
ARTICLE

Machine learning analyses of antibody somatic
mutations predict immunoglobulin light chain
toxicity
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In systemic light chain amyloidosis (AL), pathogenic monoclonal immunoglobulin light chains

(LC) form toxic aggregates and amyloid fibrils in target organs. Prompt diagnosis is crucial to

avoid permanent organ damage, but delayed diagnosis is common because symptoms

usually appear only after strong organ involvement. Here we present LICTOR, a machine

learning approach predicting LC toxicity in AL, based on the distribution of somatic mutations

acquired during clonal selection. LICTOR achieves a specificity and a sensitivity of 0.82 and

0.76, respectively, with an area under the receiver operating characteristic curve (AUC) of

0.87. Tested on an independent set of 12 LCs sequences with known clinical phenotypes,

LICTOR achieves a prediction accuracy of 83%. Furthermore, we are able to abolish the toxic

phenotype of an LC by in silico reverting two germline-specific somatic mutations identified

by LICTOR, and by experimentally assessing the loss of in vivo toxicity in a Caenorhabditis

elegans model. Therefore, LICTOR represents a promising strategy for AL diagnosis and

reducing high mortality rates in AL.
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Systemic light-chain amyloidosis (AL) is a monoclonal
gammopathy characterized by the abnormal proliferation of
a plasma cell clone producing large amounts of pathogenic

immunoglobulin free light chains (LCs)1. LCs, mainly secreted as
homodimers2, misfold forming toxic species and amyloid fibrils
which accumulate in target organs and lead to fatal organ dys-
function and death1. Although LCs deposition can occur in any
organ except the brain, the kidney and heart are the most affected
sites, with the latter bearing the worst prognosis. Symptoms of AL
are non-specific and usually reflect advanced organ involvement.
Therefore, an early diagnosis is essential to avoid irreversible
organ damage. However, the complexity of the disease and its
vague symptoms make a timely diagnosis of AL extremely
challenging3,4.

Pre-existing monoclonal gammopathy of undetermined sig-
nificance (MGUS) is a known risk factor for developing AL, with
9% of MGUS patients progressing to AL5–7. However, early
diagnosis is still difficult since reliable diagnostic tests predicting
whether MGUS patients are likely to develop AL are currently
lacking7,8. Predicting the onset of AL is highly challenging, as
each patient carries a different pathogenic LC sequence resulting

from a unique rearrangement of variable (V) and joining (J)
immunoglobulin genes and a unique set of somatic mutations
(SMs) acquired during B cell affinity maturation9 (Fig. 1a).
Therefore, the development of a specific prediction tool repre-
sents a crucial step to anticipate AL diagnosis and improve
patients’ prognosis.

Machine learning techniques are becoming very prominent in
different areas of science and are also gaining acceptance in
medicine. Indeed, machine learning has been used in different
areas of medicine, such as diagnosis10–12, prognosis13,14, drug
discovery15,16 and drug sensitivity prediction17–19. In these
approaches, machines learn information from data without being
explicitly programmed and simulate human intelligence to make
predictions20. The high diversity of LC sequences accountable for
AL development and the possibility of accessing databases of
pathogenic and non-pathogenic LC sequences prompted us to use
a machine-learning-based strategy to devise a predictor of LC
toxicity in AL named LICTOR (λ-LIght-Chain TOxicity
predictoR).

LICTOR uses SMs as predictor variables based on the
hypothesis that SMs are the main LC toxicity-discriminating

Fig. 1 The presence of SMs differentiates toxic and non-toxic LC sequences. a Schematic representation of the generation of LC diversity through the
processes of VJ recombination and somatic hypermutation. b Alignment of an LC sequence with the corresponding germline (GL) sequence according to
Kabat-Chothia scheme using a progressive enumeration for a total of 125 positions (“Methods”). Structural elements of immunoglobulin light chains are
depicted on top of the sequences (FR1= framework 1, CDR1= complementary determining region 1, FR2= framework 2, CDR2= complementary
determining region 2, FR3= framework 3, CDR3= complementary determining region 3, FR4= framework 4). Residues in red depict somatic mutations
(SMs). The third line shows the encoding scheme used by the classifier with SMs (displayed in bold) and unmutated positions represented by an “X”.
c Data are presented as odds ratio (OR) and their 0.95 confidence interval (grey horizontal bars) for all 125 positions of the LC sequences according to our
sequential numbering scheme (y-axis). The corresponding Kabat-Chothia enumeration is reported on the right. Structural elements of immunoglobulin light
chains are shown on the left. ORs for positions with no statistically significant difference between tox and nox sequences (p≥ 0.05) are represented as grey
dots. Positions with statistically significant differences (p < 0.05) are depicted as either red (OR > 1) or blue (OR < 1) dots. Fisher’s exact test was used as
statistical test. .
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factors. We assess LICTOR’s performance with an independent
set of LCs with a known clinical phenotype but not used in the
training. Furthermore, to experimentally validate LICTOR, we
use our predictor to abolish the pathological phenotype of a
cardiotoxic LC and verify the outcome with a Caenorhabditis
elegans-based assay evaluating the reduction of the pharyngeal
pumping rate after administration of cardiotoxic LCs as a mea-
sure of proteotoxicity. Taken together, these results confirm that
LICTOR provides insights into specific features differentiating
toxic and non-toxic LCs. Therefore, it may represent a powerful
tool to improve AL diagnosis and unveil a novel strategy for
patient treatment through personalized medicine.

