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SUMMARY

Obtaining the seismic response of rocks containing cracks whose scales are much smaller

than the prevailing wavelengths is a classic and important problem in rock physics. Semi-

nal analytical models yield the seismic signatures of cracked rocks saturated with a single

fluid phase. However, in a wide variety of practically relevant scenarios, cracks may be

partially saturated with multiple immiscible fluids of contrasting compressibilities, such

as gas and water. When a passing seismic wave deforms the medium, fluid pressure gra-

dients arise within such partially saturated cracks, which, in turn, tend to relax through

a process commonly known as squirt flow. The corresponding viscous dissipation may

greatly affect the seismic amplitudes and velocities, as well as the anisotropic behaviour

of the medium. To date, extensions of classical analytical models to include squirt flow

occurring within isolated partially saturated cracks remain limited either in the saturation

or in the frequency range. In this work, we present a simple analytical model to compute

the seismic response of rocks containing partially saturated aligned cracks accounting for

squirt flow effects. First, we solve the linearised Navier-Stokes equations within a par-

tially saturated penny-shaped crack subjected to an oscillatory strain. Then, we obtain

a closed analytical expression for a complex-valued frequency-dependent effective fluid

bulk modulus which accounts for the stiffness variations of each crack due to squirt flow.
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Using classic effective medium models, together with such an effective saturating fluid,

we retrieve the effective compliance matrix of the probed partially saturated cracked rock.

The proposed analytical solution is validated by comparison with corresponding 3D nu-

merical simulations and existing analytical models.

Key words: Seismic attenuation; Seismic anisotropy; Acoustical properties; Wave prop-

agation

1 INTRODUCTION

Determining the fluid content of geological formations from seismic data is a complex task of great im-

portance in a number of pertinent scenarios, such as, oil and gas exploration and production, geother-

mal energy exploitation, CO2 geosequestration, and enhanced oil recovery operations. Evidence shows

that, seismic waves travelling in partially saturated formations can suffer from large attenuation and

phase velocity dispersion due to fluid pressure diffusion (FPD) processes (e.g., Cadoret et al. 1998;

Yin et al. 1992; Tisato & Quintal 2013; Chapman et al. 2016). In addition, the mere presence of cracks,

which are largely recognised as omnipresent in Earth’s crust materials, can also affect the seismic am-

plitudes and velocities, even if their characteristic scales are much smaller than the prevailing seismic

wavelengths (e.g., Hudson 1980; Cheng 1993). In this context, models addressing the interrelation-

ships existing between crack presence, pore fluid content, and corresponding seismic signatures, are

of particular value for exploring partially saturated geological formations.

Obtaining the seismic response of a rock containing cracks that are much smaller than the seismic

wavelengths is a classic and practically important problem in rock physics (e.g., Garbin & Knopoff

1973; Budiansky & O’Connell 1976). This can be achieved by deriving the effective elastic constants

of a homogeneous solid which exhibits the same velocity variations with direction as the cracked solid.

Most of the existing models are based on the classic work of Eshelby (1957), who derived the elastic

response of a solid comprising an elliptical inclusion under a load applied at a large distance. Crampin

(1978) obtained effective elastic constants by modelling the variation of seismic velocity through an

isotropic solid comprising a low concentration of parallel cracks using the model of Garbin & Knopoff

(1973, 1975b,a). Later on, Hudson (1980, 1981) developed a more general theoretical approach for

evaluating the effective elastic constants of cracked solids. Subsequently, other authors have made

modifications to Hudson’s solution. For example, Cheng (1993) extended the restrictions of Hudson’s

model with regard to the aspect ratio of the cracks. However, the model developed by Hudson (1981)

constitutes arguably one of the most employed frameworks for elastic constant determination of elastic
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isotropic media containing a dilute concentration of penny-shaped cracks. This model considers that

cracks are in the so-called unrelaxed state and, thus, FPD processes triggered by seismic waves are

not accounted for (e.g., Mavko et al. 2009). The corresponding effective elastic constant in the relaxed

state can be obtained by considering dry cracks and, then, using the anisotropic Gassmann (1951)

equations to saturate them. In the case of partial saturation, the latter is done employing an effective

pore fluid (e.g., Mavko et al. 2009). However, extending this theory to the partially relaxed state and,

thus, to the entire frequency band, requires a more comprehensive approach.

There is increasing experimental evidence indicating that squirt flow at the microscopic/mesoscopic

scale may be largely responsible for the observed attenuation and phase velocity dispersion of seis-

mic waves in the exploration seismic frequency range (e.g., Subramaniyan et al. 2015; Chapman et al.

2019). Squirt flow models assume that the passage of a seismic wave can induce pressure gradients be-

tween hydraulically connected regions of the medium presenting contrasting compressibilities, which,

in turn, relax trough FPD (see Müller et al. 2010, for a comprehensive review). Several classic works

in the literature addressed the problem of seismic attenuation and dispersion due to squirt flow occur-

ring within cracks saturated with two immiscible fluid phases of contrasting compressibilities, which

are classically classified as wetting (i.e., water) and non-wetting (i.e., gas, oil) in relation to their ca-

pacity to wet the cracks’ walls. Mavko & Nur (1979) developed expressions for the attenuation of P-

and S-waves in a material with partially saturated cracks with random orientations based on a 2D par-

allel walled pore geometry. Palmer & Traviolia (1980) extended the model of Mavko & Nur (1979) to

3D contacts between individual grains. However, the models of Palmer & Traviolia (1980) and Mavko

& Nur (1979) are both restricted to low wetting-fluid phase saturations and disregard the compress-

ibility of the non-wetting fluid as well as the dissipative effects associated with the flow of this fluid

phase. Hudson (1988) developed an extension of his classic penny-shaped model to approximate the

effects of FPD within partially saturated cracks embedded in an impermeable background. This model

was later on improved by Pointer et al. (2000) to account for the effects of the non-wetting phase

compressibility. However, the resulting P- and S-wave attenuation estimates are valid only at low fre-

quencies, in particular, they present a linear behaviour with regard to frequency and wave speeds are

non-dispersive. Murphy et al. (1986) presented a solution for the squirt flow phenomenon, considering

a compliant flat crack connected to a stiff toroidal pore, which included a saturation term, thus, per-

mitting the length of the wetting fluid droplet to vary within the crack. However, the toroidal pore is

not permitted to deform under external or internal loading and the compressibility of the non-wetting

fluid in the crack is, once again, disregarded. Later, Walsh (1995) addressed the effects of a fluid lens

within a crack on seismic attenuation. For this, the oscillations in the crack aperture resulting from the

passage of a seismic wave where evaluated by considering a zero pressure condition at the boundaries
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of the wetting fluid lens, thus assuming a zero bulk modulus for the non-wetting phase. To sum up,

as far as the authors know, the available models addressing squirt flow effects in partially saturated

cracks exhibit one or more of the following limitations: (i) The model cannot represent the corre-

sponding mechanism across the entire frequency band (e.g., Hudson 1988; Pointer et al. 2000); (ii) the

model is restricted with regard to the saturation range (e.g., Mavko & Nur 1979; Hudson 1988); (iii)

the formulation assumes that the non-wetting fluid phase does not play a significant role in the squirt

flow process (Murphy et al. 1986; Walsh 1995). Furthermore, all previous studies disregard the effects

of capillary forces in the squirt flow mechanism.

