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SUMMARY
The accurate selection of neoantigens that bind to class I human leukocyte antigen (HLA) and are recognized
by autologous T cells is a crucial step in many cancer immunotherapy pipelines. We reprocessed whole-
exome sequencing and RNA sequencing (RNA-seq) data from 120 cancer patients from two external
large-scale neoantigen immunogenicity screening assays combined with an in-house dataset of 11 patients
and identified 46,017 somatic single-nucleotide variant mutations and 1,781,445 neo-peptides, of which 212
mutations and 178 neo-peptides were immunogenic. Beyond features commonly used for neoantigen prior-
itization, factors such as the location of neo-peptides within protein HLA presentation hotspots, binding pro-
miscuity, and the role of themutated gene in oncogenicity were predictive for immunogenicity. The classifiers
accurately predicted neoantigen immunogenicity across datasets and improved their ranking by up to 30%.
Besides insights into machine learning methods for neoantigen ranking, we have provided homogenized
datasets valuable for developing and benchmarking companion algorithms for neoantigen-based immuno-
therapies.
INTRODUCTION

In recent years, it has been demonstrated across tumor types

in patients receiving adoptive transfer of autologous in vitro

cultured tumor infiltrating lymphocytes (TILs) that T cells specif-

ically recognizing mutated neoantigens play a key role in medi-

ating effective anti-tumor responses.1–3 Furthermore, neoanti-

gens are found to be implicated in the therapeutic efficacy of

immune checkpoint inhibitor antibodies,4,5 and several studies

show immune recognition following neoantigen-based vac-

cines,6,7 where patients experience no major toxicities.

Mutated proteins are processed and presented on tumor cells

as human leukocyte antigen (HLA) binding peptides (HLAp) and

are recognized by cognate T cell receptors (TCRs) as ‘‘non-self.’’

Targeting such neoantigens enables immune cells to distinguish

between normal and cancerous cells, diminishing the risk of

autoimmunity. Technological improvements in genomics, bioin-

formatics, and in silico HLA binding prediction tools have facili-

tated breakthroughs in the discovery of neoantigens encoded

by somatic non-synonymous single-nucleotide variants (SNVs),

insertions and deletions (InDels), and frameshifts (FSs) that arise
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during the process of tumorigenesis and are not expressed

by normal cells.8,9 Furthermore, advanced immunological

screening techniques have facilitated the detection and isolation

of neoantigen reactive T cells.10–13

The development of innovative clinical treatment options tar-

geting neoantigens requires the identification of neoantigens

that are targeted by autologous T cells. However, only a small

percentage of neoantigens are immunogenic, which makes their

identification challenging.14 Various algorithms that score and

rank neoantigens based on their likelihood of being presented

on the patient’s HLA molecule15–18 and being specifically recog-

nized by high avidity T cell clonotypes19–23 have been proposed.

Other groups have provided pipelines for mutation detection and

neoantigen prioritization.24,25 Despite all these efforts, a recent

study shows little consensus in the neoantigen ranking per-

formed by different laboratories,26 and the performance of

immunogenicity predictionmethods varies between different da-

tasets.14 As datasets with hundreds or thousands of neoantigen

immunogenicity measurements become available,26–28 machine

learning (ML) methods are able to train powerful immunogenicity

prediction algorithms taking into account the multidimensional
or(s). Published by Elsevier Inc.
tivecommons.org/licenses/by-nc/4.0/).
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Figure 1. Statistics reveal the reproducibility of our pipeline and the bias in mutation and neo-peptide subsets

(A) Data processing workflow applied in this paper. WES and RNA-seq data were downloaded and processed. Mutations and neo-peptides were annotated with

the results from the immunogenicity screens, and the feature scores and annotations were added. The NCI data matrix was split into train- and test sets, and the

classifiers were trained on the subset of screened mutations or neo-peptides in NCI-train (see STAR Methods for naming rules for the data subsets) using

Hyperopt parameter optimization and 5-fold cross validation (CV) in 10 replicate runs. The trained classifiers were tested on all neo-peptides or mutations in NCI-

train (using leave one out CV), NCI-test, TESLA, and HiTIDE cohorts.

(legend continued on next page)
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structure of the data. In a recent example, the ranking based on

anMLmodel has outperformed a ranking based on binding affin-

ity only.28 This improvement in prioritizing immunogenic neoan-

tigens is particularly important for neoantigen or mRNA vac-

cines, where only a limited set of neoantigens are included.2,3,6,7

Here, we studied the performance of state-of-the-art ML algo-

rithms using two public datasets (National Cancer Institute [NCI]

with 112 patients27,28 and Tumor Neoantigen Selection Alliance

[TESLA] with 8 patients26) plus an additional in-house dataset

composed of 11 patients, 2 of which were already included in

a previous publication.13 We reprocessed all whole-exome

sequencing (WES) and RNA sequencing (RNA-seq) data with a

uniform mutation detection pipeline and investigated the robust-

ness of different ML algorithms and data preprocessing steps.

We demonstrated that classifiers trained on the large NCI data-

set can accurately predict the immunogenicity of neoantigens

on each test dataset. With orthogonal features, our ML based

approach outperformed previously published methods28 and

increased the number of immunogenic peptides ranked in the

top 20 by 30%. Compared with the ranking reported in the

TESLA consortium study,26 our ML methods performed favor-

ably and came first in two out of three ranking evaluationmetrics.

We provide classifiers and data processing methods for the

improved prioritization of immunogenic neoantigens. The uni-

formly processed datasets are unique resources for other

groups active in the field of immunogenicity prediction and in

the development of innovative neoantigen-based therapies.

RESULTS

Our mutation detection is consistent with published
results
Cancer cells can have several hundred somatic mutations (SMs),

but only a few of them may be presented as HLA binding neo-

peptides and recognized by T cells. The accurate selection of a

limited number of mutations (e.g., for mRNA cancer vaccine) or

neo-peptides (e.g., for multimer based sorting of neoantigen-

specific T cells) that are most likely to be immunogenic is a

crucial step in cancer vaccines and adoptive transfer of T cells.

Here, we used two public (NCI27,28 and TESLA26) and one in-

house (the Human Integrated Tumor Immunology Discovery

Engine; HiTIDE) dataset to train and test ML algorithms for the

prioritization of mutations and neo-peptides (Figure 1A). The

datasets consisted of WES and RNA-seq data as well as immu-

nogenicity assay results for hundreds of mutations and/or neo-
(B) Comparison of SM SNVmutation counts obtained from Gartner et al.28 and ou

point. The size and color of the points reflect the percentage of mutations ident

different statistics of the patient data for the NCI, TESLA, and HiTIDE datasets,

mutations or neo-peptides per patient (left group of boxes), or from the subsets of

right group of boxes).

(C) Mutation counts.

(D) Neo-peptide counts. The outliers in (C) and (D) originate fromNCI patients for w

et al.28

(E) Average MixMHCpred %rank scores.

(F) Average RNA expression in TPM.

(G) Average RNA coverage of the mutations in %.

(H) Average number of immunogenic neo-peptides per mutation.

(I) Immunogenic mutation counts as a function of the mutation counts for each p

See also Figure S1.
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peptides (Table 1; Data S1). Themain difference between the da-

tasets laid in the waymutations (mut-seq, typically 25 amino acid

(aa) sequenceswithmutation in the center) or neo-peptides (neo-

pep, peptides of length 8–12 including mutation) were selected

for immunogenicity screening and in the screening methods

used (STAR Methods). In the NCI dataset, many mutations and

neo-peptides were physically screened as reported by Gartner

et al.28 In a cohort of 112 patients, whichwe defined here asNCI_

mut-seq, for almost all the expressed mutations, minigenes en-

coding the mutations and 12 flanking wild-type (WT) aa on each

sidewere transcribed in vitro and transfected into autologous an-

tigens presenting cells (APCs) followed by a co-culture with TIL

cultures and interferon (IFN)-g enzyme-linked immunospot

(ELISpot) immunogenicity measurement. For 80 of the 112 pa-

tients, a cohortwedefined as theNCI_neo-pep, additional immu-

nogenicity screens were performed to identify the optimal neo-

antigenic epitopes and their HLA restrictions. The top-ranked

neo-peptides predicted by NetMHCpan to span immunogenic

mutations from the abovemini-gene assaywere pulsed on autol-

ogous APCs or APCs engineered to express the patient’s HLA-I

alleles, prior to co-culture with TILs and IFN-g ELISpot readout.

Neo-peptides with positive ELISpot readout were assigned as

immunogenic. All other neo-peptides containing the immuno-

genic mutation and all neo-peptides containing screened non-

immunogenic mutations were considered as non-immunogenic.

In the TESLA study, immunogenicity of selected neo-peptides

was determined with labeling of subject-matched TILs or periph-

eral blood mononuclear cells (PBMCs) with HLA-I peptide

multimers.26 The immunogenicity of selected neo-peptides in

the HiTIDe cohort was interrogated with IFN-g ELISpot assays

following incubation of the peptides with either bulk TILs or neo-

antigen enriched TILs (NeoScreenmethod) grown from tumor bi-

opsies in the presence of APCs loaded with neo-peptides

(Figures S1A and S1B), as previously described.13 Importantly,

in the TESLA and HiTIDE datasets, only a selection of neo-pep-

tides was experimentally screened, and the immunogenicity

annotation of the mutations was inferred accordingly.

First, we uniformly processed all data, conducting HLA typing,

mutation calling, RNA-seq gene expression analysis, and read

coverage assessment at the specific loci of the SM. To assure

capturing all relevant mutations in the NCI dataset, prior to the

ML training, we assessed the extent to which we were able to

reproduce the genomic analysis results published by Gartner

et al.28 First, for a subset of 80 of the 112 patients, for which

HLA typing results from Gartner et al. were available, we
r analysis for a subset of 80 patients, where each patient corresponds to a data

ified by Gartner et al. that were also identified in our analysis. (C) to (H) show

where only SM SNVs were considered. The statistics were obtained from all

screened and immunogenic mutations or neo-peptides per patient (middle and

hich all non-immunogenic peptides were annotated as not-screened in Gartner

atient in the NCI, TESLA, and HiTIDE datasets.