Results
SMs are key LC toxicity-discriminating factors. To investigate
the role of SMs in the generation of toxic LCs and validate their
use as predictor variables in an LC toxicity predictor, we collected
a database of 1075 λ LC sequences. The database included 428
“toxic” sequences (i.e. LCs responsible for the formation of toxic
aggregates an AL development) extracted from AL patients
(hereafter referred to as tox) and 647 “non-toxic” LCs (nox)
comprising sequences from healthy donor repertoires, other
autoimmune diseases or cancer, obtained from Amyloid Light-
chain Database (AL-Base)21 (428 tox, 590 nox) and an in-house
LCs’ database not related to AL (57 nox). We restricted our
analysis to λ LCs since this isotype is more prevalent than the
kappa (κ) isotype in AL patients (λ/κ= 3:1 compared to that of
healthy individuals, λ/κ= 1:2)22. To identify SMs, all LCs were
aligned to the corresponding germline (GL) sequence obtained
using the IMGT database23. LCs were then numbered according to
the Kabat-Chothia scheme (using a progressive enumeration from
1 to 125), allowing the structural comparison of LCs with different
sequence lengths (“Methods” and Fig. 1b). Next, we counted the
number of mutated (M) and non-mutated (NM) residues at each
position i in tox and nox sequences (toxiM and noxiM, toxiNM and
noxiNM, respectively) and used Fisher’s exact test24 to assess
whether the frequencies of mutations (toxiM, noxiM) and non-
mutations (toxiNM, noxiNM) were significantly (p < 0.05) different.
Finally, the odds ratio (OR)24 was used to assess the association
strength between mutations and toxicity at each position i in tox
and nox sequences (“Methods” and Fig. 1c). Interestingly, 48 of 53
positions with a statistically significant difference (p < 0.05)
between the two groups (Fig. 1c) showed a higher rate of mutation
in the tox group (OR > 1), while only 5 positions reported a higher
mutation rate in the nox group (OR < 1). To exclude possible bias
induced by the use of a group of nox sequences having an artifi-
cially low level of SMs, we randomly selected 1000 LC sequences
from a healthy donor repertoire (hdnox)25 and compared the
probability distributions of the number of SMs (PDSM) between
the three groups. We observed similar PDSM between the nox and
hdnox groups, while the PDSM of tox and hdnox, as well as, tox
and nox were significantly different. This result supports nox
sequences as a bona fide group of LCs (Supplementary Fig. 1).
Overall, these findings suggest that SMs are key determinants of
the toxicity of LCs and, thus, can be used as predictor variables to
develop LC toxicity prediction tools.

Prediction of LC toxicity using machine learning. The previous
findings prompted us to use SMs as features to develop a machine
learning approach automatically classifying LCs as either toxic or
non-toxic in AL. To this end, we combined the information from
SMs with knowledge of the 3D structure of LC homodimers26,27

to create three families of predictor variables used in the training
of machine learning algorithms. The first family, termed AMP
(amino acid at each mutated position), highlights sequence

features, identifying the presence or absence of an SM at each
position of the LC sequences. The second family, termed MAP
(monomeric amino acid pairs), identifies the presence or absence
of mutations in residues in close contact in the LC monomeric 3D
structure (distance < 7.5 Å). Finally, the third family, named DAP
(dimeric amino acid pairs), identifies the presence or absence of
mutations at positions in close contact, but belonging to different
chains. Next, four machine learning algorithms (Bayesian net-
work, logistic regression, J48 and random forest)28 were evaluated
for their ability to solve the classification problem, using our
database as input. To assess the importance of the different
classes of predictor variables, we performed 28 prediction
experiments including all the possible combinations of AMP,
MAP and DAP families. In addition, to avoid unbalanced class
problems, i.e. the tendency of machine learning algorithms to
assign sequences to the largest class in the dataset, nox in our
case, each of the 28 experiments was performed with and without
balancing the training set using an SMOTE (synthetic minority
over-sampling technique) filter29. The assessment of algorithms
and predictor variable combinations was performed using 10-fold
cross-validation to avoid overfitting. We found that for all the
tested machine learning algorithms, the best combination of
predictor variable families provided an area under the receiver
operating characteristic curve (AUC) that substantially differed
from that of a random classifier (0.50), with random forest being
the best classifier (0.87) and J48 being the worst (0.75) (Fig. 2a
and Supplementary Data 1). Furthermore, all four classifiers
relied on the AMP family to predict LC toxicity, while only
random forest used all three families of predictor variables
(AMP+MAP+DAP) in its best configuration. Overall, these
findings highlight the importance of the structural context of SMs
in defining the toxicity of an LC and identify random forest using
AMP, MAP and DAP as the best approach in our case. For this
reason, we used random forest in our implementation of
LICTOR.

Validation of LICTOR. Next, we sought to validate the predic-
tion accuracy of LICTOR with a set of sequences with known
clinical phenotypes but not present in the training set (valset)27.
The valset (Supplementary Data 2) comprised a total of 12 LCs,
including 7 sequences associated with AL with cardiac involve-
ment (H3, H6, H7, H9, H15, H16 and H18) and 5 from multiple
myeloma (MM) patients (M2, M7, M8, M9 and M10). LICTOR
was able to correctly classify 10 (6 tox and 4 nox) of the 2 LCs as
either toxic or non-toxic (Supplementary Data 2 and Fig. 3a). The
probability of achieving a similar accuracy with a random clas-
sifier was 0.016, strengthening the argument that LICTOR is a
robust and accurate tool to predict the clinical toxicity of pre-
viously unseen LCs.

