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Abstract: Gaussian random vectors exhibit the loss of dimension phenomena, which
relate to their joint survival tail behaviour. Besides, the fact that the components of
such vectors are light-tailed complicates the approximations of various multivariate risk
measures significantly. In this contribution we derive precise approximations of marginal
mean excess, marginal expected shortfall and multivariate conditional tail expectation of
Gaussian random vectors and highlight links with conditional limit theorems. Our study
indicates that similar results hold for elliptical and Gaussian like multivariate risks.
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1. Introduction

The recent article [1] investigates two important measures of risk contagion for a given bivariate random
vector (Z1, Z2), namely the marginal mean excess (MME) and the marginal expected shortfall (MES).
Specifically, under the assumption that E{|Z1|} <∞ the MME is defined for any p ∈ (0, 1) by

E(p) = E{(Z1 − V aRZ2(p))+|Z2 > V aRZ2(p)},(1.1)

whereas MES is given as

S(p) = E{Z1|Z2 > V aRZ2(p)},(1.2)

with V aRZi(p) the Value-at-Risk at level p of Zi, which is simply the quantile function of Zi at p. In
general both E(p) and S(p) cannot be calculated explicitly. Besides, in the risk management practice the
main interest is the calculation of these quantities for p being close to 1.
In this paper we shall consider first the approximations of MME and MES for (Z1, Z2) being jointly
Gaussian with correlation ρ ∈ (−1, 1). Gaussian random vectors are asymptotically independent, i.e.,
large values occur independently which in our context means that

lim
p↑1

P{Z1 > V aRZ1(p)|Z2 > V aRZ2(p)} = 0.

Moreover, Gaussian risks exhibit the dimension reduction phenomenon, i.e., the joint survival probability
can be proportional to the marginal survival probability for large values of the threshold, see e.g., [2–4]
and the discussion below. Indeed that phenomenon renders the approximations of both MME and MES
interesting and challenging.
Under hidden regular variation assumption on (Z1, Z2) the recent publications [1, 5] consider approxima-
tions of MME and MES under some additional asymptotic conditions. However the Gaussian setup is not
covered therein since the marginal distributions are in our setup light-tailed. As discussed recently in [6],
see also [7] the light-tailed case is very challenging (even in the one-dimensional setup) and surprisingly
very little investigated in the literature.
Given the central role of multivariate Gaussian distributions, and the interesting behaviour of light-tailed
risks, our principal goal in this contribution is to derive approximations of MME and MES in the Gaussian
setup. We state next the result for the bivariate case.
Throughout in the following Φ denotes the distribution function (df) of an N(0, 1) random variable with
inverse Φ−1 and ϕ the probability density function (pdf) of a standard Gaussian random vector (X1, X2)
with correlation ρ ∈ (−1, 1).
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Theorem 1.1. Let Z = (Z1, Z2) be jointly Gaussian with Zi having N(µi, σ
2
i ), i = 1, 2 df and correlation

ρ ∈ (−1, 1) and set up = Φ−1(p), β = (µ2 − µ1)/σ1, η = β/
√

1− ρ2.
i) If σ2 > ρσ1 and σ1 > ρσ2, then

E(p) ∼ σ1

h2
1h2

√
2πu−2

p e
u2p
2 ϕ(σ2up/σ1 + β, up)→ 0, p ↑ 1,(1.3)

where

h1 =
σ2 − ρσ1

σ1(1− ρ2)
> 0, h2 =

σ1 − ρσ2

σ1(1− ρ2)
> 0.

ii) If σ2 = ρσ1, then

lim
p↑1

E(p) = σ1

√
1− ρ2

(
Φ′(η)− η[1− Φ(η)]

)
∈ (0,∞).(1.4)

iii) If σ2 < ρσ1, then

E(p) ∼ (ρσ1 − σ2)up →∞, p ↑ 1.(1.5)

iv) If σ1 ≤ ρσ2, then

E(p) ∼ σ1e
−β

2

2 Φ(ηρ∗)upe
−β σ2

σ1
upe
−σ

2
2−σ

2
1

2σ21
u2p → 0, p ↑ 1,(1.6)

where ρ∗ = ρ if σ2 = ρσ1 and ρ∗ =∞ otherwise.
v) As p ↑ 1 we have

S(p)− µ1 − σ1ρup → 0.(1.7)

The above findings show that E(p) and S(p) have a completely different behaviour as p approaches 1.
Both (1.3) and (1.6) prove that E(p) tends super-exponentially fast to 0 as p→ 1. A completely different
behaviour is observed in (1.4) and (1.5). For the approximation of MES we have only one case as shown
in (1.7), since its definition is invariant to σ2.
The bivariate setup is however restrictive; it is possible to have in (1.7) a non-zero limit in higher dimen-
sions, see Remark 2.4. Indeed, the two-dimensional setup is easier to deal with and there are no additional
notation needed, but it does not show how to derive corresponding results in multivariate setup.
It is worth mentioning that extensions of our results to elliptical random vectors are also possible, but
those require more technical efforts and additional assumptions similar to [8][Assumption 4]. Moreover,
extensions to the larger class of Gaussian like random vectors treated in [9] can also be obtained, but again
further technical treatments are needed and will therefore not be addressed here. Besides, our findings are
of certain importance for considering approximations of other risk measures such as multivariate expectiles
considered in [10].
Brief outline of the rest of the paper: In the next section we focus on the multivariate setup deriving
the approximations of MME, MES and the multivariate conditional tail expectation (MCTE). Section 3
contains all the proofs followed by an Appendix.

