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ABSTRACT

Seismic waves propagating in fluid-saturated porous rocks
exhibit attenuation and velocity dispersion in a broad range of
frequencies. At sonic and ultrasonic frequencies, the attenu-
ation is predominantly caused by fluid flow in cracks and
grain contacts, so-called squirt flow. This physical mechanism
for attenuation also may be relevant at seismic frequencies.
We develop a simple and accurate analytical model for attenu-
ation and dispersion caused by squirt flow in isotropic porous
rocks. The input material properties for a specific rock model
can be directly measured in a laboratory or calculated using
analytical and numerical approaches. The results from our
squirt flow model are compared with inherently accurate
3D numerical solutions for the same pore geometries. The
analytical and numerical results are in good agreement. Fur-
thermore, we observe that our analytical model is more accu-
rate than the currently available analytical solution for squirt
flow in isotropic porous rocks. MATLAB routines to repro-
duce the presented results are made available.

INTRODUCTION

Seismic waves exhibit attenuation and velocity dispersion in a
broad range of frequencies. Attenuation corresponds to the loss
of the wave’s energy during its propagation. Dispersion occurs as-
sociated with attenuation and corresponds to a change in the propa-
gation velocity as a function of frequency. The nature of the energy
loss might be elastic, e.g., scattering, or inelastic, for which energy
is converted into heat. A major cause of inelastic attenuation in
fluid-saturated rocks is wave-induced fluid flow (WIFF) at various

scales. Because rocks are heterogeneous at several scales, the propa-
gating seismic waves induce heterogeneous deformations. Such de-
formations in the fluid-saturated rock cause fluid pressure gradients,
and as a result, dissipative fluid flow occurs until the fluid pressure
equilibrates (Pride et al., 2004; Müller et al., 2010).
WIFF at the pore scale is known as squirt flow and, alone, this

mechanism can cause strong energy dissipation and velocity
dispersion in a broad range of frequencies. The first analytical stud-
ies of squirt flow were presented by Mavko and Nur (1975),
O’Connell and Budiansky (1977), and Palmer and Traviolia
(1980). Xu (1998), Chapman et al. (2002), Chapman (2003),
and Jakobsen and Chapman (2009) incorporate the squirt flow
mechanism into the effective medium theory formalism. Murphy
et al. (1986), Mukerji and Mavko (1994), Dvorkin et al. (1995),
Pride et al. (2004), Gurevich et al. (2010), Collet and Gurevich
(2016), Glubokovskikh et al. (2016), and Alkhimenkov and
Quintal (2022a, 2022b) study squirt flow between interconnected
compliant cracks and stiff pores. In recent years, laboratory inves-
tigations of elastic moduli dispersion and attenuation based on the
forced oscillation method have yielded measurements of attenuation
over a broad and well-sampled array of frequencies, thus measuring
the detailed frequency-dependent behavior of attenuation and
dispersion caused by squirt flow (Pimienta et al., 2015a, 2015b;
Subramaniyan et al., 2015; Borgomano et al., 2019; Chapman
et al., 2019; Sun et al., 2020). Analytical solutions are useful for
the interpretation of these frequency-dependent measurements,
allowing for a quantitative analysis of the effects associated with
this physical mechanism (Chapman et al., 2019).
Recently, numerical solutions were proposed and used to study

seismic wave attenuation and dispersion due to squirt flow (Zhang
et al., 2010; Zhang and Toksöz, 2012; Quintal et al., 2016, 2019;
Das et al., 2019; Lissa et al., 2020, 2021). Based on the approach
suggested by Quintal et al. (2019), Alkhimenkov et al. (2020a)
compare accurate numerical solutions against the published analyti-
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cal model for squirt flow in anisotropic porous rocks by Collet and
Gurevich (2016) for the exact same pore geometry and observe
significant discrepancies between numerical and analytical results.
Based on the understanding obtained in such a numerical study,
Alkhimenkov and Quintal (2022a) propose a new analytical model
for squirt flow in anisotropic porous rocks for the classical pore
geometry corresponding to a toroidal pore connected to a crack.
Then, Alkhimenkov and Quintal (2022b) extend this model to deal
with more realistic geometries of the pore space corresponding to a
crack connected to one or multiple spherical pores. These analytical
models were all in good agreement with accurate numerical solu-
tions for the same pore geometries. Validation of analytical models
against numerical solutions for the same proposed geometry is of
great importance because it delineates the accuracy and the range of
validity of the analytical model. The models of Alkhimenkov and
Quintal (2022a, 2022b) provide solutions to anisotropic scenarios
considering a single crack, which has limited applicability to rocks
containing aligned cracks. Therefore, the next natural and important
step is to develop an analytical model for isotropic rocks containing
randomly oriented cracks.
In this study, the analytical model proposed by Alkhimenkov