In this work, we present a new analytical model to account for squirt flow effects in rocks contain-

ing aligned partially saturated cracks embedded in an elastic isotropic background for the full range

of saturations and frequencies. For this, we consider that the aligned penny-shaped cracks undergo

an oscillatory compression triggered by a passing wave. Each crack is saturated with a non-wetting

phase bubble, located at the cracks’ centre, which is surrounded by wetting phase fluid. The analysis

accounts for the compressibilities of both saturating fluid phases and, also, for capillary effects. We

derive an expression for the complex-valued and frequency-dependent bulk modulus of an effective

fluid, which yields the stiffness variations of the partially saturated cracks with frequency due to inter-

nal FPD. Such an effective fluid is then employed as saturating fluid within Hudson’s (1981) model to

obtain the complex-valued and frequency-dependent components of the effective compliance matrix of

the vertical transversely isotropic (VTI) medium. The latter allows to compute the angle-, saturation-

, and frequency-dependent seismic velocities and quality factors of the corresponding medium. The

proposed analytical solution is validated by comparing the resulting velocity dispersion and attenua-

tion estimates with those provided by Pointer’s (2000) low-frequency solution and by finite element

numerical simulations (Quintal et al. 2019), which solve the FPD problem using the quasi-static and

linearised coupled version of the Lamé-Navier and Navier-Stokes equations in a 3D cracked medium.

2 THEORETICAL DESCRIPTION OF THE MODEL

2.1 Effective stiffness of a partially saturated penny-shaped crack

Let us consider a rock composed of an isotropic and homogeneous elastic background with bulk

modulus Ks and shear modulus µs, permeated by a set of aligned penny-shaped cracks with radius

rc and a thickness h0 (Fig. 1a). As previously mentioned, cracks are saturated with two immiscible

fluid phases of contrasting compressibilities. Following Mavko & Nur (1979), we assume that the

non-wetting phase is located at the cracks’ center, forming a bubble of radius rb, and the wetting fluid

phase saturates the remaining ring-shaped region (Figs 1b and 1c). The effective stiffness of a single
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Figure 1. (a) Sketch of a representative elementary volume (REV) of the explored cracked medium and (b)

blowup of a corresponding partially saturated crack. The central volume (grey) denotes the location of the

non-wetting fluid phase and the remaining region (blue) denotes that of the wetting phase. (c) Vertical profile,

illustrating the distribution of the fluid phases within the crack.

crack K∗ is given by the ratio of the force ∆F exerted by the fluid onto the crack walls in response to

a uniaxial dynamic loading displacement −∆h (e.g., Murphy et al. 1986; Gurevich et al. 2010)

K∗ = −∆F

∆h
. (1)

The force ∆F , referred to as acoustic load in the work of Murphy et al. (1986), is given by the integral

of (i) the non-wetting fluid pressure pn over the area occupied by this phase An and (ii) the wetting

fluid pressure pw over the remaining area Aw,

∆F =

∫
An

pn(r) dAn +

∫
Aw

pw(r) dAw, (2)

where the subscripts n and w refer to the non-wetting and wetting fluid phases, respectively.

The wetting phase saturation Sw is given by

Sw =
Vw

Vcrack
=

(r2
c − r2

b )

r2
c

, (3)

with Vw the volume occupied by wetting phase and Vcrack the crack’s volume. The non-wetting fluid

phase saturation responds to Sn = 1− Sw = r2
b/r

2
c .

2.2 Equations of motion and continuity

Following Gurevich et al. (2010), we model the squirt flow process by solving the Navier-Stokes equa-

tions in the crack gap under the following assumptions: (i) no-slip conditions between the fluid and

the crack walls; (ii) radial flow (uni-dimensional in cylindrical coordinates); (iii) small deformations
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(i.e., we drop convective terms); and (iv) quasi-static conditions (i.e, we drop acceleration terms). The

corresponding equation of motion of a fluid within the crack reduces to (e.g., Murphy et al. 1986)

W = −D−1
0

∂pf
∂r

, (4)

where pf denotes the pore fluid pressure perturbation andW = vrh0 is the linearised sectional volume

flow rate, with vr being the radial velocity averaged over the crack section and h0 the unperturbed

aperture of the crack. Also, D0 = 12ηf/h
3
0, where ηf is the fluid shear viscosity.

The continuity equation for the fluid is classically given by (e.g., Murphy et al. 1986)

∂(ρfh)

∂t
+∇ · (ρfhv) = 0, (5)

where v is the fluid velocity vector, h = h0 −∆h, and ρf is the fluid density. Eq. (5) can be further

simplified by considering the above mentioned assumptions together with: (i) small density variations

along the radial axis and (ii) adiabatic conditions, which are common assumptions in the context of

seismic wave propagation (e.g., Bourbié et al. 1987). In this context, Eq (5) in cylindrical coordinates

reduces to (e.g., Murphy et al. 1986)

∂h

∂t
+
h0

Kf

∂pf
∂t

+
∂W

∂r
= −W

r
, (6)

where Kf = ρf (∂pf/∂ρf ) is the bulk modulus of the saturating fluid.

Combining Eqs (4) and (6), and considering time-harmonic eiωt behaviour, we obtain the follow-

ing expression in the space-frequency domain (e.g., Gurevich et al. 2010)

∂pf
∂r

+
1

r

∂pf
∂r

+ k2
fpf = C, (7)

where k2
f = −iωD0h0/Kf and C = iωD0∆h. This equation, which is assumed to hold for both

the wetting and the non-wetting phases within a partially saturated crack, is the main expression to

be solved in this work. The fluid pressures for the saturating fluids, for a given angular frequency ω,

respond to

pf (r) =

pn(r), for r = [0, rb],

pw(r), for r = [rb, rc].
(8)

The general solution of Eq. (7) is a combination of zero-order Bessel functions J0 and Y0 of the

first and second kind, respectively (e.g., Abramowitz & Stegun 1965; Murphy et al. 1986):

pn(r) = AnJ0(knr) + BnY0(knr) + Cn
k2n
, for r = [0, rb], (9)

pw(r) = AwJ0(kwr) + BwY0(kwr) + Cw
k2w
, for r = [rb, rc], (10)

where Af and Bf , with f = w,n, are four integration constants whose expressions are obtained from

the boundary conditions of the problem, which are detailed in the next section.
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2.3 Boundary conditions

In order to obtain the pressures of both fluid phases (Eqs 9 and 10) and, through them, derive an

expression for the effective crack stiffness (Eq. 1), we need a set of suitable boundary conditions. We

require: (i) a non-diverging (finite-value) pressure at the center of the crack; (ii) a no-flow condition

at the edges of the crack; as well as (iii) mass conservation and (iv) continuity of pressures at the

interface between fluids.