2. Main Results

In this section we shall be concerned with the multivariate setup deriving first an extension of Theorem
1.1 and then discussing further some related conditional limit results. Given its importance in application
we shall consider also the approximation of MCTE. In the last subsection the three dimensional case will
be briefly explored.
In our notation below bold lower case symbols are column vectors in Rd. The Hadamard product rx stands
for the vector (rx1, . . . , rxd) where r ∈ R,x = (x1, . . . , xd)

> ∈ Rd. All other operations with vectors are
defined as usual, component-wise. For instance ax is the vector (a1x1, . . . , adxd)

> for any a,x ∈ Rd and
x ≥ a means that xi ≥ ai, i ≤ d.
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2.1. Approximation of MME and MES. Let in the following Z = (Z1, . . . , Zd) be a d-dimensional
Gaussian random vector with mean µ. As in the bivariate case we define MME for give level p ∈ (0, 1) by

E(p) = E{(Z1 −Ap)+|Z2 > V aRZ2(p), . . . , Zd > V aRZd(p)},

with Ap =
∑d−1

i=1 aiV aRZi+1(p) where ai’s are given constants. Writing σ2
i for the variance of Zi we have

thus

E(p) = σ1E{(X1 − (Ap − µ1)/σ1)+|X2 > V aRX2(p), . . . , Xd > V aRXd(p)}

= σ1E{(X1 − (

d−1∑
i=1

ai(σi+1up + µi+1)− µ1)/σ1)+|X2 > up, . . . , Xd > up},

with X = (X1, . . . , Xd) a centered Gaussian random vector with covariance matrix Σ equal to the corre-
lation matrix of Z and up = Φ−1(p). For notational simplicity, throughout this paper random vectors are
row vectors and therefore we do not use the transpose sign.
Consequently, without loss of generality we shall determine next the asymptotics of

E(c, u) = E{(X1 − c1u− µ)+|X2 > c2u, . . . ,Xd > cdu}
as u→∞ for given c = (c1, . . . , cd)

>, µ assuming that Σ is a non-singular correlation matrix.
In the two-dimensional setup the aimed approximation can be obtained without discussing a closely related
and crucial quadratic optimisation problem. However, in the higher dimensional settings we need to solve
the following quadratic programming problem ΠΣ(c): determine the minimum of x>Σ−1x subject to x ≥ c
for given c ∈ Rd \ (−∞, 0]d with solution c̃. The reason for discussing ΠΣ(c) is that our investigation is
closely related to the asymptotic tail behaviour as u→∞ of P{X > cu}. In view of [2] (see below Lemma
4.2) the aforementioned asymptotic tail behaviour is solely determined by ΠΣ(c).
In view of Lemma 4.1 in Appendix we have that c̃ exists, is unique and there exists a unique index set
I ⊂ {1, . . . , d} with m ≥ 1 elements such that

c̃I = cI , c̃Ic = ΣIcI(ΣII)
−1cI ≥ cIc , c̃>Σ−1c̃ = c>I (ΣII)

−1cI > 0,(2.1)

where Ic = {1, . . . , d} \ I; note in passing that Ic can be empty.
Throughout this paper ΣIJ is the matrix obtained by Σ keeping the rows and columns with indices in I
and J , respectively and similar notation applies for vectors.
Denote next by L ⊂ {1, . . . , d} the maximal index set that contains I such that c̃L = cL. We have by
Lemma 4.1 that

c>Σ−1c = c>L (ΣLL)−1cL = c>I (ΣII)
−1cI

and moreover

hi = c>I (ΣII)
−1ei > 0, ∀i ∈ I,

where ei is the unit vector in Rm with all components equal to 0 apart from the ith component equal to
1. Denote by Lc the complement of index set L with respect to {1, . . . , d}.
For illustration purposes, we discuss briefly the case d = 2. Consider therefore Σ to be a correlation
matrix with off diagonal elements equal ρ ∈ (−1, 1) and let c = (1, c)>. If c ∈ (ρ, 1), then c̃ = c and hence
I = L = {1, 2} implying that Ic, Lc are empty. The assumption c = ρ yields

I = {1}, L = {1, 2},
whereas supposing that c < ρ implies c̃ = (1, ρ)> and I = L = {1}.
Below we write z−1 instead of zI with I = {2, . . . , d} for any z ∈ Rd. We present next the approximation
of E(c, u).

Theorem 2.1. Let c, µ be two given constants and let Σ be the non-singular covariance matrix of the
centered Gaussian random vector X. Let I, L be the index sets identified by ΠΣ(c), where c ∈ Rd has at
least one positive component.
i) If 1 ∈ I, then we have

E(c, u) ∼ 1

c>I (ΣII)−1e1

P{X1 > c1u+ µ,X−1 > c−1u}
uP{X−1 > c−1u}

→ 0, u→∞.(2.2)
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ii) If 1 ∈ L \ I, then c1 = (ΣIcI(ΣII)
−1cI)1 and further

lim
u→∞

E(c, u) = E{(Y − µ)+} ∈ (0,∞),(2.3)

where Y has survival function G(x) = P{X1 > x|XI = 0I} if L = I ∪ {1} and if N∗ = L \ (I ∪ {1}) is
non-empty

G(x) =
P{X1 > x,XN∗ > 0N∗ |XI = 0I}

P{XN∗ > 0N∗ |XI = 0I}
, x ∈ R.(2.4)

iii) If 1 ∈ Lc, then as u→∞
E(c, u) ∼ u((ΣIcI(ΣII)

−1cI)1 − c1)→∞.(2.5)

Remark 2.2. i) The tail asymptotics of Gaussian random vectors is well-known, see below Lemma 4.2 for
a minor refinement. Hence the exact asymptotic behaviour of E(c, u) in (2.2) can be explicitly calculated
by approximating both P{X1 > c1u+ µ,X−1 > c−1u} and P{X−1 > c−1u} as u→∞.

ii) As we demonstrate in the Appendix, E(c, u) in (2.2) equals o(e−εu
2
) for some small ε > 0.

