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of sodium-glucose co-transporter 1 in enterocytes
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Markus Mühlemann,5 Bernard Thorens,6 Nathalie D. Delzenne,7 Laure B. Bindels,7 Benoit Deprez,8

Marie C. Vantyghem,1 Blandine Laferrère,9 Bart Staels,2 Damien Huglo,3 Sophie Lestavel,2

and François Pattou1,11,*

SUMMARY

Metformin (MET) is the most prescribed antidiabetic drug, but its mechanisms of
action remain elusive. Recent data point to the gut as MET’s primary target.
Here,weexplored the effect ofMETon thegutglucose transportmachinery.Using
human enterocytes (Caco-2/TC7 cells) in vitro, we showed that MET transiently
reduced the apical density of sodium-glucose transporter 1 (SGLT1) and decreased
the absorption of glucose, without changes in the mRNA levels of the transporter.
Administered 1 h before a glucose challenge in rats (Wistar, GK), C57BL6mice and
mice pigs, oral MET reduced the post-prandial glucose response (PGR). This
effect was abrogated in SGLT1-KO mice. MET also reduced the luminal clearance
of 2-(18F)-fluoro-2-deoxy-D-glucose after oral administration in rats. In conclusion,
oral metformin transiently lowers post-prandial glucose response by reducing
the apical expression of SGLT1 in enterocytes, which may contribute to the clinical
effects of the drug.

INTRODUCTION

Metformin (MET) is a widely used glucose-lowering agent in the clinic for type 2 diabetes (T2D) with bene-

ficial effects on cardiovascular diseases and cancer.1,2 MET decreases hepatic endogenous glucose

production3,4 and increases insulin sensitivity.5–7 Alternatively, recent data suggest that the primary

glucose-lowering effect of MET resides in the gut, not in the circulation.8–11 Such mechanisms likely

explain the decrease in the post-prandial glucose response (PGR) induced by oral MET treatment, inde-

pendently of changes in fasting glucose.12,13 The proposed gastrointestinal mechanisms of MET include

gastric emptying,14 intestinal uptake and utilization of blood glucose,15–17 bile acid trafficking,18–20

glucagon-like peptide-1 (GLP-1) secretion,21 or changes in the gut microbiota.22,23 An effect of MET in

dietary glucose absorption has been also suggested in animals24 and humans.25 However, the effect of

MET at the level of the enterocyte glucose transport machinery remains controversial. Lenzen et al.26

described the increased intestinal expression of Slc5a1, the gene encoding sodium-glucose transporter

1 (SGLT1), in rats treated with MET twice daily for a period of three days. Sakar et al. reported a decrease

in SGLT1 protein levels in the apical membrane with an increase in type 2 facilitated glucose transporter

(GLUT2) expression, resulting in a net increase in glucose absorption via adenosine monophosphate

kinase (AMPK) activation.27 Conversely, Horakova et al. provided indirect evidence suggesting that

MET modulates intestinal glucose transport in an AMPK-independent manner, but with increased pas-

sage of glucose from the lumen to the cell and decreased from the cell to the blood.28 Overall, the

effect of MET on intestinal glucose trafficking remains highly debated.29 In the present study, we demon-

strate that a single dose of MET reduces the apical density of SGLT1 in the enterocyte resulting in an

acute and transient decrease in the intestinal absorption of intraluminal glucose and a reduction in

the PGR.
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RESULTS

MET reduces the apical abundance of SGLT1 in a human intestinal Caco-2/TC7 cell model

First, we explored the direct effect of MET on SGLT1 biology in a human intestinal cell model. After a 1 h

incubation of polarized Caco-2/TC7 cells with 10 mM MET, a dose that was chosen to approximate the

concentration of metformin present at the apical side of the enterocytes 1 h after the ingestion of a single

dose of metformin,30 the apical presence of SGLT1 in the brush border membrane (BBM), was significantly

lower compared to vehicle-treated cells (Figures 1A and 1B). This reduction in SGLT1 abundance was

accompanied by a lower degree of apical uptake of a-methyl-D-[14C]-glucopyranoside (AMG) (Figure 1C),

a non-metabolizable glucose analog specifically transported by SGLT1.31 Moreover, SGLT1 abundance in
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Figure 1. Effects of a single dose of 10 mM metformin (MET) in Caco-2/TC7 cells after 1 h

(A) Representative immunofluorescence images (nR 12 in total) of SGLT1 in Caco-2/TC7 cells after a 1-h incubation with

vehicle or MET. Scale bar, 10 mm. The schematic diagram illustrates the plane of the images relative to the morphology of

the enterocytes.

(B) Quantification using arbitrary units (AU) of SGLT1 abundance in the brush border membrane (BBM) by fluoroscopy

(each dot represents one experiment performed with 3 biological replicates).

(C) a-Methyl-D-(14C)-glucopyranoside (AMG) apical uptake after 1 h of MET incubation (each dot represents one

experiment performed with four biological replicates).

(D) Quantification of SGLT1 abundance in the BBM after a 1-h incubation with MET and two different washout times

simulating the clearance of MET in vivo (3 and 9 h) and representative immunofluorescent images for each condition.