Table 1. Mutation and neo-peptide counts for the NCI, TESLA, and HiTIDE datasets and their subsets

Number of patients

(train or test datasets)

Immunogenicity screening

method Immunogenic Not immunogenic Not screened

NCI mutations 89 (train), 23 (test) minigenes, IFNg ELISpot 146 11,651 24,899

NCI neo-peptides 57 (train), 23 (test) peptides, IFNg ELISpot 103 418,872a 953,486

TESLA mutations 8 (test) in silico 36b,c 461b 6,231b

TESLA neo-peptides 8 (test) peptides, HLA-I peptide

multimers

34c 702 300,505

HiTIDE mutations 11 (test) in silico 30b 751b 1,812b

HiTIDE neo-peptides 11 (test) peptides, IFNg ELISpot 41 1,511 106,191
aNon-immunogenic NCI neo-peptide dataset contains three types of neo-peptides: the screened ones with negative immunogenicity test, the inferred

ones from immunogenic mutations that were not screened at the neo-peptide level, and the ones from screened but non-immunogenic mutations.
bImmunogenicity of mutations in TESLA and HiTIDE datasets was inferred from the immunogenicity screens of the respective neo-peptides.
cNeo-peptides are excluded if they match WT peptide or missing value cannot be imputed resulting in more mutations than neo-peptides.
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compared the HLA allotypes. The HLA typing was overall consis-

tent, and we found that, for 74 patients, all alleles were identical,

for 4 patients, 1 or 2 alleles weremissed by us or byGartner et al.,

and in 2 patients, there were conflicting alleles but with similar

sequence motifs (Data S2). In addition, the SNV SM counts we

obtained correlated well with the counts reported by Gartner

et al. (Figure 1B; Data S2). Overall, in the subset of 80 patients

we identified 31,880 SNV SMs, including 82.2% (26,420 out of

32,148) of the SNV SMs published by Gartner et al., where

67.5% of the patients (54 out of 80) had a SNV SM overlap larger

than 80% (Data S2). For a few patients there was a substantial

variation in the number of mutations detected and for two

patients we called less than 50% of the mutations reported by

Gartner et al. Interestingly, we detected 143 of the 151 (94.7%)

immunogenic SNV SMs published in Gartner et al. (Data S2;

Figure S1C). Good correlations were also obtained when we

compared insertion and deletion mutations with and without

FSs (Figures S1D and S1E).

Immunogenicity-related feature scores highlight subtle
differences between datasets
Next, we added multiple feature scores (Data S3) reflecting

the propensity of a peptide to be presented, such as bulk RNA-

seq gene expression of the mutated gene and its expression

in the tissue-matched Cancer Genome Atlas (TCGA) (https://

www.cancer.gov/tcga) and the tissue-matched Genotype-Tis-

sue Expression (GTEx) atlas (https://gtexportal.org/), proteaso-

mal cleavage scores,29 tapasin binding,30 binding affinity to

HLA-I allotypes (NetMHCpan,15 MixMHCpred16), and stability

ranks.31 Other feature scores evaluated the dissimilarity of a

neo-peptide to the WT peptide counterpart (differential agreto-

picity index or DAI)19,22,32,33 and the potential of a neoantigen

to bind several alleles. A notable bias toward hydrophobic aa

was observed at T cell receptor contact residues within immuno-

genic epitopes.34We therefore employed also thePRIMEpredic-

tor, that captures such hydrophobicity related molecular proper-

ties associated with TCR recognition.23,35 We also used our

large-scale in-house immunopeptidome database (ipMSDB36)

of HLA-bound WT peptides identified by mass spectrometry

(MS) to assess the likelihood of neo-peptides to be naturally

processed and presented at the cell surface by HLA (see below

and in STAR Methods).
Last, it is well established that mutations in oncogenes and tu-

mor suppressors are enriched across cancers and specific sites

are more frequently mutated. Hoyos et al. has modeled the rela-

tionship between oncogenicity and immunogenicity for tumor

driver mutations, focusing on p53 mutations, and demonstrated

that hotspot mutations optimally solve an evolutionary trade-off

between oncogenic potential and neoantigen immunogenicity.37

Therefore, we scored SNV SM based on their appearance in the

population with the Integrative Onco Genomics (IntOGen) data-

base,38 and we predicted their oncogenic status (disease-driver

or neutral) with the CScape tool39 to assess the role of the muta-

tion in tumorigenesis.

Comparison of basic statistics across all three datasets (Data

S1) revealed that the number of SNV SMs called per patient was

highest for the TESLA dataset (Figure 1C), which contained only

melanoma and non-small cell lung cancer (NSCLC) samples that

are known for high mutational loads. In contrast, the number of

mutations per patient screened with the mini-gene approach in

the NCI dataset was higher than the mutations included in

neo-peptide screens in the TESLA and HiTIDE datasets. The

number of immunogenic mutations per patient was higher in

TESLA and HiTIDE, possibly because of differences in cancer

types and the sensitivity of immunogenicity screening methods.

In the NCI dataset—following the annotations provided in Gart-

ner et al.28—all neo-peptides originating from screened muta-

tions were considered as screened, even if only the mutation,

but not the neo-peptide was actually screened. Therefore, the

number of neo-peptides annotated as ‘‘screened’’ was much

higher in theNCI dataset (Figure 1D), and therewas no difference

in binding affinity between screened and not-screened neo-pep-

tides (Figure 1E). In contrast, binding affinity was used as a

screening criterion in the TESLA andHiTIDE datasets (Figure 1E).

The RNA-seq gene expression values revealed small differences

between datasets. In all datasets, mutations selected for T cell

screening had higher RNA-seq gene expression, and this effect

was strongest in theHiTIDE- andweakest in NCI data (Figure 1F).

RNA-seq mutation coverage was consistently employed as a

screening criterion in all datasets, with the TESLA dataset

demonstrating the most pronounced utilization of this filter (Fig-

ure 1G). The number of immunogenic neo-peptides per mutation

was higher in HiTIDE and TESLA datasets (Figure 1H). In the

NCI and TESLA datasets, on average only one immunogenic
Immunity 56, 2650–2663, November 14, 2023 2653
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Figure 2. Exploring relationships between features and predictive value for immunogenicity

Scatterplots display the immunogenic (orange) and non-immonogenic (blue) neo-peptides ormutations with their regression lines for the screenedNCI_neo-pep/

mut-seq dataset. Only a random subsample of 10,000 points of the non-immunogenic points is shown in the scatterplots. Histograms display the feature scores

of immunogenic (orange) and non-immunogenic (blue) neo-peptides for the screened NCI_neo-pep, TESLA_neo-pep, and HiTIDE_neo-pep datasets. The scale

of the immunogenic neo-peptide counts is given on the right y axis; the scale of the non-immunogenic counts is on the left y axis. The p values shown in the

histogram titles evaluate the difference between immunogenic and non-immunogenic feature values and are calculated by a c2 test.

(A) Scatterplot of MixMHCpred and NetMHCpan %rank scores. Red dashed lines mark the 0.5% ranks.

(B) Histogram for ‘‘Number Binding Alleles’’ scores. Note the different log-scales for immunogenic and non-immunogenic neo-peptides counts.

(C) Violin plot of MixMHCpred log-rank DAI for neo-peptides with mutations at anchor and non-anchor positions.

(D) TCGA expression versus RNA-seq expression.

(E) GTEx expression versus RNA-seq expression.

(F) Scatterplot of ipMSDB Peptide Count per protein versus RNA-seq expression.

(G) ipMSDB Peptide Count per protein versus ipMSDB Peptide Score.

(legend continued on next page)
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neo-peptide was detected per immunogenic mutation, whereas

in the HiTIDE cohort this number was slightly higher. The number

of immunogenic neo-peptides per patient correlated with the

total number of SNV SMs detected in a patient (Figure 1I). In

summary, the NCI dataset had the highest number of screened

mutations and neo-peptides with the least selection bias and is

therefore most suitable for training ML models.

Features beyond binding affinity and gene expression
correlate with immunogenicity
Next, we investigated how the mutation or neo-peptide features

correlated with immunogenicity. By examining these correla-

tions, we sought to gain insights into the factors that contribute

to immunogenicity and potentially identify key determinants of

immune recognition. We found that, in agreement with published

results,26,28,40 features describing proteasomal cleavage, trans-

porter associated with antigen presentation (TAP) import into

endoplasmic reticulum and binding stability, correlated with

immunogenicity in all three datasets, and they correlated poorly

with binding affinity (Figures S2A–S2C). In addition, as previously

demonstrated,26,28 features reflecting the binding affinity be-

tween a neo-peptide and the patients’ HLA-I alleles were among

the strongest predictors for immunogenicity for all three datasets

(Figure S2D). Although NetMHCpan and MixMHCpred predic-

tion%rank scores correlated, they contained complementary in-

formation. For example, in the NCI dataset, ten immunogenic

neo-peptides did not pass the binding threshold of %rank %

0.5 with NetMHCpan, but they passed it with MixMHCpred (Fig-

ure 2A). We found that promiscuous neo-peptides that were pre-

dicted to bind to multiple patient’s HLA-I alleles were more likely

to be immunogenic than neo-peptides predicted to bind a single

allele (Figure 2B), possibly because binding to multiple alleles

increases the chance for HLA-I presentation and makes the

presentation of neo-peptides more resistant to loss of specific

HLA-I alleles.41 Along the same lines, mutations with a higher

number of neo-peptides weakly binding to a patient’s HLA-I

alleles, were more likely to be immunogenic (Figure S2E). The

PRIME prediction rank differences between immunogenic

and non-immunogenic neo-peptides were similar to those of

MixMHCpred or NetMHCpan (Figure S2F). DAI values for bind-

ing prediction log-ranks were lower for immunogenic neo-pep-

tides (Figure S2G) in agreement with previous results.19,22,33 As

expected, the location of mutations in an anchor position was

not significant per se (Figure S2H), but it became important in

combination with DAI values, which were significantly lower

(t test p value 2.19 3 10�17) for immunogenic mutations at an-

chor positions (Figure 2C). Based on the analyzed data, there

was no obvious tendency for mutations to be placed in the mid-

dle of a neo-peptide, and the enrichment of immunogenic muta-

tions in the middle of 10 mers reported for the TESLA dataset26

could not be confirmed for the NCI and HiTIDE datasets (Fig-

ure S2I). As expected, immunogenic neo-peptides were strongly

enriched in the group of 9 or 10 mer peptides, reflecting the

length preferences of HLA-I alleles (Figure S2J). HLA binding-af-
(H) Histograms for ‘‘ipMSDB Peptide Match Type.’’

