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Introduction 
Globally, over 13 million individuals undergo digestive surgery 
each year1. Digestive surgery remains associated with a 
substantial risk of postoperative complications2, which has a 
detrimental impact on costs and on caregivers3. Efforts to 
accurately predict postoperative complications could reduce 
their impact, and considerable attempts have been made to 
hone this predictive ability. Unfortunately, results have shown 
limited performance4. 

Artificial intelligence (AI) is the broader concept of machines 
being able to execute tasks intelligently, while machine learning 
(ML) is a distinct branch of AI that involves training machines to 
optimize their performance through exposure to data, using 
algorithms, such as artificial neural networks5. Its potent 
contributions have substantially impacted various fields, 
including healthcare6–10. The aim of the present scoping review 
was to provide an overview of the available data investigating 
ML to predict postoperative complications after digestive surgery. 

Methods 
This prospectively registered review was conducted in accordance 
with the current authoritative frameworks for scoping reviews, 
including studies on the use of ML to predict postoperative 
complications in digestive surgery. A detailed description of the 
methods is provided in the Supplementary Methods. 

Results 
Study selection 
A search of the literature yielded 4327 records. After the 
application of inclusion and exclusion criteria, a total of 53 
articles met the eligibility criteria (Fig. S1). Table 1 summarizes 
these 53 studies. 

Characteristics of sources of evidence 
The topic has gained major interest over the last years, with most 
studies (47 of 53, 87 per cent) being published from 2019 onwards 
(Fig. 1a). The distribution of these studies based on the type of 
surgery is detailed in Fig. 1b. The most frequently investigated 

endpoints are illustrated in Fig. 1c. Sample sizes were 
heterogeneous, ranging from 3211 to 1 003 703 patients12. 
Various ML algorithms were established, including artificial 
neural networks (24, 45 per cent), gradient-boosted machines 
(24, 45 per cent), and random forests (22, 42 per cent). The area 
under the curve (AUC) of the model was provided by 44 studies 
(83 per cent), showing a median value of 0.81 (0.75–0.87) (Fig. 1d), 
and compared with conventional statistical methods in 25 (47 
per cent) studies. 

Upper-gastrointestinal surgery 
A total of 10 articles were identified, with 5 studies involving 
bariatric surgery, 4 studies involving gastric surgery and 1 study 
involving oesophagogastric surgery (Table S2). Anastomotic 
leakage (AL) is an important issue after upper-gastrointestinal 
surgery, associated with substantial consequences. Integrating 
demographics, medical history, laboratory tests, and surgical 
details, Shao et al.13 established an ML model to predict AL after 
gastrectomy, showing a good performance, with an AUC of 0.90. 
In a large cohort of patients undergoing bariatric surgery, ML 
showed a better predictive value for AL compared with a linear 
model (AUC 0.75 versus 0.63 respectively, P < 0.001)14. Nudel 
et al.14 utilized a nationwide database from the USA to analyse 
the predictive value of ML for AL and venous thromboembolism 
(VTE) after bariatric surgery. For both types of complications, ML 
outperformed linear models (AUC = 0.75 versus 0.63 respectively 
for AL and AUC = 0.67 versus 0.64 respectively for VTE). 

Hepatopancreatobiliary surgery 
A total of 13 studies were included in this section (Table S3). 
Preoperative imaging is often available for patients undergoing 
pancreatic surgery and this type of data can be used to predict 
surgical outcomes. Among the studies that applied imaging to 
postoperative pancreatic fistula (POPF) prediction algorithms, 
three groups of researchers integrated imaging data in ML 
algorithms and showed promising predictive values. As an 
example, a proof-of-concept of this approach was investigated in 
a pilot study of 110 patients undergoing pancreatoduodenectomy, 
equally matched for POPF (55 patients with POPF and 55 patients 
without POPF)15. The imaging-based model showed excellent 
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performance, with an AUC of 0.95, with a sensitivity and specificity 
of 96 and 98 per cent respectively. 