In order to discuss the approximation of MES in this d-dimensional setting we define

S(c, u) := E{X1|X−1 > c−1u} = c1u+ E{X1 − c1u|X−1 > c−1u}
=: c1u+A(c, u), c = (c1, . . . , cd)

>,

where c ∈ Rd \ (−∞, 0]d. Since we are interested in the approximation of E{X1|X−1 > c−1u} as u→∞,
the natural question here is if we can determine c1 such that A(c, u) is bounded for all large u.
In view of [4][Thm 5.1], we know that for particular choices of c the following convergence in distribution

(X1 − c1u)|(X−1 > c−1u)
d→ Y, u→∞(2.6)

holds with Y being a Gaussian or some truncated Gaussian random variable. The aforementioned result
suggests that limu→∞A(c, u) = E{Y } could be valid, which then for the specific choice of c1 implies

S(c, u)− c1u→ E{Y }, u→∞.(2.7)

Our next result shows that indeed (2.7) holds.

Theorem 2.3. Let b = c−1 have at least one positive component and let I,L be the index sets correspond-
ing to ΠB(b) with unique solution b̃, where B is the covariance matrix of X−1. Suppose for simplicity
that I = {k, . . . , d− 1}. Then (2.7) holds with

c1 = Σ1,I(ΣII)
−1cI , I = {k + 1, . . . , d}.

Moreover, for the above choice of c1 (2.6) is satisfied with Y having survival function G(x) = P{X1 >
x|XI = 0} if L = I. In case that N = L \ I is non-empty, then G is given from (2.4) with N∗ = N + 1.

Remark 2.4. In the two dimensional setup b has only one element and thus I = L. Hence the limiting
random variable Y has N(0, 1− ρ2) distribution and therefore E{Y } = 0 confirming (1.7). If I 6= L, then
in general E{Y } does not equal 0.

2.2. Approximation of MCTE. Another interesting risk measure is the multivariate conditional tail
expectation (abbreviated here as MCTE), which for elliptically symmetric random vectors can be calcu-
lated explicitly, see [11, 12]. For a given random vector X = (X1, . . . , Xd) with integrable components
and given c ∈ Rd it is defined by

M(c, u) = E{X1|X > cu}
for u > 0 and c with at least one positive component.
Note in passing that for any c, u and taking for simplicity µ = 0 we have (hereafter where I(·) denotes the
indicator function)

E(c, u) =
E{(X1 − c1u)+I(X−1 > c−1u)}

P{X−1 > c−1u}
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=
E{(X1 − c1u)I(X1 > c1u)I(X−1 > c−1u)}

P{X−1 > c−1u}

=
P{X > cu}

P{X−1 > c−1u}
E{(X1 − c1u)I(X > cu)}

P{X > cu}

=
P{X > cu}

P{X−1 > c−1u}
E{(X1 − c1u)|X > cu)}

=: r(u)[M(c, u)− c1u],

where we assumed that P{X > cu} > 0. In view of Lemma 4.2, under the assumption iii) in Theorem
2.1 it follows that limu→∞ r(u) = 1. Consequently, Theorem 2.1 implies

M(c, u) ∼ Σ1,I(ΣII)
−1cIu, u→∞.(2.8)

Under the assumption ii) in Theorem 2.1 since by Lemma 4.2 we have limu→∞ r(u) = C ∈ (0,∞), then
again Theorem 2.1 yields that for some C1 > 0 that can be calculated explicitly

lim
u→∞

[M(c, u)− c1u] = C1, u→∞.(2.9)

Finally, under the assumptions of Theorem 2.1, i) we have that

lim
u→∞

u[M(c, u)− c1u] =
1

c>I (ΣII)−1e1
> 0, u→∞.(2.10)

An intuition for the above approximations comes from the conditional limit theorem derived in [4][Thm
5.1]. For instance if 1 ∈ I being the index set related to ΠΣ(c) for some general c with at least one positive
component, we have the convergence in distribution

u(X1 − c1u)
∣∣(X > cu)

d→ E , u→∞,

where E is an exponential random variable with mean 1/c>I (ΣII)
−1e1.

The following result is new and gives a minor refinement of (2.8).

Theorem 2.5. Under the assumptions of Theorem 2.1 iii) we have c̃1 = Σ1,I(ΣII)
−1cI > c1

(X1 − c̃1u)|X > cu
d→ Y, u→∞,(2.11)

where Y has survival function G given in Theorem 2.1 with N∗ = L \ I. Moreover as u→∞

M(c, u)− c̃1u→ E{Y }.(2.12)

Remark 2.6. If L = I, then E{Y } = 0 since Y with survival function G defined above is a centered
Gaussian random variable.

