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Shaping Intrinsic Neural Oscillations with Periodic Stimulation
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Rhythmic brain activity plays an important role in neural processing and behavior. Features of these oscillations, including amplitude,
phase, and spectrum, can be influenced by internal states (e.g., shifts in arousal, attention or cognitive ability) or external stimulation.
Electromagnetic stimulation techniques such as transcranial magnetic stimulation, transcranial direct current stimulation, and trans-
cranial alternating current stimulation are used increasingly in both research and clinical settings. Currently, the mechanisms whereby
time-dependent external stimuli influence population-scale oscillations remain poorly understood. Here, we provide computational
insights regarding the mapping between periodic pulsatile stimulation parameters such as amplitude and frequency and the response
dynamics of recurrent, nonlinear spiking neural networks. Using a cortical model built of excitatory and inhibitory neurons, we explored
a wide range of stimulation intensities and frequencies systematically. Our results suggest that rhythmic stimulation can form the basis
of a control paradigm in which one can manipulate the intrinsic oscillatory properties of driven networks via a plurality of input-driven
mechanisms. Our results show that, in addition to resonance and entrainment, nonlinear acceleration is involved in shaping the rhythmic
response of our modeled network. Such nonlinear acceleration of spontaneous and synchronous oscillatory activity in a neural network
occurs in regimes of intense, high-frequency rhythmic stimulation. These results open new perspectives on the manipulation of synchro-
nous neural activity for basic and clinical research.
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Introduction
Rhythmic neural dynamics are a mechanism through which in-
ternal states exercise (top-down) influences on stimulus process-

ing and in turn impact perception (Engel et al., 2001; Varela et al.,
2001). Synchronization is considered one such mechanism, op-
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Significance Statement

Oscillatory activity is widely recognized as a core mechanism for information transmission within and between brain circuits.
Noninvasive stimulation methods can shape this activity, something that is increasingly capitalized upon in basic research and
clinical practice. Here, we provide computational insights on the mechanistic bases for such effects. Our results show that rhyth-
mic stimulation forms the basis of a control paradigm in which one can manipulate the intrinsic oscillatory properties of driven
networks via a plurality of input-driven mechanisms. In addition to resonance and entrainment, nonlinear acceleration is in-
volved in shaping the rhythmic response of our modeled network, particularly in regimes of high-frequency rhythmic stimulation.
These results open new perspectives on the manipulation of synchronous neural activity for basic and clinical research.
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erating across multiple scales of brain circuitry from single units
to interregional coherence (Singer and Gray, 1995; Engel and
Singer, 2001). The functional role of oscillations within the
gamma band (30 Hz–100 Hz) has received considerable attention
(Whittington et al., 1995; Wang and Buzsáki, 1996; Jadi and Se-
jnowski, 2014). More recently, lower frequencies, which likely
rely on different cellular mechanisms and operate over longer
timescales than their high-frequency counterparts (Kajikawa and
Schroeder, 2015; Podvalny et al., 2015), have been the focus of
increasingly intensive research (Lorinscz et al., 2009; Haegens et
al., 2014). In particular, the alpha frequency (8 –12 Hz) is known
to correlate strongly with cognitive performance and serves as a
robust predictor of the degree of cognitive decline between
healthy and pathological groups (Klimesch, 1999; Başar, 2012;
Basar and Guntekin, 2012; Vlahou et al., 2014). The alpha peak
frequency has also been found to predict the temporal resolution
of visual perception (Samaha and Postle, 2015). Therefore, nu-
merous studies have investigated the consequences of variations
in alpha oscillations on cognition, attention, and perception to
increase our understanding of the reciprocal interactions be-
tween slow oscillatory activity and population neural coding
(Lakatos et al., 2008; Siegel et al., 2012). For example, shifts in the
peak alpha frequency of different subjects (also called individual
alpha frequency) are observed reliably when attentional demands
increase during visual tasks (Samaha et al., 2015), overt behavior
(Gutmann et al., 2015), and/or sensorimotor inputs (Hülsdünker
et al., 2015).

These observations have raised the prospect of manipulating
(alpha) rhythmic activity in a controlled manner either through
attention-related processes or brain stimulation methods (Thut
et al., 2012; Frohlich, 2015). It has indeed been demonstrated that
transcranial magnetic stimulation (TMS) and transcranial direct
current stimulation and transcranial alternating current stimula-
tion (tACS) can perturb individual alpha oscillations and have a
direct effect on visual stimulus perception (Chanes et al., 2013;
Cecere et al., 2015) and task performance by reinforcing endog-
enous slow-wave rhythms (Klimesch, 1999; Henry et al., 2014).