Scale bar, 20 mm. Each dot represents one experiment performed with two biological replicates. Data are mean G SEM

*p < 0.05 ***p < 0.001 and ****p < 0.0001 by two-way ANOVA(B, C) or one-way ANOVA(D), MET vs. vehicle.
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the BBM and apical uptake of AMG are correlated in Caco-2/TC7 cells (data not shown). To assess the

persistence in time of this acute effect of MET, we repeated this experiment in cells under washout condi-

tions. SGLT1 abundance at the apical membrane returned to vehicle levels at 3 h compared to the 1 h time

point and fully normalized after 9 h (Figure 1D). These changes in apical SGLT1 density were not accompa-

nied by modifications in the overall mRNA expression of SLC5A1 or other gluco-transporter genes in the

enterocyte (Figure S1).

A single oral dose of MET reduces PGR in vivo

To confirm the physiological relevance of the transient effect of MET observed in vitro, we evaluated the

changes in PGR in different animal models. First, Goto-Kakizaki (GK) diabetic rats were treated with a single

oral dose of MET 200 mpk, which was based on the human-animal dose relationship and the principle of

normalization to body surface area (i.e., allometric scaling).32 One hour later, rats were either killed for

immunohistological analysis or submitted to an oral glucose tolerance test (OGTT). Rats receivingMET dis-

played a lower apical density of SGLT1 in the jejunum compared to rats treated with vehicle (Figures 2A–

2C) together with lower levels of phosphorylated PKA substrates in enterocytes (Figures 2D and 2E) and a

lower PGR (Figure 2F). To evaluate the sustainability and reversibility of MET, rats received two extra

glucose challenges at 6 h intervals. The marked lowering of PGR observed after the first glucose challenge

(1 h after the MET dosing) compared to vehicle treatment was attenuated at 6 h and fully normalized at 12 h

(Figure 2F). The effect of MET on PGR varied with the time interval between its administration and that of

oral glucose and was maximal at 1 h (Figure S2A). Similarly, the PGR reduction by MET was dose-depen-

dent, being maximal at 200 mg/kg, though effective even at a 50 mg/kg dose (Figure S2B). To distinguish

the acute versus chronic effect of MET, GK rats received one single daily dose of MET (200 mpk) for one

week. The PGR was unchanged when the oral glucose challenge was performed 12 h after the last MET

dose in the daily group. In contrast, a single supplementary dose of MET, administered 1 h before the

oral glucose load further reduced PGR in the same rats (Figure 2G). Moreover, after 1 h of MET administra-

tion, an intraperitoneal glucose tolerance test was performed without significant changes in glucose levels

(Figure 2H); these results are in line with previous data in GK rats, which described a greater effect of MET at

feeding33 and also as measured by intravenous glucose tolerance test.34 Together, these various acute

effects of MET did not modify the expression of the main intestinal gluco-transporter genes in GK rats

(Figure S2C).

The lower PGR after a single dose of MET requires SGLT1 expression but not GLUT2

We also confirmed the effect of a single dose ofMET on PGR during anOGTT in C57BL/6mice compared to

vehicle-treated mice (Figure 3A). We then repeated these experiments in genetically modified mice35 lack-

ing SGLT1 or GLUT2; as in mammals, the active transport of dietary glucose from the intestinal lumen relies

primarily on SGLT1 and, to a lesser extent, on GLUT2.36 As expected, the PGR was diminished in untreated

Sglt1-KO mice, compared to their wild-type littermates (Figure S3A), while the PGR was not modified in

Glut2-KO mice compared to their wild-type littermates (Figure S3B). However, a single oral dose of MET

given 1 h prior to an oral glucose challenge significantly decreased PGR in Glut2-KO mice (Figure 3B),

but not in Sglt1-KO mice (Figure 3C), indicating that the MET-induced reduction in PGR is dependent

on SGLT1 expression.

Figure 2. Effects of a single dose of metformin (MET) in GK diabetic rats

(A–C) Effects of a single dose of MET (200 mg/kg) on SGLT1 abundance in the enterocyte BBM and (D–E) PKA activity in the jejunum. (A) Representative

immunofluorescence images (n R 18 per condition in total) of SGLT1 in the jejunum (SGLT1 in green; nuclei in blue, scale bar, 50 mm) and (B and C)

corresponding quantification in 3–4 animals per group (6 technical replicates each) (AU: Arbitrary Unit).

(D and E) Representative immunofluorescence images (n > 6 in total) of phosphorylated PKA substrates (in green) in jejunum and (E) corresponding

quantification in 3–4 animals per group. Nuclei appear in blue. ****, p < 0.0001 by Student’s t test (C and E) and ***, p < 0.001 by two-way ANOVA and Sidak’s

test for multiple comparisons, position along the apical-basolateral axis x MET, MET vs. vehicle (B).

(F) Effects on blood glucose of a single dose of MET (200 mg/kg) given 1 h prior to the first OGTT and during the following 16 h with two additional OGTTs

(1 g/kg) simulating different times of meal intake (*p < 0.05, two-way ANOVA and Sidak’s test for multiple comparisons, MET vs. vehicle).