2.3. Trivariate Case. In order to apply our results we need to determine the index sets I and L related
to the quadratic programming problem ΠΣ(c). The index set I has m ≤ d elements and it is possible that
m = 1 for given c with at least one positive component. If X1 is independent of X−1, then it follows
easily that m ≥ 2 and 1 ∈ I, whereas for the case d = 2 and c1 = c2 we have m = 2 and I = L. In general,
m = d if and only if the so-called Savage condition (see [13, 14])

Σ−1c > 0 = (0, . . . , 0)> ∈ Rd

holds, which can be easily checked for given c and Σ. If the Savage condition does not hold, then m < d
but the exact value of m cannot be known without the knowledge of Σ and c. In the following we discuss in
details the trivariate case c = (1, 1, 1)> and Σ is a non-singular correlation matrix with entries σij , i, j ≤ 3.
First note that the Savage condition is equivalent with

1 + 2σ − σ12 − σ13 − σ23 > 0, σ = min(σ12, σ13, σ23),(2.13)
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which is equivalent with m = 3 as mentioned above. Consequently, assuming (2.13), by statement i) in
Theorem 2.1

E(c, u) ∼
√

1− σ23

(1 + σ23)3/2

1√
2πdet(Σ)(c>Σ−1e1)2

∏3
i=2 c

>Σ−1ei

1

u2
e−

u2

2
[(c+µe1)>Σ−1(c+µe1)/2−1/(1+σ23)]

as u → ∞, where ei’s are unit vectors in Rd with 1 in the ith coordinate and all other coordinates equal
0.
Suppose next that (2.13) does not hold, i.e.,

1 + 2σ − σ12 − σ13 − σ23 ≤ 0

and m = 2 since m = 1 is impossible in the two dimensional setup when the coordinates of c are equal and
positive. If (2.14) is satisfied with equality, then L = {1, 2, 3}. Assuming that σ12 ≤ min(σ13, σ23) implies
I = {1, 2} and thus 1 ∈ I and the asymptotics of E(c, u) follows again from statement i) in Theorem 2.1.
The case σ = σ13 is similar and therefore we assume next that σ = σ23, which implies that I = {2, 3} and
thus 1 6∈ I and 1 ∈ L, provided that 1 + σ23 = σ12 + σ13. For this case, by (2.3)

lim
u→∞

E(c, u) = E{(X1 − µ)+|X2 = 0, X3 = 0}.(2.14)

Finally, if σ12 + σ13 − σ23 − 1 > 0, then I = L and 1 ∈ Lc. Hence by statement iii) in Theorem 2.1

E(c, u) ∼ σ12 + σ13 − σ23 − 1

1 + σ23
u

and from (2.12)

M(c, u)− σ12 + σ13

1 + σ23
u→ 0

as u→∞.

3. Proofs

Proof of Theorem 1.1 Let (X1, X2) be jointly Gaussian with mean vector zero, correlation ρ ∈ (−1, 1)
and set

u := up = V aRX2(p), β =
µ2 − µ1

σ1
, c =

σ2

σ1
.

For any u > 0 we have

E(p) = E{(σ1X1 + µ1 − σ2u− µ2)+|X2 > u}

= σ1E
{(

X1 −
σ2

σ1
u− µ2 − µ1

σ1

)
+

∣∣∣X2 > u

}
=

σ1

P{X1 > u}
E{(X1 − cu− β)I(X1 > cu+ β,X2 > u}

=:
σ1

P{X1 > u}
θu ∈ (0,∞).

Let below ϕ denote the pdf of (X1, X2).
i) First note that in this case c ∈ (ρ, 1]. Let h∗1, h

∗
2 be defined by

h∗1 =
c− ρ
1− ρ2

> 0, h∗2 =
1− cρ
1− ρ2

> 0.(3.1)

Using the transformation
s = cu+ β + x/u, t = u+ y/u

for any u > 0, we have further

θu =

∫ ∞
cu+β

∫ ∞
u

(s− cu− β)ϕ(s, t)dsdt

= u−3

∫ ∞
0

∫ ∞
0

xϕ(cu+ β + x/u, u+ y/u)dxdy

=: u−3ϕ(cu+ β, u)

∫ ∞
0

∫ ∞
0

x exp (−h∗1x− h∗2y)ψu(x, y)dxdy.



MULTIVARIATE RISK MEASURES FOR GAUSSIAN RISKS 7

After some calculations for any x, y positive we obtain

lim
u→∞

ψu(x, y) = 1(3.2)

and further for all ε > 0 sufficiently small and all u large ψu(x, y) ≤ eε(x+y). Consequently, since h∗1, h
∗
2

are positive, applying the dominated convergence theorem we obtain

θu ∼ u−3ϕ(cu+ β, u)

∫ ∞
0

∫ ∞
0

x exp (−h∗1x− h∗2y) dxdy

=
1

(h∗1)2h∗2
u−3ϕ(cu+ β, u), u→∞,

hence the claim follows.
ii) If c = ρ the above transformation cannot be used since then h∗1 = 0 and the limiting integral is not
finite. We use another transformation, namely

s = ρu+ β + x, t = u+ y/u

for any u > 0. Consequently, we have

θu = u−1

∫ ∞
0

∫ ∞
0

xϕ(ρu+ β + x, u+ y/u)dxdy

=: u−1ϕ(ρu, u)

∫ ∞
0

∫ ∞
0

xe
− (x+β)2

2(1−ρ2)
−y
ψu(x, y)dxdy.