(I) Histograms for ipMSDB PeptideMatch Type for neo-peptides with or without a

rank score.

See also Figures S2 and S3.
finity predictors that incorporate peptide length preferences

were used to select the neo-peptides for immunogenicity

testing. Hence, based on these three datasets, it is challenging

to determine whether this enrichment stems from a bias in se-

lecting neo-peptides or if it represents an intrinsic characteristic

of immunogenic peptides. It has been demonstrated that gene or

protein expression positively impacts HLA-I presentation40,42

and immunogenicity.26,28 In all three datasets, immunogenicmu-

tations had higher gene expression and higher coverage of the

mutation in the patient’s tumor bulk RNA-seq data compared

with non-immunogenic ones (Figures S3A and S3B). To investi-

gate the possibility of substituting a patient’s gene expression

values with data from publicly available datasets, particularly in

scenarios where the patient’s tumor tissue RNA-seq data are un-

available, we included tissue-matched RNA-seq expression

data from the TCGA and GTEx repositories as additional fea-

tures. For both immunogenic and non-immunogenic mutations,

the TCGA gene expression correlated strongly (Pearson’s

R = 0.818) with its expression in the patient’s cancer tissue (Fig-

ure 2D). The gene expression in GTEx correlated to a lower

extent (Pearson’s R = 0.645), and the regression line for immuno-

genic mutations was shifted to higher RNA-seq values

compared with the regression line for non-immunogenic ones

(Figure 2E). We concluded that immunogenic mutated genes

had higher gene expression in cancer tissues compared with

the matched healthy tissues in GTEx, and the expression values

were better captured by TCGA. Lastly, cancer cell fraction (CCF),

clonality, and zygosity were not associated with immunogenicity

(Data S3).

Our in-house ipMSDB database36 contains WT HLA-I and -II

ligands identified by MS in multiple healthy and cancerous hu-

man tissues and cell lines with various HLA allotypes. The

ipMSDB version used in this work contains 547,476 unique

HLA-I peptides, which we used to infer the HLA-I presentation

of a neoantigen based on the coverage of the corresponding

WT peptide and on the natural presentation of the source pro-

tein. We found that the number of ipMSDB peptides mapped

to a protein (‘‘ipMSDB Peptide Count’’) was significantly higher

for proteins containing immunogenic mutations across all three

datasets (Figure S3C). These data indicate that immunogenic

peptides in the three datasets preferably belong to proteins

that are naturally processed and presented, in agreement with

previous findings.18,36,43 ipMSDB Peptide Count for a given pro-

tein correlated (Pearson’s R = 0.498) with mRNA expression of

the corresponding gene (Figure 2F), but this correlation could

not fully explain the higher ipMSDB Peptide Count values for

immunogenic mutations (Figure S3D), suggesting that these fea-

tures are not fully redundant. In addition, the ‘‘ipMSDB Peptide

Score’’ measures the overlap between the WT peptide within

ipMSDB and the neo-peptides (Figure S3E). The correlation be-

tween the ipMSDB Peptide Score and the ipMSDB Peptide

Count (Pearson’s R = 0.435) reflects that proteins with overall

more ipMSDB peptides had a better chance to cover a neo-

peptide. However, the ipMSDB Peptide Score was higher for
mutation at an anchor position of the HLA allele with the lowestMixMHCpred%

Immunity 56, 2650–2663, November 14, 2023 2655
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Figure 3. Assessments of the classifier’s performance and feature importance

(A) Immunogenic neo-peptides were ranked per patient and the number of immunogenic neo-peptides in the top 20, 50, or 100 ranks was calculated per patient

and summed up for all patients in the NCI-test dataset. The ranking was performed either by NetMHCpan and RNA expression, MixMHCpred and RNA

expression as described in the text, or logistic regression (LR), XGBoost, or the voting classifier. ‘‘Gartner et al.’’ refers to the ranking reported in Gartner et al.28

The red dashed horizontal lines indicate the total number of immunogenic neo-peptides in NCI-test. The green lines mark the median performance of the voting

classifier in the top 20, 50, or 100 ranks according to their respective colors.

(B) As in (A), but for the TESLA dataset.

(C) As in (A), but for the HiTIDE dataset.

(D) Comparison of the fraction ranked (FR) score obtained by the voting classifier trained on NCI-train and tested on TESLA. FR scores of the TESLA participants

were obtained from Wells et al.26 The FR score gives us the fraction of immunogenic neo-peptides ranked in the top 100 per patient.

(E) Same as (D) but for the top-20 immunogenic fraction (TTIF) score. The TTIF score gives us the fraction of immunogenic neo-peptides among all screened neo-

peptides ranked in the top 20 per patient.

(legend continued on next page)
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immunogenic neo-peptides compared with non-immunogenic

ones (Figure 2G), and this shift was significant in all three data-

sets (Figure S3F). We also found a highly significant enrichment

of immunogenic neo-peptides, which either mapped exactly to

the WT counterpart sequences in ipMSDB or were fully included

in such sequences (Figure 2H). These results indicated that

immunogenic neo-peptides were preferably found in HLA-I pre-

sentation ‘‘hotspots’’ and that utilizing sequence matching to

ipMSDB proves to be an effective strategy for prioritizing

‘‘true’’ HLA-I binding neo-peptides, as long as the mutation

does not occur in an anchor position (Figure 2I). When mutations

arise in anchor positions, they tend to produce a predicted pep-

tide variant that exhibits superior binding affinity compared with

the original WT peptide especially for immunogenic peptides

(Figure 2C). Consequently, in these scenarios, the likelihood of

finding the WT peptide represented in the ipMSDB is reduced

(Figure 2I).

Further, we included features that evaluate the impact of a

mutation on the cellular or molecular function of the mutated

protein. Although Cscape39 is an oncogenicity predictor, we

demonstrated that it had also a predictive value for immunoge-

nicity (Figure S3G), possibly because oncogenic mutations

often destabilize the protein structure, leading to rapid degra-

dation of the protein and presentation on HLA-I.44 We also

included mutation annotations from the IntOGen38 database,

and we further found that mutations annotated as oncogenic

drivers were enriched for immunogenicity in all three datasets

(Figure S3H), and there was a slight immunogenicity enrich-

ment for mutations with a lower prevalence in the population

(Figure S3I).

Classifiers trained on a large unbiased dataset
accurately rank neo-peptides in other datasets
Neoantigen-based personalized immunotherapy strategies rely

on the selection of the most promising mutations or neo-pep-

tides. For both mutations and neo-peptides, we trained a sepa-

rate ML model, which calculates the probability that a mutation

or neo-peptide can induce a spontaneous immune response,

as was captured by the immunogenicity screening assays, and

this probability is then used for the ranking. First, we investigated

the ranking of neo-peptides. We used the Bayesian optimization

framework Hyperopt45 to train the classifiers and their hyper-

parameters on NCI-train (Figure 1A; see supplemental informa-

tion for the details). Through leave-one-out cross-validation

(CV) testing on the NCI-train dataset, we observed that the logis-

tic regression (LR)46 classifier’s performance showed improve-

ment as the number of non-immunogenic neo-peptides in the

training set increased (Figure S4A). Additionally, increasing the
(F) Same as (D) but for the ‘‘area under the precision recall curve’’ (AUPRC) score

peptides before non-immunogenic ones.

(G) Neo-peptide feature importance calculated using Shapley values for LR and

(H) Shapley values of the KTYQGSYGFRR neo-peptide (blue bars) from NCI-test p

peptides of patient 4,350 (orange bars). LR classifier trained on NCI-train ranked

deviation over the ten replicate runs.

(I) Same as in (H) but for immunogenic neo-peptide DRNIFRHSVV of patient 4

replicate runs.

(J) HLAp length distribution for HLA-C06:02 allele taken from MHC Motif Atlas (h

(K) Bare motif without pseudo-count correction obtained from the 75 HLA-C06:0

See also Figure S4.
number of Hyperopt iterations also contributed to the enhanced

performance of the LR classifier (Figure S4B). These findings

highlight the importance of a larger training set and extensive

Hyperopt iterations in optimizing the performance of the LR

and other classifiers for neo-peptide immunogenicity prediction.

Furthermore, the choice of data normalization method had an

impact on the performance of the LR classifier, as demonstrated

by Figure S4C. Notably, employing quantile normalization re-

sulted in a remarkable 134.0% increase in the number of immu-

nogenic neo-peptides ranked within the top 20, in comparison

with the scenario where no normalization was applied (Fig-

ure S4D). These findings underscore the importance of imple-

menting appropriate data normalization techniques, such as

quantile normalization, to enhance the accuracy and predictive

power of the LR classifier.

Furthermore, the choice of classifier algorithm had an impact

on the number of immunogenic neo-peptides ranked among

the top positions (Figure S4E). For NCI-train with leave-one-out

CV, LR performed best, followed by XGBoost,47 CatBoost,48

and the SVMs.49 The LR classifier was able to rank 49.1% of

immunogenic neo-peptides in the top 20, 62.2% in the top 50,

and 75.6% in the top 100 (Figure S4F; Data S4). The principal-

component analysis (PCA) plot (Figure S4G) revealed that LR

and XGBoost produce distinct and complementary rankings.

The plot visually demonstrated that these LR and XGBoost offer

diverse perspectives and capture different aspects of neo-

peptide immunogenicity, indicating the potential benefit of

leveraging their combined results for a more comprehensive

and accurate assessment of immunogenic rankings. Therefore,

we constructed a voting classifier, which averaged the immuno-

genic class probabilities of all ten LR and ten XGBoost classifier

replicates (STAR Methods). Across the NCI-test, TESLA, and

HiTIDE test datasets, the ranking of the voting classifier was al-

ways better or comparable to the rankings of the LR and

XGBoost classifiers (Figures 3A–3C). We concluded that the

voting classifier provides a ranking that is more robust and less

dependent on the dataset.