The first condition, states that the pressure value at r = 0 must be finite. Given that second-kind

Bessel functions present a singularity at the origin, that is, limr→0 Y0(knr) = ∞, the Bn term has to

be null for the pressure to be non-diverging in Eq. (9). Conversely, the no-flow condition in the crack

edges implies that W |rc = 0, which, considering Eq. (4), reduces to

∂pw(r)

∂r

∣∣∣∣
rc

= 0. (11)

Mass conservation and pressure equilibrium conditions must hold at the interface between fluids.

On the one hand, mass conservation is preserved by imposing continuity of the sectional volume-flow

rates at the interface, located at rb,

Wn|rb = Ww|rb . (12)

Considering Eq. (4), this boundary condition reduces to

1

D0,n

∂pn(r)

∂r

∣∣∣∣
rb

=
1

D0,w

∂pw(r)

∂r

∣∣∣∣
rb

. (13)

On the other hand, pressure equilibrium must hold at the interface between wetting and non-wetting

fluid phases. For this, it is important to recall that a pressure jump exists between both saturating

phases, which is equilibrated by the action of the capillary pressure. In a state of equilibrium, the

capillary pressure responds to the Young-Laplace equation (e.g., Blunt 2017)

pn(r)|rb − pw(r)|rb '
2σ cos γ

h0
, (14)

where σ denotes the interfacial tension, γ the contact angle, and pi with i = w, n being the unper-

turbed state of the corresponding fluid pressures, that is, prior to the seismic perturbation. Eq. (14)

implies that pn > pw. This pressure build-up balances the action of capillary tension, which drives

water to further wet the crack. Note that the pore fluid pressures pn(r, ω) and pw(r, ω) considered in

our model are perturbations with respect to their steady-state counterparts pn and pw. Then, we can
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rewrite Eq. (14) in the perturbed state as

(pn + pn)|rb − (pw + pw)|rb =
2σ cos γ

h
,

pn|rb − pw|rb =
2σ cos γ

h
− (pn − pw)|rb ,

pn|rb − pw|rb =
2σ cos γ

(h0 −∆h)
− 2σ cos γ

h0
,

pn|rb − pw|rb = 2σ cos γ
∆h

h2
0(1−∆h/h0)

. (15)

Considering that ∆h/h0 << 1, we approximate the boundary condition for the pressures at the fluid

interface as

pn|rb − pw|rb =
2σ cos γ

h2
0

∆h. (16)

For simplicity, γ is taken as a constant parameter and, thus, processes such as contact angle hysteresis

and contact line movements are not accounted for in our model (e.g., Rozhko & Bauer 2019).

2.4 Solution to the problem

The pore fluid pressures of the wetting and non-wetting phases are obtained from Eqs (9) and (10) and

the above described boundary conditions. The given formulation yields closed analytical expressions

for the wetting and non-wetting fluid pressures as functions of the radius

pw(r) = B∗w
∆h

h0
T0(r) +

Cw

k2
w

, (17)

pn(r) = A∗n
∆h

h0
J0(knr) +

Cn

k2
n

, (18)

with

T0(r) =

(
Y0(kwr)−

Y1(kwrc)

J1(kwrc)
J0(kwr)

)
, (19)

B∗w =

(
T0(rb)−

√
ηnKn

ηwKw

J0(knrb)

J1(knrb)
T1(rb)

)−1(
Kw −Kn −

2σ cos γ

h0

)
, (20)

T1(r) =

(
Y1(kwr)−

Y1(kwrc)

J1(kwrc)
J1(kwr)

)
, (21)

A∗n = B∗w

√
ηnKn

ηwKw

T1(rb)

J1(knrb)
. (22)

Note that pn(r) and pw(r) are also frequency-dependent, as kn and kw are given by

kw(ω) =

(
12ηw

ih2
0Kw

ω

) 1
2

, (23)

kn(ω) =

(
12ηn

ih2
0Kn

ω

) 1
2

. (24)

A detailed derivation of Eqs (17) to (22) is given in Appendix A.
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We now return to the problem of obtaining the dynamic bulk modulus of the partially-saturated

crack K∗ (Eq. 1). The first term of Eq. (2) is the force exerted by the non-wetting fluid phase which,

using Eq. (18), responds to

∆Fn = 2π

∫ rb

0
pn(r)r dr,

= −πr2
cSnTn(ω)

∆hKn

h0
, (25)

where Tn(ω) is given by

Tn(ω) =

(
1−A∗n

2J1(knrb)

knrbKn

)
. (26)

On the other hand, the second term of Eq. (2) is the force exerted by the wetting fluid phase which,

using Eq. (17), responds to

∆Fw = 2π

∫ rc

rb

pw(r)r dr,

= −πr2
cSwTw(ω)

∆hKw

h0
, (27)

where Tw(ω) is given by

Tw(ω) =

[
1

Sw
− Sn

Sw

(
1− B∗w

2T1(rb)

rbkwKw

)]
. (28)

Again, a detailed derivation of Eqs (25) to (28) is given in Appendix A.

The expression for the effective crack stiffness (Eq. 1) is obtained by considering Eqs (25) and

(27), that is,

K∗ = πr2
c [SwKwTw(ω) + SnKnTn(ω)]

1

h0
. (29)

The functions Tw(ω) and Tw(ω) present some key characteristics with frequency. On the one hand,

both tend to unity for sufficiently high frequencies, that is, limω→∞ Tn(ω) = limω→∞ Tw(ω) = 1. For

sufficiently high frequencies, fluid pressure gradients arising between the wetting and the non-wetting

fluid phases do not have enough time to equilibrate in a half-wave-cycle and, thus, the crack presents

its highest stiffness and viscous flow and dissipation are negligible. In this context, the crack is in the

unrelaxed state, and its stiffness converges to

lim
ω→∞

K∗(ω) =
πr2

c

h0
K∗f,∞, (30)

where the high-frequency effective bulk modulus is given by K∗f,∞ = [SwKw + SnKn], which is the

Voigt (isostrain) average of the corresponding fluid bulk moduli (Mavko et al. 2009).