One implication of such findings is that brain stimulation can
result in the selective engagement of endogenous (intrinsic) os-
cillations, effectively making it a potential means of manipulating
and controlling cognition and treating neurobiological disorders.
This critical question has received much attention in recent stud-
ies (Frohlich, 2015; Witkowski et al., 2015) in which mechanisms
such as resonance (Thut et al., 2012; Ali et al., 2013) and entrain-
ment (Thut et al., 2011) have been implicated and found to de-
pend strongly on the ongoing dynamics of the stimulated
networks (Neuling et al., 2013; Alagapan et al., 2016).

In order for brain stimulation approaches to be optimally
effective, it is necessary to have a better mechanistic understand-
ing of their consequences on brain activity, something that can be
garnered from computational modeling. However, computa-
tional modeling of this issue has rarely considered a wide range of
stimulation parameters (Reato et al., 2010). Due to the nonlin-
earity of neural circuits and the large number of possible stimu-
lation patterns, the mechanisms involved in the combination of
exogenous and endogenous oscillatory signals are furthermore
poorly understood. To address these limitations, we here con-
sider the response of a simplified cortical network to periodic
pulsatile stimuli. Specifically, using a generic computational
model of spiking excitatory and inhibitory neurons that exhibits
spontaneous alpha oscillatory activity (here set at 10 Hz), we
explore different combinations of stimulation frequencies and
amplitudes systematically, revealing those in which resonance

and/or rhythmic entrainment can be evoked. Then, building on
recent advances in neurodynamics (Lefebvre et al., 2015), we
report novel regimes of oscillatory acceleration that characterize
network responses to input stimuli of high frequencies (50 –100
Hz). Our results provide new perspectives on the response of
synchronous nonlinear neural systems, in which a plurality of
linear and nonlinear mechanisms are combined to shape intrinsic
alpha-like oscillatory activity.

Materials and Methods
Cortical network. To highlight the influence of stimulation on local oscil-
latory dynamics, we deliberately chose a relatively well understood hy-
brid Amari model (Amari, 1977) of a cortical network and evaluated its
behavior when subjected to dynamic stimulation, that is, during forcing.
Our model takes into account the variability of neuronal responses, yet is
simplistic enough to remain both computationally and analytically trac-
table. It consists of a network of pyramidal excitatory neurons (e) and
inhibitory interneurons (i), the individual spiking activity of which fol-
lows the nonhomogeneous Poisson processes as follows:

Xe
j �t�¡Poisson � f �ue

j �t���
Xi

j�t�¡Poisson � f �ui
j�t��� (1)

where Xe,i
j �t� � ��tl��e,i

j �t � tl� is the spike train of the j th neuron in the
population e or i. For simplicity, the activation function is defined by
f[u] � 1 whenever u 	 h and 0 otherwise. It represents how the firing rate
of the neurons relates to the cellular potential, u. The excitatory and
inhibitory somatic membrane potentials ue
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to the set of scalar nonlinear stochastic equations as follows:
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Here, Ne and Ni refer to the number of e versus i cells, which follow the 4:1
ratio generally observed in cortical tissue (Koch, 1999). The rates �e

u, �i
u

define the timescale of the respective somatic membrane. Adaptation
currents ve

j�t� and vi
j�t� with gain b and rate a are also included to repre-

sent the habituation of neurons to both steady and fluctuating inputs
(Prescott and Sejnowski, 2008).

Both excitatory and inhibitory populations are driven by an external
stimulation signal I(t), which consists of pulsatile stimuli. In this model,
recurrent inputs to the neurons take the form of postsynaptic potentials
due to incoming spikes. The cross-population recurrent inputs Gnm

j �t�
are defined by the following:
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Ne

Wee
jk�c� � EPSPk �t � � jk�;

Gie
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Ni
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Ni

Wii
jk�c� � IPSPk �t � � jk� (3)

where EPSP k(t) and IPSP k(t) are afferent postsynaptic excitatory and
inhibitory potentials, respectively. They are computed by convoluting
spike trains with exponential synapses with time constant �m as follows:
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Both populations are further subjected to endogenous sources of noise
�e,i

j �t�, which is assumed to follow spatially and temporally independent
Gaussian white noise profiles with fixed amplitude D. Synaptic weights
within (Wee

jk�c�, Wii
jk�c�) and between (Wei

jk�c�, Wie
jk�c�) excitatory and in-

hibitory populations exhibit sparse exponential profiles (Hellwig, 2000)
with connection probability c as follows:

