z
(−t)
si wijz

h
jt

)
+ δit

∑
l∈V

(
z
(−t)
sk wklz

h
lt

)
+ δitδkt z

h
st

= z
(−t)
si

(∑
j∈V

wijz
(−t)
jk

(∑
l∈V

wklz
h
lt

))
+ z

(−t)
sk

(∑
l∈V

wklz
(−t)
li

(∑
j∈V

wijz
h
jt

))
+ δikz

(−t)
si

(∑
j∈V

wijz
h
jt

)
+ δktz

(−t)
si

(∑
j∈V

wijz
h
jt

)
+ δitz

(−t)
sk

(∑
l∈V

wklz
h
lt

)
+ δitδkt z

h
st. (B.17)

Before going further, note that we encounter expressions like
∑
j∈V wijz

h
jt and∑

j∈V wijz
(−t)
jt , each multiplied by z

(−t)
si . Let us compute these expressions. We

already know that (I−W)Z = I, i.e.,
∑
j∈V wsjzjt = zst− δst. Therefore, from

(R.2),

z
(−t)
si

∑
j∈V

wijz
h
jt =

z
(−t)
si

ztt

∑
j∈V

wijzjt =
z
(−t)
si

ztt
(zit − δit) =

z
(−t)
si

ztt
zit = z

(−t)
si zhit,

(B.18)

and the last equality holds because z
(−t)
si is equal to 0 when i = t (see Equation

(R.4) and the following discussion) so that δitz
(−t)
si = 0. It means that this

simplification is only valid when z
(−t)
si is present. Moreover, following Equation

(R.4) and using the last expression (B.18),

z
(−t)
si

∑
j∈V

wijz
(−t)
jk = z

(−t)
si

∑
j∈V

wij(zjk − zhjtztk)

= z
(−t)
si

(∑
j∈V

wijzjk − ztk
∑
j∈V

wijz
h
jt

)
= z

(−t)
si

(
(zik − δik)− ztkzhit

)
= z

(−t)
si

(
z
(−t)
ik − δik

)
. (B.19)

Injecting successively the first expression (B.18) and then the second expression
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(B.19) in Equation (B.17) provides (R.18),∑
℘h
st∈Ph

st

η(i ∈ ℘h
st)η(k ∈ ℘h

st)w(℘h
st)

= z
(−t)
si zhkt

∑
j∈V

(
wijz

(−t)
jk

)
+ z

(−t)
sk zhit

∑
l∈V

(
wklz

(−t)
li

)
+ δikz

(−t)
si zhit + δktz

(−t)
si zhit + δitz

(−t)
sk zhkt + δitδkt z

h
st

= z
(−t)
si

(
z
(−t)
ik − δik

)
zhkt + z

(−t)
sk

(
z
(−t)
ki − δki

)
zhit

+ δikz
(−t)
si zhkt + δktz

(−t)
si zhit + δitz

(−t)
sk zhkt + δitδktz

h
st

= z
(−t)
si z

(−t)
ik zhkt + z

(−t)
sk z

(−t)
ki zhit

− δikz(−t)si zhkt + δktz
(−t)
si zhit + δitz

(−t)
sk zhkt + δitδktz

h
st. (R.18)

Note that, contrary to regular paths (see Equation (R.16)), in this case, some
terms containing Kronecker deltas do not cancel out, leading to a more complex
expression.
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