By the definition of ϕ

u−1ϕ(ρu, u) ∼ 1

2π
√

1− ρ2
u−1e−u

2/2, P{X1 > u} ∼ u−1e−u
2/2/
√

2π, u→∞,(3.3)

where the second approximation is a direct consequence of the well-known Mill’s ratio asymptotics. Clearly
(3.2) holds and the domination of the integrand follows easily. Hence by the dominated convergence
theorem as u→∞

θu ∼ u−1ϕ(ρu, u)

∫ ∞
0

∫ ∞
0

xe
− (x+β)2

2(1−ρ2)
−y
dxdy

∼ 1√
2π(1− ρ2)

∫ ∞
β

(x− β)e
− x2

2(1−ρ2)dxP{X1 > u}

= E{(
√

1− ρ2X1 − β)+}P{X1 > u}.
Since for any a > 0, b ∈ R

E{(aX1 − b)+} = aΦ′(b/a)− b[1− Φ(b/a)](3.4)

the claim follows.
iii) If c < ρ, then

P{X1 > cu+ β,X2 > u} = u−1

∫ ∞
0

P{
√

1− ρ2X1 > (c− ρ)u− ρx/u+ β} 1√
2π
e−(u+x/u)2/2 dx

∼ P{X1 > u}, u→∞.
Next, using the same transformation as for the case c = ρ gives letting u→∞

θu =

∫ ∞
cu+β

∫ ∞
u

(x+ (ρ− c)u− ρu− β)ϕ(x, y)dxdy

= (ρ− c)uP{X1 > cu+ β,X2 > u}+

∫ ∞
cu+β

∫ ∞
u

(x− ρu− β)ϕ(x, y)dxdy

∼ (ρ− c)uP{X1 > u}+ u−1

∫ ∞
(c−ρ)u

∫ ∞
0

xϕ(ρu+ β + x, u+ y/u)dxdy

= (ρ− c)uP{X1 > u}+ u−1ϕ(ρu, u)

∫ ∞
(c−ρ)u

∫ ∞
0

xe
− (x+β)2

2(1−ρ2)
−y
ψu(x, y)dxdy.
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As above, by (3.2) and limu→∞(c− ρ)u = −∞

lim
u→∞

∫ ∞
(c−ρ)u

∫ ∞
0

xe
− (x+β)2

2(1−ρ2)
−y
ψu(x, y)dxdy =

∫
R

∫ ∞
0

xe
− (x+β)2

2(1−ρ2)
−y
dxdy = 0.

Utilising further (3.3) we obtain

θu ∼ (ρ− c)uP{X1 > u}, u→∞
establishing the claim.
iv) Since c ≥ 1/ρ, then h∗2 defined in (3.1) is non-positive. Hence we need to use another transform,
namely

s = cu+ β + x/u, t = cρu+ y

for any u > 0. Consequently, for any u > 0

θu = u−2

∫ ∞
0

∫ ∞
(1−cρ)u

xϕ(cu+ β + x/u, cρu+ y)dxdy

=: (cu)−2ϕ(cu, cρu)e−βcu
∫ ∞

0

∫ ∞
(1−cρ)u

xe−xe
− y

2−2ρβy+β2

2(1−ρ2) ψu(x, y)dxdy,

where ψu(x, y)→ 1 as u→∞. The domination of the integrad follows easily, hence applying the dominated
convergence theorem and (3.3), for c = 1/ρ

θu ∼ (cu)−2ϕ(cu, cρu)e−
β2

2
−βcu

∫ ∞
0

∫ ∞
0

xe−xe
− (y−ρβ)2

2(1−ρ2) dxdy

= (cu)−2ϕ(cu, cρu)e−
β2

2
−βcu√2π(1− ρ2)[1− Φ(−ρβ/

√
1− ρ2)]

∼ (cu)−1e−
β2

2
−βcuΦ(ρβ/

√
1− ρ2)[1− Φ(cu)]

as u→∞. If c > 1/ρ, then

θu ∼ (cu)−2ϕ(cu, cρu)e−
β2

2
−βcu

∫
R
e
− (y−ρβ)2

2(1−ρ2) dy

∼ (cu)−1e−
β2

2
−βcu[1− Φ(cu)], u→∞,

hence the claim follows.
v) First note that for any p ∈ (0, 1) and u := up = V aRZ2(p)

S(p) = µ1 + E{(Z1 − µ1)|Z2 > V aRZ2(p)} = µ1 + σ1ρu+ σ1E{X1 − ρu|X2 > u}.
As above we have

E{X1 − ρu|X2 > u} =
1

P{X1 > u}

∫
x∈R,y>u

(x− ρu)ϕ(x, y)dxdy

=
ϕ(ρu, u)

uP{X1 > u}

∫
x∈R,y>0

xϕ(ρu+ x, u+ y/u)/ϕ(ρu, u)dxdy

∼ 1√
2π(1− ρ2)

∫
x∈R,y>0

xϕ(ρu+ x, u+ y/u)/ϕ(ρu, u)dxdy

∼ 1√
2π(1− ρ2)

∫
x∈R,y>0

xe
− x2

2(1−ρ2)
−y
dxdy

= 0

as u→∞, establishing thus the claim. �
Proof of Theorem 2.1 The proof is driven by the tail asymptotics of Gaussian random vectors derived
in [2]. As therein the index set I is also crucial for the derivation of the asymptotics of E(c, u), since the
tail asymptotics of P{X > cu} is up to a pre-factor the same as that of P{XI > cIu} as u → ∞. The
components with indices in the set L \ I influence the asymptotics only by the pre-factor, whereas the
components with indices in the set K := Lc are not important. For these reasons we have three different
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cases which shall be dealt with separately.