Wnm
jk �c� � wnm

o �c�exp��	n,m
2 �x� j� � x�k��� (5)

where 	n,m
2 � 	e

2, 	i
2 is the range of the excitatory and/or inhibitory

interactions and x(k) refers to the spatial location of neuron k in the
network. To represent the sparseness of cortical connections, synaptic
weights wnm

o �c� are set to 0 with probability of 1 
 c. The matrix of synaptic
weights is plotted in Figure 1A. The network extends in the one-dimensional
spatial domain � and the neural lattice is built by distributing cells randomly
according to a uniform distribution. Given the spatial organization of the
network, synaptic interactions between neurons k and l are thus subjected to
propagation delays �jk � � x�k� � x� j��v
1, with v being the axonal con-
duction velocity, set here to 0.15 m/s. This value for the conduction
velocity is realistic for intracortical connections (Hutt et al., 2003). This
gives rise to a distribution of propagation latencies plotted in Figure 1B.
For the parameters selected, neurons engage spontaneously in synchro-
nized oscillatory alpha activity at a frequency of �10 Hz. Sample spiking
responses for randomly selected inhibitory and excitatory cells are plot-
ted in Figure 1C, alongside membrane potential traces exhibiting sub-
threshold oscillations within the alpha band. These oscillations result
from the combined influence of propagation delays and slow cellular
adaptation, which is known to lead recurrent nonlinear networks in a
state of robust synchrony (Lefebvre et al., 2011). This can be seen from
the full network activity plotted in Figure 1D, where the spiking of the
neurons is modulated by a global rhythm of 10 Hz. Model parameters are
summarized in Table 1 below. We note that, throughout, the network
parameters were left unchanged and only stimulation settings such as in-

put frequency and amplitude were varied. Being a single-compartment,
conductance-based model, the system above shares many similarities
with the well known two-population integrate-and-fire networks that
have also been shown to sustain global synchronous activity (Brunel,
2000; Buzsáki and Wang, 2012). Key differences lie in the spike initiation
mechanism, which in our case adds an additional source of variability in
the firing of the modeled neurons, and in the presence of slow inhibition,
resulting in slower oscillations frequencies.

Spectral analysis. Spectral analysis was performed using a fast Fourier
transform routine using freely available C scripts (Press et al., 2007).

Stimulation. The stimulation I(t) in Equation 1 is a train of phasic
pulses of duration �t � 300 
s of given forcing frequency �f and intensity
If. In the analysis, both frequency and intensity are changed to explore a
variety of independent combinations. This stimulus offers a richer spec-
tral signature compared with sinusoidal signals, for which only one fre-
quency is represented. Later on, it is useful to compute the time average

Figure 1. Network connectivity and intrinsic activity without stimulation. A, Matrix of synaptic weights that define the connectivity of the network within (Wee, Wii) and between (Wie, Wei)
excitatory and inhibitory neural populations. As defined, the connectivity is spatially profiled, where proximal (resp. distal) neurons share stronger (resp. weaker) synaptic connections. B,
Distribution of propagation delays in the network. Given a finite conduction velocity of 0.15 m/s, the timing of synaptic interactions is delayed. The distribution shows that the network dynamics are

dominated by many short latencies and few longer ones. C, Sample activity of randomly selected excitatory (black) and inhibitory (blue) neurons. The spiking activities Xe

j
and Xi

k of these neurons
are shown above the corresponding membrane fluctuations, which exhibit clear, albeit noisy, subthreshold oscillations. D, Network intrinsic spiking activity without stimulation. Both populations
are set in stable synchronous activity with firing rates modulations of �10 Hz.

Table 1. Model parameters

Symbol Definition Value

� Network spatial size 10 mm
Ne Number of excitatory cells 800
Ni Number of inhibitory cells 200
h Firing rate threshold 0.0
�m Membrane time constant 10 ms
�e Membrane rate constant, excitatory cortical cells 1.0
�i Membrane rate constant, inhibitory cortical cells 1.5
a Adaptation rate constant 0.01
b Adaptation gain 0.01
v Conduction velocity 0.15 m/s
c Connection probability 0.8
wee

o e¡ e synaptic connection strength 60
wei

o e¡ i synaptic connection strength 70
wie

o i¡ e synaptic connection strength 
70
wii

o i¡ i synaptic connection strength 
70
	e

2 Excitatory synaptic spatial decay rate 1.0
	i

2 Inhibitory synaptic spatial decay rate 0.5
D Intrinsic noise level 0.001
dt Integration time step 1 ms
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of the stimulation pattern 
I � � I�t�  T over a given epoch that is
given by the following:


I � � I�t�  T �
1

T�
0

T

I�s�ds � �fIf�t (6)

which also allows also the computation of the variance as Var(I) � � �I�t� �

I)

2  T � If
I � 
I
2. We deliberately chose short stimulation epochs

(i.e., 1 s) compared with the timescale usually involved during continu-
ous stimulation paradigms in clinical settings (lasting several minutes)
because we were investigating the online effect during stimulation, which
has been shown to exist for brief stimulation duration of a few seconds
(Fröhlich and McCormick, 2010). For the investigation of plastic effects,
such as long-term synaptic potentiation (Huerta and Volpe, 2009), lon-
ger stimulation duration would be required.