To further assess the robustness of LICTOR, we performed two
additional tests. In the first test, we predicted the toxicity of 100
randomly selected LCs from the healthy donor repertoire hdnox
(all absent from the training set). In this case, LICTOR correctly
classified 80% of the sequences as non-toxic (Supplementary
Data 3), thus confirming a similar level of accuracy as for the
training set. In the second test, we assessed LICTOR by further
verifying the absence of overfitting. To achieve this, we took all
tox sequences and randomly labelled half of them as nox. Then,
we trained a classifier using the 10-fold cross-validation on such a
dataset obtaining an AUC of 0.5 (Supplementary Data 4),
equivalent to that of a random classifier. The same procedure has
been used for the nox group (by randomly assigning half of them
as tox and training a classifier on such a dataset), obtaining, in
this case also, an AUC of 0.5 (Supplementary Data 5). These
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results further underline that tox and nox sequences have
distinctive features allowing their discrimination.

LC germline VJ rearrangement information does not improve
prediction performance. To further underscore the role of SMs
as main discriminants between toxic and non-toxic LCs, we
trained the same machine learners employed before, using the LC
germline VJ rearrangements as a unique predictor variable, given
the well-documented overrepresentation of certain VL germline
genes in AL30–32. All the resulting germline-based classifiers
achieved an AUC of 0.77 in their best configuration (Fig. 2b and
Supplementary Data 6), a value substantially better than that of a
random classifier, although much lower than LICTOR’s score
(0.87). Interestingly, adding LC germline VJ rearrangements to
LICTOR did not improve its prediction performance (Supple-
mentary Data 7).

Next, we computed the specificity and sensitivity of the two
random forest predictors, LICTOR and the germline-based
predictor, maximizing the Youden index (J)33 as a function of

the confidence level of the random forest predictions, i.e. the
probability that a sequence belongs to the predicted phenotype
(Fig. 2c). LICTOR achieved a specificity of 0.82 and a sensitivity
of 0.76 (J= 0.58, threshold= 0.46 in identifying tox), while the
germline-based classifier showed a specificity of 0.69 and a
sensitivity of 0.73 (J= 0.43, threshold= 0.48 in identifying tox).
Overall, these data suggested that SMs harbour key information
that can be used to discriminate between tox and nox, while LC
germline VJ rearrangements do not seem to carry additional
information that can improve the prediction performance of
LICTOR.

LICTOR unveils specific features of LC toxicity. To identify the
key features leading to LC toxicity in AL, we ranked the predictor
variables of LICTOR according to their “information gain”, a
value representing the importance of the information carried by
each predictor variable for the classification34. We found that
among the top 10 most important features of the three families of
predictor variables, feature 49-A, which denotes an SM to alanine

Fig. 2 Machine learning predicts toxic and non-toxic sequences and identifies key features of toxicity. a AUC of the best configuration for each of the
considered machine learners (blue bars). Different combinations of three families of predictor variables were tested, with (✓) or without (✗) the SMOTE
balancing technique. b The yellow bars show the best AUC value obtained by each machine learner using only the LC germline VJ rearrangements as
predictor variables. c ROC curve for LICTOR (i.e. random forest using AMP+MAP+DAP) compared with a predictor (random forest) using only the LC
germline VJ rearrangements as predictor variables. d Top 10 features of each family ranked by information gain. Each feature is enumerated according to
our sequential numbering scheme, while the corresponding Kabat-Chothia enumeration for each feature is reported in parenthesis. Kabat-Chothia
insertions are reported with lowercase letters. Below each predictor variable are shown the occurrence in tox/nox sequences (a), the p-value (b) and the
feature selection general ranking (c) (red=AMP features, blue=MAP features and green=DAP features). e Mapping of the top 10 features of each
family on the variable domains of an LC homodimeric structure (PDB ID: 2OLD, represented in white and grey in cartoon). AMP features are shown in red
in the left image, MAP features in blue in the middle image and DAP features in green in the right image. The colour code used in the table to represent the
three feature families is maintained in their structural representation in (d).
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at position 49, obtained the highest score in the AMP family
ranking, as well as in the general ranking (Fig. 2d and Supple-
mentary Data 8). Indeed, feature 49-A was present in 54 tox
sequences but only 8 nox sequences. Furthermore, the 49-A
mutation, which is located at the dimeric interface of LCs
(Fig. 2e), was also ranked among the top 10 features in the DAP
family in combination with no substitutions at other residue
positions (Fig. 2d). Moreover, among the best-ranked predictor
variables of the three families, those describing mutated positions
were more frequent in tox sequences than in nox sequences
(Fig. 2d). Interestingly, all these mutations were located at the LC
homodimeric interface (Fig. 2e), suggesting that mutations in
these positions may affect the structural integrity of the dimeric
interface and/or induce local instability of the monomer, thus
leading to LC misfolding and aggregation. A similar trend was
also observed for other top-ranked features, where unmutated
positions were, conversely, more frequent in nox sequences than
in tox sequences (Fig. 2d).