A total of five studies (38 per cent) were conducted in patients 
undergoing liver surgery; three of these studies (60 per cent) 

explored the application of ML models to tackle the 
challenging complication of post-hepatectomy liver failure 
(PHLF). In a cohort of 353 patients with hepatocellular 
carcinoma (‘HCC’), ML showed a valuable performance, with 

Table 1 Overview of selected study characteristics   

Number of studies Sample size, median (interquartile range) Common POC ML versus CS  

Upper-GI • 5 Bariatric 
• 4 Gastric 
• 1 Oesophagogastric  

4334 (919–44 061) • AL (n = 5) 
• Overall POC (n = 4)  

ML > CS in 3 of 4 studies 

HPB • 8 Pancreatic 
• 5 Liver  

552 (159–1322) • POPF (n = 8) 
• PHLF (n = 3) 
• AKI (n = 2)  

ML > CS in 5 of 7 studies 

Colorectal • 20 Colorectal  944 (244–3956) • SSI (n = 9) 
• AL (n = 6)  

ML > CS in 8 of 8 studies 

General digestive • 6 Emergency surgery 
• 4 Mixed DS  

2372 (926–68 224) • Heterogeneous  ML > CS in 4 of 6 studies 

Total • 53 Studies  1137 (269–5824) • SSI (n = 16) 
• AL (n = 13)  

ML > CS in 20 of 25 studies 

POC; postoperative complications; ML, machine learning; CS, conventional statistics; GI, gastrointestinal; AL, anastomotic leakage; HPB, hepatopancreatobiliary; 
POPF, postoperative pancreatic fistula; PHLF, post-hepatectomy liver failure, AKI, acute kidney injury; SSI, surgical site infection; DS, digestive surgery.  
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a Number of articles published per year on the topic. b Distribution of the selected studies according to the types of digestive surgery. c Selected endpoints and their 
frequency. d Distribution of the values of the area under the curve for the reported machine-learning models that aimed to predict postoperative complications after 
digestive surgery. GI, gastrointestinal; POC, postoperative complications; PE, pulmonary embolism; VTE, venous thromboembolism; POPF, postoperative pancreatic 
fistula; AL, anastomotic leakage; SSI, surgical site infection; AUC, area under the curve.   
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an AUC of 0.88 compared with 0.79 (P < 0.050) in a linear 
model16. 

Colorectal surgery 
A total of 20 studies were included in this section (Table S4). The 
Mayo Clinic group used the American College of Surgeons’ 
National Surgical Quality Improvement Program (ACS-NSQIP) to 
build an ML model that aimed to predict surgical site infection 
after colorectal surgery17. They reported a good performance, 
with an AUC of 0.83, which outperformed a linear model (AUC =  
0.72). Other studies leveraged ML to predict AL, showing 
promising results. As an illustration, an algorithm developed in 
a cohort of 5220 patients undergoing anterior resection for rectal 
cancer showed an AUC of 0.87 to predict postoperative AL, as 
opposed to an AUC of 0.72 for linear regression18. 

General digestive surgery 
This section included 10 studies (Table S5). A total of four of six (66 
per cent) studies comparing ML with linear models highlighted the 
higher performance of the ML algorithms. 

In a large-scale study analysing 246 124 patients from the 
NSQIP database (197 488 patients for colectomy, 25 403 for 
hepatectomy, and 23 333 for PD), AL advantageously predicted 
biliary leakage (AUC = 0.75 versus 0.72, P < 0.001), POPF (AUC =  
0.75 versus 0.71, P = 0.003), and AL (AUC = 0.68 versus 0.63, P =  
0.001) compared with linear regression19. 

The ML-based Predictive OpTimal Trees in Emergency surgery 
Risk (‘POTTER’) calculator is an externally validated 
risk-assessment tool, which was also developed from the 
ACS-NSQIP database, which showed promising performance in 
predicting mortality and morbidity20. 