(G) Effects on blood glucose of a daily dose of vehicle (black line with closed dots) or MET (red line with open dots) (200 mg/kg every night, for 7 days) versus

MET daily plus one additional dose (200 mg/kg) given by gavage 1 h prior to the oral glucose challenge (red line with closed dots). (*p < 0.05, two-way

ANOVA and Sidak’s test for multiple comparisons, MET daily plus one single dose vs. vehicle and MET daily).

(H) Effects on blood glucose of a single dose of oral MET on glycemia 1 h prior to the intraperitoneal glucose challenge (no significant difference in MET vs.

vehicle, two-way ANOVA). All data are mean G SEM.
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MET reduces intra-intestinal glucose absorption in mini-pigs

We next tested the effect of a single intraluminal dose of MET in mini-pigs. Each mini-pig was tested twice,

after receiving a bolus of MET or vehicle via jejunostomy, followed 30 min later by a bolus of glucose and

D-xylose, a non-metabolizable pentose routinely used in large animals and humans to estimate intestinal

sugar absorption.37,38 We found that MET decreased PGR (Figure 4A), as well as plasma insulin levels (Fig-

ure 4B), compared to vehicle-treated controls. We also found a diminished plasma appearance of luminal

xylose (Figure 4C) in the MET-treated mini-pigs compared to the vehicle-treated controls. In addition, we

saw an increase in GLP1 release in the MET group versus the vehicle-treated group (Figure 4D). Finally, a

single dose of MET did not modify the expression of the main intestinal gluco-transporter genes in the

mini-pigs (Figure S2D).

MET has distinct effects on systemic versus intraluminal 18F-FDG transport

In clinical imaging with 2-(18F)-fluoro-2-deoxy-D-glucose (18F-FDG) PET-CT, chronic MET treatment is

accompanied by a rise in the radiolabeling of the gut.15,16,39 This phenomenon has been linked to an

increased glucose uptake from the bloodstream into the enterocyte, which likely contributes to the

glucose-lowering effects of MET1,10,11,20 (Figure S5A). In GK rats, a single dose of MET tends to increase

intestinal radioactivity after intravenous administration of 18F-FDG as compared to vehicle-treated animals,

an effect which is significant in rats treated with a daily MET dose (Figures 5A and 5B). However, this acute
18F-FDG signal is not associated with a decrease in glycemia after the parenteral glucose challenge

(Figure 2G).

Finally, we also used PET-CT dynamic imaging to objectify the intestinal passage of 18F-FDG infused in the

intestinal lumen, using a surgical-closed compartment system (Figures 5C and S5B). A single oral dose of

MET administered 1 h prior to the luminal 18F-FDG retained the radiotracer in the intestinal lumen

(Figures 5D and 5E and Videos S1 and S2), reducing its appearance in the urinary bladder content (Fig-

ure 5F). This phenomenon explains the reduced PGR 1 h after a single dose of MET (Figure 2F). Similar

results were obtained in healthy Wistar rats (Figure S4). Overall, these experiments provide direct evidence

that MET treatment results in the retainment of carbohydrates in the intestinal lumen and interferes with

intestinal glucose absorption.

DISCUSSION

The present study provides evidence of a primary gut effect of a single dose of MET on the intestinal ab-

sorption of ingested glucose and thus lowering of the PGR. We also showed that this effect of MET results

from a transient decrease in the apical density and function of SGLT1 in the enterocyte. This gut-derived

mechanism of action of MET is consistent with several recent clinical observations. In patients with T2D,

a single dose of MET administered either orally12 or directly in the jejunum13 1 h before a glucose challenge

reduced PGR by 23% and 21%, respectively. A single oral dose of SGLT1 inhibitor administered prior to a

meal also reduced PGR in healthy volunteers.40 Moreover, the duodenal expression of SGLT1 protein is
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Figure 3. Effects of a single dose of metformin (MET) in wild-type or mutant mice

(A–C) Post-load glucose changes after a single dose of MET (200 mg/kg) given 1 h prior to an OGTT (glucose charge: 1 g/kg) (A) in normal C57BL/6 mice, (B)

Glut2-KO mice, and (C) Sglt1 KO mice. (*p < 0.05, two-way ANOVA and Sidak’s test for multiple comparisons, MET vs. vehicle, n R 6 per group). Data are

mean G SEM.
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increased in T2D and correlates with the PGR estimated by OGTT in subjects with various degrees of

glucose tolerance.41 Likewise, individuals carrying SGLT1 haplotypes associated with partial loss of func-

tion have lower 2-h blood glucose during an OGTT.42 Mendelian randomization studies also estimated

that SGLT1 loss of function reduces the overall incidence of T2D by 2% per year in these subjects.42 This

percentage is in line with the reduction in diabetes incidence observed in patients receiving chronic

MET treatment in the Diabetes Prevention Program Outcomes Study (z17% after 8 years).43 Taken

together with our findings here, the available clinical evidence supports the significant role played by

the inhibition of SGLT1-mediated glucose intestinal absorption in the overall glucose-lowering effect

of MET.