and Quintal (2022b) for seismic attenuation and dispersion caused
by squirt flow is extended to isotropic rocks. The analytical model
has a simple form and is validated against inherently accurate 3D
numerical solutions for the same pore geometry. A comparison
against the published analytical model for squirt flow in isotropic
rocks by Gurevich et al. (2010) also is shown. Our model consid-
ers pore geometries that are more realistic than those considered in
the analytical model of Gurevich et al. (2010), which allows us to
better understand and identify the geometric properties of the pore
space that control squirt flow. MATLAB routines that can be used
to reproduce the presented results are available from a permanent
DOI repository (Zenodo) (Alkhimenkov and Quintal, 2023).

THE ANALYTICAL MODEL

Here, we extend the analytical model presented by Alkhimenkov
and Quintal (2022b) to isotropic rocks.

Attenuation and dispersion due to squirt flow

We use the inverse quality factor 1=QðωÞ as a measure of seismic
P-wave attenuation (O’Connell and Budiansky, 1978):

1

QðωÞ ¼
ImðMðωÞÞ
ReðMðωÞÞ ; (1)

where ω ¼ 2πf is the angular frequency, f is the linear frequency,
M ¼ K þ 4=3G is the complex-valued P-wave modulus, and
K and G are the bulk and shear moduli, respectively. Squirt
flow causes attenuation and corresponding dispersion of the
stiffness moduli. Due to the dispersion of, for example, the P-wave
modulus, velocity dispersion will be observed in a propagating
P wave.
A rock is parameterized by three components: solid elastic matrix

(grains), isometric stiff pores, and thin compliant cracks. Pores and
cracks are interconnected and saturated with a fluid. The total
porosity ϕ is represented by the sum of the stiff porosity ϕs and
the compliant porosity ϕc:

ϕ ¼ ϕs þ ϕc: (2)

Because ϕc ≪ ϕs, one can assume that ϕ ≈ ϕs.

Low frequencies

At low frequencies, there is sufficient time for fluid pressure
equilibration between cracks and pores resulting in a uniform pres-
sure distribution in the rock. This is usually referred to as a relaxed
state. The effective elastic moduli of a fluid-saturated rock in this
relaxed state (Klow,Glow) are given by Gassmann’s equations (Gass-
mann, 1951; Alkhimenkov, 2023), respectively,

Klow ¼
�
1

Kg
þ ϕð1=Kf − 1=KgÞ

1þ ϕð1=Kf − 1=KgÞð1=Kdry − 1=KgÞ−1
�
−1

(3)

and

Glow ¼ Gdry; (4)

where Kdry and Gdry are the bulk and shear moduli of a dry rock,
respectively;Kf is the fluid bulk modulus; andKg is the bulk modu-
lus of solid grains.

High frequencies

At high frequencies, there is no time for fluid pressure equilibration
between cracks and pores; therefore, cracks behave as hydraulically
isolated. This is usually referred to as an unrelaxed state. To quantify
this effect, we consider the modified frame concept (Mavko and Jizba,
1991), in which the cracks are saturated with a fluid, whereas the iso-
metric pores remain empty. The unrelaxed (high-frequency) effective
elastic moduli of the modified frame are given by Mavko-Jizba rela-
tions (Mavko and Jizba, 1991). Mavko-Jizba relations are generalized
by Gurevich et al. (2009)