On the other hand, for sufficiently small frequencies, the crack is in a relaxed state, that is, the

pressure gradients have time to relax in a half-wave-cycle. In this regime, viscous dissipation is virtu-
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ally null and the medium presents its lowest stiffness. This low-frequency limit is given by

lim
ω→0
Tw(ω) =

[
Sw +

Kw

Kn
Sn

]−1

, (31)

lim
ω→0
Tn(ω) =

Kw

Kn

[
Sw +

Kw

Kn
Sn

]−1

, (32)

and, thus,

lim
ω→0

K∗(ω) =
πr2

c

h0
K∗f,0, (33)

with K∗f,0 =
[
Sw
Kw

+ Sn
Kn

]−1
, which is the Reuss (isostress) average of the fluid bulk moduli.

For intermediate frequencies, pressure gradients arising within the partially saturated crack pro-

duce viscous dissipation due to squirt flow, which, in turn, affects amplitudes and velocities of traveling

seismic waves. A comparison of Eqs (29), (30), and (33) shows that, at any given frequency, the cor-

responding crack stiffness can be obtained by conceptualising the crack as saturated with a modified

fluid whose effective bulk modulus responds to

K∗f (ω) = SwKwTw(ω) + SnKnTn(ω). (34)

Eq. (34) is the central methodological result of this paper. As shown below, considering this effective

complex-valued and frequency-dependent fluid bulk modulus in Hudson’s (1981) model permits squirt

flow effects to be included in the corresponding analytical solution.

2.5 Effective compliance matrix of the medium

Hudson (1980, 1981) derived simple expressions for the components of the effective compliance ma-

trix ceff of an elastic solid comprising aligned thin penny-shaped cracks or inclusions, with normals

aligned along the vertical axis z. The first order solution considers that

ceff = c0 + εc1, (35)

where c0 denotes the compliance matrix of the isotropic background, c1 the first-order excess compli-

ance of the rock due to the presence of the fractures, and ε = νr3
c denotes the crack density, with rc

being the radius of the penny shaped cracks and ν = N/V the number of cracks N per unit volume

V . Recall that Hudson’s model assumes a low crack density, that is, ε < 0.1 and, thus, interactions

between neighbouring cracks are considered to be negligible.

Using Voigt’s notation, the isotropic background moduli are given by

c0
11 = c0

33 = λs + 2µs, (36)

c0
13 = λs, (37)

c0
44 = µs, (38)
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with λs and µs Lamé’s parameters of the solid background. The first-order corrections are given by

c1
11 = −λ

2
s

µs
U3, (39)

c1
13 = −(λs + 2µs)

λs
µs
U3, (40)

c1
33 = −(λs + 2µs)

2U3

µs
, (41)

c1
44 = −µsU1. (42)

c1
66 = 0, (43)

As the medium is effectively VTI, the corrections for the remaining components respond to c1
22 = c1

11,

c1
55 = c1

44, and c1
ij = c1

ji. Hudson (1980, 1981) gave the following expressions for fluid-filled cracks

U3 =
4(λs + 2µs)

3(λs + µs)

1

1 +K
, (44)

U1 =
16(λs + 2µs)

3(3λs + 4µs)
. (45)

with

K =
Kf (λs + 2µs)

παµs(λs + µs)
, (46)

where α = c/2rc denotes the crack aspect ratio, with c = 3
2h0 being the ellipsoidal mean aperture.

In this work, we propose to consider K∗f (Eq. 34) as the fluid bulk modulus in Eq. (46), render-

ing the saturated effective compliance matrix saturation- and frequency-dependent. Even though not

shown here, as it is a more complicated approach, one could consider a dry frame,Kf = 0 in Eq. (46),

and then use Gassmann’s equations (Appendix B) to saturate the medium with the effective fluid K∗f
and obtain virtually identical results. Also, it is important to remark that Hudson’s (1980; 1981) model

is chosen here due to the simplicity of the corresponding equations. However, alternative models, such

as, the Eschelby-Cheng equations (Cheng 1993) provide similar results when saturated with K∗f . In

this sense, Hudson’s model for arbitrary crack orientations can be employed to analyse squirt flow

effects in isotropic media containing partially saturated cracks (Hudson 1981; Pointer et al. 2000).

2.6 Phase velocities

For the above described VTI medium, the solutions of the wave equation permit one to compute the

phase velocities associated with the quasi-compressional V̂p, quasi-shear V̂s modes, which are given

by (e.g., Mavko et al. 2009)

V̂p(θ) =
[
ceff

11 (sin θ)2 + ceff
33 (cos θ)2 + ceff

44 +
√
M
] 1

2
(2ρb)

− 1
2 , (47)

V̂sv(θ) =
[
ceff

11 (sin θ)2 + ceff
33 (cos θ)2 + ceff

44 −
√
M
] 1

2
(2ρb)

− 1
2 , (48)
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Table 1. Material properties of the cracked rock models employed in this study. Solid grain properties of media

1 and 2 correspond to those of a Westerly granite (Hadley 1976) and a Poisson solid (Cheng 1993), respectively.

Solid Phase Medium 1 Medium 2

Ks [GPa] 56 65

µs [GPa] 33 39

α 3.8× 10−3 0.01

ε 4.6× 10−3 0.12

h0 [µm] 10 100

Fluid Phase Glycerin Air Water

Kf [GPa] 4.35 1.× 10−4 2.2

ηf [Pa.s] 1 2.× 10−5 0.001

with θ denoting the angle between the wave vector and the z-axis of symmetry (i.e., θ = 0◦ for

propagation along the z-axis) and ρb = ρs (1− φ) + φ (Swρw + Snρn) the bulk density, with ρs

denoting the density of the solid background. The parameterM responds to (e.g., Mavko et al. 2009)

M =
[(
ceff

11 − ceff
44

)
(sin θ)2 −

(
ceff

33 − ceff
44

)
(cos θ)2

]2
+
(
ceff

13 − ceff
44

)2
(sin 2θ)2. (49)

If the effective compliance matrix of the medium is computed using K∗f (Sw, ω) (Eq. 34) as satu-

rating fluid, the velocities V̂j , with j = p, sv, become complex-valued and frequency-dependent. The

corresponding equivalent phase velocities and inverse quality factors are given by (e.g., Rubino et al.

2016)

Vj (θ, ω, Sw) =

[
<

{
1

V̂j (θ, ω, Sw)

}]−1

, Q−1
j (θ, ω, Sw) =

=
{
V̂j (θ, ω, Sw)2

}
<
{
V̂j (θ, ω, Sw)2

} , (50)

where < and = denote the real and imaginary parts, respectively. Velocity and attenuation of the pure

shear (SH) wave are not considered in this work because they are not affected by squirt flow process

occurring in the considered VTI medium.
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3 RESULTS

In this section, we study the effects of squirt flow due to partial crack saturation on seismic phase

velocities and amplitudes. The velocity dispersion and attenuation of P-waves travelling in the vertical

direction (θ = 0◦), i.e., perpendicular to the cracks, are much larger than along other directions. We

thus first focus the analysis on this particular scenario. Then, we explore the corresponding effects on

the full stiffness matrix, which is used to calculate the seismic properties for all incidence angles and

wave modes.