Here, we report that the transient decrease in SGLT1 density in the brush border of enterocytes following

MET administration is accompanied by a decrease in PKA substrate phosphorylation in the rat jejunum.

Although our study did not allow us to identify the molecular mechanism sustaining this direct effect of

MET on the intestine, based on previous findings, we propose that the high amounts of MET that transiently

accumulate in the intestine9,30,44,45 change the intrinsic energy state of the enterocytes. At the molecular

level, it has been demonstrated that high amounts of MET inhibit the electron transport chain of mitochon-

drial Complex I.46,47 This inhibition was gradually alleviated depending on the dose and time of MET treat-

ment, demonstrating the reversible nature of MET’s mechanism of action.48 The Complex I inhibition by

MET decreases ATP production,2 resulting in a concomitant increase in AMP levels that allosterically inhibit

the cAMP–PKA pathway through suppression of adenylate cyclase.49 We suggest that such a transient en-

ergy deficit occurs in enterocytes due to a rapid accumulation of the drug at the BBM, which is responsible

for the transient reduction in the PKA-induced phosphorylation of SGLT1, a key event in the trafficking of

this transporter to the apical membrane.50 METmay indirectly inhibit SGLT1,28 thus reducing sugar absorp-

tion by producing a temporary state of energy crisis in the enterocyte that interferes with the apical

trafficking of this essential glucose transporter.

Alternative mechanisms of action for MET have been reported in the literature, including a recent report

describing a metformin PEN2 axis in the intestine leading to AMPK activation independently of a change
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Figure 4. Effects of a single dose of metformin (MET) in mini-pigs

(A–D) Blood glucose, (B) plasma insulin, (C) plasma D-xylose, and (D) plasma GLP1 levels following a glucose + xylose

bolus administered in mini-pigs (n = 10) through a jejunostomy, 30 min after a single oral dose of MET (25 mg/kg) or

vehicle (*p < 0.05, two-way ANOVA and Sidak’s test for multiple comparisons, MET vs. vehicle). Data are mean G SEM.
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in the ratio of ATP to AMP.51 Given these alternative mechanisms, the elucidation of the detailed molecular

mechanism of action by which MET affects glucose absorption requires further exploration.

The effect of MET on intestinal sugar absorption demonstrated in the present study does not rule out the

contribution of other intestinal or extra-intestinal mechanisms already proposed to explain the metabolic

effects of this drug.49 However, the reduction in the intestinal absorption of dietary glucose may also favor

other gut-derived beneficial effects of MET. Likewise, by delaying the intestinal absorption of glucose, MET

mechanically increases the amounts of glucose reaching the lower intestine, where it could contribute to

increasingGLP-1 secretion,21 tomodulating the gut microbiota composition,52 and to favoring the classical

intestinal side effects associated with MET treatment.53

In conclusion, our findings further explain the gut-mediated clinical benefits of MET in the treatment of

T2D.9 The present results also challenge the current recommendations to administer this drug at bedtime
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Figure 5. Effects of a single dose of metformin (MET) on intestinal 18F-FDG absorption in GK rats

(A) Representative coronal, MIP-reconstructed slices of PET images of the abdominal area in GK rats after an intravenous administration of 18F-FDG: [1]

Vehicle/Control, [2] MET one single dose (1 h prior to the tracer administration), and [3] MET a daily dose (200 mg/kg every night, for 7 days). The 18F-FDG

signal was calculated by VOI analysis and normalized by the activity of the radiotracer in the femoral bone marrow.

(B) Quantification of 18F-FDG signals in the intestine.

(C) Schematic diagram illustrating the closed compartments created by surgery to close the pylorus [1], ileocecal valve [2], and urethra [3].

(D) Representative coronal images from the PET-CT by MIP-reconstruction system of 12 frames after intestinal intraluminal administration of 18F-FDG: [I]

Vehicle/Control and [II] MET one single dose 1 h prior to 18F-FDG oral administration.

(E) Time-activity curves (TACs) calculated by VOIs in the intestinal mass (ratio between the radioactivity in each frame divided by the value in the first frame)

(p = 0.0001, two-way ANOVA, MET 3 time interaction, n = 4 per group).

(F) TACs of VOIs in the bladder content during the first 60 min of the study (p = 0.03, Mann-Whitney test, MET vs. Vehicle, n = 4 per group).
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or after meals54 and warrant a clinical evaluation of administration before meals to look for alternatives that

enhance the gut-mediated effects of MET on glucose absorption. Finally, our study highlights the meta-

bolic benefits induced by the modulation of SGLT1 activity in the gut.