The performance of ML ranking can vary depending on the da-

taset used. To investigate this further we trained and tested the

LR classifier on HiTIDE with leave-one-out CV (see STAR

Methods) and compared it with the LR classifier trained on the

much larger NCI-train dataset. The HiTIDE-trained LR performed

clearly better on HiTIDE neo-peptides, but it performed worse on

the TESLA and NCI-test datasets (Figures S4H–S4J). The LR

classifiers had a preference for features such as RNA-seq

expression, CCF, and ipMSDB scores, which were used in the

HiTIDE cohort to select neo-peptides for immunogenicity

screening (Figure S4K). These findings demonstrated that ML
. The AUPRC score gives us the ability of a ranking to place immunogenic neo-

XGBoost classifiers trained on NCI-train.

atient 4,350 compared with average Shapley values of the top 20 ranked neo-

the neo-peptide in rank 3.5 on average. The error bars indicate the standard

,324 in NCI-test (blue bars), which had an average rank of 1,920.1 in the 10

ttp://mhcmotifatlas.org/).

2 10 mers included in HLA Motif Atlas.
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classifiers could easily capture inherent biases related to the se-

lection of neo-peptides for screening assays, potentially result-

ing in suboptimal rankings when applied to other datasets.

This justifies our approach of training our classifiers on the NCI

dataset, which is characterized by minimal bias, to mitigate the

impact of dataset-specific biases and achieve more accurate

and reliable rankings.

Next, we compared the performance of our ML ranking

methods with an alternative simple approached where neo-pep-

tides were initially sorted based onMixMHCpred or NetMHCpan

%rank scores and then by RNA-seq expression to resolve the

ties. We demonstrated the superior performance of the ML clas-

sifiers compared with this basic ranking strategy (Figures 3A–

3C). NetMHCpan performed better than MixMHCpred on the

NCI-test and TESLA datasets, where NetMHCpan was used to

select neo-peptides for screening, but lead to similar ranking

for HiTIDE, where MixMHCpred was used for the screening se-

lection. Finally, we compared our results with the rankings pub-

lished by Gartner et al.28 for the 23 patients in NCI-test. Our re-

sults demonstrated that LR, XGBoost, and the voting

classifiers ranked more immunogenic neo-peptides in the top

20, 50, and 100 ranks (Figure 3A; Data S4). Compared with Gart-

ner et al., LR placed 30.0% more neo-peptides into the top 20,

26.7% more into the top 50, and 11.8% more into the top 100.

In addition, we conducted a comparison between our ML

approach for the TESLA dataset and the consortium results re-

ported by Wells et al. for these data.26 Our ML ranking achieved

the best ranking among the TESLA participants when consid-

ering the three evaluation metrics introduced by Wells et al.,26

with an average rank of 2 compared with the second-best

average rank of 3.3 for the ‘‘owl’’ group. Specifically, our voting

classifier obtained a median ‘‘fraction ranked (FR)’’ score (see

STAR Methods) of 77.8% (Figure 3D), which was better than

the FR scores reported by all other groups participating in the

TESLA study. Our median ‘‘top-20 immunogenic fraction

(TTIF)’’ score of 0.25, was reached by only one other group (Fig-

ure 3E), whereas ourmedian area under the precision recall curve

(AUPRC) score (0.273) ranked fourth among all participants (Fig-

ure 3F). Because the highest-ranking neo-peptides in the lists

submitted by the TESLA participants were actually screened in

the immunogenicity screens, we here evaluated the TESLA par-

ticipants partially on their best-ranked peptides, whereas there

was no such bias for ourMLmethods. The results clearly demon-

strate that ourMLclassifiers, trained on theNCI-train dataset, ex-

hibited strong generalization capabilities, and yielded highly ac-

curate results when applied to the independent TESLA dataset.

In order to assess the significance of each feature in the LR

and XGBoost rankings, we computed the Shapley values asso-

ciated with each feature.50,51 This analysis allowed us to quantify

the contribution of each feature in determining the final ranking of

neo-peptides by these classifiers. Figure 3G shows that the

strongest Shapley values for LR and XGBoost stemmed from

MixMHCpred, NetMHCpan, and PRIME rank features, followed

by stability rank, TCGA expression and RNA-seq mutation

coverage, number of binding HLA alleles, MixMHCpred, DAI,

and ipMSDB overlap score. For example, Figure 3H demon-

strates the Shapley values for neo-peptide EKIALFQSL of patient

4,350 in NCI-test with an average rank of 48.1 in the ten LR rep-

licates, which ismuch better than rank 1,641 reported byGartner
2658 Immunity 56, 2650–2663, November 14, 2023
et al. The better ranking resulted from the stronger binding affin-

ity reported by MixMHCpred, PRIME, and NetMHCpan for the

HLA-B39:01 allele compared with MHCFlurry v1.6, which was

used by Gartner et al., but also IntOGen scores, binding stability,

TCGA expression and ‘‘ipMSDB Peptide Match Overlap’’

contributed to the good rank. In contrast, the neo-peptide

DRNIFRHSVV from patient 4,324 in NCI-test was ranked poorly

by our LR classifier (average rank 1,920.1) and by Gartner et al.

(rank 24,392) because the peptide had poor %rank scores

for allele HLA-C06:02 by all used binding-affinity predictors

(Figure 3I), and also Gartner et al. reported a poor %rank

with MHCFlurry. The HLA-C06:02 allele binds mainly 9 mers

and only a few 10 mers (Figure 3J), resulting in a poor

MixMHCpred %rank for 10 mers, even if the 75 10 mer ligands

included in the major histocompatibility complex (MHC) Motif

Atlas52 show a clear preference for arginine in the second, and

leucine and valine in the 10th position (Figure 3K). Overall

ipMSDB and IntOGen features had lower Shapley feature impor-

tance, but their contribution to the ranking of immunogenic neo-

peptides was still evident (t test p value for rank_score increase is

2.543 10�8 for ipMSDB features, and 3.703 10�10 for IntOGen

features) (Figure S4L). Excluding these features from LR prioriti-

zation reduced the number of neo-peptides ranked in the top

20 in NCI-test by 16.1%.

Effective ranking of immunogenic mutations requires
dedicated training of classifiers
Most neoantigen-based cancer vaccination strategies use long

mutated peptides (15–25mers) or RNAmini-gene constructs en-

coding such sequences and rely on the selection of the most

promising mutations. When prioritizing mutations, the relative

importance of mutation features such as RNA-seq expression

or coverage is expected to change compared with their signifi-

cance in prioritization of the minimal neo-peptide sequences

(see below). Therefore, instead of using the above neo-peptide

classifiers to build a mutation ranking method, we trained muta-

tion classifiers from scratch using the mutation features (Data

S3). When we trained the LR and XGBoost classifiers on NCI-

train, XGBoost slightly outperformed LR (Figures 4A, S4M, and

S4N). For the NCI-test data, both LR and XGBoost performed

better in the top 20 than the ranking published by Gartner et al.

(Figure 4A; Data S4), but the difference was less pronounced

than for neo-peptides. Although binding-affinity features were

still most powerful (Figure 4B), the importance of non-HLA-

binding-related features, such as RNA-seq coverage, TCGA

expression, ipMSDB scores, and IntOGen scores features

increased compared with the corresponding neo-peptide

features, whereas the importance of binding-affinity ranks

decreased (Figure 4C). This emphasizes that prioritizing muta-

tions is different from prioritizing neo-peptides and requires

different ML strategies. As for neo-peptides, ipMSDB and

IntOGen features contributed complementary information and

improved LR based mutation ranking (t test p value for rank_

score increase is 0.0264 for ipMSDB features and 0.0844 for

IntOGen features) (Figure S4O). Our approach enabled us to

develop specialized classifiers dedicated to mutation and

neo-peptide prioritization, thereby ensuring a more tailored and

accurate assessment of their importance in the context of

neoantigen immunogenicity prediction.



A

C

B

Figure 4. Effective ranking of immunogenic mutations requires dedicated training of classifiers

(A) Immunogenic mutations were ranked per patient and the number of immunogenic mutations in the top 20, 50, or 100 ranks was calculated for each patient.

The y axis represents these numbers summed over all patients in the dataset. The red dashed horizontal lines indicate the total number of immunogenicmutations

in a dataset. The number of top-ranking immunogenic mutations is shown for patients in NCI-test for the LR, XGBoost, and voting classifiers. Gartner et al. refers

to the ranking reported in Gartner et al.28 The horizontal green linesmark the mean performance of the voting classifier in the top 20, 50, or 100 ranks according to

their respective colors.

(B) Mutation Shapley feature importance for the LR and XGBoost classifiers in NCI-train. The error bars indicate the standard deviation over 10 replicate runs. The

features on the y axis are ordered by decreasing feature importance of both LR and XGBoost.

(C) Neo-peptide feature importance (Figure 3G) compared with mutation feature importance (B) for RNA-seq expression-, binding affinity-, IntOGen-, and

ipMSDB-related features used by both neo-peptides and mutation classifiers.

See also Figure S4.
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DISCUSSION

Accurate prediction and prioritization methods of patient-spe-

cific neoantigens is still an important barrier for development of

effective cancer vaccines and neoantigen-based T cell thera-

pies. Because currently the number of mutations included in a

personalized cancer vaccine is in the range of about 20 muta-

tions, the selection of mutations is rather straightforward in

case of low tumor mutational burden (TMB)53; however, this be-

comes a critical challenge in the medium to high TMB. Further-

more, the utilization of different validation assays for assessing

immunogenicity in various laboratories, along with the use of

diverse protocols for T cell isolation and expansion,54 has a po-

tential to introduce variations, underscoring the importance of

harmonizing datasets and providing prediction solutions with

generalized good performance across labs. Our systematic
analysis of immunogenic and non-immunogenic neoantigens,

demonstrated that many feature scores reflecting processes of

the antigen presentation machinery, such as binding affinity

and stability, RNA expression and coverage, the presence of

non-mutated counterparts of neo-peptides in immunopepti-

dome hotspots, binding promiscuity, and the role of the mutated

gene in oncogenicity, were all predictive for immunogenicity

across datasets and immunogenicity validation methods.