Set next for any u > 0

E∗(u) = P{X−1 > c−1u}E(c, u)

and write ϕ for the pdf of X.
i) When 1 ∈ I, then c̃1 = c1. Hence for any u positive

E∗(u) =

∫
s>cu+µe∗1

(s1 − c1u− µ)+ϕ(s)ds

=
1

um+1

∫
x>u(cu−c̃u)

x1ϕ(c̃u+ x/u+ µe∗1)dx,

where u has all components with indices in I equal to u and otherwise equal to 1 and e∗1 has all components
equal to 0 apart from the first component equal to 1. Recall that m stands for the number of the elements
of the index set I which cannot be empty. Using further (4.4) (set next J = Ic = {1, . . . , d}\I and assume
for simplicity that J is not empty) we have

(c̃u+ x/u+ µe∗1)>Σ−1(c̃u+ x/u+ µe∗1)

= (c̃u+ µe∗1)>Σ−1(c̃u+ µe∗1) + 2uc̃>Σ−1x/u+ 2µ(e∗1)>Σ−1x/u+ (x/u)>Σ−1x/u.(3.5)

By the properties of c̃ (see equation (4.4) in Lemma 4.1) for any u 6= 0,x ∈ Rd

uc̃>Σ−1x/u = c̃>I (ΣII)
−1xI .

Hence since 1 ∈ I implies (e∗1)>Σ−1x/u = O(1/u) as u→∞, then by (3.5)

ϕ(c̃u+ x/ũ+ µe∗1) = ϕ(c̃u+ µe∗1)ψu(x)e−cI(ΣII)−1xI−x>J (Σ−1)JJxJ/2,

where limu→∞ ψu(x) = 1 for any x ∈ Rd. Using the fact that Σ−1 is positive definite and c>I (ΣII)
−1 > 0I

for any x ∈ Rd with xI > 0I we obtain that

2c>I (ΣII)
−1xI + 2µ(e∗1)>Σ−1x/u+ (x/u)>Σ−1x/u ≤ C(1>I xI + x>J xJ)(3.6)

holds for all large u and some positive constant C. Using thus the dominated convergence theorem (recall
c̃i > ci for any i ∈ K = Lc) we obtain

E∗(u)

=
1

um+1
ϕ(c̃u+ µe∗1)

∫
xL>0L,xi>u(ci−c̃i),i∈K

x1ψu(x)e−cI(ΣII)−1xI−x>J (Σ−1)JJxJ/2dx

∼ 1

um+1
ϕ(c̃u+ µe∗1)

∫
xL>0L,xi∈R,i∈K

x1e
−cI(ΣII)−1xI−x>J (Σ−1)JJxJ/2dx

=
1

h1u

1

um
ϕ(c̃u+ µe∗1)

1∏
i∈I hi

∫
xi>0,i∈L\I,xi∈R,i∈K

e−x
>
J (Σ−1)JJxJ/2dxJ ,

where hi = c>I (ΣII)
−1ei > 0 with ei the ith unit vector in Rm with m the number of elements of the index

set I. Since 1 ∈ I, applying (4.6) in Lemma 4.2 yields

E∗(u) ∼ (uh1)−1P{X > cu+ µe∗1}, u→∞,

hence the claim follows by the definition of E∗(u).
ii) In view of Lemma 4.2, the asymptotics of P{X1 > c1u+ x,X−1 > c−1u} and that of P{X−1 > c−1u}
as u→∞ are up to the pre-factor the same. It follows easily that Yu := (X1−c1u)|X−1 > c−1u converges
in distribution as u → ∞ to a random variable Y which has survival function P{X1 > x|XI = 0I} if
L \ I = {1} and when N∗ = L \ (I ∪ {1}) is non-empty, then Y has survival function

P{X1 > x,XN∗ > 0N∗ |XI = 0I}
P{XN∗ > 0N∗ |XI = 0I}

, x ∈ R.
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In case that (Yu − µ)+, u > 0 is uniformly integrable, then

lim
u→∞

E(u, c) = E{(Y − µ)+}.

We show next the above convergence directly, which in turn implies the uniform integrability mentioned
above. Since 1 ∈ L \ I we still have that c̃1 = c1 and as above

E∗(u) =

∫
s>cu+µe∗1

(s1 − c1u− µ)+ϕ(s)ds

=
1

um

∫
x>u(cu−c̃u)

x1ϕ(c̃u+ x/u+ µe∗1)dx.

Next, since 1 6∈ I i.e., 1 ∈ J := Ic by (3.5)

(c̃u+ x/u+ µe∗1)>Σ−1(c̃u+ x/u+ µe∗1)

= (c̃u+ µe∗1)>Σ−1(c̃u+ µe∗1) + 2c>I (ΣII)
−1xI + 2µ(Σ−1)1,JxJ + x>J (Σ−1)JJxJ +O(u−1)

as u → ∞. Consequently, in view of (3.6), we can apply the dominated convergence theorem to obtain
(set N = L \ I, write k for the number of elements of the index set K = Lc = {1, . . . , d} \ L and recall
that c̃i > ci, i ∈ K)

E∗(u) ∼ 1

um
ϕ(c̃u+ µe∗1)

∫
xL>0L,xi>u(ci−c̃i),i∈K

x1e
−cI(ΣII)−1xI−x>J (Σ−1)JJxJ/2−µ(Σ−1)1,JxJdx

=
1

um
ϕ(c̃u+ µe∗1)

1∏
i∈I hi

∫
xN>0N ,xK∈Rk

x1e
−x>J (Σ−1)JJxJ/2−µ(Σ−1)1,JxJdxJ

as u→∞. With similar calculations

P{X > cu+ µe∗1} ∼
1

um
ϕ(c̃u+ µe∗1)

1∏
i∈I hi

∫
xN>0N ,xK∈Rk

e−x
>
J (Σ−1)JJxJ/2−µ(Σ−1)1,JxJdxJ

as u→∞. Since 1 ∈ J , by Lemma 4.2

lim
u→∞

P{X > cu+ µe∗1}
P{X−1 > c−1u}

= C1

for some C1 > 0 which can be calculated explicitly, hence the claim follows.
iii) When 1 ∈ Lc, then c̃1 > c1 implying

E∗(u) =

∫
s>cu+µe∗1

(s1 − c̃1u+ (c̃1 − c1)u− µ)ϕ(s)ds

= (c̃1 − c1)uP{X > cu+ µe∗1}+

∫
s>cu+µe∗1

(s1 − c̃1u− µ)ϕ(s)ds.