Limitations of the study

Our study clearly shows that MET administered 1 h before a glucose challenge in different animal models

reduces the systemic blood PGR. Since this effect is evident from the beginning of the OGTT time course,

we believe that it is mainly due to an effect of MET on glucose absorption. Nevertheless, it is important to

take into account that MET could impact many other factors. Regarding the concentration of 10 mM MET

used in the culture media of intestinal epithelial cells, while it appears to be supraphysiological, this con-

centration was estimated to closely resemble the concentration of MET found in the alimentary chyme to

which intestinal epithelial cells are apically exposed 1 h after the ingestion of a single dose of MET. Even so,

it would be important tomeasureMET levels in jejunum tissue samples in response to an acuteMET dose in

animal models to confirm this choice. Finally, the effect of MET on AMPK activation in intestinal samples

was not determined in this study. Thus, it would be important to set up follow-up studies to gain a greater

mechanistic insight into the means by which MET sustains its direct effect on glucose transporter trafficking

in enterocytes.
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STAR+METHODS

KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Rabbit Polyclonal anti-SGLT1 (1:100) Millipore Cat# 07-1417, RRID: AB_1587521

Rabbit Polyclonal anti-SGLT1 (1:250) Abcam Cat#Ab14686

Mouse Monoclonal anti-ZO1 (1:50) Invitrogen Cat# 33-9100,

RRID: AB_2533147

Rabbit Polyclonal anti-AMPKa (1:1000) Cell Signaling Cat# 2532,

RRID:AB_330331

Rabbit Monoclonal Anti-phospho-AMPKa (Thr172) Cell Signaling Cat# 2535,

RRID: AB_331250

Mouse Monoclonal Anti-GAPDH (1:1000) Santa Cruz Cat# sc-32233,

RRID:AB_627679

Mouse Polyclonal Anti-Hsp90a/b(1:1000) BioLegend at# 661802,

RRID:AB_2564179

Goat Polyclonal HRP Anti-rabbit IgG (1:2000) Sigma-Aldrich Cat# A0545,

RRID:AB_257896

Goat Polyclonal HRP Anti-mouse IgG (1:2000) Millipore Cat# AP124P,

RRID:AB_90456

Chemicals, peptides, and recombinant proteins

Metformin Sandoz� 1000 mg (in vivo experiments) Sandoz – Novartis 3400936671010

Metformin (hydrochloride) (in vitro experiments) MedChemExpress HY-17471A/CS-1851

2-(18F)-fluoro-2-deoxy-D-glucose (18F-FDG) CISBIO Internatinal FDG-IBA-PA

D-Glucose Sigma-Aldrich G-8270

D-Xylose Sigma-Aldrich W-360600

a-Methyl-D-glucopyranoside (AMG) Sigma-Aldrich M9376

(14C)-a-Methyl-D-glucopyranoside (0.2 mCi/mL) Perkin Elmer NEC659050UC

Ketamine -Kétamine1000� Virbac 03597132111010

Xylazine -Sedaxylan� Dechra 08714225151530

Isoflorane - IsoFlo� Zoetis 05414736033471

Critical commercial assays

Free-Style\Optium – NeoH Glucometre Abbot Diabetes Care Ltd Nº-71355-80

Colorimetric micro-method phloroglucinol Xylose This paper N/A

Insuline Ultrasensible Kit Beckman Coulter 33410

GLP-1 RIA Kit Millipore-IDS GLP1T-36HK

Experimental models: Cell lines

Caco-2/TC7 Lille University N/A

Experimental models: Organisms/strains

Rat: Goto-Kakizaki Taconic M&B Company GK/Mol Tac

Rat: Wistar Janvier Labs Ref. Albino rat Tyrc/Tyrc

Mouse: C57BL/6 Janvier Labs Ref. C57BL/6Jrj

Mouse: Sglt1 �/� Wurzburg University N/A

Mouse: Glut2 �/� Lausanne University N/A

MiniPigs: Göttingen Pannier’s Breeding N/A

(Continued on next page)
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RESOURCE AVAILABILITY

Lead contact

Further information and request for resources and reagents should be directed to andwill be fulfilled by the

Lead Contact, François Pattou (francois.pattou@univ-lille.fr), following an approval MTA between Univer-

sity of Lille and the receiving institution.

Materials availability

This study did not generate new unique reagents.

Data and code availability

d All data reported in this paper will be shared by the lead contact upon request.

d This paper does not report original code.

d Any additional information required to reanalyze the data reported in this paper is available from the

lead contact upon request.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Animals

All animal procedures were performed in the Department of Experimental Research of Lille University

(DHURE, Lille-Cedex, France) in accordance with French regulations for animal experiments and following

European and French ethical rules. Rats and mice were housed under standard laboratory conditions (tem-

perature 22�C +/� 2�C, humidity 35-60%) in a 12 h light/dark cycle and with tap water and regular food

provided ad libitum.