3.1 Crack saturation effects on P-wave modulus dispersion and attenuation for normal

incidence

Here, we focus our analysis on the effects of squirt flow due to partially saturated cracks on P-waves

for normal incidence. For this, we consider an elastic medium with the properties of a Westerly granite

(e.g., Hadley 1976) that contains aligned cracks. Cracks are partially saturated with glycerin (wetting

fluid) and air (non-wetting fluid), as such fluid phases are commonly used to study squirt flow effects

in laboratory settings (e.g., Batzle et al. 1996; Fortin et al. 2014). The properties of the solid, fluids,

and cracks are summarised in Table 1. We employ Eq. (34) to obtain bulk modulus of the effective

fluid K∗f (ω, Sw). Then, we make use of Hudson’s model (Section 2.5), considering K∗f (ω, Sw) in Eq.

(46) as the fluid bulk modulus. When computing the functions Tn (Eq. 26) and Tw (Eq. 28) from the

parameters given in Table 1, we take

rc = 3h0/4α, (51)

rb = rc
√

1− Sw. (52)

It is important to remark that squirt flow effects are controlled by the behaviour of the effective

fluid bulk modulus K∗f (Sw, ω) = SwKwTw(ω) + (1 − Sw)KnTn(ω) (Equation 34). Let us analyse

first the behaviour of Tn, Tw, and K∗f as functions of frequency. We observe that, for Sw = 0.99, Tn

decreases with frequency, while Tw values increase (Fig. 2a). Interestingly, Tn and Tw exhibit different

inflection points in the frequency domain. As expected, the absolute value of K∗f as a function of

frequency is bounded by the isostrain and isostress limits (Fig. 2b). We also analyzed the effects of

surface tension, by considering σ = 0 mN/m and σ = 63 mN/m, the latter being the approximate

surface tension of air-glycerine interfaces at 20 ◦C, for which γ ' 0◦ (e.g., Takamura et al. 2012). We

note that the effective fluid bulk modulus remains virtually unperturbed by these variations. We have

analysed this for the full range of saturations and a great variety of crack aspect ratios and, indeed,

the effects of capillary forces can be regarded as negligible for the considered model (Fig. 2b). This

characteristic will be further discussed in Section 4.
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Figure 2. (a) Absolute values of Tn (blue line), Tw (red line), and of the (b) effective fluid bulk modulus K∗
f as

functions of frequency. We consider a crack of aperture h0 = 10µm, aspect ratio α = 3.8×10−3, and saturated

with glycerin (Sw = 0.99) and air. In panel (b), we illustrate the low-frequency (green line) and high-frequency

(light blue line) limits and, also, solutions considering (black line) and disregarding (dashed red line) capillary

tension effects σ at the interface between the immiscible fluid phases.

Squirt flow occurring between the stiff wetting fluid phase and the more compliant non-wetting

phase induces a dispersive behavior of the plane wave modulus <{c33} (Fig. 3a). We note that de-

creasing the wetting phase saturation Sw, which entails augmenting the radius rb (see Fig. 1), shifts

the dispersion curves towards higher frequencies (Fig. 3a). In the low-frequency limit, the effective

bulk modulus of the fluid responds to the harmonic mean of the corresponding fluid bulk moduli. In

this context, cracks behave as air-saturated, unless Sw approaches unity, due to the fact that air has

a much smaller bulk moduli than glycerin. This is indeed what governs <{c33} in the low-frequency

limit, where values remain virtually unchanged for Sw ≤ 0.9 (Fig. 3a), and increase when Sw ap-

proaches unity (Fig. 3a, light blue line). Attenuation curves, on the other hand, are characterised by

a peak value that slightly decreases and moves towards higher frequencies with decreasing saturation

(Fig. 3b). Interestingly, by relating the frequencies associated with the attenuation peaks fc (Fig 3b)

with the corresponding Sw values, we observe that fc ∝ 1/S3
w. During compression of the cracks, the

relatively more compliant non-wetting phase is invaded by the stiffer wetting phase. For decreasing

Sw, the central non-wetting phase bubble grows, increasing the contact surface between both immis-

cible phases which, in turn, implies that the wetting fluid has a larger area for flow and, thus, pressure

relaxation occurs faster, i.e. at higher frequencies. We remark that the aspect ratio, the viscosity of

the fluids, and Ks also play an important role in determining fc in squirt flow processes (e.g., Gure-

vich et al. 2010). Also, is interesting to note that attenuation levels are significant for all considered

saturations (Fig. 3b). This characteristic shows that squirt flow in partially saturated cracks does not
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Figure 3. (a) Plane wave modulus<{c33} and (b) inverse quality factorQ−1
p as functions of frequency for verti-

cally travelling P-waves in a solid background containing a regular distribution of horizontal partially saturated

cracks. We illustrate the corresponding behavior for different for different saturations (coloured lines). Rock

and fluid properties correspond to those of Westerly granite, that is, medium 1, saturated with glycerin and air

(Table 1).

follow the general behavior of the so-called patchy saturation models in porous media (e.g., White

1975; White et al. 1975; Johnson 2001), where attenuation becomes only significant at relatively high

saturations (Sw > 0.8), but tend to assume considerably small values for lower saturation levels.

The frequency- and saturation-dependent behavior illustrated in Fig. 3 can also be analysed for

fixed frequencies and varying saturation (Fig. 4). As expected, we observe that the plane wave modulus

increases with frequency and saturation (Fig. 4a). <{c33} values are bounded by Reuss and Voigt pore

fluid stiffness approximations for the saturating fluid (Fig. 4a). Attenuation estimates as functions

of saturation present peak values located at smaller saturations for increasing frequencies (Fig. 4b).

This is a highly interesting feature that, again, does not follow the behavior of mesoscopic patchy

saturation models (Yin et al. 1992; Cadoret et al. 1998; Rubino & Holliger 2012; Solazzi et al. 2017,

2019), where attenuation peaks are located at Sw ≥ 0.8 irrespective of the probing frequency.