To investigate the role of the top-ranked features in the
prediction of LC toxicity, we performed a quantitative analysis of

the importance of features identified by the feature selection
technique. To this end, we trained 30 different classifiers (with a
10-fold cross-validation) adding successively the 10 most
important features of each feature family according to their
information gain. Results are reported in Supplementary Fig. 2
and Supplementary Data 9. Interestingly, the classifier using only
the highest ranked feature 49-A achieves an accuracy of 64% with
an AUC of 0.55, while to achieve an AUC above 0.77 at least 17
top features are required.

Taken together, these findings show that the presence or
absence of specific mutations at specific positions of an LC are
key features used by LICTOR to classify the LC phenotype. More
importantly, this further underlines the pivotal role of SMs as
causative of AL.

Reverting the toxic phenotype of an LC using LICTOR. Having
assessed the prediction accuracy of LICTOR, we sought to
validate the key toxicity determinants identified previously
through information gain by computationally reverting the toxic

Fig. 3 LICTOR accurately predicts the LC toxicity of sequences absent from the training set and is able to revert the pathological phenotype of a
cardiotoxic LC. a LICTOR predictions based on an independent set of LCs, i.e. not present in the training set. Toxic LCs are from patients affected by AL
with cardiac involvement, while non-toxic LCs are from patients with multiple myeloma (see also Supplementary Data 2). Predictions are divided according
to the clinical phenotype. White part of the bars represent correct LICTOR predictions, while grey part of the bars represent incorrect predictions.
b Sequence of a cardiotoxic LC (tox153) used to neutralize the toxic phenotype using LICTOR and the non-toxic features unveiled by feature selection.
Tox153 is aligned with the corresponding germline (GL) sequence, and the third line shows the difference in somatic mutations (SMs) between the LC and
the GL sequence (LC/GL) with SMs (displayed in bold) and unmutated positions represented by an “X”. c The table represents the non-toxic features
according to information gain used to revert the toxic phenotype of tox153. For each predictor variable, we also report the ranking in the specific-feature
family (a) and the feature selection general ranking (b). d Proteotoxic effect of tox153 protein, of the two mutants in silico designed by adding non-toxic
features (tox153V52L and tox153V52LA56G) and of the tox153 GL protein. The proteotoxic effect of H18 cardiotoxic LC and of the GL proteins H6GL and
H9GL are tested as well. Proteins in 10 mM PBS (100 μg/mL) were administered to C. elegans (100 μL/100 worms). Vehicle (10mM PBS) and 1 mM H2O2

were administered as negative and positive controls, respectively. Pharyngeal activity was determined 24 h after treatment by determining the number of
pharyngeal bulb contractions (pumps/min). Data are the pumps/min in mean ± SE (n= 30 worms/assay, two assays). ****p < 0.0001 one-way ANOVA,
Dunn’s post hoc test. e Values of pharyngeal bulb contraction (pumps/min) of some LCs (H6, H7, H9 and M2, M7, M8) listed in Supplementary Data 2 are
from AL patients with cardiac involvement (cardiotoxic) and patients with multiple myeloma (non-toxic). These values were previously obtained under the
same experimental conditions employed in this study35,36. Additionally, values of pharyngeal bulb contraction (pumps/min) of H18, H6GL and H9GL are
reported as well (n= 30 worms/assay, two assays). Each square is the mean value for H6, H7, H9 and H18 while dots represent the mean of M2, M7, M8,
H6GL and H9GL. Horizontal lines represent the mean of cardiotoxic and non-toxic LCs (****p < 0.0001, two-tailed unpaired t-test). The values of pumps/
min obtained after the administration of tox153, tox153V52L and tox153V52LA56G are also plotted (triangles).
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phenotype of an LC with LICTOR and verifying the results in a
validated in vivo C. elegans model35,36. We therefore selected an
LC from our database (tox153) previously described in the lit-
erature as cardiotoxic37, and thus having the worst prognosis in
AL. For this sequence, we had access to a bone marrow sample,
from which we obtained the full-length sequence of tox153 (see
“Methods”). Despite its toxic phenotype, tox153 differs by only 5
SMs from the corresponding germline (Fig. 3b), hence repre-
senting a good candidate with which to perform our study. From
the analysis of the 5 SMs of tox153, we found that the best
candidate, i.e. the mutation with the largest information gain, was
at position 52, in which the germline leucine (LEU) was soma-
tically mutated to a valine (VAL). This feature was one of the top-
ranked predictor variables in all three families (AMP, MAP and
DAP). In fact, an unmutated amino acid at position 52 (52X) was
significantly more frequent in nox sequences than in tox
sequences (pval= 1.5 e-09, Fig. 2d). Therefore, 52X may represent
a “non-toxic feature” and is able to revert the phenotype of
tox153 (Fig. 3c). To test this hypothesis, we restored the leucine of
the germline sequence at position 52 of tox153 (tox153V52L) and
used LICTOR to predict the toxicity of the new sequence. LIC-
TOR predicted tox153V52L as a nox sequence, highlighting that
this single point mutation is able to completely revert the toxic
phenotype of tox153, according to in silico prediction. Next, we
analysed the other 4 SMs according to their information gain.
Among these SMs, only the MAP feature 56X-59X (pval= 2.2 e-
16, Fig. 2d) was included in the top rank. Since tox153 is mutated
at position 56 but not at position 59, we also reverted this SM in
tox153V52L by mutating alanine to glycine (tox153V52LA56G)
(Fig. 3c). Interestingly, in silico prediction by LICTOR confirmed
the non-toxic phenotype of tox153V52LA56G. These results
underline that key predictor variables identified in the feature
selection process and used by LICTOR to perform the predictions
represent molecular determinants of AL.