Male Wistar and GK rats (12-24 week-old) weighing 300-400 g (Center Elevage Janvier (Le Genest-St-Isle,

France) & Taconic M&B Company (Hudson, NY, USA)). Three different mouse strains were used: (1) C57BL/

6 (Center Elevage Janvier (Le Genest-St-Isle, France) male wild type between 20 and 30 g (12-24 week-old),

(2) whole-body Sglt1 knockout mice and their respective littermate (male – 12-24 week-old) were obtained

fromDepartment Tissue Engineering & RegenerativeMedicine (TERM) University Hospital, Wurzburg, Ger-

many, (3) Intestinal-specific Glut2 knockout mice and their respective littermate (male – 12-24 week-old)

were obtained from Lausanne University, Lausanne, Switzerland. The Knockout animals received special

food free of D-glucose and water ad libitum. A total of 10 healthy female young adult (1-3 years-old) Göt-

tingenminipigs weighing 50G 8 kg (Pannier’s Breeding) were housed in a temperature-controlled environ-

ment (21�C) with 12-h light/dark cycles and received regular food and water ad libitum.

Caco-2/TC7 cell line

Caco-2/TC7 cells were grown as previously described on Transwell systems. Cell culture reagents were

obtained from Thermo Scientifics and micro-porous PET membrane inserts (23.1 mm, 3 mm pore size)

from Corning. Caco-2/TC7 cells were routinely grown in plastic flasks under a humidified atmosphere

containing 10%CO2, at 37
�C, in Dulbecco’s modified essential medium containing 25mMglucose and glu-

tamax, supplemented with penicillin/streptomycin (100 IU/mL and 100 mg/mL, respectively), 1% non-essen-

tial amino acids, and 20% heat-inactivated fetal calf serum (FCS). To establish the intestinal barrier model

for the assay, Caco-2/TC7 cells (between passages 40 and 55) were plated at a density of 0.25 3 106 cells

per 6-well plate insert and grown in complete medium. Confluence was routinely reached 8 days after

Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

Oligonucleotides

Primers for qPCR see Table S1. This paper N/A

Software and algorithms

IRW 3.0 software Siemens Inveon RW 4.2

Graphpad Prism V.7 Graphpad RRID:SCR_002798
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seeding. Cells were then cultured in asymmetric conditions, with medium containing FCS in the lower

compartment and serum-free medium in the upper compartment. Media were changed every day for three

weeks.

METHOD DETAILS

AMG uptake by Caco-2/TC7 cells

Differentiated Caco-2/TC7 cells grown on Transwells were pre-incubated for 1 h in DMEM without glucose

then 1 h in DMEM without glucose supplemented with 1% BSA free fatty acids (Sigma-Aldrich) in presence

or absence of 10 mMMET (MedChemExpress). Specific experiments were set up to differentiate the acute

effect of the administration of a single versus multiple doses of MET, to highlight the duration and the

reversibility of MET’s effects, and to assess possible desensitization. Uptake experiments were initiated

by replacing the medium with medium containing 2 mM a-Methyl-D-glucopyranoside (AMG) (Sigma,

M9376-100G) and [14C]- a-Methyl-D-glucopyranoside (Perkin Elmer, NEC659050UC 0.2 mCi/mL). After in-

cubation, the reaction was stopped by adding cold PBS containing phloretin 0.5 mM. Cells were washed

3 times with PBS and solubilized by adding 1 mL Solvable (PerkinElmer). The samples were analyzed in

the scintillation counter TopCount (PerkinElmer). The concentration of metformin used in vitro was chosen

to be roughly equivalent to the concentration in human intestinal lumen following oral administration as

measured in Tucker et al.55 and Bailey et al.30

Immunohistology of Caco-2/TC7 cells

At the end of a 1 hr-incubation in DMEM without glucose and 1 hr-treatment in presence or absence of

10 mM MET, cells were washed twice with PBS and fixed for 30 min with 4% paraformaldehyde (w/v) in

PBS, then incubated for 1 h with 100 mmol/L L-Lysine and permeabilized by incubation during 5 min

with TN buffer (Tris 20 mmol/L, pH 7.4, NaCl 0.5 mol/L) containing 0.1% Triton X-100, then extensively

washed with TN buffer. Transwells were gently cut into 6 to 8 pieces then blocked using Image iT fix reagent

(Life technologies) and overnight incubated at 4�C with the indicated primary antibodies. After extensive

washing in TN buffer, Alexa-conjugated secondary antibodies (Molecular probe, 1:400) were incubated for

1 h. Cells were finally mounted using a mounting medium (Dako) containing Hoechst 33,342 (Sigma-

Aldrich) at 1 mg/mL then examined using a LSM710 confocal microscope (Zeiss) in a sequential mode of

acquisition. Anti-SGLT1 antibody (Millipore Cat# 07-1417, RRID: AB-1587521); anti-ZO-1 (Creative

Diagnostics Cat# DCABH-3988, RRID: AB-2477799) were used in this analysis.

RNA extraction and RT-QPCR of Caco-2/TC7 cells

Total RNA from Caco-2/TC7 was isolated using Trizol reagent (Invitrogen, ThermoFisher). RNA quantity

and purity were measured by Nanodrop device (ThermoScientific, ThermoFisher). Reverse transcription

was performed using high capacity reverse transcription (Applied Biosystems). qPCR were performed us-

ing the Brillant II ultra-fast Sybr green qPCR Master mix (Agilent) with specific primers (Eurogentec)

(Table S1) on an Mx3005 device (Agilent). mRNA levels of target genes were subsequently normalized to

human TBP.