3.2 Effects of partial saturation on the anisotropy of Vp and Vs

The presence of aligned cracks can lead to substantial seismic anisotropy. Squirt flow occurring within

partially saturated cracks may render this anisotropic response frequency-dependent. In the following,

we explore the behavior of Vp and Vsv as functions of the incidence angle ϑ for different frequencies
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Figure 4. (a) Plane wave modulus <{c33} and (b) inverse quality factor Q−1
p as functions of saturation for

vertically travelling P-waves in a solid background containing a regular distribution of horizontal partially satu-

rated cracks. We illustrate the corresponding behavior for different frequencies (coloured lines). Rock and fluid

properties correspond to those of Fig. 3. In panel (a), we also plot the response of the partially saturated medium

when the effective fluid responds to Reuss (dashed green line) and Voigt (dashed light blue line) end-member

behaviour.

and saturations (Fig. 5). In the analysis, we take the properties proposed by Cheng (1993), that is, we

consider a Poisson solid (i.e., λs = µs), whose properties are summarised in Table 1. The saturating

fluids are water and air, with densities ρw = 1000 kg/m3 and ρn = 1 kg/m3, respectively. We consider

that the density of the medium is ρs = 2640 kg/m3 and its porosity φ = επh0/rc. We compare the

results of our model with those predicted by Hudson’s theory for dry and fully-saturated cracks, which

act as end-member anisotropic responses of the medium. Recall that squirt flow effects are expected

to be maximal for P-waves at ϑ = 0◦ and for S-waves at ϑ = 45◦. This characteristic is associated

with the capability of the corresponding wave modes to induce larger fluid pressure gradients within

the cracks for such directions of propagation.

Let us analyse the anisotropic response of Vp at a constant saturation (Sw = 0.999) for prob-

ing frequencies of 1 kHz and 1 MHz (Fig. 5). We note that Vp increases with incidence angle and

varies with frequency (compare red and blue solid lines in Fig. 5a). As expected, velocity dispersion

decreases with increasing ϑ-values (observe the separation between red and blue solid lines in Fig.

5a). We note that even if the saturation of the medium remains constant, the anisotropic behavior of

Vsv is highly sensitive to squirt flow effects (compare red and blue dashed lines in Fig. 5a) and that

the corresponding dispersion is maximal at intermediate angles. Conversely, for a constant frequency

(1 MHz), varying the fluid content within cracks results in effective responses that shift between the

dry and fully-saturated estimates predicted by Hudson’s model (Fig. 5b). These results illustrate that
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Figure 5. Phase velocities Vp (solid lines) and Vsv (dashed lines) as functions of the incidence angle ϑ for

medium 2 (Table 1) saturated with water and air. In panel (a) we illustrate the results considering a fixed sat-

uration of Sw = 0.999 and frequencies of 1 kHz (blue lines) and 1 MHz (red lines). In panel (b) we consider

a fixed frequency of 1 MHz and different saturations (coloured lines). Grey coloured regions in panels (a) and

(b) highlight the zones delimited by the dry and fully-saturated anisotropic responses computed using Hudson’s

model.

squirt flow occurring within partially saturated cracks is an important phenomenon to contemplate

when interpreting seismic data for fluid content estimation.

4 DISCUSSION

4.1 Comparison with existing models

As mentioned previously, alternative approaches can be followed to estimate the effects of squirt flow

in partially saturated cracks. Previous analytical solutions present limitations, such as, Pointer et al.

(2000) model (Appendix C), which is valid only at relatively low frequencies, leads to attenuation
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estimates that are linear with frequency, and predicts a null phase velocity dispersion. For their part,

computational approaches, such as, finite element procedures, permit to simulate squirt flow within

partially saturated cracks using suitable upscaling procedures. For instance, Quintal et al. (2016, 2019)

proposed a finite element method to solve the coupled, linearised, and quasi-static Lamé-Navier and

Navier-Stokes equations in a representative elementary volume (REV) of the medium of interest. This

procedure allows to obtain the attenuation and phase velocity dispersion due to squirt flow occurring

within a medium composed by an elastic background and a fluid filled pore space of defined geometry.

Let us compare the analytical solution proposed in this study with this numerical approach as well as

with the analytical model proposed by Pointer et al. (2000). For this, we consider a medium with the

properties of a cracked Westerly granite (Table 1) where cracks are saturated with glycerin and air.

The REV of this medium, considered in the finite element numerical solution, consists of a 12 mm

side-length sample comprising a single crack characterised by rc = 2.0 mm, rb = 0.16 mm, and

h = 0.01 mm.

The attenuation derived from the proposed analytical model fits perfectly the low-frequency ana-

lytical prediction of Pointer et al. (2000) and agrees with the results obtained through the finite element

3D numerical approach of Quintal et al. (2019) (Fig. 6a). The numerical approach results in higher

attenuation values than our analytical solution at high frequencies (compare blue circles and solid red

line in Fig. 6a for f > 104 Hz). Similar results were observed by Alkhimenkov et al. (2020), who

compared Gurevich’s (2010) analytical solution with the same finite element numerical approach for

mono-saturated cracks connected to toroidal pores. The reason for this discrepancy lies in the fact

that our analytical model considers an homogeneous oscillatory strain imposed on the crack walls

whereas, in the 3D finite element procedure, the strain field is applied at the boundaries of a REV of

an elastic medium comprising a partially saturated crack. The differences in the result is associated

with discrepancies in the strain along the crack walls, which do not deform in the radial direction in the

proposed analytical model but may do so in the 3D numerical simulation. With respect to plane wave

modulus dispersion, results (Fig. 6b) also show that the proposed model follows the general behavior

of Pointer et al. (2000) model at low frequencies and those of the numerical simulations for the whole

frequency range. Convergence with Gassmann-Wood (green solid line in Fig. 6b) and Gassmann-Hill

(light blue solid line in Fig. 6b) limits, computed using Hudson’s (1981) dry frame moduli and the

anisotropic Gassmann equations (Appendix B), at low and high frequencies demonstrates that the

analytical solution is well behaved.
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Figure 6. (a) Inverse quality factor Q−1
p and (b) modulus dispersion <{c33} as functions of frequency for verti-

cally travelling P-waves in a solid background containing a regular distribution of horizontal partially saturated

cracks. We illustrate the results provided by: (i) the proposed analytical solution (red solid line); (ii) the 3D

numerical simulation (blue circles); and (iii) Pointer et al. (2000) low-frequency model. For completeness, in

panel (b) we also illustrate the Gassmann-Hill (light blue line) and Gassmann-Wood (green line) limits.

4.2 Outlook

The proposed analytical solution also allows one to explore different aspects of the seismic properties

of generic partially saturated rocks. For instance, Papageorgiou et al. (2016) discussed the effects of

partial saturation on porous media to provide with a theoretical basis for the Brie et al. (1995) effective

fluid model. In this context, Papageorgiou et al. (2016) argue that the effective fluid bulk modulus

of a partially saturated porous medium can be regarded as a real-valued and frequency-independent

parameter K̂f that responds to

K̂f = SwKwT̂w + (1− Sw)KnT̂n, (53)

with

T̂w = [Sw + α̂ (1− Sw)]−1 , (54)