Neuroelectric activity. In our model, the network neuroelectric activity
is determined by a weighted sum over somatic excitatory and inhibitory
potentials as follows:

A�t� �
1

Ne
�k�1

Ne

�e
kue

k�t� �
1

Ni
�k�1

Ni

�i
kui

k�t� (7)

where �e,i
k are real positive coefficients. Here, we assume that the network

fine scale structure is unknown, and thus consider random weights as
follows: �e,i

k � [0,1]. This is done to take into account, in our calculations,
of different sources of observational variability and constraints that we
do not model explicitly while avoiding any filtering issues in the resulting
spectral calculations. However, specific choices of the �e,i

k distributions
can be made to increase the similarity of the network activity to physio-
logical signals such as LFPs and EEG (Lindén et al., 2010; Mazzoni et al.,
2015).

Spike coherence. To compute spike coherence between spike trains
(Gabbianni and Koch, 1998), we selected randomly two excitatory neu-
rons, and j, within the cortical populations and binned their respective
responses over a given time window �T. Therefore, for neuron j,
Xj

bin�k�T� � 1 if a spike occurred during the interval �k�T, �k � 1��T�
and zero otherwise, where k � T/�T. Coherence, �(�T ), was then com-
puted as follows:

Coherence��T� �
�TXi

bin
Xj

bin

�TXi

bin 2 �TXj

bin 2 (8)

where �T denotes the sum over time intervals. For �(�T ) � 0, two spike
trains are independent and �(�T ) � 1 reflects maximum coherence. A
nonlinear (resp. linear) dependence of the coherence on the time win-
dow will appear whenever synchronous (resp. asynchronous) spiking
exists in the data (Wang and Buzsaki, 1996; Hutt and Buhry, 2014). For
the purposes of the current analysis, we have chosen �T � 10 ms. This
value was selected to optimize the coherence difference between original
(synchronous) and shuffled spike trains.

Mean coupling strength. To measure the relative level of recurrence and
nonlinearity in the system, we computed the network-average recurrent
inputs received by neurons during stimulation epochs and how they
changed with respect to different stimulation parameters. The mean cou-
pling strength, referred here as the � index, is defined by the following:

� �
1

4
���Gee		Ne,T � ��Gie		Ne,T � ��Gei		Ni,T � ��Gii		Ni,T�

(9)

where ��.		N,T stands for the mean taken over the population of size N
and during a time interval of duration T. For the purposes of the analysis,
we have chosen to compute the mean coupling strength over the full
duration of the stimulation epochs to average out time fluctuations con-
veyed by the oscillatory nature of the network output.

Results
To understand the response evoked during stimulation, we in-
vestigated the behavior of a generic cortical network expressing
alpha synchrony and subjected to periodic stimulation of various
combinations of frequencies and amplitudes and observed the
evolution of the spectral properties exposed by the network’s
neuroelectric output. The goal here was not to derive a precise
mathematical formulation of the resulting dynamics, but instead
to provide a general overview of driven oscillatory responses
unfolded in stimulation parameter space. Limited by the dimen-
sionality of possible stimulation waveforms, we focused our at-
tention on repetitive pulsatile stimuli that closely resemble
transcranial magnetic stimulation waveforms and/or direct cor-
tical microstimulation paradigms (see Materials and Methods).
The stimulation was assumed to be global: all neurons in the
network were subjected to the same driving pattern. The aim of
the study was to extract the mapping that links input to output
spectral signatures. Therefore, we assumed stimulation epochs to
be short compared with synaptic potentiation and/or depression
such that plasticity had no significant impact on the dynamics.
Therefore, our findings characterize instantaneous responses
arising due to the recurrent architecture of the network and the
rhythmic nature of its ongoing state.

Figure 2 details different response mechanisms that can be
evoked during pulsatile forcing in our model network. Without
stimulation, the network is found in a synchronized state, exhib-
iting strongly correlated activity where firing rate fluctuations
oscillate at an intrinsic—also called “natural”—frequency of
�o � 10 Hz. Different stimulation forcing amplitudes (If) and
frequencies (�f) lead the network through different response re-
gimes such as resonance, in which intrinsic oscillations are en-
hanced (Fig. 2B); entrainment, where the systems’ dynamics are
locked to the stimulation (Fig. 2C); and nonlinear acceleration
(NLA), in which the stimulation causes a shift in the system’s
intrinsic frequency (Fig. 2D).