It follows easily that

E∗(u) ∼ (c̃1 − c1)uP{X > cu+ µe∗1}, u→∞

and further by Lemma 4.2

P{X > cu+ µe∗1} ∼ P{X−1 > c−1u}, u→∞,

hence the proof is complete. �
Proof of Theorem 2.3 We show first the conditional convergence in (2.6). Let b̃ be the solution
of the quadratic programming problem ΠB(b) with corresponding index set I = {k, . . . , d − 1} and let

L be the set of indices such that b̃i = bi. Recall that b = c−1 is a (d − 1)-dimensional vector. Let
I = {k + 1, . . . , d} and set c1 = Σ1,I(ΣII)

−1cI . By the definition of I and I we have that (ΣII)
−1cI > 0I

and c̃J∗ = ΣJ∗I(ΣII)
−1cI where J∗ = {2, . . . , k} being empty if k = 1. Note that we agree that when index

sets are empty, the defined relationships should be ignored. Let c̃ be such that c̃1 = c1 = Σ1,I(ΣII)
−1cI

and c̃−1 = b̃. Setting J = {1} ∪ J∗ we have that c̃J = ΣJI(ΣII)
−1cI . Consequently, since (ΣII)

−1cI > 0I
and I ∪ J = {1, . . . , k} by the converse statement in Lemma 4.1 we have that c̃ is the unique solution of
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ΠΣ(c). From the aforementioned proposition I is the index set that determines the unique solution c̃.
In order to show (2.6) we need to determine the asymptotics as u→∞ of

P{X > cu+ xe∗1}/P{X−1 > c−1u}
for any x ∈ R. If L = I, then L = {1} ∪ I (since c̃1 = c1) and thus by Lemma 4.2 we have that (2.6)
holds with Y having the same distribution as X1|XI = 0I . The case that N = L \ I is not empty follows
from [4][Corr 5.2]. Indeed, the tail asymptotics of the denominator and the nominator are the same up to
some positive constant since the I index sets of the corresponding quadratic programming problems are
the same. The ratio of those constants is (set N∗ = N + 1)

P{X1 > x,XN∗ > 0N∗ |XI = 0I}
P{XN∗ > 0N∗ |XI = 0I}

and thus (2.6) holds. The proof of (2.7) follows by calculating the asymptotics of

E{(X1 − c1u)I(X−1 > c−1u)},
which is established similarly to the proof of statement ii) in Theorem 2.1 and therefore we omit the
details. �
Proof of Theorem 2.5 Let I, L denote the unique index sets defined from the solution of the quadratic
programming problem ΠΣ(c). Suppose first that N = L \ I is not empty. By the assumptions 1 6∈ N ∪ I.
Let ã be the unique solution of ΠΣ(a),a = (c̃1, c2, . . . , cd)

>. The corresponding index set I (write this
as Ia) includes I since 1 6∈ I. But we cannot have 1 ∈ Ia, i.e., (ΣIaIa)−1aIa > 0Ia since this contradicts
the definition of a1 = c̃1 > c1. Consequently, 1 belongs to the index set La of all indices i ≤ d such that
ãi = ai. Next, for any x ∈ R using Lemma 4.2 and Lemma 4.1 we have

lim
u→∞

P{X1 > c̃1u+ x,X−1 > c−1u}
P{X > cu}

=
P{X1 > x,XN > 0N |XI = 0I}

P{XN > 0N |XI = 0I}
=: G(x), x ∈ R,

where for the asymptotics of the denominator we used the fact that 1 ∈ Lc, i.e., c̃1 > c1. If I = L, then
G(x) = P{X1 > x|XI = 0I}. Consequently, Y has the claimed survival function G. The second claim
follows easily and therefore we omit the proof. �

4. Appendix

Lemma 4.1. Let Σ be a d×d positive definite matrix and let b ∈ Rd\(−∞, 0]d. The quadratic programming

problem ΠΣ(b): minimise x>Σ−1x under x ≥ b has a unique solution b̃ and there exists a unique non-
empty index set I ⊆ {1, . . . , d} with m ≤ d elements such that

b̃I = bI , (ΣII)
−1bI > 0I(4.1)

and if Ic := {1, . . . , d} \ I 6= ∅, then

b̃Ic = ΣIcI(ΣII)
−1bI ≥ bIc ,(4.2)

min
x≥b

x>Σ−1x = b̃
>

Σ−1b̃ = b>I (ΣII)
−1bI > 0(4.3)

x>Σ−1b̃ = x>F (ΣFF )−1bF , ∀x ∈ Rd(4.4)

for any index set F of {1, . . . , d} containing I and if b = (b, . . . , b)>, b ∈ (0,∞), then 2 ≤ |I| ≤ d.
Conversely, if for some non-empty index set I ⊂ {1, . . . , d} we have

(ΣII)
−1bI > 0I , ΣIcI(ΣII)

−1bI ≥ bIc ,
then b̃ with b̃Ic = ΣIcI(ΣII)

−1bI , b̃I = bI is the solution of ΠΣ(b).