T̂n = α̂ [Sw + α̂ (1− Sw)]−1 , (55)

where 1 ≤ α̂ ≤ Kw/Kn is a parameter related to the capillary pressure and depends on the specific

fluid distribution within the pores (Papageorgiou et al. 2016). Eq. (53) shows remarkable similarities

with Eq. (34), thus showing a potential relationship between Tn and Tw (Eqs 26 and 28), and α̂. This

similarity points to the need of further analysis considering more complex crack/pore geometries,

as both the fluid distribution (determined by capillary forces) and local squirt flow processes should

certainly play a role in determining the effective fluid properties.
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It is also interesting to note that, in porous rocks having stiff large pores connected to compliant

flat cracks, such as, the geometry proposed by Murphy et al. (1986), the non-wetting phase is expected

to preferentially invade larger pores. In such a case, the squirt flow mechanism analyzed in this work

will have negligible effects, as cracks would hardly be partially saturated. However, in rocks having

only compliant porosity (e.g., Sarout et al. 2017), the non-wetting phase will locate at the maximum

apertures of the cracks or compliant pores. Although, in this work we consider a simple case of cracks

having constant aperture, squirt flow in partially saturated rough-walled cracks may indeed play a

non-negligible role in a wide variety of pertinent scenarios. In particular, partially saturated squirt

flow associated with residual non-wetting phase bubbles trapped in large pores/crack apertures could

potentially lead to miss-interpretation of measurement in allegedly fully saturated media. In fact, the

results in Fig. 5a suggest that, for Sw = 0.999, dispersion and attenuation can be significative even

for nearly fully saturated rocks. The case of partially saturated and intersecting cracks it is certainly

interesting, as squirt flow can also arise between cracks, and, in this context, the effects of partial

saturation remain enigmatic.

We remark that the squirt flow model derived in this work (i) is limited to a low concentration

of cracks, as it is an inherent assumption in Hudson (1981) model; (ii) disregards inertial effects

associated with Biot’s intrinsic dissipation, as we emulate the approach of Gurevich et al. (2010) to

derive the effective crack stiffness; (iii) assumes that the seismic wavelengths are much larger than

the crack sizes, in order to obtain the effective response of the medium. Some of these limitations

and assumptions can be avoided. On the one hand, for large crack concentrations, self-consistent

models may be employed to obtain the effective elastic properties accounting for crack interactions

(e.g., Henyey & Pomphrey 1982; Berryman et al. 2002). On the other hand, for seismic wavelengths

comparable to the size of the cracks, scattering and squirt flow effects are expected to be coupled.

In this sense, one could consider our analytical solution to obtain the frequency-dependent effective

fluid bulk modulus and, then, use it for the saturating fluids, for instance, in the scattering solutions of

3D penny-shaped cracks proposed by Guo & Gurevich (2020). Extensions of the proposed model to

account for such effects are to be addressed in future works.

As previously stated, the proposed model is not sensitive to the capillary pressure at the interface

between fluid phases and solid matrix. This behavior is related to the assumptions and geometries

considered in our study. In this sense, we consider constant-aperture penny-shaped cracks in order

to obtain an analytical solution. For cracks containing variable apertures, large strains could lead to

irreversible modifications in the pore fluid distribution. Indeed this process was proposed by Beresnev

et al. (2005) and Pride et al. (2008) as a possible fluid mobilisation mechanism using seismic waves.

On the other hand, contact line slip and angle hysteresis conditions along the interface between fluids
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and the crack walls are not accounted for in the proposed model. These effects could, under certain

conditions, play a key role in the flow characteristics (e.g., Miksis 1988; Andrew et al. 2014; Rozhko

& Bauer 2019) and, thus, further developments in this direction are certainly interesting. Finally,

our model disregards the possible stiffening effects associated with capillary tension pulling on the

crack walls. The latter effect is similar to that predicted by Bishop & Blight (1963) in unconsolidated

granular sediments and merits further research.

5 CONCLUSIONS

We have derived a new model to describe the effects of squirt flow in rocks containing aligned partially

saturated penny-shaped cracks. The approach is based on solving the linearised Navier-Stokes equa-

tions within a partially saturated crack undergoing oscillatory variations in aperture that mimic the

deformation caused by a passing seismic wavefield. For this, we consider the effects of the compress-

ibility and viscosity of both immiscible pore fluid phases, which were usually disregarded in previous

approaches. We derive the expression for an effective fluid, which describes the frequency-dependent

stiffness variations of the partially saturated cracks which, when combined with well known analyt-

ical solutions, allows to retrieve the effective complex-valued and frequency-dependent compliance

matrix of the VTI medium. Our model permits a straightforward interpretation of body wave phase

velocities and attenuations as functions of the frequency and incidence angle in terms of the satura-

tion state. The proposed analytical solution is validated by comparison with 3D numerical simulations

and analytical models available in the literature. We show that the peak attenuation is shifted towards

lower frequencies with increasing saturations. In contrast to mesoscopic patchy saturation, attenuation

curves as functions of saturation for cracked partially saturated media may present maximum values

at relatively low saturations. We also show that dispersion characteristics for P- and SV-waves can

be significantly influenced by squirt flow processes occurring within partially saturated cracks. These

results further indicate that squirt flow effects in partially saturated cracks do not follow the general be-

haviour of mesoscopic patchy saturation models, which only predict measurable P-wave attenuations

for saturations approaching unity. We conclude that the analytical solution proposed in this study al-

lows for a better understanding squirt flow processes in partially saturated rocks and, thus, may permit

a better interpretation of seismic data for fluid content estimation.
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APPENDIX A: DETAILED SOLUTION TO THE DIFFERENTIAL PROBLEM

In the following, we present a detailed derivation of the expressions of the four integration constants

introduced in Eqs (9) and (10), that is, ofAw,An, Bw and Bn. Then, we derive the expressions for the

pore fluid pressures and of the effective crack stiffness.

A1 Pore fluid pressures

First, let us consider the no-flow condition at the edge of the crack (Eq. 11). Under this assumption,

Eq. (10) reduces to

−AwkwJ1(kwrc)− BwkwY1(kwrc) = 0, (A.1)

where we have employed that J ′0(kwr) = −kwJ1(kwr) and Y ′0(kwr) = −kwY1(kwr) (Abramowitz

& Stegun 1965). Therefore, the value for the second constant is given by:

Aw = −Bw
Y1(kwrc)

J1(kwrc)
. (A.2)

The pressure of the wetting and non-wetting fluids thus respond to

pn(r) = AnJ0(knr) +
Cn

k2
n

, (A.3)

pw(r) = BwT0(r) +
Cw

k2
w

, (A.4)

with

T0(r) =

(
Y0(kwr)−

Y1(kwrc)

J1(kwrc)
J0(kwr)

)
. (A.5)

Now we consider the continuity condition given by Eq. (13). Taking into account Eqs (A.3) and

(A.4), we obtain

An
kn

D0,n
J1(knr)

∣∣∣∣
r=rb

= Bw
kw

D0,w
T1(r)

∣∣∣∣
r=rb

. (A.6)

with

T1(r) =

(
Y1(kwr)−

Y1(kwrc)

J1(kwrc)
J1(kwr)