Discussion 
The use of ML to predict postoperative complications after 
digestive surgery found 53 studies that demonstrated a feasible 
and promising approach. Moreover, ML appeared as a 
polyvalent tool capable of predicting different types of 
postoperative complications in various settings. 

Despite growing interest and a rise in publications over the past 
5 years, data on the subject remain scant. Furthermore, the 
included studies showed significant heterogeneity. While ML 
may offer superior performance, its success hinges on the 
quality of input data. Thus identifying new potent biomarkers is 
paramount for improving the prediction of postoperative 
complications, a challenge that ML alone cannot solve. Also, ML 
offers unique opportunities to exploit new sources of input data 
for the prediction of postoperative complications, such as 
intraoperative video samples. The heterogeneous designs 
translated into heterogeneous performances of the models, with 
a wide range of AUC values. Nonetheless, the median AUC 
reached the encouraging value of 0.81, and ML showed a higher 
performance than linear models in the majority of available 
comparisons (20 of 25). 

Future efforts in the field must focus on conducting studies 
including independent cohort for external validation. 
Particularly, the clinical impact and standard requirements for 
performance, such as AUC values, must be investigated and 
determined. Also, examining ML performance across subgroups, 
namely oncological/non-oncological and elective/emergent 
patients, could expose the need for distinct algorithms adapted 
to specific clinical scenarios. Many included studies lacked 
rigorous and transparent descriptions of ML algorithm 

development and data preparation methods. This is critical 
because the same algorithms can produce different outcomes 
based on their implementation, emphasizing the need for 
in-depth understanding to progress in future research. 

Funding 
The authors have no funding to declare. 

Acknowledgements 
Author contributions: study concept and design, M.R. and I.L.; 
acquisition of data, M.R., G.-R.J., and I.L; analysis and 
interpretation of data, M.R., G.-R.J., and I.L.; drafting of the 
manuscript, M.R. and I.L.; and critical revision of the manuscript 
for important intellectual content, M.R., G.-R.J., N.D., E.U., E.M., 
and I.L. 

Disclosure 
The authors declare no conflict of interest. 

Supplementary material 
Supplementary material is available at BJS online. 

Data availability 
Data used in this article are already publicly available. 

References 
1. Rose J, Weiser TG, Hider P, Wilson L, Gruen RL, Bickler SW. 

Estimated need for surgery worldwide based on prevalence of 
diseases: a modelling strategy for the WHO Global Health 
Estimate. Lancet Glob Health 2015; 3(Suppl 2): S13–S20 

2. Vonlanthen R, Slankamenac K, Breitenstein S, Puhan MA, 
Muller MK, Hahnloser D et al. The impact of complications on 
costs of major surgical procedures: a cost analysis of 1200 
patients. Ann Surg 2011;254:907–913 

3. Pinto A, Faiz O, Bicknell C, Vincent C. Surgical complications and 
their implications for surgeons’ well-being. Br J Surg 2013;100: 
1748–1755 

4. Moonesinghe SR, Mythen MG, Das P, Rowan KM, Grocott MPW. 
Risk stratification tools for predicting morbidity and mortality 
in adult patients undergoing major surgery. Anesthesiology 
2013;119:959–981 

5. Bishop CM, Nasrabadi NM. Pattern Recognition and Machine 
Learning. Vol. 4. New York: Springer, 2006, 1–4 

6. Rahman SA, Walker RC, Lloyd MA, Grace BL, van Boxel GI, 
Kingma BF et al. Machine learning to predict early recurrence 
after oesophageal cancer surgery. Br J Surg 2020;107:1042–1052 

7. Bohr A, Memarzadeh K. The rise of artificial intelligence in 
healthcare applications. Artificial Intelligence in Healthcare 2020: 
25–60. doi:10.1016/B978-0-12-818438-7.00002-2 

8. Gögenur I. Introducing machine learning-based prediction 
models in the perioperative setting. Br J Surg 2023;110:533–535 