To disambiguate network responses and see how they are
shaped by the system’s nonlinearity, we analyzed the network
response during fully independent trial epochs of 1 s duration.
During each epoch, we computed the power spectral density of
the network neuroelectric activity (See Materials and Methods).
Varying the stimulation frequency alone (i.e., for a fixed stimu-
lation intensity), we found that the different mechanisms detailed
in Figure 2 were evoked sequentially, yet in a nontrivial manner.
Figure 3A displays the network‘s neuroelectric power spectral
density (see Materials and Methods) evolving as a function of
increasing stimulation frequency while keeping the stimulation
intensity constant. As detailed in Figure 3B, alongside the funda-
mental frequency peak seen on the diagonal, one can see both
harmonic and subharmonic peaks. For lower frequencies, the
stimulation was found to tune the peak frequency expressed by
synchronous neurons via a sequence of subharmonic entrain-
ments. For high-frequency stimulation, the network was found in
a state of fast oscillations in which ongoing cyclic activity was not
entrained to the stimulation, but instead was accelerated with
respect to the baseline intrinsic frequency.

How do the peak frequency and power change when stimula-
tion intensity is varied? To better understand how the spectral
patterns seen in Figure 3 unfold, we systematically varied both If

and �f and identified in each case the network peak frequency
(��) and peak power at that same frequency. In Figure 4, multiple
spectral patterns can be seen in both the power and frequency
plots, indicating a plurality of network responses. For lower stim-
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ulation frequencies, the system’s responses were expectedly
found to be shaped by entrainment and resonance. Indeed, as
seen in Figure 4A where the power of the peak frequency is plot-
ted, one can see characteristic resonance peaks (R) aligned at
multiples of the network intrinsic frequency (�o) where the stim-
ulation triggered the amplification of the endogenous alpha
rhythm. This effect spanned all stimulus intensities. Harmonic
resonances can also be seen where peaks appear at integer multi-
ples of �o (e.g., n�o) with gradually decreasing amplitudes. Non-
linear effects can also be seen readily. Resonance peaks, which
would be vertically aligned at every multiple of the systems’ in-
trinsic frequency in the case of a linear oscillator, are here arched.
The effect, which is more salient for higher harmonics, is due to a
shift in network intrinsic frequency due to the action of stimula-
tion. In addition, one subharmonic resonance peak can be ob-
served at �5 Hz. The different resonances expressed by the
network are labeled in Figure 4B.

Other patterns emerge in Figure 4C, where frequency of the
peak frequency is plotted with respect to varying stimulation pa-
rameters. For weaker stimulation frequencies, characteristic en-
trainment (E) patterns, also called Arnold tongues (Jensen et al.,

1983), dominate the system’s response: the network oscillatory
behavior is locked to the stimulation frequency; that is: �� � �f.
Subharmonic entrainment also occurs as the stimulation fre-
quency increases: the network is entrained to oscillate at frequen-
cies that are subharmonics of the driving frequency. Although
similar to resonance peaks, the mechanism involved in generat-
ing these Arnold tongues is fundamentally different. We also note
that. whereas the entrainment effect scales with stimulation in-
tensity, it is nonetheless limited to driving frequencies that are
close to �o and/or its harmonics (Fig. 4A,B) and vanishes at
higher stimulation frequencies.

For stimulation frequencies 	50 Hz, another mechanism
emerged and was found to dominate the response of the network,
the dynamics of which enter a state of increasing recurrence. In
this regime, high-frequency pulses increase the network response
frequency via an NLA of the endogenous rhythmic activity. The
intrinsic network frequency is shifted, leading to a gradual tran-
sition from the alpha (8 –12 Hz) to the beta (12–30 Hz) band. In
contrast to high-intensity/low-frequency stimulation, where res-
onance and entrainment dominate, NLA occurs in response to
stimuli that have more subtle effects on the individual firing rates

Figure 2. Responses of synchronized neural population to periodic pulsatile stimulation. The network neuroelectric output A(t) is shown on the left. The associated power spectral density (PSD)
is plotted in the middle next to the excitatory neurons spiking activity, which are shown on the right. A, According to the set of selected parameters, the network engages spontaneously into
synchronous alpha activity. In absence of stimulation, the endogenous rhythm stabilizes around an unperturbed intrinsic frequency of �o � 10 Hz, which modulates the noisy spiking activity of the
neurons. Once global stimulation is applied to the network, different mechanisms are recruited and explain the observed responses. B, If the stimulation frequency �f is close to the intrinsic

frequency, its harmonics, and/or subharmonics, resonance occurs. Although the network response frequency �� remains stable—that is, �� �
m