Experimental validation of LICTOR using C. elegans. Next, we
assessed the accuracy of LICTOR’s toxicity predictions in a
validated in vivo model, exploiting the ability of C. elegans to
specifically identify cardiotoxic LCs35,36. To this end, recombi-
nantly expressed tox153, single mutant tox153V52L, double
mutant tox153V52LA56G and tox153 germline protein
(tox153GL), the protein without SMs, were administered to
worms and their toxicity was evaluated by measuring alterations
in the pharyngeal pumping rate35,36. Tox153 caused significant
pharyngeal dysfunction (Fig. 3d) comparable to that induced by
the administration of cardiotoxic LCs purified from patients
suffering from AL (H6, H7, H9) (Fig. 3e)35,36,38, while the effect
of tox153GL was comparable to that of the vehicle. The presence
of a single mutation in tox153V52L significantly decreased the
ability of the wild-type protein to cause pharyngeal toxicity
(Fig. 3d). Notably, the double mutant tox153V52LA56G, similar
to LCs purified from patients affected by MM (M2, M7, M8)35,36,
did not display toxic activity (Fig. 3e).

Finally, we thought to validate our starting hypothesis that LCs
acquire toxic features trough the addition of specific SMs during
the process of affinity maturation and that, conversely, germline
LCs are never associated with AL development. To achieve this,
we exploited the C. elegans model and tested a total of
recombinantly expressed three germline LCs (H6GL, H9GL and
Tox153GL). Values of their pharyngeal toxicity were then
compared to those of the corresponding cardiotoxic LCs (H6,
H9 and tox153), for which the pharyngeal bulb contraction
(pumps/min) values were already published35,36 and obtained
under the same experimental conditions, or measured by us
(Fig. 3d, e). Interestingly, the three germline LCs do not show any

significant proteotoxicity. Finally, we tested an additional
cardiotoxic LC (H18) belonging to the same germline family of
tox153 (Fig. 3d), whose sequence was present in the valset. As
expected, H18 caused a significant impairment of C. elegans
pharyngeal activity, while not all germline proteins affect the
pharyngeal pumping rate (Fig. 3d, e).

Globally, these results experimentally validate our starting
hypothesis that SMs are pivotal determinants of LC toxicity.
Moreover, our in vivo analysis confirms the soundness of
LICTOR predictions and the validity of key predictor variables
identified by information gain as determinants of in vivo
proteotoxicity.

Discussion
Early diagnosis of AL is essential to readily apply therapeutic
interventions and prevent permanent and fatal organ damage.
However, AL is usually detected only once the symptoms
reflecting advanced organ involvement occur, which results in
poor patient prognosis. Moreover, although pre-existing MGUS is
a known risk factor for AL, predicting whether MGUS patients
will progress to AL remains an open, unsolved problem. The
extreme sequence diversity of LCs responsible for AL, due to VJ
recombination and SMs, further complicates this scenario. Con-
sequently, to deepen our understanding of the AL determinants
and ultimately foster early AL diagnosis, we investigated LC
sequences with a known clinical phenotype, with the aim of
devising a predictive tool that can flag toxic LCs in advance (i.e.
LCs responsible for the formation of toxic aggregates and AL
development). To achieve this goal, we analysed a large dataset of
toxic (tox) and non-toxic (nox) LCs of the λ isotype, the most
frequent isotype in AL, following the hypothesis and also posed
by other research groups39–41 that specific SMs can increase the
propensity of LCs to cause AL. Therefore, we performed a sta-
tistical analysis of the distribution of SMs between tox and nox
sequences. This analysis revealed that toxic LCs have significantly
higher SM frequencies than non-toxic LCs (Fig. 1c). Based on
these findings, we designed LICTOR, a machine learning
approach using SMs to classify the LC phenotype. LICTOR
achieved a specificity and a sensitivity of 0.82 and 0.76, respec-
tively, with an AUC of 0.87, making it an unprecedented tool in
early AL diagnosis. Interestingly, including LC germline VJ
rearrangements as additional predictor variables in LICTOR
configuration did not improve prediction performance, further
suggesting that, despite the prevalence of some VL germline genes
in AL, SMs represent the critical driver of the disease.

LICTOR differs from approaches such as AGGRESCAN42,
PASTA43, WALTZ44 and others45–48 that predict the aggregation
propensity of a protein by identifying amyloidogenic regions.
LICTOR, instead, aims at finding hotspots responsible for LC
toxicity in AL amyloidosis, starting from the known clinical
phenotype of LC sequences and following the assumption that
SMs are the key determinants of LC proteotoxicity. Indeed, our
approach uses an innovative encoding scheme to express LC
sequences as the difference with respect to the germline. Then,
this strategy is applied to extract sequence and structural features,
and to investigate their role in the determination of LC proteo-
toxicity. Indeed, we showed that specific features (sequence AMP
or structural MAP and DAP features) that provide the largest
information gain to LICTOR harbour crucial information to
accurately predict LC phenotype and can thus be regarded as
effective AL molecular determinants. In fact, through the infor-
mation gain feature selection process, we identified a set of fea-
tures characterized by the strongest association with the LC
phenotype, which, remarkably, were mainly located at the dimeric
interface of the LC structure. This finding further emphasizes the
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key role of the structural context of SMs as drivers of LC
proteotoxicity.