Indeed, a neoantigen quality model incorporated similar fea-

tures, such as the differential presentation and T cell cross reac-

tivity against the neoantigen and its WT counterpart.55 Variations

of this model were applied to predict the survival of patients

treated with anti-CTLA4 and anti-PD-1,55 to predict immune ed-

iting in long term survivors of pancreatic ductal adenocarcinoma

(PDAC),56 and the induction of neoantigen-specific T cell re-

sponses following treatment with personalized mRNA vaccine.53
Immunity 56, 2650–2663, November 14, 2023 2659
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However, the applicability of the ‘‘high-quality’’ model is limited

to providing predictions solely for 9-mer peptides and the model

does not consider the important information from RNA-seq data.

The complex multidimensional structure of the feature manifold

motivated the use of ML techniques, to efficiently combine these

features for the prioritization of neo-peptides or mutations.

Beyond the selection of the descriptive features, we evalu-

ated several data normalization methods and found that they

had a strong impact on the outcome. In addition, we applied

the Hyperopt45 framework to find the optimal classifier hyper-

parameters, a technical step that is important for the overall

performance of ML tools. Several classifier algorithms were

then trained on the large NCI27,28 cohort, which was the least

biased and most comprehensive of the three datasets. We

observed that the LR46 and XGBoost47 classifiers outperformed

the others and that their results were to some extent comple-

mentary, motivating the use of a voting classifier, which com-

bined the LR and XGBoost probabilities and uniformly provided

more robust results. Importantly, the LR and XGBoost classi-

fiers trained on NCI-train resulted in accurate immunogenicity

rankings for neoantigens in the TESLA26 and in-house HiTIDE

datasets, which have different HLA restrictions, originate in

different tumor types, which were obtained from different labo-

ratories and screened with different immunogenicity assays.

Our ML ranking achieved the highest position among the

TESLA participants when considering all three evaluation met-

rics. Additionally, our classifiers surpassed the performance of

the classifier reported by Gartner et al. for the NCI-test data-

set28 in which our approach resulted in a remarkable 30% in-

crease in the number of immunogenic neo-peptides ranked

within the top 20.

In order to assess the significance of features in the classifica-

tion task, we used Shapley values.50,51 For prioritization of muta-

tions, features describing both the mutations (e.g., RNA expres-

sion and ipMSDB) and their neo-peptides (e.g., binding affinity)

had high importance. In contrast, for prioritization of neo-pep-

tides, binding affinity and stability features dominated. Overall,

the performance of HLA binding prediction tools has greatly

improved over the last years, especially due to the availability

of high-scale accurate MS data of eluted HLA peptides and

the implementation of advanced ML approaches. However,

our analysis showed that for some peptides that failed to be

placed in the top ranks, the limiting factor was, to our surprise,

the still suboptimal accuracy of the HLA binding affinity predic-

tion. Nevertheless, we demonstrated that many other features

are positively associated with the ranking. This was particularly

visible when we excluded ipMSDB and IntOGen features from

the features set used for the classification, leading to a decrease

in performance.

Our classifiers perform well for datasets with different immu-

nogenicity validation methods, providing an advantage that al-

lows them to be utilized by diverse groups, irrespective of their

chosen validation methods. Our results will contribute to immu-

nogenicity prediction in two scenarios. First, users can repro-

duce all the features we included in our work and apply our

trained classifiers directly for antigen prioritization on their data

or combine our classifiers with classifiers trained on their own

data. Second, our harmonized datasets can serve as a basis.

The available features can be edited, and additional features
2660 Immunity 56, 2650–2663, November 14, 2023
can be included. Users can train and benchmark their own clas-

sifiers and ML methods with these datasets. To conclude,

together with our ML classifiers and ML methods, we provide

easily accessible data for method development and bench-

marking with the aim to improve the selection of immunogenic

neo-peptides and mutations for the development of effective

personalized immunotherapy treatments.

Limitations of the study
Of note, some potential limitations should be considered. The

datasets may contain some false-negative neo-peptides

because only a subset was screened for immunogenicity. It is

equally important to note that the assessment of neoantigen-

specific responses may underestimate their true potential due

to the possibility of T cell exhaustion, which can result in limited

expansion or diminished reactivity during in vitro culture.57 This

situation could be improved by screening more neo-peptides

per mutation or by applying semi-supervised learning methods,

which use a combination of clustering and classification algo-

rithms to correct the labels of some wrongly assigned data

points. In this study we exclusively considered SNV SMs, but it

is known that peptides mapped to insertions, deletions, and

out-of-frame and gene fusion events have a high immunoge-

nicity potential due to their increased dissimilarity to WT HLA-

bound peptides. However, the amount of immunogenicity data

available for non-SNV genomic alterations is limited. To circum-

vent this limitation, one could leverage the predictors built on

SNV mutations and neo-peptides to predict the immunogenicity

for non-SNVmutations too. In addition, HLA loss of heterozygos-

ity and expression silencing frequently occurs in cancers41,58

and such silenced HLA alleles may be excluded from HLA bind-

ing and stability predictions. Furthermore, once enough data for

CD4+ T cell recognition of neo-peptides will be available, predic-

tors for neoantigens bound to HLA-II complexes may apply a

similar approach.7,59–63
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the proteasome in generating cytotoxic T-cell epitopes: insights obtained

from improved predictions of proteasomal cleavage. Immunogenetics 57,

33–41. https://doi.org/10.1007/s00251-005-0781-7.

30. Larsen, M.V., Lundegaard, C., Lamberth, K., Buus, S., Brunak, S., Lund,

O., and Nielsen, M. (2005). An integrative approach to CTL epitope predic-

tion: a combined algorithm integrating MHC class I binding, TAP transport

efficiency, and proteasomal cleavage predictions. Eur. J. Immunol. 35,

2295–2303. https://doi.org/10.1002/eji.200425811.

31. Harndahl, M., Rasmussen, M., Roder, G., Dalgaard Pedersen, I.D.,

Sørensen, M., Nielsen, M., and Buus, S. (2012). Peptide-MHC class I sta-

bility is a better predictor than peptide affinity of CTL immunogenicity. Eur.

J. Immunol. 42, 1405–1416. https://doi.org/10.1002/eji.201141774.

32. Ghorani, E., Rosenthal, R., McGranahan, N., Reading, J.L., Lynch, M.,

Peggs, K.S., Swanton, C., and Quezada, S.A. (2018). Differential binding

affinity of mutated peptides for MHC class I is a predictor of survival in

advanced lung cancer and melanoma. Ann. Oncol. 29, 271–279. https://

doi.org/10.1093/annonc/mdx687.

33. Capietto, A.H., Jhunjhunwala, S., Pollock, S.B., Lupardus, P., Wong, J.,

H€ansch, L., Cevallos, J., Chestnut, Y., Fernandez, A., Lounsbury, N.,

et al. (2020). Mutation position is an important determinant for predicting

cancer neoantigens. J. Exp. Med. 217. https://doi.org/10.1084/jem.

20190179.

34. Chowell, D., Krishna, S., Becker, P.D., Cocita, C., Shu, J., Tan, X.,

Greenberg, P.D., Klavinskis, L.S., Blattman, J.N., and Anderson, K.S.

(2015). TCR contact residue hydrophobicity is a hallmark of immunogenic

CD8+ T cell epitopes. Proc. Natl. Acad. Sci. USA 112, E1754–E1762.

https://doi.org/10.1073/pnas.1500973112.

35. Gfeller, D., Schmidt, J., Croce, G., Guillaume, P., Bobisse, S., Genolet, R.,

Queiroz, L., Cesbron, J., Racle, J., and Harari, A. (2023). Improved predic-

tions of antigen presentation and TCR recognition with MixMHCpred2.2

and PRIME2.0 reveal potent SARS-CoV-2 CD8+ T-cell epitopes. Cell

Syst. 14, 72–83.e5. https://doi.org/10.1016/j.cels.2022.12.002.

36. M€uller, M., Gfeller, D., Coukos, G., and Bassani-Sternberg, M. (2017).

‘Hotspots’ of antigen presentation revealed by human leukocyte antigen
2662 Immunity 56, 2650–2663, November 14, 2023
ligandomics for neoantigen prioritization. Front. Immunol. 8, 1367.

https://doi.org/10.3389/fimmu.2017.01367.

37. Hoyos, D., Zappasodi, R., Schulze, I., Sethna, Z., de Andrade, K.C.,

Bajorin, D.F., Bandlamudi, C., Callahan, M.K., Funt, S.A., Hadrup, S.R.,

et al. (2022). Fundamental immune–oncogenicity trade-offs define driver

mutation fitness. Nature 606, 172–179. https://doi.org/10.1038/s41586-

022-04696-z.

38. Martı́nez-Jiménez, F., Muiños, F., Sentı́s, I., Deu-Pons, J., Reyes-Salazar,

I., Arnedo-Pac, C., Mularoni, L., Pich, O., Bonet, J., Kranas, H., et al.

(2020). A compendium of mutational cancer driver genes. Nat. Rev.

Cancer 20, 555–572. https://doi.org/10.1038/s41568-020-0290-x.

39. Rogers, M.F., Shihab, H.A., Gaunt, T.R., and Campbell, C. (2017).

CScape: a tool for predicting oncogenic single-point mutations in the

cancer genome. Sci. Rep. 7, 11597. https://doi.org/10.1038/s41598-

017-11746-4.

40. Abelin, J.G., Keskin, D.B., Sarkizova, S., Hartigan, C.R., Zhang, W.,

Sidney, J., Stevens, J., Lane, W., Zhang, G.L., Eisenhaure, T.M., et al.

(2017). Mass spectrometry profiling of HLA-associated peptidomes in

mono-allelic cells enables more accurate epitope prediction. Immunity

46, 315–326. https://doi.org/10.1016/j.immuni.2017.02.007.

41. McGranahan, N., and Swanton, C. (2019). Neoantigen quality, not quan-

tity. Sci. Transl. Med. 11. https://doi.org/10.1126/scitranslmed.aax7918.