Kuf¼
�
1

Kh
þ 1

ð1=Kdry−1=KhÞ−1þðϕcð1=Kf−1=KgÞÞ−1
�
−1
;

(5)

Guf ¼
�

1

Gdry

−
4

15

�
1

Kdry

−
1

Kuf

��
−1
; (6)

where Kh is the bulk modulus of a rock without compliant porosity.
The bulk and shear moduli of a fully saturated rock at high frequencies
(Khigh,Ghigh) are then calculated fromKuf andGuf using Gassmann’s
equations (Gassmann, 1951; Alkhimenkov, 2023), respectively,

Khigh¼
�
1

Kg
þ ϕsð1=Kf−1=KgÞ
1þϕsð1=Kf−1=KgÞð1=Kuf−1=KgÞ−1

�
−1

(7)

and

MR2 Alkhimenkov and Quintal
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Ghigh ¼ Guf: (8)

Intermediate frequencies

At intermediate frequencies, a transition from low-frequency (re-
laxed) moduli to high-frequency (unrelaxed) moduli takes place.
The cause of such frequency-dependent rock moduli and the cor-
responding attenuation is the fluid pressure diffusion in compliant
cracks. The exact shapes of the attenuation and dispersion curves
due to squirt flow at intermediate frequencies can be obtained nu-
merically and will be different for different pore-space configura-
tions (Alkhimenkov and Quintal, 2022a, 2022b). Moreover, an
analytical approximation is proposed in this study and the resulting
expressions are given next.

Workflow of the analytical model

The workflow of the present analytical model consists of three
steps as in Alkhimenkov and Quintal (2022b) and is shown in Fig-
ure 1 as follows:

1) First, we obtain the moduli of a dry rock (Kdry, Gdry) and the
moduli of a rock without compliant porosity (Kh).

2) Second, the frequency-dependent moduli of the partially re-
laxed modified frame (KmfðωÞ, GmfðωÞ) are obtained by
using the crack stiffness relaxation function due to squirt flow.

3) Finally, the moduli of the fully saturated rock (KsatðωÞ,
GsatðωÞ) are obtained by applying Gassmann’s equations
(Gassmann, 1951; Alkhimenkov, 2023) at each frequency.

Step 1: Moduli of the dry rock

The moduli of a dry rock and the moduli of a rock without com-
pliant porosity can be calculated analytically, numerically, or
measured in laboratory. However, there is no approach to calculate
analytically the effective elastic properties of a model with intercon-
nected pores and cracks in three dimensions ex-
actly. One approach to approximate the effective
properties of a model with interconnected pores
and cracks using the compliance contribution
tensors (Nemat-Nasser and Hori, 2013;
Kachanov and Sevostianov, 2018) was presented
by Alkhimenkov and Quintal (2022a, 2022b). It
is important to note that the interconnectivity of
stiff pores and compliant cracks is a key factor in
the calculation of the dry moduli of the model.
The compliance of cracks can be calculated as

(Gurevich et al., 2009)

Zdry
N ¼ 1

Kdry

−
1

Kh
; (9)

where Zdry
N is the average normal compliance of all

dry cracks. Due to the connectivity of cracks to
stiff pores, this compliance might be twice as large
(for the considered pore geometry) than that in the
case in which cracks are isolated (Alkhimenkov
and Quintal, 2022a, 2022b). However, this effect
depends on the pore geometry.

The moduli of a dry rock also can be measured in laboratory. In
this case, the moduli of a rock without compliant porosity approx-
imately correspond to conditions under effective pressures that are
sufficiently high so that the measurements become nearly pressure
independent due to a presumed closure of cracks (Shapiro, 2003;
Morozov and Deng, 2018).