We also performed a comparison with AGGRESCAN, PASTA
and WALTZ, using the aggregation propensities (PA for
AGGRESCAN, PP for PASTA and PW for WALTZ) provided by
the respective programs to construct three classifiers. Interest-
ingly, in all three cases tox sequences are significantly more
aggregation prone than nox sequences (for AGGRESCAN mean
PA=−8.53 ± 4.2 vs −7.44 ± 3.8, p-value < 0.0001 unpaired t-test;
for PASTA mean PP=−6.35 ± 1.08 vs −5.82 ± 1.15, p-value=
< 0.0001 unpaired t-test; and for WALTZ mean PW= 97.78 ±
0.83 vs 97.49 ± 0.89, p-value= 0.009 unpaired t-test). However,
given the considerable overlap between the propensity distribu-
tions, classifiers based on aggregation propensity have a rather
limited accuracy (AGGRESCAN accuracy= 0.59, PASTA
accuracy= 0.68, WALTZ accuracy= 0.64). Nevertheless, these
approaches indicate that toxic sequences are more prone to
aggregate than non-toxic ones, a fact that is mirrored in LICTOR
by the identification of SMs clustering at the dimer interface as
divers of proteotoxicity in AL.

Previous studies have analysed the fibril formation propensity
of LC variable domains (VL), showing that destabilizing muta-
tions at specific structural sites correlate with increased amyloid
fibril formation49–51. Additional reports have also compared the
stability and fibril formation propensity of variable domains of
toxic LC sequences associated with AL and non-toxic ones
associated with MM52,53, suggesting that specific mutations could
induce a destabilization in toxic LCs. However, as pointed out in a
recent analysis of full-length LCs associated with AL or MM27,
despite significant differences in some properties such as the
melting temperature (Tm), it is not possible to unequivocally
differentiate between pathogenic and non-pathogenic LCs based
on a single biophysical property. Only flexibility and susceptibility
to protease cleavage emerged as discriminative factors of
proteotoxicity.

Other reports have suggested that germline proteins are more
stable than the corresponding pathological LCs39,54. Analysing
the variable domains of the pathogenic light chain AL09 and its
corresponding germline κI O18/O8, Baden et al., noticed that a
non-conservative SM at the dimeric interface of AL09 (Y87H,
according to Kabat numbering scheme), induced an altered dimer
interface, characterized by a 90° rotation with respect to the
canonical homodimeric structure of the germline counterpart.
Interestingly, the same position (position 99 according to our
sequential numbering scheme, corresponding to position 87 in
Kabat-Chothia numbering) was identified as one of the most
important structural features (Fig. 2d and Supplementary Data 8)
used by LICTOR to predict LC toxicity.

Cryo-EM structures of LC amyloid fibrils55,56 show an inter-
esting rearrangement in the region comprising of the intrachain
disulfide bond; namely, in folded LCs these two cysteines connect
parallel ß-strands, while in the amyloid fibrils the two ß-strands
are antiparallel. These conformational rearrangements break the
intrachain interaction between CDR1 and CDR3, as well as, the
intrachain interactions between FR2 and end of FR3. Further-
more, the dimerization interface of the folded LC is disrupted in
the fibrils, as they are on the opposite side of the fibril layer. These
findings are in line with our results that suggest that SM located at
the LC homodimeric interface may impair the structural integrity
of the protein–protein interface and/or induce local instability of
the monomer, with consequent triggering of LC misfolding and
the generation of toxic species.

The starting hypothesis that SMs are key determinants of AL,
the accuracy of LICTOR and of our in silico findings were also
experimentally confirmed in C. elegans, a validated in vivo model
for assessing LC toxicity. We demonstrated that germline LCs are

not able to induce proteotoxicity in vivo, validating the
assumption that naive LC sequences acquire the toxic phenotype
in AL during affinity maturation. Notably, as predicted by LIC-
TOR, the toxic phenotype of an LC was abolished by reverting a
single SM.

Taken together, these findings confirm the accuracy and
robustness of our in silico approach in the identification of toxic
and non-toxic LCs and suggest its usefulness as a diagnostic
instrument for AL.

Machine learning relies on data. Larger datasets of LC
sequences would, therefore, be beneficial for validation, as well as
for the improvement of LICTOR accuracy. However, collecting
large numbers of toxic LC sequences is difficult due to the low
prevalence of the disease. We believe that the application of
LICTOR as a possible diagnostic tool could encourage clinicians
to obtain—and make available to the public—LC sequences of AL
patients, thus increasing the size of LC sequence databases and
consequently allowing improvement of LICTOR accuracy. Fur-
thermore, other factors such as the increased protein dynamics of
toxic LCs27 or the generation of LC glycosylation sites by SMs,
may be included among the predictive features to improve LC
toxicity classification, as suggested by previous reports51,57. This
would not only improve the accuracy of LICTOR, but also deepen
our understanding of AL determinants and shed light on the
complex mechanism of AL development.