n
�o—the associated spectral power increases

significantly. This is also reflected in the spiking activity of driven neurons: firing rates increase into tightly synchronized bursts of spike discharges. C, Whenever the stimulation amplitude increases
beyond a certain threshold, intrinsic ongoing activity in entrained by the stimulation drive and the network oscillates at a frequency equal to the stimulations, its harmonics, and/or subharmonics;

that is, �� �
m

n
�f. In this example, a strong rhythmic stimulation of �f � 17.5 Hz was applied and harmonic entrainment can be observed in the 1:2 Arnold tongue as the network peak

frequency shifts to �� � 8.8 Hz. D, For high-frequency stimulation, nonlinear interactions provide the means of accelerating ongoing synchronous activity. A spectral shift �(�fIf), the magnitude
of which depends on stimulus parameters, arises due to a change of the network intrinsic oscillatory properties. In this example, a stimulation of �f � 97 Hz can be seen to accelerate the baseline
activity from �o � 10 Hz up to �� � 15 Hz.
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of driven neurons. Despite high forcing frequencies and ampli-
tudes, NLA triggers rhythmic responses expressing peak power
levels comparable to those seen in the unperturbed state (Fig. 2A)
and dominates the peak frequency mapping at high frequencies.
Visible entrainment and NLA regimes are labeled in Figure 4D.

Close scrutiny of the network firing rates during stimulation
epochs also revealed the influence of stimulation on the spiking
activity of individual neurons. We computed the normalized
mean firing rates of excitatory neurons by first computing the
network mean spiking activity in every stimulation condition and
then comparing it with resting-state values. As seen in Figure 5A,
for weaker stimulation frequencies (i.e., �50 Hz), neural dis-
charge rates are strongly driven by network resonances: neurons’
spiking activities track stimulation-induced changes in network
peak power. Therefore, firing rates are strongly tied to the stim-
ulation signal. However, for higher stimulation frequencies (i.e.,
	50 Hz), notably where NLA occurs, the network’s mean firing
rates still increase despite the weak neuroelectric power expressed
(cf. Fig. 4A).

Therefore, to disambiguate the contributions of firing rates,
power, and peak frequency to the emergence of synchronous
dynamics in presence of stimulation, we further computed the
response spike coherence between neurons as stimulation pa-
rameters were varied systematically. As seen in Figure 5B, the
shadow of the system’s resonance peaks were also found, indicat-
ing that rhythmic stimulation triggers, not only high firing rates
via resonance, but also strongly correlated states, which is consis-
tent with reported links between expressed neural correlations
and the magnitude of spiking activity (De La Rocha et al., 2007).
In contrast, weak to no spike coherence was found between the
neuron’s spike trains for stimuli of high frequency (Fig. 5B).

This stimulus-driven phenomenon echoes previous results
that revealed the nonlinear mapping between stochastic input
statistics and the spectral features of nonlinear recurrent

networks (Lefebvre et al., 2015). Building on the timescale
separation that subsists amid slow endogenous activity and
high-frequency fluctuations, synergistic interactions between
stimulation-induced fluctuations and network nonlinearity sup-
port a gain control mechanism in which the network susceptibil-
ity is enhanced with respect to baseline. In this framework, the
stimulation recruits the network’s recurrent nonlinearity and
distorts its oscillatory properties, an effect that further scales with
stimulation intensity; that is, �� � �o � ��If, �f�. To support
this perspective, we calculated the stimulation time-average, [
]I

(see Materials and Methods) as stimulation settings were varied.
As can be seen from Figure 6A, the stimulation mean intensity
expectedly increases with both stimulation amplitude and fre-
quency: maximal recruitment of network recurrent nonlinearity
should thus mirror the 
I distribution. To verify this, we com-
puted in Figure 6B the mean coupling strength index � (see Ma-
terials and Methods) as stimulation parameters were varied
systematically. The � index gauges the average intensity of recur-
rent interactions across the network and scales with network-
induced intrinsic activity, as opposed to stimulation-driven
activity; therefore, it is an indirect measure of the system’s effec-
tive recurrence. The mean coupling strength was found to be
shaped by stimulation distinctively compared with the neuron’s
firing rates and/or spike coherence: the � index distribution cor-
related strongly with the NLA pattern shown in Figure 4C and did
not build on from resonance and entrainment patterns despite
being modulated by those as well. More importantly, maximal
recruitment of network recurrence was achieved alongside max-
imal stimulation intensity, indicating that nonlinear effects sup-
port the oscillatory shifts observed in this region of parameter
space. Together, these results suggest that, in addition to reso-
nance and entrainment, rhythmic stimulation can also be used to
recruit the intrinsic nonlinearity of cortical networks to shape the
oscillatory features displayed by synchronous populations.