Step 2: Frequency-dependent moduli of the modified frame

At intermediate frequencies, a transition from the relaxed to un-
relaxed state occurs. A tool to describe this transition is the concept
of the modified frame moduli, in which the pores are dry but cracks
are fully saturated. Squirt flow takes place in compliant cracks;
therefore, they are responsible for the frequency-dependent rock
properties. Alkhimenkov and Quintal (2022b) suggest that squirt
flow can be approximated by the following 1D equation for fluid
pressure p under the strain ϵc applied to the walls of the 1D crack:

∂2p
∂x2

− k2p ¼ −k2Kfϵc; (10)

where

k ¼ 2

h

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3iωη=

�
Kf þ

4

3
iωη

�s
(11)

is a function of the rheology of the crack (Tsai and Lee, 1998), and h
is the crack aperture. The boundary condition is set to zero stress at
x ¼ �lsq, which are boundaries of the 1D layer (the length lsq is
equivalent to the radius of the crack). To obtain the frequency-de-
pendent fluid bulk modulus, the elastic-viscoelastic correspondence
principle is used (Hashin, 1970), with the full derivation given as
supplementary material in Alkhimenkov and Quintal (2022b). The
solution is

Figure 1. Sketch illustrating the workflow of the present analytical model (modified
after Alkhimenkov and Quintal, 2022a).

Isotropic model for squirt flow MR3
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K�
fðωÞ ¼ Kf þ

4

3
iωη −

ðKf − 2
3
iωηÞ2

ðKf þ 4
3
iωηÞ

tanhðk̄3Þ
k̄3

; (12)

where η is the shear viscosity of the fluid and

k̄3 ¼
1

α

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3iωη=

�
Kf þ

4

3
iωη

�s
; (13)

where α ¼ h=ð2lsqÞ is the crack aspect ratio. Note that solution 12
also can be derived from the results presented by Tsai and Lee
(1998) using the same elastic-viscoelastic correspondence principle
(Hashin, 1970). Note that we consider fluid pressure diffusion in
one dimension while Gurevich et al. (2010) and Glubokovskikh
et al. (2016) consider radial fluid pressure diffusion; thus, their
equations for K�

fðωÞ are different.
The frequency-dependent crack stiffness can now be calculated

by considering the frequency-dependent bulk modulus of the fluid
K�

fðωÞ (expression 12). By substituting K�
fðωÞ into equation 5, the

expression for the frequency-dependent bulk and shear moduli of
the modified frame can be written as, respectively,

KmfðωÞ

¼
�
1

Kh
þ 1

ð1=Kdry−1=KhÞ−1þðϕcð1=K�
fðωÞ−1=KgÞÞ−1

�
−1
;

(14)

GmfðωÞ ¼
�

1

Gdry

−
4

15

�
1

Kdry

−
1

KmfðωÞ
��

−1
: (15)

Step 3: Moduli of the fully saturated rock

The moduli of a fully saturated rock can be calculated through
Gassmann’s equations (Gassmann, 1951; Alkhimenkov, 2023) us-
ing the bulk modulus of the modified frame, obtained from equa-
tion 14 at each frequency:

KsatðωÞ

¼
�
1

Kg
þ ϕsð1=Kf−1=KgÞ
1þϕsð1=Kf−1=KgÞð1=KmfðωÞ−1=KgÞ−1

�
−1
;

(16)

GsatðωÞ ¼
�

1

Gdry

−
4

15

�
1

Kdry

−
1

KmfðωÞ
��

−1
: (17)

Expressions 12, 14, 16, and 17 represent the complete solution of
the present analytical model. The velocity dispersion and attenua-
tion of P and S waves propagating through such a porous model can
be calculated from the complex stiffness moduli given in equa-
tions 16 and 17.

NUMERICAL VALIDATION

Numerical methodology

To validate the analytical model, 3D numerical solutions are ob-
tained for the same pore geometries that are assumed in the analyti-
cal model. At the pore scale, a rock is represented by grains (solid
phase) and a fluid-saturated pore space. The solid phase is described
as a linear isotropic elastic material for which the conservation of
momentum is

∇ · σ ¼ 0; (18)

where σ is the stress tensor and ∇ · denotes the divergence operator
acting on the stress field σ. The stress-strain relation is

σ ¼ C∶ϵ; (19)

where ϵ is the strain tensor, C is the fourth rank stiffness tensor, and
∶ denotes the double dot product. For an isotropic solid material, the
components of the stiffness tensor can be fully described by the bulk
K and shear G moduli. The fluid phase is described by the quasi-
static linearized compressible Navier-Stokes momentum equa-
tion (Landau and Lifshitz, 1959):