In conclusion, LICTOR represents the first method for the
accurate prediction LC toxicity from their sequence, allowing the
timely identification of high-risk patients, such as MGUS subjects
likely to progress to AL. Using LICTOR can thus promote a closer
monitoring for AL development and foster early treatment and
better patients’ prognosis. Finally, LICTOR may be used together
with other recently proposed strategies, such as the differential
recruitment efficacy of patient-derived full-length LCs by syn-
thetic amyloid fibrils58, to predict the risk of AL development.
Our approach may, furthermore, guide the development of novel
predictive tools useful for other diseases, such as cancer, in which
the prognosis may depend on SMs of specific tumour-linked
proteins. LICTOR is available as a webservice at http://lictor.irb.
usi.ch.

Methods
Dataset. The database used in the training was composed of 428 tox and 590 nox
sequences of the λ isotype collected from AL-Base (http://albase.bumc.bu.edu).
Furthermore, it contained 57 nox λ LC sequences that we collected at the Institute
for Research in Biomedicine (IRB-DB), known to be non-toxic in the context of
AL. The 1075 sequences were automatically aligned using a progressive Kabat-
Chothia numbering scheme (http://www.bioinf.org.uk/abs/). According to this
scheme, for example, the CDR1 of a given LC with Kabat-Chothia numbering 30A,
30B, 30C, 30D, 30E and 30F was assigned 31, 32, 33, 34, 35 and 36. For the ALBase
sequences, germline information was taken from the database, while for IRB-DB
LCs, the germline was assessed with an in-house script. Next, germline (GL)
sequences were reconstructed using the IMGT database23.

The germline sequences were aligned with the same numbering scheme used for
the LCs. Next, each LC in the dataset was compared with the corresponding
germline to identify all SMs, with the differences encoded using an X for
unmutated positions and the LC amino acid for SMs; this sequence was referred to
as Smut. For example, an LC with sequence SYELTQPP and a corresponding
germline with the sequence SYVLTQPP was encoded as XXEXXXXX since there is
an SM (V→E) at position 3. To compare the presence of SMs in Smut at each
position i in the Kabat-Chothia numbering scheme, the following four quantities
were computed:

● toxiNM - the number of toxic sequences without an SM at position i;
● toxiM - the number of toxic sequences with an SM at position i;
● noxiNM - the number of non-toxic sequences without an SM at position i;
● noxiM - the number of non-toxic sequences with an SM at position i.

Statistical analysis. The fisher.test function in R version 3.5.1 with the arguments
conf.int= TRUE and conf.level= 0.95 was used to assess significant differences in
SMs between toxic and non-toxic sequences. The OR between toxiM/toxiNM and
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noxiM/noxiNM was computed as

ORi
tox�nox ¼

toxiM=tox
i
NM

noxiM=nox
i
NM

ð1Þ

OR= 1 indicates that the event under study (i.e. the frequency of mutations at
position i) is equally likely in the two groups (e.g. tox vs nox). OR > 1 indicates that
the event is more likely in the first group (tox). OR < 1 indicates that the event is
more likely in the second group (nox). The t.test function in R version 3.5.1 was
used to evaluate whether the PDSM differed between the tox, nox and hdnox
datasets. Data from C. elegans-based assays were analysed using GraphPad Prism
8.2.1 software by one-way ANOVA and Dunn’s post-test analysis. A p-value < 0.05
was considered significant.

Predictor variables used by the machine learners. Given a sequence, the fol-
lowing three features were extracted:

Amino acid at each mutated position (AMP). From a sequence Smut, a list of
predictor variables was extracted, each describing the type of amino acid added by
the SM at a given position or the absence of a mutation at the position. Thus, each
of these variables was a pair (position, amino acid), where we used the letter “X”
instead of the amino acid at the positions for which no SMs were present.

Monomeric amino acid pairs (MAP). LCs share a conserved 3D structure. Therefore,
pairs of interacting residues were defined as amino acids having a distance between
the respective Cβ atoms less than 7.5 Å in the X-ray structure (PDB ID: 2OLD).

Dimeric amino acid pairs (DAP). Similarly, pairs of residues that interact at the
LC–LC interface were defined using the 2OLD LC homodimeric X-ray structure.
Two residues belonging to different chains were considered to interact if the dis-
tance between their Cβ atoms was less than 7.5 Å.

Machine learning algorithms. Weka 3.8.128 implementation was used for the four
machine learning algorithms (Bayesian network, logistic regression, J48 and ran-
dom forest) to solve the classification task. For all algorithms, the default Weka
parameters were used. The algorithms were evaluated by performing 10-fold cross-
validation over the dataset. The performance of each algorithm was: first, assessed
using only one family of features (e.g. AMP, MAP and DAP, for a total of three
combinations); second, the three families were combined into pairs (e.g. AMP U
MAP, for a total of three combinations); third, all three families were combined
together. This led to a total of 7 (feature configurations) × 4 (algorithms)= 28
prediction experiments. Moreover, each of the 28 experiments was performed with
and without the balancing of the training set with SMOTE29 on the toxic sequences
so that the number of toxic instances was equal to the number of non-toxic
instances in the training set during each of the ten cross-validations used in the
evaluation. This led to 28 × 2 (with/without SMOTE)= 56 total experiments.