Proof of Lemma 4.1 The claims in (4.1)-(4.3) are formulated in [15]. Since by (4.2) we have (Σ−1b̃)M =
0M for any M ⊂ Ic (assuming Ic is not empty) exactly as in proof of [16][Lem 4.1] we have for any x ∈ Rd
and F = {1, . . . , d} \M

(x+ b̃)>Σ−1(x+ b̃) = x>Σ−1x+ 2x>F (ΣFF )−1b̃F + b̃
>
F (ΣFF )−1b̃F ,(4.5)

which implies that x>Σ−1b̃ = x>F (ΣFF )−1b̃F and thus (4.4) holds.
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If for some non-empty index set I we have (ΣII)
−1bI > 0I , then bI = argminxI≥bIx

>
I (ΣII)

−1xI . Since
for any two non-overlapping index set A,B,A ∪B = {1, . . . , d} (using Schur compliments)

x>Σ−1x = x>A(ΣAA)−1xA + (xB − ΣBA(ΣAA)−1xA)>(Σ−1)BB(xB − ΣBA(ΣAA)−1xA), x ∈ Rd

and (Σ−1)BB is positive definite, it follows easily that b̃ with b̃I = bI and b̃Ic = ΣIcI(ΣII)
−1bI is the

unique solution of ΠΣ(b), hence the claim is complete. �
The next result follows from [4][Thm 3.3] since Gaussian random vectors are particular instances of ellipti-
cally symmetric ones where the radius has distribution function in the Gumbel max-domain of attraction
with scaling function w(u) = u. We present however a short proof.

Lemma 4.2. Let c ∈ Rd have at least one positive component and let X be a centered d-dimensional
Gaussian random vector with non-singular covariance matrix Σ. Denote by I, L the index sets related to
ΠΣ(c) and let further x(u), u > 0 be a d-dimensional vector such that limu→∞ u

−1x(u) = 0.
As u→∞ we have

P{XI > (cu+ x(u))I} ∼
1∏

i∈I c
>
I (ΣII)−1ei

u−mϕXI
((cu+ x(u))I), u→∞,(4.6)

where m is the number of elements of I and ϕXI
is the pdf of XI . Moreover, with N = L \ I

lim
u→∞

P{X > cu+ x(u)}
P{XI > (cu+ x(u))I}

= lim
u→∞

P{XL > (cu+ x(u))L}
P{XI > (cu+ x(u))I}

= P{XN > xN |XI = xI},(4.7)

provided that limu→∞(x(u))I∪N = xI∪N (set P{XN > xN |XI = xI} to 1 if N is empty).

Remark 4.3. In the particular case x(u) = x/u,x ∈ Rd from (4.6) we obtain

P{XI > (cu+ x/u)I} ∼ P{XI > cIu}e−x
>
I (ΣII)−1cI , u→∞.

Proof of Lemma 4.2 Assume for simplicity that I = {1, . . . , d}. In view of Lemma 4.1 Σ−1c > 0 and
this is the crucial condition for the proof. Note further that ΠΣ(c) has unique solution c. Hence for any
u ∈ R we have (set a(u) = cu+ x(u))

(a(u) + x/u)>Σ−1(a(u) + x/u) = (a(u))>Σ−1a(u) + 2x>Σ−1a(u)/u+ x>Σ−1x/u2.

The term x>Σ−1x/u2 is important for showing an integrable upper bound for the integrand below, and
the finiteness of the integral follows from Σ−1c > 0. More precisely, with ϕ the pdf of X we have

P{X > a(u)} =

∫
x>a(u)

ϕ(x)dx

=
1

ud
ϕ(a(u))

∫
y>0

e−y
>Σ−1a(u)/u+y>Σ−1y/u2dy ∼ 1

ud
ϕ(a(u))

∫
y>0

e−y
>Σ−1cdy

since we assume that x(u)/u→ 0 as u→∞.
Next suppose that I has m < d elements and let J = Ic = {1, . . . , d} \ I. We have

P{X > a(u)} =
1

um

∫
yI>0I ,yJ>(cu−c̃u)J

ϕ(c̃u+ x(u) + y/u)dy,

where uI = u1I and uJ = 1J , hence the proof follows easily using further (4.5). It follows easy that the
components of X with indices not in L do not contribute, so we assume without loss of generality that L
has d elements. In that case (cu− c̃u)J = 0J and the proof follows after some straightforward calculations.
�
To this end we prove that E(c, u) in (2.2) equals o(e−εu

2
) for some small ε > 0. We have that

E(c, u) = o(R(u)), R(u) = P{X1 > c1u+ µ,X−1 > c−1u}/P{X−1 > c−1u}
as u → ∞ and 1 ∈ I where the index set I determines the solution of ΠΣ(c). The claim now follows if
we show that limu→∞R(u) = 0. Indeed this is the case, since in view of Lemma 4.2 the other possibility
is that limu→∞R(u) = C > 0. This means that the attained minimum of the quadratic programming
problem ΠΣ(c) is c>I (ΣII)

−1cI being equal to the attained minimum of ΠB(b) where B is obtained from
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Σ by deleting the first row and column and b = c−1. Since 1 ∈ I there are two different index sets that
determine the minimum of the quadratic programming problem ΠΣ(c) which is a contradiction.
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