Western blot analysis of Caco-2/TC7 cells

Caco-2/TC7 cells were washed twice in PBS and harvested in lysis buffer containing 1% Nonidet P-40, 0.5%

sodium deoxycholate, 0.1% SDS, protease inhibitor cocktail (Complete, Roche) and phosphatase inhibitor

cocktail 3 (Sigma-Aldrich) in PBS. Samples were sonicated for 5 min (Bioruptor, Diagenode). Homogenates

were centrifuged (16,000 x g – 10min–4�C) and supernatants stored at �20�C. Protein concentration was

determined using the BCA protein assay (Pierce, ThermoFisher). Thirty to 40 mg of proteins were separated

on a BOLT 4-12% Bis-Tris Plus gels (Invitrogen, ThermoFisher) then transferred to a nitrocellulose mem-

brane. Membranes were blocked for 1 h with 5% BSA in Tris-buffered saline 0.1% tween. The membrane

was then incubated overnight with primary antibodies (rabbit polyclonal anti-AMPKa, Cell Signaling,

Cat# 2532, RRID: AB_330331; rabbit monoclonal anti-phospho-AMPKa (Thr172), Cell Signaling, Cat#

2535, RRID: AB_331250; mouse monoclonal Anti-GAPDH, Santa Cruz, Cat# sc-32233, RRID: AB_627679;

and mouse polyclonal Anti-Hsp90a/b, Biolegend, Cat# 661802, RRID: AB_2564179) and after a 1 h-incuba-

tion period with horseradish peroxidase-conjugated secondary antibodies (Goat Polyclonal HRP Anti-rab-

bit IgG, Sigma-Aldrich, Cat# A0545, RRID: AB_257896; andGoat Polyclonal HRP Anti-mouse IgG, Millipore,

Cat# AP124P, RRID: AB_90456) were used. Protein revelation was performed using the Super-Signal West
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Dura Substrate (ThermoScientific, ThermoFisher) by chemiluminescence (Camera Gbox, SynGene) and

band intensity was measured (Image Studio Lite, LI-COR Biosciences).

Oral and intraperitoneal carbohydrates tolerance test in rodents

Oral glucose tolerance test (OGTT) and intraperitoneal glucose tolerance test (IPGTT) were performed on

conscious rats, following 18 h of fasting. Blood samples from fasted animals were first taken from the tail

vein. MET was diluted in distilled water and given orally (200 mg/kg) 1 h before the load of glucose. The

dose chosen was based onto the human-animal dose relationship and the principle of normalization to

body surface area (ie, allometric scaling).32 It was in agreement with Foretz et al.29 Controls were given

only distilled water as vehicle. Rats in the Wistar group were fed a 50% glucose fixed at 4 g/kg body weight

and the GK rats group were fed a 50% glucose solution fixed at 1 g/kg body weight (according to the dif-

ferences of a physiological versus a diabetic model). The mice (all strains) experiments for OGTT were

similar with only 6 h of starvation and glucose 50% on 2 g/kg. All blood samples were taken by tail bleeds

at 0, 15, 30, 60 and 120 min after glucose administration. Glucose determination in blood was run

immediately using a Free-Style\Optium – NeoH Glucometre (Abbott, UK).

Immunohistological analysis in jejunum rat

GK rats were sacrificed 1 h after an oral challenge with metformin or vehicle and jejunum harvested.

Immuno-fluorescent staining of SGLT1 (ab14686) in PFA-fixed and OCT embedded jejunum slices. Nuclei

were counterstained with DAPI. Photos were obtained using a Leica DMI6000Bmicroscope with 40x magni-

fication. Fluorescent labeling for SGLT1 were quantified using ImageJ (plot profile tool) along an apical to

basolateral axis crossing one enterocyte.

Intrajejunal test in the mini-pig model for glucose tolerance and blood samples

Mini-pigs were fasted overnight and premedicated with an intramuscular injection of ketamine (Keta-

mine1000, Virbac, France, 10 mg/kg of body weight) and xylazine (Sédaxylanc, Dechra Santé Animale,

France, 2.5 mg/kg of body weight) prior to all surgical procedures. All surgical procedures were performed

under general anesthesia, with a 4% concentration of isoflurane (IsoFlo, Zoetis, France) A single-lumen radi-

opaque silicone catheter (Hickman; Bard, Trappes, France) was initially placed in the jugular vein and

exteriorized on the neck of the animal for repeated non-invasive blood samples. In the same intervention,

we performed a middle laparotomy, measured 150 cm of jejunum from the Treitz angle and performed a

posterior-lateral jejunostomy. After a few days of recovery, the glucose challenge was administered

through the jejunostomy, with a solution containing D-glucose (25 mg/kg) + D-Xylose (30 g) + distilled

water (30 mL). D-Xylose, a non-metabolized carbohydrate, is routinely used to estimate intestinal carbohy-

drate absorption. Glycemia was evaluated using a Free-Style\Optium – NeoH Glucometre (Abbott, UK).