Prediction performance. The various prediction algorithms were assessed by
computing the following classification errors: (i) Type-I misclassifications, indi-
cating toxic sequences incorrectly classified as non-toxic (false negative, FN) and
(ii) Type-II misclassifications, indicating non-toxic sequences misclassified as toxic
(false positive, FP). The correct classifications were instead indicated by the
number of true positives, TP (a toxic sequence correctly classified) and true
negatives, TN (a non-toxic sequence correctly classified). Based on TP, TN, FP and
FN, the following metrics were used to evaluate the performance of our classifiers:

● Area under the receiver operating characteristic curve (AUC): The AUC is
used to assess the performance of a two-class classifier (such as that in our
study) and is equal to the probability that the classifier will rank a
randomly chosen positive instance (in our case, a toxic sequence) higher
than a randomly chosen negative instance (a non-toxic sequence). A
random classifier has an AUC= 0.5, while the AUC is 1.0 for a perfect
classifier.

● Sensitivity: Computed as TP/(TP+ FN), this represents the percentage of
toxic sequences correctly identified by the classifier.

● Specificity: Computed as TN/(TN+ FP), this represents the percentage of
non-toxic sequences correctly identified by the classifier.

● Accuracy: Computed as (TP+ TN)/(TP+ FP+ TN+ FN), this represents
the overall percentage of correctly classified sequences.

● Balanced accuracy: Computed as (specificity+ sensitivity)/2, this repre-
sents the arithmetic mean of sensitivity and specificity.

● F1 score: Computed as 2TP/(2TP+ FP+ FN), this represents the
harmonic mean of the sensitivity and the precision, which is computed
as the number of TP/(TP+ FN). F1= 1 indicates perfect precision and
sensitivity, while F1= 0 represents the lowest possible value achieved if
either the precision or the sensitivity is 0.

Youden index. The Youden (J) index was used to validate the effectiveness of the
predictors and to find the optimal cut-off point to separate toxic LCs associated

with the disease from non-toxic LCs using the following formula:

J ¼ maxc½SeðcÞ þ SpðcÞ � 1� ð2Þ

Information gain feature selection. The InfoGainAttributeEval filter imple-
mented in Weka 3.8.134 was used to remove all features that did not contribute to
the information available for the prediction of the sequence type. All features
having an information gain less than 0.01 were removed. Given the computational
cost of this procedure, this experiment was performed for the best-performing
algorithm and configuration identified in the previous 56 experiments. The full list
of ranked features is shown in Supplementary Data 8.

Tox153 sequence. The LC sequence was sequenced from circularized cDNA
obtained from bone marrow cells as previously described59. First, 1 µL of circu-
larized cDNA was mixed with 5 µL 5X Q5®Reaction Buffer (New England Biolabs),
0.5 µL 5X Q5® High GC Enhancer (New England Biolabs), 0.5 µL dNTPs mix
(25 mM), 1.25 µL primers (10 µM each) and 0.25 µL Q5® High-Fidelity DNA
Polymerase (2 U/µL) (New England Biolabs) in a final volume of 25 µL. Then the
sample was denatured for 1 min at 98 °C and 35 PCR cycles were performed under
the following conditions: 98 °C (10 s), 67 °C (20 s), 72 °C (40 s) and final extension
72 °C (2 min). Lambda light chains were amplified with the specific primers λ-CLA

(5ʹ-AGT GTG GCC TTG TTG GCT TG-3ʹ) and λ-CLB (5ʹ-GTC ACG CAT GAA
GGG AGC AC-3ʹ), and a library of unique sequences was obtained by a Zero
Blunt® TOPO® PCR Cloning Kit (Life Technologies) and subsequent analysis of
single colonies.

Acquisition, storage and use of biological samples were approved by the
institutional review board (Comitato Etico Area di Pavia). Written informed
consent was received from participants prior to inclusion in the study. The study
was conducted in accordance with the Declaration of Helsinki.

Protein production and purification. Tox153, tox153V52L and tox153V52LA56G
were custom expressed in mammalian cell lines (Expi293F), purified by affinity
purification column and analysed by SDS-PAGE and western blot by GenScript
(New Jersey, USA). H6GL, H9GL, Tox153GL and H18 were expressed in mam-
malian cell lines (Expi293F), purified by HiTrap® LambdaFabSelect (GE Health-
care) and analysed by SDS-PAGE.

Effect of LCs on C. elegans. Bristol N2 nematodes were obtained from the C. elegans
Genetic Center (CGC, University of Minnesota, Minneapolis, MN) and propagated
at 20 °C on solid nematode growth medium (NGM) seeded with Escherichia coli
OP50 (CGC) for food. Worms were incubated with 100 µg/mL tox153 wild-type
protein, tox153V52L or tox153V52LA56G (100 worms/100 µL) in 10 mM
phosphate-buffered saline (PBS, pH 7.4)8,9. Hydrogen peroxide (1 mM) was
administered under dark conditions as a positive control and 10 mM PBS (pH 7.4)
as a negative control (vehicle). After 2 h of incubation with orbital shaking, worms
were transferred onto NGM plates seeded with OP50 E. coli. The pharyngeal
pumping rate, measured by counting the number of times the terminal bulb of the
pharynx contracted over a 1 min interval, was scored 24 h later.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
Nox/tox sequences can be downloaded at https://github.com/mauragarofalo/LICTOR/
data. Light chains can be downloaded from Amyloid Light-chain Database: http://albase.
bumc.bu.edu. Source data are provided with this paper.

Code availability
LICTOR source code is available at: https://github.com/mauragarofalo/LICTOR/code.
Weka 3.8.1 can be downloaded at https://waikato.github.io/weka-wiki/
downloading_weka/.
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