Figure 3. Power spectrum of the network neuroelectric output A(t) during stimulation of fixed intensity but variable frequency. A, Increasing the frequency of the stimulation (�f) shifts the peak
frequency (��) and alters the spectral profile of the network’s activity. The stimulation fundamental frequency is seen aligned on the diagonal. In addition, both harmonics (Hm:n

� ) and subharmonic
(SHn:m

� ) of the stimulation frequency are visible (above and below the diagonal, respectively). For low-frequency forcing, the peak frequency is close to the system’s intrinsic frequency �o.
However, entrainment occurs as �f increases further, where the network peak frequency successively tracks the stimulation frequency �f and its subharmonics. Once �f exceeds 50 Hz, the peak
frequency stabilizes to an accelerated frequency. B, Schematic representation of the spectral patterns seen in A. Shifts in the network peak frequency (��) are plotted in red. Subharmonic resonance
can be observed as indicated by the black lines below the diagonal. Here, If � 1.5. In Figure 4, one can see how these patterns unfold as stimulation intensity is also changed.
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Discussion
There is growing evidence demonstrating that noninvasive neu-
rostimulation engages neural networks by perturbing endoge-
nous oscillatory brain activity. Purported mechanisms include
the generation of bursts of time-locked gamma oscillations
(Huerta and Volpe, 2009) or the disruption and/or entrainment
of endogenous alpha cyclic dynamics (Thut et al., 2011) that lead
to quantifiable alterations in cognitive performance (Romei et al.,
2011) and perception (Chanes et al., 2013; Cecere et al., 2015).
Moreover, the influence of stimulation has further been reported
to be state dependent (Neuling et al., 2013). The current quanti-
tative assessment of neurostimulation’s impact is oftentimes lim-
ited to frequency ranges that are close to the system’s natural
frequency in which resonance plays a dominant role. Here, we
have explored the response of a model network of spiking neu-
rons to various combinations of forcing intensity and frequencies
to characterize better the plurality of network responses evoked.

Our results confirm that the engagement of nonlinear spik-
ing networks to low-frequency forcing (i.e., �50 Hz) is shaped
by resonance and entrainment. In this regime, an enhance-
ment of the amplitude of the intrinsic oscillation (resonance)
can be observed reliably if the stimulation frequency is close to
the intrinsic frequency or its harmonics and subharmonics. For
increased stimulation amplitudes, even if the network is stimu-
lated at frequencies near the intrinsic frequency, the network
dynamics are locked to the stimulation frequency (entrainment):
this switch from intrinsic to driving frequency is mediated by an
increase in forcing amplitude. The network was also found to
exhibit subharmonic entrainment; that is, when the driving fre-
quency is a harmonic of the intrinsic frequency, the network
responds with a frequency that is subharmonic to the driving
frequency and closest to the intrinsic frequency. This phenome-
non has been observed previously in human EEG data when sub-
jects were stimulated with different frequencies of flickering light

Figure 4. Spectral mapping between input stimulation parameters and the network neuroelectric output A(t). Stimulation frequency (�f) and amplitude (If) were varied systematically while the
network response was analyzed. A, Spectral peak power expressed by the network as a function of stimulation parameters. Characteristic resonance peaks, vertically aligned, are present at the
system’s intrinsic frequency (�o � 10 Hz) and at every integer multiple of it. Subharmonic resonance can also be seen at 5 Hz. Through these resonances, the system’s output power is magnified
due to the proximity of the stimulation frequency to the intrinsic frequency. The peaks, however, gradually vanish as the stimulation frequency increases 	50 Hz, leading to responses of relative
weak power for all remaining stimulation conditions. B, Labeled resonance ( R) curves seen in A, shown along the subharmonic resonance at 5 Hz (SR). C, Network peak frequency (��) as a function
of stimulation parameters. Arnold tongues representing entrainment are aligned vertically and indicate regimes where the system’s frequency is locked to the stimulation frequency. Harmonic
entrainment can also be seen. Entrainment occurs mainly for frequencies close the system’s intrinsic frequency and its harmonics and vanishes as the stimulation frequency increases. For higher
frequencies and amplitudes, however, nonlinear acceleration of intrinsic oscillatory activity can be observed. Such acceleration occurs for higher stimulation frequencies, where �� is seen to transit
gradually to frequencies in the beta band by the action of forcing alone. D, Labeled entrainment ( E) and NLA regimes as seen in C. Note that Arnold tongues overlap each other. The horizontal dashed
lines at If � 1.5 seen in all panels represent the specific example detailed in Figure 3 in which the frequency, but not the intensity, was varied (within the interval 0 –50 Hz). One can then see how
peak power and frequency are shaped as stimulation intensity is also varied.
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and so-called steady-state visual evoked potentials (SSVEPs)
were recorded (Herrmann, 2001). For example, at a stimulation
frequency of 80 Hz, the visual cortex responded with a 10 Hz
SSVEP oscillation; that is, a 1/8 subharmonic to the driving fre-
quency. Therefore, and despite the simplicity of our model, our
findings are consistent with recent tACS experiments showing
that sinusoidal electric current applied to the human scalp re-
sulted in entrainment of ongoing alpha oscillations (Helfrich et
al., 2014). Our results also show good accordance with findings in
animal models in which multiple driving frequencies were found
to recruit the underlying Arnold entrainment tongues (Ali et al.,
2013).