9. Soh CL, Shah V, Arjomandi Rad A, Vardanyan R, Zubarevich A, 
Torabi S et al. Present and future of machine learning in breast 
surgery: systematic review. Br J Surg 2022;109:1053–1062 

10. COVIDSurg Collaborative. Machine learning risk prediction of 
mortality for patients undergoing surgery with perioperative  

Ravenel et al. | 3 

http://academic.oup.com/bjs/article-lookup/doi/10.1093/bjs/znad229#supplementary-data
http://academic.oup.com/bjs/article-lookup/doi/10.1093/bjs/znad229#supplementary-data
http://academic.oup.com/bjs/article-lookup/doi/10.1093/bjs/znad229#supplementary-data
https://doi.org/10.1016/B978-0-12-818438-7.00002-2


SARS-CoV-2: the COVIDSurg mortality score. Br J Surg 2021;108: 

1274–1292 
11. Sofo L, Caprino P, Schena CA, Sacchetti F, Potenza AE, Ciociola A. 

New perspectives in the prediction of postoperative 
complications for high-risk ulcerative colitis patients: machine 
learning preliminary approach. Eur Rev Med Pharmacol Sci 2020; 
24:12781–12787 

12. Hadaya J, Verma A, Sanaiha Y, Ramezani R, Qadir N, Benharash 
P. Machine learning-based modeling of acute respiratory failure 
following emergency general surgery operations. PLoS One 2022; 
17:e0267733 

13. Shao S, Liu L, Zhao Y, Mu L, Lu Q, Qin J. Application of machine 
learning for predicting anastomotic leakage in patients with 
gastric adenocarcinoma who received total or proximal 
gastrectomy. J Pers Med 2021;11:748 

14. Nudel J, Bishara AM, de Geus SWL, Patil P, Srinivasan J, Hess DT 
et al. Development and validation of machine learning models to 
predict gastrointestinal leak and venous thromboembolism 
after weight loss surgery: an analysis of the MBSAQIP 
database. Surg Endosc 2021;35:182–191 

15. Kambakamba P, Mannil M, Herrera PE, Müller PC, Kuemmerli C, 
Linecker M et al. The potential of machine learning to predict 

postoperative pancreatic fistula based on preoperative, 

non-contrast-enhanced CT: a proof-of-principle study. Surgery 
2020;167:448–454 

16. Mai RY, Lu HZ, Bai T, Liang R, Lin Y, Ma L et al. Artificial neural 
network model for preoperative prediction of severe liver 
failure after hemihepatectomy in patients with hepatocellular 
carcinoma. Surgery 2020;168:643–652 

17. Sohn S, Larson DW, Habermann EB, Naessens JM, Alabbad JY, 
Liu H. Detection of clinically important colorectal surgical site 
infection using Bayesian network. J Surg Res 2017;209:168–173 

18. Wen R, Zheng K, Zhang Q, Zhou L, Liu Q, Yu G et al. Machine 
learning-based random forest predicts anastomotic leakage 
after anterior resection for rectal cancer. J Gastrointest Oncol 
2021;12:921–932 

19. Chen KA, Berginski ME, Desai CS, Guillem JG, Stem J, Gomez SM 
et al. Differential performance of machine learning models in 
prediction of procedure-specific outcomes. J Gastrointest Surg 
2022;26:1732–1742 

20. Bertsimas D, Dunn J, Velmahos GC, Kaafarani HMA. Surgical risk is 
not linear: derivation and validation of a novel, user-friendly, and 
machine-learning-based Predictive OpTimal Trees in Emergency 
Surgery Risk (POTTER) calculator. Ann Surg 2018;268:574–583   

4 | BJS, 2023 


	Machine learning to predict postoperative complications after digestive surgery: a scoping review
	Introduction
	Methods
	Results
	Study selection
	Characteristics of sources of evidence
	Upper-gastrointestinal surgery
	Hepatopancreatobiliary surgery
	Colorectal surgery
	General digestive surgery

	Discussion
	Funding
	Acknowledgements
	Disclosure
	Supplementary material
	Data availability
	References