−∇pþ η∇2vþ 1

3
η∇ð∇ · vÞ ¼ 0; (20)

where v is the fluid velocity, p is the fluid pressure, η is the shear
viscosity, and ∇ denotes the nabla operator acting on the vector v
and scalar p fields. Equation 20 is valid for the laminar flow of a
Newtonian fluid at low Reynolds numbers (Re, Re < 1).
In our numerical solution, equations 19 and 20 are combined to-

gether resulting in one expression (Quintal et al., 2016, 2019), ac-
companied by a generalized stress-strain relation in the space-
frequency domain written here in index form as

σij ¼ λeδij þ 2Gϵij þ iω

�
2ηϵij −

2

3
ηeδij

�
; (21)

where ϵij is the components of the strain tensor,

ϵij ¼
1

2

�
∂ui
∂xj

þ ∂uj
∂xi

�
: (22)

Here, e is the trace of the strain tensor, λ and G are the Lame param-
eters, ui denotes the displacement in the ith direction, and δij is the
Kronekecker delta. Equations 18 and 21 are implemented with a fi-
nite-element solver. In the domain of the model representing a solid
material, equation 21 reduces to equation 19 by setting the shear vis-
cosity η to zero. Similarly, in the domain of the model representing a
compressible viscous fluid, the shear modulus μ is set to zero; hence,
equations 21 and 18 reduce to the linearized compressible Navier-
Stokes equation 20. An advantage of the proposed formulation is
the natural coupling between the solid and fluid displacements at
the boundaries between subdomains (Quintal et al., 2016).
Direct relaxation tests are performed to compute P-wave (M),

bulk (K), and shear (G) moduli, along with the corresponding
attenuation. A displacement boundary condition of the form
u ¼ 10−8 × expðiωtÞ is applied to a certain external wall(s) of
the cubic model and in a certain direction, whereas at other walls

MR4 Alkhimenkov and Quintal
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of the model, the displacements are set to zero or left free to change.
A detailed explanation of the boundary conditions is given in
Alkhimenkov et al. (2020a, 2020b). The resulting stress is averaged
to calculate the complex moduli of the homogenized viscoelastic
material (Jänicke et al., 2015). For example, the complex P-wave
modulus MðωÞ is calculated as

MðωÞ ¼ hσ33ðωÞi
hϵ33ðωÞi

; (23)

where h·i represents the volume average over the model domain.
Then, P-wave attenuation is calculated using this result and the
definition given in equation 1.
Because the analytical models are derived for isotropic rocks, the

numerical simulations are performed for special geometries that are
nearly isotropic. Two different models are considered (Figure 2). The
elastic solid grain material in these models is represented by a cube
with dimensions of 0.44 m × 0.44 m × 0.44 m. To achieve isotropic
symmetry, a total of nine cracks are modeled in these models, divided
into three groups. Each group consists of three cracks with the angle
of 60° to each other, which gives isotropy in the corresponding 2D
plane. Then, each group is rotated to make an isotropic configuration
in three 2D planes (XY, XZ, and YZ). In model 1, the stiff pores are
represented only by spheres, whereas in model 2, they are represented
by spheres and cylinders. The material parameters used in this study
are shown in Table 1. The properties of the solid material are those of
quartz and the fluid properties are those of glycerin. The latter is fre-
quently used to saturate the rock sample in laboratory experiments
due to is high viscosity. The geometric properties of the pore space
are provided in Table 2. The geometry in all models is scalable, which
means that the numerical solution remains unchanged if all the geo-
metric properties are rescaled by any factor. In other words, the ab-
solute dimensions are meaningless; only the relative dimensions are
relevant. The numerical discretization of model 1 using an unstruc-
tured finite-element mesh is shown in Appendix A.