)
. (A.7)
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After some algebra, Eq. (A.6) yields

An = Bw
D0,n

J1(knrb)kn

kw

D0,w
T1(rb),

= Bw

√
ηnKn

ηwKw

T1(rb)

J1(knrb)
. (A.8)

Finally, we consider the continuity of pressures at the interface (Eq. 16). For this purpose, we

crossdiferentiate Eqs (A.3), (A.4), and (A.8):

Bw =

(
T0(rb)−

kw

kn

D0,n

D0,w

J0(knrb)

J1(knrb)
T1(rb)

)−1(Cn

k2
n

− Cw

k2
w

− 2σ cos γ

h2
0

∆h

)
. (A.9)

Replacing the expressions for Cj and D0,j , with j = w, n, in Eq. (A.9), we obtain

Bw =

(
T0(rb)−

√
ηnKn

ηwKw

J0(knrb)

J1(knrb)
T1(rb)

)−1(
Kw −Kn −

2σ cos γ

h0

)
∆h

h0
,

= B∗w
∆h

h0
(A.10)

with B∗w =
(
T0(rb)−

√
ηnKn

ηwKw

J0(knrb)
J1(knrb)T1(rb)

)−1 (
Kw −Kn − 2σ cos γ

h0

)
. This is the value of the

fourth, and last, constant of integration of the problem. Note thatAn of Eq. (A.8) can be also expressed

asAn = A∗n ∆h
h0

, withA∗n = B∗w
√

ηnKn

ηwKw

T1(rb)
J1(knrb) . In conclusion, the pressures for the wetting and non-

wetting fluids are given by Eqs (A.3) and (A.4), respectively, where the parameters An and Bw are

given by Eqs (A.8) and (A.10), respectively. These results are expressed in the main text in Eqs (17)

to (22).

A2 Effective crack stiffness

Let us return to the problem of obtaining the dynamic bulk modulus of the partially saturated crack

K∗ (Eq. 1). For this, we need to compute the force ∆F given by Eq. (2). The corresponding first term

is the force exerted by the non-wetting fluid phase, whose pressure is given by Eq. (A.3):

∆Fn = 2π

∫ rb

0
pn(r)r dr,

= 2π

∫ rb

0

(
AnJ0(knr)r +

Cnr

k2
n

)
dr,

= π

(
An

2J1(knr)r

kn
+
Cnr

2

k2
n

)∣∣∣∣rb
0

,

= −πr2
b

(
1−A∗n

2J1(knrb)

knrbKn

)
∆hKn

h0
,

= −πr2
bTn(ω)

∆hKn

h0
,

= −πr2
cSnTn(ω)

∆hKn

h0
, (A.11)
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where we have used that
(

d
dz

) {
z
aJ1(az)

}
= zJ0(az) (Abramowitz & Stegun 1965). Also, we have

employed that r2
b = r2

c (1− Sw), and defined Tn(ω) as

Tn(ω) =

(
1−A∗n

2J1(knrb)

knrbKn

)
. (A.12)

On the other hand, the second term of Eq. (2) is the force exerted by the wetting fluid phase, whose

pressure is given by Eq. (A.4), then,

∆Fw = 2π

∫ rc

rb

pw(r)r dr,

= 2π

∫ rc

rb

(
BwT0(r) +

Cw

k2
w

)
r dr,

= 2π

(
Bw

T1(r)r

kw
+
Cwr

2

2k2
w

)∣∣∣∣rc
rb

,

where, by definition T1(rc) = 0. Then,

∆Fw =

[
2πr2

c

(
B∗w

T1(rc)

rckwKw
− 1

2

)
− 2πr2

b

(
B∗w

T1(rb)

rbkwKw
− 1

2

)]
∆hKw

h0
,

= −π
(
r2
c − r2

b

) [ r2
c(

r2
c − r2

b

) − r2
b(

r2
c − r2

b

) (1− B∗w
2T1(rb)

rbkwKw

)]
∆hKw

h0
,

= −π
(
r2
c − r2

b

)
Tw(ω)

∆hKw

h0
,

= −πr2
cSwTw(ω)

∆hKw

h0
, (A.13)

where we have defined Tw(ω) as

Tw(ω) =

[
r2
c(

r2
c − r2

b

) − r2
b(

r2
c − r2

b

) (1− B∗w
2T1(rb)

rbkwKw

)]
. (A.14)

.

APPENDIX B: ANISOTROPIC GASSMANN’S EQUATIONS

In order to obtain the saturated response of the above described VTI dry medium, we can employ

Gassmann (1951) fluid substitution equations for anisotropic porous media, which state

csat
ij = cdry

ij + αiαjM, (B.1)

where αi are the effective Biot-Willis stress coefficients given by

αm = 1−
∑3

n=1 c
dry
mn

3Ks
, (B.2)

and M is the analogue of Gassmann’s pore space modulus defined as

M = Ks

[(
1− K̂

Ks

)
− φ

(
1− Ks

Kf

)]−1

. (B.3)
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The generalised bulk modulus is given by

K̂ =
1

9

3∑
i=1

3∑
j=1

cij . (B.4)

As previously mentioned, in this work we are dealing with a VTI medium and, hence, Eq. (B.2) yields

α1 = 1− c11 + 2c13

3Ks
, (B.5)

α2 = α3 = 1− c13 + c23 + c33

3Ks
, (B.6)

and α4 = α5 = α6 = 0.

APPENDIX C: POINTER’S LOW-FREQUENCY MODEL FOR PARTIALLY SATURATED

CRACKS

Expressions for the overall stiffnesses of a material containing partially saturated aligned cracks are

given by Pointer et al. (2000). This model is valid only at relatively low frequencies and leads to

attenuation estimates that are linear in frequency and non-dispersive body wave velocities. In the

context of Hudson (1981) equations, which are summarised in subsection 2.5, Pointer et al. (2000)

proposes the following parameterisation:

U3 =
4(λs + 2µs)

3(λs + µs)

1

1 +K1
−π

3

iωµ

α
(U s)2

[(
1

Kw
− 1

Kn

)/(
Sw

Kw
+

(1− Sw)

Kn

)]2

[ηwFw + ηnFn] ,

(C.1)

where

U s =
2

µπα

(
λs + 2µs
λs + µs

)/
(1 +K1) , (C.2)

K1 =
1

παµs

(λs + 2µs)

(λs + µs)

(
Sw

Kw
+

(1− Sw)

Kn

)−1

, (C.3)

Fw = (1− Sw)2
∫ 1

(1−Sw)1/3

(
y3 − 1

)2
y2 (1− y2)

dy, (C.4)

Fn = S2
w

∫ (1−Sw)1/3

0

y4

1− y2
dy. (C.5)
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Bourbié, T., Coussy, O., & Zinszner, B., 1987. Acoustics of porous media, Institut français du pétrole publica-
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