42. Bassani-Sternberg, M., Pletscher-Frankild, S., Jensen, L.J., and Mann, M.

(2015). Mass spectrometry of human leukocyte antigen class I peptidomes

reveals strong effects of protein abundance and turnover on antigen pre-

sentation. Mol. Cell. Proteomics 14, 658–673. https://doi.org/10.1074/

mcp.M114.042812.

43. Pearson, H., Daouda, T., Granados, D.P., Durette, C., Bonneil, E.,

Courcelles, M., Rodenbrock, A., Laverdure, J.P., Côté, C., Mader, S.,
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REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

CD8-PB BD Biosciences Cat# 558207

CD4-FITC BioLegend Cat# 317408

CD3-APC Fire 750 BioLegend Cat# 344840

CD137-PE Miltenyi Biotec Cat# 130-119-885

Aqua L/D ThermoFisher Scientific Cat# L34966

Chemicals, peptides, and recombinant proteins

Peptides Peptide & Tetramer Core Facility,

CHUV, Lausanne

https://www.unil.ch/dof/en/home/menuinst/research-

platforms/ptcf.html

Peptides Covalab, Lyon https://www.covalab.com

Peptides ThermoFisher Scientific https://www.thermofisher.com/ch/en/home/life-science/

protein-biology/peptides-proteins/custom-peptide-

synthesis-services.html

Critical commercial assays

ELISpot Pro: Human IFN-g (ALP) Mabtech Cat# 3420-2APT-10

Deposited data

NCI WES, RNASeq Gartner et al.28 https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.

cgi?study_id=phs001003.v2.p1

TESLA WES, RNASeq Wells et al.26 https://www.synapse.org/#!Synapse:syn21048999

HiTIDE WES, RNAseq This paper https://ega-archive.org/studies/EGAS00001007101

NCI training mut-seq immunogenicity

table

Gartner et al.28 https://doi.org/10.35092/yhjc.c.4792338.v2

NCI testing mut-seq immunogenicity

table

Gartner et al.28 https://doi.org/10.35092/yhjc.c.4792338.v2

NCI training neo-pep immunogenicity

table

Gartner et al.28 https://doi.org/10.35092/yhjc.c.4792338.v2

NCI testing neo-pep immunogenicity

table

Gartner et al.28 https://doi.org/10.35092/yhjc.c.4792338.v2

TESLA neo-pep immunogenicity table Wells et al.26 https://www.cell.com/cms/10.1016/j.cell.2020.09.015/

attachment/34faddbd-0e41-4761-99fa-ebe5af540ee2/

mmc4.xlsx

TESLA neo-pep immunogenicity table Wells et al.26 https://www.cell.com/cms/10.1016/j.cell.2020.09.015/

attachment/9b558895-8657-4167-ab23-8cf4472d395b/

mmc7.xlsx

HiTIDE neo-pep immunogenicity table This paper https://ega-archive.org/studies/EGAS00001007101

Combined data matrix neo-pep This paper https://figshare.com/s/147e67dde683fb769908

Combined data matrix mut-seq This paper https://figshare.com/s/2462b62bb6630fe2d257

NCBI GRCh37 v37 Genome Reference Consortium https://www.ncbi.nlm.nih.gov/assembly/GCF_000001405.13/

GENECODE Release 38 The GENECODE Project https://www.gencodegenes.org/human/

GTEx v8 The GTEx Consortium https://www.gtexportal.org/

TCGA September 2021 The Cancer Genome

Atlas Program

https://www.cancer.gov/tcga

Software and algorithms

Logistic regression scikit-learn v1.0.2 Cox46 https://scikit-learn.org/stable/modules/generated/

sklearn.linear_model.LogisticRegression.html

Support vector machine

scikit-learn v1.0.2

Boser et al.49 https://scikit-learn.org/stable/modules/generated/

sklearn.svm.SVC.html

(Continued on next page)
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StratifiedKFold scikit-learn v1.0.2 scikit-learn https://scikit-learn.org/stable/modules/generated/

sklearn.model_selection.StratifiedKFold.html

CatBoost v1.0.4 Prokhorenkova et al.48 https://github.com/catboost/catboost

XGBoost v1.5.1 Chen and Guestrin47 https://github.com/dmlc/xgboost

Hyperopt v0.2.7 Bergstra et al.45 http://hyperopt.github.io/hyperopt/

SHAP v0.41.0 Lundberg and Lee51 https://github.com/slundberg/shap

HLA-HD v1.4.0 Kawaguchi et al.64 https://www.genome.med.kyoto-u.ac.jp/HLA-HD/

STAR v2.7.8a Dobin et al.65 https://github.com/alexdobin/STAR/releases

GATK v4.2.0.0 Van der Auwera et al.66 https://gatk.broadinstitute.org/

Sequenza v3.0.0 Favero et al.67 https://cran.r-project.org/web/packages/sequenza/

vignettes/sequenza.html

HaplotypeCaller v4.2.0.0 Van der Auwera et al.66 https://gatk.broadinstitute.org/hc/en-us/articles/

360037225632-HaplotypeCaller

Mutect1 v1.1.5 Cibulskis et al.68 https://github.com/broadinstitute/mutect/releases/tag/1.1.5

Mutect2 v4.2.0.0 Van der Auwera et al.66 https://gatk.broadinstitute.org/hc/en-us/articles/

360056969692-Mutect2

VarScan2 v2.4.4 Koboldt et al.69 https://github.com/dkoboldt/varscan

MixMHCpred v2.1 Bassani-Sternberg et al.16 https://github.com/GfellerLab/MixMHCpred

NetMHCpan v4.1 Reynisson et al.15 https://services.healthtech.dtu.dk/service.php?

NetMHCpan-4.1

PRIME v1.0.1 Schmidt et al.23 https://github.com/GfellerLab/PRIME

NetChop v3.1 Nielsen et al.29 https://services.healthtech.dtu.dk/service.

php?NetChop-3.1

NetMHCstabpan v1.0a Harndahl et al.31 https://services.healthtech.dtu.dk/service.

php?NetMHCstabpan-1.0

NetCTLpan v1.1 Larsen et al.30 https://services.healthtech.dtu.dk/service.

php?NetCTLpan-1.1

Cscape July 2017 Rogers et al.39 http://cscape.biocompute.org.uk/
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RESOURCE AVAILABILITY

Lead Contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the lead contact Michal

Bassani-Sternberg (michal.bassani@chuv.ch).

Materials Availability
This study did not generate new unique reagents.

Data and Code Availability
WES and RNASeq raw data files for HiTIDE Patient1-Patient11 have been deposited to the secure EGA repository (https://ega-

archive.org) in standard fastq file format under EGA ID EGAS00001007101.

Python code can be downloaded from the github repository: https://github.com/bassanilab/NeoRanking.git

Datasets for mutations containing the feature values and immunogenicity annotations can be downloaded from: https://figshare.

com/s/2462b62bb6630fe2d257

Datasets for neo-peptides containing the feature values and immunogenicity annotations can be downloaded from: https://

figshare.com/s/147e67dde683fb769908

ipMSDB peptides can be downloaded from: https://figshare.com/s/4f551e68e44d9cbf9ccd

HLA allotypes for all patients can be downloaded from the figshare repository: https://figshare.com/s/35361871fdad4d1754d7

Neo-peptide LR and XGBoost classifiers trained on NCI-train can be downloaded from: https://figshare.com/s/

a000b0990465ab3e9d33

Mutation LR and XGBoost classifiers trained on NCI-train can be downloaded from: https://figshare.com/s/3c27fa3b705a74bdfa10
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METHOD DETAILS

Datasets
This study includes three cohort datasets consisting of whole exome (WES) and bulk RNA (RNAseq) sequencing data from healthy

and matched cancerous tissues or cell lines, as well as information about the immunogenicity of somatic mutations. The datasets

were re-analyzed using a uniform pipeline as indicated below. Because some elements are associated with the mutations and

some with predicted neoantigens, throughout the text we used the following naming conventions: mutations (mut-seq) refers

25mer sequences with a mutation in the center, neo-peptides (neo-pep) refers to 8-12 (if not otherwise indicated) amino acids

(AA) long subsequences of the 25mers containing the mutation, neoantigen if the statement applies to both mutations and neo-pep-

tides. For the different subsets of our data, we used the following naming convention: DATASET_PEPTIDETYPE. The DATASET is

equal to either NCI, NCI-train, NCI-test, TESLA, HiTIDE, or empty if all datasets are addressed (more information about these data-

sets is indicated below). ThePEPTIDETYPE is equal to eithermut-seq,wt-seq (wild type (WT) version ofmut-seq), neo-pep, orwt-pep

(WT version of neo-pep). IfPEPTIDETYPE is omitted, bothmut-seq and neo-peptide are referred to. In the text and figureswe referred

to different peptide subsets of the data. Datasets consist of not-screened and screened (either screened experimentally or inferred)

neo-peps ormut-seqs. Screened neo-peps ormut-seqs, can be immunogenic or non-immunogenic (either screened experimentally

or not) (Table 1). For example, immunogenic TESLA_neo-pep denotes all immunogenic neo-peptides of the TESLA dataset, immu-

nogenic TESLA denotes either immunogenic mutations or neo-peptides of the TESLA dataset.

NCI cohort

The largest dataset is a compilation of published datasets from the Rosenberg lab at the Surgery Brunch of the National Cancer Insti-

tute (NCI).1,27,28 It was downloaded from the dbGap repository (https://dbgap.ncbi.nlm.nih.gov) under accession number

phs001003.v1.p1. The NCI dataset contains mainly skin cutaneous melanoma, colon and rectum adenocarcinoma, lung adenocar-

cinoma, and breast invasive carcinoma (Data S1). Immunogenicity assay information was obtained from Gartner et al. At the time of

download (December 2021), for 112 patients, a cohort defined here as NCI_mut-seq, we were able to retrieve matched WES and

RNAseq data files as well as results from immunogenicity screens of somatic genomicmutations (non-synonymous single nucleotide

variants (SNV), InDels and FSs). Filters based on RNAseq data were generally applied to prioritize mutations prior to the immunoge-

nicity screening.28 In these screens, minigenes encoding the mutations and 12 flanking WT AA on each side were transcribed in vitro

and transfected into autologous APCs followed by a co-culture with TIL cultures and IFN-g ELISPOT immunogenicity measurement.