Blood venous samples were taken at �30, 0, 5, 15, 30, 45, 60, 90 and 120 min and immediately kept on

ice until centrifugation at 5,000 rpm for 10 min. Plasma aliquots were stored at �80�C until analysis.

D-xylose was measured by a colorimetric micro-method with phloroglucinol as previously described.37

Commercially available radioimmunoassay kits were used for measurement of insulin (Beckman Coulter

#33410, France), and total GLP-1 total kit RIA (GLP-1T-36HK, Millipore-IDS, France).

RNA extraction and RT-QPCR on animal tissue

Total RNA from different animal models was isolated using the Rneasy mini kit (Qiagen Inc., Courtaboeuf,

France). RNAwas cleaned using the Rnase-Free DnaseSet (Qiagen Inc., Courtaboeuf, France), and the RNA

Integrity Number was checked using RNA StdSens Analysis kit (Biorad, Marnes-la-Coquette, France). For

reverse-transcription, 1 mg RNA from each sample was converted to cDNA using the iScript cDNA synthesis

kit (Biorad, Marnes-la-Coquette, France). Real-time PCR was performed with the SsoAdvanced Universal

SYBR Green supermix (Biorad, Marnes-la-Coquette) using the CFX Connect Real-time System (Biorad,

Marnes-la-Coquette, France). The following conditions were performed: 3 min denaturation at 95�C,
followed by 40 cycles of 10 s at 95�C and 30 s at 60�C. Melting curves were performed for each reaction.

Ct Values were normalized with RPL27 (Ribosomal Protein L27) housekeeping gene (see Table S1).

MicroPET test in rodents

A microPET-CT machine Inveon (Siemens Medical Solutions, Knoxville, TN, USA) was used for PET data

acquisition. PET-CT scan acquisition with administration on 18F-FDG was performed to study FDG kinetic

on luminal and basolateral sides of the gut. One-single dose of MET was given orally (200 mg/kg) 1 h before
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the load of 18F-FDG. Controls were given only distilled water as vehicle. To avoid the possible confounding

effect of gastric emptying, gut peristalsis and bladder voiding the 18F-FDG was injected in the duodenum

under general anesthesia and watertight compartments between the intestine, circulatory and urinary

system were created by occluding pylorus, ileo-cecal valve and urethra.

To evaluate the luminal side dynamic intraduodenal direct administration of 18F-FDG (8-10MBq) was done.

Dynamic microPET studies were performed, rats with an intestinal catheter were anesthetized, and placed

on the PET-CT holder, and after 18F-FDG intraduodenal injection PET scan was initiated. To evaluate the

basolateral side, intravenously administration of 18F-FDG (35-40 MBq) via the tail vein was done. After

45 min after radiotracer injection rats were anesthetized in an induction box by inhalation of 2% isoflurane

ant then positioned on microPET small animal holder, which allows for continuous anesthesia then the PET

scan was initiated. After completion of the PET data acquisition, 15 min CT scans were performed to pro-

vide anatomical information and attenuation tissues coefficients. The PET acquired data were binned into

12 image frames of 5 min and were reconstructed using 3D OSEM/SP-MAP (Ordered Subset Expectation

Maximization/Shifted Poisson Maximum A Priori) method with an attenuation correction. Using Inveon

Research Workplace software (Preclinical Solutions, Siemens Medical Solutions USA, Inc., Knoxville,

TN, USA), 3-dimensional regions of interest (VOIs) were manually drawn over the images. Assessment of
18F-FDG intestinal kinetic was estimated by determining radiotracer concentration (MBq/mL) in intestinal

compartment as a function of time. In each experiment, VOI kidneys, bladder, cecum and intestine were

drawn and the activity of tracer in each VOI at 60 min was estimated using IRW 3.0 software. 18F-FDG intes-

tinal kinetic was obtained from the difference between the initial and final activities in the kidneys, bladder,

and cecum VOIs. However, for the TEP images post-treatment for the evaluation of the basolateral side

VOIs of the intestine, cecum, kidney, bladder and femoral bone marrow were drawn manually and corre-

sponding TACs. For each organ, setting up a dedicated radioactivity threshold then delineated VOIs to

all frames. Finally, the activity was normalized according to the activity of the femoral bone marrow.

QUANTIFICATION AND STATISTICAL ANALYSIS

The animals (mice, rats and pigs) were randomly divided assigned in the different groups (control vs met-

formin: oral/intraperitoneal or acute/chronic). The serum and histological samples were extracted by

different investigators under the same protocol. No blinding during the application of experimental

treatment (e.g., gavage of a test drug) but regular blinding during the data collection and analysis. No

special exclusion criteria were applied beyond the parameters of the NC3R ARRIVE guidelines. A minimum

of 6 samples was required in each group. Results are expressed as means G SEM and were analyzed using

1-way or two-way ANOVA and U-Mann-Whitney where appropriate using GraphPad Prism 7.0 software

(Graphpad software Inc., San Diego, CA). Differences were considered significant at p < 0.05. Power

calculations were not performed, but the sample size for each group was chosen based on study feasibility

and prior knowledge of statistical power from previously published experiments.
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