Model 1

In model 1, the stiff pores are represented by spheres only. Eight
pores are considered in total. Nine cracks are connected to the pores.
Three cracks have four connections to pores, and six cracks have two
connections to pores (Figure 2). Figure 3 shows the results for the
modified frame obtained with the present analytical model, the ana-
lytical model from Gurevich et al. (2010), and the numerical solution.
Our analytical model is in good agreement with the numerical sol-
ution. The model presented by Gurevich et al. (2010) is shifted to
higher frequencies because it considers radial flow in the
crack toward a toroidal pore. The characteristic frequency of the fluid
pressure relaxation in the case of radial flow is slightly higher than in
1D flow (Alkhimenkov and Quintal, 2022a), which is the case for our
model and explains the difference observed in Figure 3.

Figure 2. Sketch illustrating the the geometries of the pore space in
models 1 and 2. The displacement boundary condition u ¼ 10−8 ×
expðiωtÞ is applied to the top boundary of the model to calculate the
P-wave modulus M ¼ K þ 4=3G.

Table 2. Geometric properties for the two models.

Geometric parameter Model 1 Model 2

Flat cylinder (crack) radius, b (m) 0.1 0.1

Flat cylinder (crack)
thickness, h (m)

0.004 0.004

Crack aspect ratio, α ¼ h=ð2bÞ 0.02 0.02

Radius of the spherical
pores (m)

0.0625 0.0625,
≈0.0952

Pore volume
(cracks and pores) (m3)

≈0.009181 ≈0.010089

Total porosity ≈0.1078 ≈0.1184
Crack porosity ≈0.0122 ≈0.0128

Figure 3. Numerical and analytical results for the modified frame
of model 1: (a) real part of the P-wave modulus MðωÞ ¼ KðωÞ þ
4=3GðωÞ and (b) corresponding dimensionless attenuation.

Table 1. Material properties, which are the same for the two
models.

Material parameter Solid Fluid

Bulk modulus K 36 GPa 4.3 GPa

Shear modulus G 44 GPa 0 GPa

Shear viscosity η 0 Pa·s 1.414 Pa·s

Isotropic model for squirt flow MR5
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Figure 4 shows the results for the fully saturated model obtained
with the present analytical model, the analytical model from
Gurevich et al. (2010), and the numerical solution. The results from
our analytical model are in good agreement with the numerical sol-
ution. Again, a similar difference can be observed in characteristic
frequencies between the numerical solution and the analytical
model presented by Gurevich et al. (2010).
For the fully saturated numerical model, Figure 5 shows snapshots

of the fluid pressure field at three different frequencies: at a very low
frequency, at the characteristic frequency (fc), and at a very high fre-
quency. At a very low frequency, the pore pressure is homogeneous
representing the relaxed state. At the characteristic frequency, maxi-
mum fluid pressure gradients are observed and fluid flow takes place
between the crack and the pore. At a very high frequency, fluid pres-
sure is high in the crack and low in the pore, corresponding to a sce-
nario in which the crack behaves as if it was hydraulically isolated.

Model 2

In model 2, the stiff pores are represented by four spheres and three
cylinders. Nine cracks are connected to the pores. Each crack has only
one connection to a spherical pore, and the spherical pores are con-
nected to cylindrical pores (Figure 2). Figure 6 shows the results for
the modified frame obtained with the present analytical model, the
analytical model presented by Gurevich et al. (2010), and the numeri-
cal solution. The geometry of model 2 is slightly anisotropic; there-
fore, the discrepancy between the numerical solution and the present
analytical model for isotropic rocks might be larger than observed for
model 1. Yet, the present analytical model is in good agreement with
the numerical solution. The corresponding model by Gurevich et al.
(2010) is significantly shifted to higher frequencies.
Figure 7 shows the results for the fully saturated model obtained

with the present analytical model, the analytical model presented by
Gurevich et al. (2010), and the numerical solution. The present ana-
lytical model is in good agreement with the numerical solution.
Again, a big discrepancy is visible in characteristic frequencies be-
tween the numerical solution and the analytical model presented by
Gurevich et al. (2010). This discrepancy in characteristic frequen-
cies, as well as that observed in Figure 6, will be explained in the
next section.