For 80 of the 112 patients, a cohort we defined as NCI_neo-pep, other immunogenicity screens were performed to identify the

optimal neo-antigenic epitopes and their HLA restrictions. For the mutations, which tested positive in the minigene immunogenicity

assay, the top-ranked neo-peptides predicted byNetMHCpanwere submitted to immunogenicity assays. Autologous APCs or APCs

engineered to express the patient’s HLA-I alleles were pulsed with the selected neo-peptides, prior to co-culture with TILs and IFNg

ELISpot readout. Neo-peptides with positive ELISpot readout are called immunogenic. We used the same neo-peptide annotations

as provided byGartner et al.: of themutations screened byminigenes (positive and negative), the neo-peptides that were not found to

be immunogenic in the neo-peptide screens or not screenedwere considered not immunogenic or negative. All neo-peptides derived

from mutations that were not screened by minigenes are annotated as not screened. Following Gartner et al., we divided the NCI_

mut-seq and NCI_neo-pep cohorts into a training set (89 patients for NCI_mut-seq, 57 patients for NCI_neo-pep) and a test set

(23 patients each) (Data S1). The lower number of patients compared to Gartner et al. (70 patients versus 57 for training and 26 pa-

tients versus 23 for testing) is due to the missing RNAseq data on dbgap. A description of the pipeline used by Gartner et al. to pro-

cess the WES and RNAseq data can be found in the supplemental information of Parkhurst et al.27

TESLA cohort

The TESLA consortium26 shared tumor and normal WES and tumor RNAseq data of nine patients with 25 different scientific groups

working in the field. The participants used their proprietary software pipelines to call the somatic mutations (non-synonymous SNV or

short InDels) and rank the epitopes according to their immunogenicity potential. The TESLA consortium collected these ranked lists

and compiled a list of highly or reproducibly ranked neo-peptides for immunogenicity screening, where HLA-I peptidemultimerswere

incubated with subject-matched TILs or peripheral blood mononuclear cells (PBMCs).26 For the first batch consisting of six patients

(threemelanoma and threeNSCLC), 608 neo-peptides (8-14mers) were screened and 37 of themwere found to be immunogenic. For

the second batch of another three melanoma patients, a compilation of 310 neo-peptides (9-11 mers) was screened, resulting in four

immunogenic epitopes. In total, datasets of eight patients (five with skin cutaneous melanoma, and three with NSCLC) were down-

loaded and processed as indicated below. We inferred annotations for the mutations from annotations of the neo-peptides, where a

mutation is called immunogenic when at least one of its neo-peptides was reported as immunogenic, non-immunogenic when at

least one of its neo-peptides was screened but none was found to be not immunogenic, and not screened otherwise. The data

was downloaded from the Synapse repository (https://www.synapse.org/) under accession number Synapse:syn21048999. We

were not able to download the WES and RNAseq data files for one patient. More information can be found in Data S1.

HiTIDE cohort

Samples used in this study were from individuals enrolled in a clinical trial and approved by the institutional regulatory committee at

Lausanne University Hospital (Ethics Committee, University Hospital of Lausanne-CHUV). All patients provided informed consent.

The HiTIDE in-house dataset consists ofWES andRNAseq data and immunogenicity screening results for 11 patients withmetastatic

melanoma, lung, kidney, and stomach cancers (Data S1), enrolled in phase I clinical trials of TIL ACT (NCT0347513470 &

NCT04643574). Data included in this study is comprised of both published13 and unpublished data.
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DNAwas extractedwith the commercially available DNeasy Blood & Tissue Kit (Qiagen) according to themanufacturers’ protocols.

RNA was extracted using the Total RNA Isolation RNeasy Mini Kit (Qiagen) according to the manufacturer’s protocol (including

DNase I (Qiagen) on-column digestion). WES and RNAseq measurements were performed at the Lausanne Genomic Technologies

Facility (GTF) (2 patients), at the Health 2030 Genome Center (1 patient) or at Microsynth (8 patients). WES libraries were prepared

using the Agilent SureSelect XT Human All exome V5 (GTF) or V7 (Microsynth) kits or Twist Human Core Exome kit in combination

with the Twist Human Refseq (Genome Center). RNAseq libraries were prepared using the Illumina Truseq strandedmRNA reagents.

WES and RNAseq samples were sequenced on the Illumina HiSeq 2500 (GTF), NextSeq 500/550 (Microsynth) or HiSeq 4000

(Genome Center) systems.

Variant calling and RNAseq analysis was performed as indicated below and neo-peptides were ranked based on the MixMHC and

PRIME ranks, RNAseq gene expression and coverage, cancer cell fraction, and ipMSDB scores to select for each patient a set of

neo-peptides that were then screened for immunogenicity by interrogating both in-house generated NeoScreen TILs and TIL clinical

products (NCT03475134, NCT04643574), using IFNg Enzyme-Linked ImmunoSpot (ELISpot), as previously described.13 Briefly, TILs

were challenged with 1mg/mL neo-peptides in pre-coated 96-well ELISpot plates (Mabtech). Following 16 to 20hrs co-culture, cells

were gently harvested from ELISpot plates, which were then developed according to the manufacturer’s instructions and counted

with a Bioreader-6000-E (BioSys). Phorbol 12-myristate 13-acetate ionomycin (PMA-iono) (Thermo Fisher Scientific) was used to

stimulate TILs as positive control. Positive conditions were defined as those with an average number of spots higher than the counts

of the negative control (TILs alone) plus 3 times the standard deviation of the negative. To confirm the recognition of immunogenic

neo-peptides by CD8+ T cells, TILs were retrieved from plates, centrifuged and stained to assess the up-regulation of the activation

marker 4-1BB on CD8+ or CD4+ T-cells by flow cytometry (Figure S1). For five immunogenic neo-peptides, non-detectable (ND) flow

cytometry responses for CD8+ and CD4+ were obtained. In these five instances, the annotation of neo-peptides as immunogenic

CD8+ targets was determined by assessing their predicted binding affinity to HLA-I alleles and the absence of CD4+ responses.

As for the TESLA dataset, we inferred the mutation immunogenicity annotation from the annotations of the neo-peptides containing

the mutation. HiTIDE WES and RNAseq data can be downloaded from the European Genome-phenome Archive (EGA, https://ega-

archive.org), and can be accessed with the EFA ID EGAS00001007101. Immunogenicity annotations can be found on figshare

https://figshare.com/s/147e67dde683fb769908.

Features describing mutations and neo-peptides

All datasets were processed with a uniform pipeline, which is an assembly of standard tools to perform variant calling, RNAseq

expression and coverage analysis, and HLA typing. A consensus HLA typing was created for each patient from WES and RNAseq

data with HLA-HD v1.4.0.64 RNAseq reads were aligned to GRCh37 and counted with STAR v 2.7.8a,65 where GENCODE v38 anno-

tation was used to define genomic regions for reads counting. If several tumor samples per patient were available, themaximal RNA-

seq expression and read coverage scores were taken. Prior to variant calling, WES reads were processed following GATK v4.2.0.066

best practices workflow for somatic short variant discovery. Tumor content and copy numbers were estimated by Sequenza v3.0.067

and were used for the calculation of the cancer-cell fractions and clonality. SNVs, InDels, and FS identified by the four variant calling

algorithms (HaplotypeCaller,66 Mutect2,66Mutect1,68 and VarScan269) weremerged together and high confidence variants identified

by a minimum of two algorithms were selected for downstream analysis. High confidence somatic variants affecting protein-coding

genes, following GENCODE v38 annotation, were used to generate tumor-specific mutations (25mers) and class-I neo-peptides (8-

12mers). Neo-peptides that also match a WT sequence are discarded. Neo-peptides were then processed by the following tools:

MixMHCpred16 v2.1 and NetMHCpan v4.115 for HLA class I binding affinity prediction, PRIME23 v1.0.1 for antigen presentation

and T-cell receptor (TCR) recognition, NetMHCstabpan31 v1.0a for HLA class I binding stability, NetChop29 v3.1 for C-terminal pro-

teasomal cleavage, and NetCTLpan30 v1.1 for recognition by the TAP transporter complex. For binding affinity and stability %rank

scores were used and differential agretopicity indexes (DAI)19,22 were calculated as the log(neo-pep %rank) - log(wt-pep %rank).

HLA-binding anchor positions of the peptides were calculated based on MixMHCpred sequence motifs. Patient-specific HLA hap-

lotypes were used as input for binding affinity and stability prediction. The oncogenic status of SNVs was predicted by CScape,39

which is a ML tool trained on data from the COSMIC database (http://cancer.sanger.ac.uk/cosmic/help/gene/analysis) that predicts

the oncogenicity of a mutation based on sequence conservation at the mutation site, as well as genomic, proteomic and structural

features. SNV cancer driver status annotations were obtained from the Integrative Onco Genomics (IntOGen) database.38 GTEx v8

(https://www.gtexportal.org/) and TCGA (https://www.cancer.gov/tcga) databases containing tissue-specific gene expression data,

were used for the annotation of mutated gene expression. Sample-specific RNAseq data were additionally used to obtain mutated

gene expression andmutation read coverage. ipMSDB36 is an in-house database containing HLA-I and -II binding peptides identified

by mass spectrometry from various healthy and cancerous tissues and cell lines with different HLA-I and -II alleles. For this work we

used an ipMSDB version with 547,476 unique HLA-I binding peptides, where samples from HiTIDE cohort were excluded. We in-

ferred the presentation of a mutation or neo-peptide based on ipMSDB information available for the corresponding wt-seq or wt-

pep. We classified wt-pep matches to ipMSDB into the following subgroups: EXACT if wt-pep matches exactly a peptide found

in an ipMSDB, INCLUDED if wt-pep is fully included in a longer ipMSDB peptide, PARTIAL (PARTIAL_MUT) if the match is partial

(including the position of the mutation), and COVER if wt-pep fully covers a shorter ipMSDB peptide. To infer the presentation of

the source protein, we assigned the ‘ipMSDB Peptide Count’ score, that represents the number unique peptides for a given protein

found in ipMSDB, whereas the ‘ipMSDB Peptide Score’ counts the AAs of the unique peptides in ipMSDB that overlap with a query
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wt-pep. ‘ipMSDB Mutation Score’ counts the AAs of the unique peptides in ipMSDB that overlap with a query wt-pep specifically at

the mutation position, and the ‘ipMSDB Peptide Overlap’ calculates the fraction of the query peptide covered by peptides in ipMSDB

(0: no overlap, 1: full coverage).