In contrast, our results indicate that the response dynamics to
high-frequency stimulation (i.e., 	50 Hz) builds on a different
mechanism: network synchronous oscillations were found to be
accelerated with respect to baseline through a nonlinear shift of

the intrinsic frequency. Scaled by the stimulation intensity, the
effect was characteristic of responses with amplified recurrent
interactions, supporting a synergetic stability transition known to
affect driven nonlinear networks generically (Lefebvre et al.,
2013, 2015). Our result thus extend previous theoretical work
(Lefebvre et al., 2015) and demonstrate that oscillatory nonlinear
shifts can also be observed in sparse networks of spiking neurons
using high-frequency stimuli. These computational predictions
are also consistent with experimental findings showing such in-
creases in peak alpha frequency during stimulation to flicker
flashes of high frequency (Herrmann, 2001; Roberts and Robin-
son, 2012; cf. Fig. 1A). In addition, our results support the idea
that high-frequency, sustained stimulation of cortical networks
can shape the intrinsic alpha peak frequency and power via an
alternative mechanism that could constitute a substitute and/or
complementary strategy to engage cyclic neural dynamics.

Figure 5. Firing rates and correlations as a function of varying stimulation parameters. A, The rhythmic stimulation was found to modulate individual firing rates non-monotonically. Changes in
stimulation parameters triggered increases in spiking activity that mirrored the resonance peaks pattern found in Figure 3A. For higher frequencies and/or amplitude, a regime of high spiking activity
can be found despite the absence of significant spectral power found in the same region. The mean firing rate of an excitatory neuron, averaged over a stimulation epoch of 1 s, is plotted. B, Spike
coherence was also found to reflect resonance-induced modulations. Resonance was thus recruited to generate responses with highly correlated firing. Spike coherence was found to be low for
high-frequency and/or high-amplitude stimuli despite strong spiking activity.

Figure 6. A shift in recurrence mediates the nonlinear acceleration observed for high-frequency stimulation. A, Stimulation time-average 
I (see Materials and Methods) as stimulation settings
are varied. As expected, 
I scales with stimulation frequency and amplitude. B, The mean coupling strength � (see Materials and Methods) follows the same trend and scales with stimulation
parameters. Maximal recruitment of recurrent interactions is achieved with peak stimulation mean intensity and thus underlies the nonlinear acceleration of intrinsic oscillations.
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At first glance, one might argue that our results do not com-
pare to numerous experiments investigating direct cortical or
transcranial brain stimulation because we used impulse trains
rather than sinusoidal currents. It has been shown, however, that
stimulating the visual cortex with either sinusoidally or rectangu-
larly modulated light both resulted in sinusoidal SSVEPs (Dreyer
and Herrmann, 2015). It is therefore plausible to assume that our
findings can be used to better understand the human and animal
findings on electric stimulation of brain tissue. In addition, our
results replicate and extend the physiological findings of a recent
SSVEP study that found a 1:1 Arnold tongue in the vicinity of the
intrinsic frequency of �10 Hz in the human EEG (Notbohm et
al., 2016). However, the number of parameter variations is lim-
ited in human and animal experiments, so network simulations
that scan a broader range of stimulation frequencies and intensi-
ties are necessary.

Many studies that have used tACS have reported after-effects
of enhanced amplitudes of ongoing brain oscillations after the
end of rhythmical stimulation. It has been argued that such after-
effects are due to synaptic plasticity because they do not appear at
short stimulation durations (Strüber et al., 2015). Our simulation
study did not model synaptic plasticity and thus did not investi-
gate poststimulation after-effects. Nonetheless, our model pro-
vided a rich array of potential responses that could recruit and
modulate plastic processes differentially. Future work should
shed light on the stimulation parameters that are required to
achieve such after-effects, which are likely to be critical if trans-
cranial brain stimulation is to be used in treatment of diseases
with unbalanced brain oscillations.
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Gutmann B, Mierau A, Hülsdünker T, Hildebrand C, Przyklenk A, Hollmann
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