DISCUSSION

The squirt flow aspect ratio αsq

Figure 8 shows the definition of the squirt flow length lsq for the
two models. The squirt flow length lsq is the distance between two

Figure 4. Numerical and analytical results for the fully saturated
model 1: (a) real part of the P-wave modulus MðωÞ ¼
KðωÞ þ 4=3GðωÞ and (b) corresponding dimensionless attenuation.

Figure 5. Snapshots of the fluid pressure field in a horizontal slice
of the fully saturated model 1 at very low frequency, the character-
istic frequency (fc), and very high frequency.

Figure 6. Numerical and analytical results for the modified frame
of model 2: (a) real part of the P-wave modulus MðωÞ ¼ KðωÞ þ
4=3GðωÞ and (b) corresponding dimensionless attenuation.
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points within a crack along which the squirt flow occurs (p1p2,
p3p4, p3p5, and p7p6). One point might be the most distant point
in the crack from the pore(s). The other point corresponds to the
connection of the crack to the pore. The squirt flow thickness
hsq is the crack aperture. Finally, the parameter controlling the char-
acteristic frequency is the squirt flow aspect ratio αsq (Alkhimenkov
and Quintal, 2022b):

αsq ¼ 1

2

hsq

lsq
: (24)

There are two different squirt flow lengths in model 1. Three
cracks provide us with p1p2 ≈ 0.9b, and six other cracks provide
us with p3p4 ¼ p3p5 ≈ 0.8

ffiffiffi
3

p
b. By simple arithmetic averaging,

the squirt flow length in model 1 is

lsqm1 ≈ ð2ð0.8
ffiffiffi
3

p
bÞ þ 0.9bÞ=3 ≈ 0.0877: (25)

In model 2, only one squirt flow length is present (p7p6):

lsqm2 ≈ 2b ¼ 0.2: (26)

Note that the squirt flow length in model 2 is approximately twice
that in the model 1. More precisely,

lsqm2

lsqm1

¼ 2.28: (27)

This ratio is responsible for the dramatic difference in the character-
istic frequencies between two models (Figures 6 and 7). In other

words, the crack aspect ratio is not the key parameter that controls
the characteristic frequency of squirt flow. Instead, the squirt flow
aspect ratio controls the characteristic frequency of squirt flow. In
model 1, the squirt flow length is approximately the radius of the
crack; however, in model 2, the squirt flow length is approximately
the diameter of the crack. The difference by a factor of two approx-
imately corresponds to the shift in the characteristic frequency by
one order of magnitude. The resulting characteristic frequency of
squirt flow ωc can be rewritten as

ωc ≈
2πKdry

η
ðαsqÞ3: (28)

Maximum gradients in fluid pressure occur at the characteristic
frequency (Figure 9). In model 1, the maximum fluid pressure gra-
dients occur from the center of the crack to the connection of the
crack to the pore (Figure 9a), which corresponds to the squirt flow
length. Instead, in model 2, the maximum fluid pressure gradients
occur along the diameter of the crack, which corresponds to the
squirt flow length (Figure 9b).
The characteristic frequency of the analytical model presented

by Gurevich et al. (2010) is a function of the crack aspect ratio
and assumes radial fluid flow in the crack, which is connected
to a toroidal pore. Therefore, for models 1 and 2, their analytical
model predicts the same characteristic frequency. The shapes of

Figure 7. Numerical and analytical results for the fully saturated
model 2: (a) real part of the P-wave modulus MðωÞ ¼ KðωÞþ
4=3GðωÞ and (b) corresponding dimensionless attenuation.

Figure 8. Sketch illustrating the definition of the squirt flow length
lsq for models 1 and 2.

Figure 9. Snapshots of the fluid pressure field at the characteristic
frequency fc in a horizontal slice of the models illustrating the def-
inition of the squirt flow length lsq.
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the dispersion and attenuation curved of the analytical model
presented by Gurevich et al. (2010) also are slightly different from
the present model due to the different pore geometry (Alkhimenkov
and Quintal, 2022a).