For each patient, we produced both a mutation and a neo-peptide table, each containing one row per mutation and per neo-pep-

tide with the feature scores and annotations as columns.More detailed descriptions of feature scores can be found below and in Data

S3. Download links for all available tools used in this study can be found in the key resources table. All the scores in the tables can be

calculated using publicly accessible tools that are free to use in academics.We also provide a public version of our ipMSDBdatabase

on figshare (https://figshare.com/s/4f551e68e44d9cbf9ccd).

Data normalization

Some numerical feature values may have patient or dataset dependent biases, and data normalization was required in order to

harmonize them.We experimentedwith different data transformers from the python scikit-learn preprocessing toolkit:QuantileTrans-

former, PowerTransformer, MinMaxScaler and StandartScaler. The QuantileTransformermapped all values to the interval [0, 1] such

that the values are evenly distributed. The PowerTransformer applied a transformation to make the values Gaussian-like with zero

mean and standard deviation of one. The MinMaxScaler transformed the values to the interval [0, 1] by an affine transformation.

The distribution of the values remained the same apart from a constant shift and change of scale. The StandartScaler transformed

the values to their z-score by subtracting the mean and dividing by the standard deviation. Each transformation was applied to all the

numerical features of each patient after MV imputation (see DataTransformer class).

Conversion of categorical values to numerical

Categorical features can only take on a few predefined values, which cannot be compared or ordered in a natural way. Categorical

features were turned into numerical ones by a process called target encoding. For each categorical feature i the numerical value of its

category cij was set to the rate rij of immunogenic mutations or neo-peptides in this category in the training data: rij = Eðy��Xki = =

cijÞ =

Pn

k = 1
½Xki = = cij �ykPn

k = 1
½Xki = = cij �

, where yk = 1 if k is an immunogenic mutation or neo-peptide and 0 otherwise, X is the n3m (n mutations or

neo-peptides, m features) training data matrix i.e. Xki is the value of feature i for mutation or neo-peptide k, and ½:� is a function that

maps a boolean to an integer: ½true� = 1 and ½false� = 0 (see CatEncoder class)

Missing value imputation

Missing values (MV) were treated differently for numerical and categorical features. For numerical features, missing values were set

either to the maximum or minimum value of that feature in the training data. For example, if the feature represents the TPM values

from RNAseq, a missing value means that no reads were detected for this gene and the missing value was replaced by 0 (minimum).

On the other hand, if the feature represents the rank of MixMHC binding prediction, a missing value means that none of the patient’s

allele was predicted to bind to the neo-peptide by the respective binding affinity tool, therefore themissing value was replaced by the

maximum binding rank (100). The rules whether to choose minimum or maximum values were set manually for each feature (class

GlobalParameters in python code). For RNAseq mutation coverage we made the imputed values dependent on the RNAseq percen-

tile value: if RNAseq of a gene is smaller than the 50%percentile for a patient, we imputed a value of 0%, if RNAseq is larger than 50%

percentile and smaller than 75% for a patient, we imputed 11%, and for RNAseq values larger than 75% percentile with imputed

23%. For categorical features no imputation was performed but the peptide was assigned to the category for MVs (see

DataTransformer class).

Subsampling of neo-peptides for training

In order to limit computation time during Hyperopt training on neo-peptides, the size of NCI-train_neo-pep was limited by randomly

sampling 100,000 non-immunogenic neo-peptides from NCI-train_neo-pep, while all immunogenic neo-peptides in NCI-train_neo-

pep were retained. For the test datasets, no limitation on the size of the data matrices was enforced. Subsampling of non-immuno-

genic neo-peptides was applied each time when running the Hyperopt optimization. For training on the smaller mutation data NCI-

train_mut-seq, no limit on the number of non-immunogenic mutations was used.

Rank score

The rank score is defined as: rank score =
Pn

k = 1e
�a$ðrk � 1Þ, where rk is the rank of an immunogenicmutation or neo-peptide k deter-

mined by a classifier’s predict proba function among all other mutations or neo-peptides in a data set or patient (best rank is 1). The

higher the predicted probability of an immunogenic mutation or neo-peptide the lower its rank, and the higher its contribution to

rank score. The factor a determines how much weight we gave to low ranking mutations or neo-peptides compared to high ranking

ones. For training neo-peptides on screened NCI-trainwe used a = 0:005, whereas a = 0:05 was used for mutations. a = 0:02 was

used when calculating the rank scores per patient for both mutations and neo-peptides. We defined the rank score vector as:

rank score vec = ðe�a$ðr1 � 1Þ;e�a$ðr2 � 1Þ; :::;e�a$ðrn � 1ÞÞ, for n immunogenic mutations or neo-peptides.

Classifiers

Logistic regression46 (LR) is frequently used to estimate the probabilities of binary responses. It assumes that the log-odds (logarithm

of the class probability ratio) is a linear function of the feature values plus an offset resulting in a linear class boundary. LR is a fast and

scalable method that is robust to outliers or mislabeled data vectors.

The Support Vector Machine (SVM) classifier was developed by Vapnik and collaborators.49 In its basic form, it fits a linear class

boundary that maximizes the margin separating the two classes while minimizing the hinge loss of misclassified data vectors, which

yields robust classification results. It can easily be extended to fitting nonlinear class boundaries by replacing the linear kernel with
e5 Immunity 56, 2650–2663.e1–e6, November 14, 2023
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non-linear ones, which makes it a very flexible classifier. Here we use the SVM with linear (SVM-Linear) and radial basis function

kernel (SVM-RBF).

XGBoost47 is a gradient tree boosting method, where the class labels are approximated by a sum of regression trees. Overfitting is

avoided by penalizing trees withmany leaves and large values within the leaf nodes. Further, feature and row sampling and shrinkage

of regression tree leaf values can be applied. It works on sparse data and allowsmissing value imputation. The method is made scal-

able to very large datasets by a series of algorithmic improvements and parallelization as well as GPU usage.

CatBoost48 is another recent gradient-boosting classifier. It handles categorical features and their interactions efficiently during

training. It prevents overfitting especially for smaller datasets by estimating the gradients on different data than the ones used to es-

timate the trees by a technique called ordered boosting. Efficient implementation of the training procedure and an implementation

tailored for GPU’s make it a fast and scalable algorithm.

Classifier training with Hyperopt

Every classifier algorithm has hyper-parameters, which need to be set prior to training. Since these hyper-parameter settings can

have a drastic effect on the classification performance it was important to select the best hyperparameters for each classifier. We

used the Hyperopt framework, which implements sequential model-based optimization (also known as Bayesian optimization). In

this iterative approach, a new guess of hyper-parameter values was calculated based on the results of previously tested values,

which calculates for each hyper-parameter the value with the highest expected improvement. The user can define a loss function

to be minimized and the range and the prior distributions of possible hyper-parameter values. Hyperparameters of all classifiers

can be found on the project’s github repository in the OptimizationParams class.

Hyperopt optimization was performed on the screened mutations or neo-peptides of NCI-train if not otherwise stated (when using

HiTIDe for training we included both screened and non-screened neo-peptides). In each Hyperopt iteration we used 5-fold cross-

validation. Since our datasets are unbalanced (many more non-immunogenic mutations or neo-peptides than immunogenic ones)

we used stratified CV (scikit-learn class StratifiedKFold) to make sure that we have a similar proportion of immunogenic mutations

or neo-peptides in both training and validations sets. A classifier was trained on the training sets and the performance was evaluated

using the rank_score of the immunogenic mutations or neo-peptides in the validation set. A trained classifier C ranked an immuno-

genic mutation or neo-peptide among all non-immunogenic mutations or neo-peptides of the validation set by sorting the

C:predict probaðxiÞ probability values (xi is the feature vector of mutation or neo-peptide i) in decreasing order. Once the optimal

hyperparameters were obtained, the classifierCwith the optimal hyperparameters was retrained on NCI-train using theC:fitmethod,

and these refitted classifiers were stored in binary files. See python class ClassifierManager for more details. The number of Hyperopt

iterations was set to 200, if not otherwise stated. Since Hyperopt training is not deterministic it was always repeated 10 times to es-

timate the variability.

Classifier evaluation on test datasets

The performance of a classifier C trained on NCI-train was evaluated on the independent test datasets NCI-test, TESLA and HiTIDe.

For each patient p in a test dataset, all (screened and not-screened) mutations or neo-peptides i are sorted using the

C:predict probaðxiÞ values and the ranks of the immunogenic mutations or neo-peptides were calculated.

Training and testing on NCI-train with leave-one-out CV
When we evaluated the classifier performance on the training sets (NCI-train, HiTIDe) themselves, we used leave-one-out CV. We

excluded one patient from the training set in the Hyperopt optimization and used this patient as an independent test set. This pro-

cedure was repeated for all patients in the training set.

Voting classifier

The voting classifier simply added the probability p = predict probaðxkÞ of all base classifiers and then performed the ranking. The

weighted voting classifier includes a weight w for the probabilities p of classifiers c in two groups G1;2: p = ð1 �wÞ P

c˛G1

pc +w
P

c˛G2

pc

(see ClassifierManager class on github).

Feature importance

For a given set ofm features F = ff1;f2;::;fmg, a feature vector x, and dataset X, the Shapley value41 4f ðxÞ tells us the contribution of a

feature value xfi to the difference between the actual prediction gFðxÞ and themean prediction E½gFðxÞjx ˛X�, where themean is taken

over the dataset X: gFðxÞ = E½gFðxÞjx ˛X�+ Pm
i = 14fi ðxÞ. The calculation of the Shapley value involves a summation over all feature

subsets, which is computationally very time consuming, and the python package SHAP51 implements different sampling approxima-

tions of the exact Shapley values (so called Explainers).
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