Comparison against previous models

The present model has several key differences from the previous
models published by Gurevich et al. (2010) and Glubokovskikh
et al. (2016). Here, we use a model for 1D flow, whereas Gurevich
et al. (2010) and Glubokovskikh et al. (2016) use a model for radial
flow. This is a significant improvement because it allows for flow in
the crack toward individual spherical pores rather than toward a toroi-
dal pore. As shown by Alkhimenkov and Quintal (2022b), the used
1D flow model is appropriate for a partial contact between the tip of
a crack and one or multiple spherical pores and agrees well with
the numerical solution for that geometry. This geometry is clearly
more realistic that with a toroidal pore considered by Murphy
et al. (1986), Gurevich et al. (2010), Glubokovskikh et al. (2016),
and Alkhimenkov and Quintal (2022a). Furthermore, the presented
model is based on the squirt flow length concept, which can accurately
describe a particular fluid flow path within the crack and thus the char-
acteristic frequency. Previous models (Gurevich et al., 2010;
Glubokovskikh et al., 2016) considered the crack aspect ratio as
the main parameter that controls the characteristic frequency of squirt
flow. Detailed comparisons between the anisotropic version of
the presented analytical model and previous models are given by
Alkhimenkov and Quintal (2022a, 2022b).

Dispersion of shear modulus

Mavko and Jizba (1991) and Gurevich et al. (2010) assume that
the frequency-dependent shear modulus of the modified frame is
equal to the shear modulus of a fully saturated rock,

GsatðωÞ ¼ GmfðωÞ: (29)

Figure 10 shows the numerical results for the shear modulus of the
modified frame and of the fully saturated model 1. The numerical
solutions are in reasonably good agreement, confirming the validity
of the proposed assumption.

Importance for laboratory measurements

The present analytical model, compared with previous models, is
dependent on a different parameter, the so-called squirt flow aspect
ratio αsq ¼ hsq=ð2lsqÞ. The squirt flow length lsq describes the 1D
fluid pressure diffusion in the crack and is different in models 1 and
2 by a factor of ≈2. The squirt flow aperture hsq is the crack aper-
ture. The new parameter αsq can precisely describe the characteristic
frequency of squirt flow, which might not be the case for the crack
aspect ratio. Even though the squirt flow aspect ratio cannot be
easily measured in real rocks (but neither can the crack aspect ratio),
it could be estimated based on the knowledge of the pore geometry
from microscopic images of the rock sample. Furthermore, in real
rocks, the crack aperture varies due to asperities and Lissa et al.
(2020) show that, for such cases, the minimum value of the crack
aperture should be used.
A more accurate analytical model should yield more accurate in-

terpretations of frequency-dependent measurements of squirt flow
in the laboratory and thus can allow for a deeper understanding of
this physical mechanism.

CONCLUSION

We have developed a simple and accurate analytical model for
seismic dispersion and attenuation caused by squirt flow in isotropic
porous rocks. The model is consistent with Gassmann’s equations at
low frequencies and Mavko-Jizba relations at high frequencies. The
analytical model is validated against inherently accurate 3D numeri-
cal solutions for the same pore geometries, with excellent agree-
ment. The input parameters for the model can be measured in the
laboratory, calculated analytically, or numerically. Compared with
previous models, a new parameter is introduced, the squirt flow as-
pect ratio, which is the crack aperture divided by twice the squirt
flow length. The squirt flow length is related to the geometric pres-
sure diffusion pattern within the crack, which might be significantly
different for different pore geometries. Thus, the squirt flow aspect
ratio accurately controls the characteristic frequency of squirt flow,
which might not be the case for the crack aspect ratio used in pre-
vious squirt flow analytical models. For example, in different pore
geometries with the same crack aspect ratio, the different squirt flow
aspect ratios might lead to a difference of an order of magnitude
among the characteristic frequencies, which we also demonstrated
numerically.
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APPENDIX A

NUMERICAL DISCRETIZATION

Figure A-1 shows the numerical discretization of the model 1.
The total number of elements is 1.29 × 106 in each simulation. The
mesh is very fine in the crack to accurately capture the fluid pressure
diffusion and coarse in the stiff pores and solid grains.
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Figure A-1. Sketch illustrating the numerical mesh used for the spatial discretization of model 1.
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