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Abstract 

 

Ubiquitylation is crucial for regulating numerous cellular functions. In the kidney, 

ubiquitylation regulates the epithelial Na+ channel ENaC. The importance of this process is 

highlighted in Liddle’s syndrome, where mutations interfere with its ubiquitylation, resulting 

in constitutive Na+ reabsorption and hypertension. There is emerging evidence that NCC, 

involved in hypertensive diseases, is also regulated by ubiquitylation. Here we discuss the 

current knowledge and recent findings in this field. 
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Introduction  

 

Hypertension is involved in many diseases like stroke, myocardial infarction, heart and 

kidney failure. The kidney and most particularly the segments of the post-macula densa that 

consists in the distal convoluted tubule (DCT), the connecting tube (CNT) and the collecting 

duct (CD), are crucial for controlling Na+/K+ balance and thus extracellular volume and blood 

pressure (98). In the DCT, Na+ reabsorption occurs by electroneutral co-transport via the 

thiazide-sensitive NaCl cotransporter (NCC). In the late part of the DCT (DCT2), Na+ is 

reabsorbed via the electrogenic amiloride-sensitive epithelial Na+ channel (ENaC) in addition 

to NCC. In the CNT and CD, Na+ is reabsorbed via ENaC only (75). ENaC provides the 

driving force for K+ secretion through the renal outer medullary K+ channel (ROMK) (27).  

The significance of tightly regulating ion transport in the renal nephron segments is 

underscored by the fact that blockers of the ion channels and transporters are often used to 

treat hypertension, and by the fact that genetic diseases affecting ENaC and NCC in humans 

lead to impaired Na+ balance and blood pressure. Gain-of-function mutations within ENaC 

cause Liddle's syndrome, characterized by increased ENaC expression and open probability 

(24) and resulting in salt retention and hypertension (89). Indeed, such mutations in β- and 

γENaC interfere with the ubiquitylation and degradation of the channel by the ubiquitin-

protein ligase NEDD4-2, encoded by the Nedd4L gene, and lead to impaired ENaC 

internalization and degradation (2, 29, 37, 38, 94, 96). Mutations in human proteins leading to 

overactive NCC result in pseudohypoaldosteronism type II (PHAII, also referred to as 

Gordon’s syndrome or Familial Hyperkalemic Hypertension, FHHt) (9, 48, 105) and are 

associated with hypertension and a reduced distal delivery of Na+, with consequent 

hyperkalemia (36, 49, 82). These mutations were identified in the genes that encode the with-

no-lysine kinases WNK1 and WNK4, two main regulators of NCC (57). Recently, the groups 
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of Lifton and Jeunemaître have independently shown that mutations in humans affecting the 

genes encoding the kelch-like KLHL3/Cullin 3 (CUL3) ubiquitin-protein ligase complex lead 

to overactive NCC and thus hypertension (9, 48), pointing at the importance of ubiquitylation 

in the regulation of renal Na+ transport. In addition, we have shown both in vitro and in vivo 

that NEDD4-2 is involved in NCC regulation (3, 78). 

In this review, we summarize what is known about the role of ubiquitylation in the regulation 

of ENaC and the recent findings about the regulation of NCC by this process. We also discuss 

the importance of ubiquitylation in the control of Na+ balance and blood pressure.  

 

Regulation of ENaC-mediated Na+ transport by the ubiquitin-ligase NEDD4-2  

Ubiquitylation is a post-translational modification process that is crucial for regulating many 

different cellular functions. Indeed, ubiquitylation is used as a signal for membrane protein 

internalization or degradation by the proteasome or lysosomes (52, 99). Ubiquitin can be 

conjugated as a monoubiquitin or polyubiquitin chains on the amino group of lysine side 

chains. Monoubiquitylation on single or several sites on target proteins is involved in 

numerous biological functions including endocytosis and direction to lysosomal degradation 

(52). Also polyubiquitin chains may have different roles, but the best characterized canonical 

function is the targeting to the proteasome via K48-linked ubiquitins (17, 62).  

Ubiquitylation is performed by several enzymes: an E1 ubiquitin-activating enzyme, E2 

ubiquitin-conjugating enzymes, and E3 ubiquitin-protein ligases. The ubiquitin molecule is 

first activated by the E1 enzyme using ATP, forming first a thioester with the active site of E1 

and then to that of E2. The E3 enzymes, that recognize the target protein, interact with both 

E2 and the substrate and lead to the formation of an isopeptide bond between a lysine of the 
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target protein and the C-terminal glycine of ubiquitin. Hundreds of E3 enzymes participate in 

the target protein recognition and thus provide the specificity to the cascade (65). 

There are two main classes of E3 enzymes. The first class involves E3 ubiquitin-protein 

ligases that contain a RING motif (RING stands for Really Interesting New Gene) that helps 

transferring the ubiquitin from E2 to the target protein (61). This class includes monomeric 

proteins, and multimeric complexes comprising Cullin proteins as platforms that assemble E2 

enzymes, RING motif containing proteins, and adaptor proteins. KLHL3 and CUL3 belong to 

this class, whereby CUL3 represents the platform, and KLHL3 an adaptor protein involved in 

target recognition. The second class is formed by the HECT (homologous to E6-AP C-

terminal) domain-containing E3 ubiquitin-protein ligases that form first a thioester with the 

ubiquitin before transferring it on the substrate (84). The NEDD4/NEDD4-like (Neural 

precursor cell Expressed Developmentally Down-regulated protein)-like family belongs to the 

HECT E3 ligase class and regroups nine proteins: AIP4/ITCH, HecW1/NEDL1, and 

HecW2/NEDL2, NEDD4, NEDD4–2/NEDD4L, SMURF1, SMURF2, WWP1/TIUL1, and 

WWP2 (79). All these proteins contain an N-terminal (Ca2+-dependent lipid binding) C2 

domain for membrane binding (77), a central region containing two to four WW domains for 

interaction with the target protein (100), and a C-terminal HECT domain for binding to 

ubiquitin and transfer on the target (79, 84). Ubiquitylation is a reversible process catalyzed 

by deubiquitylating enzymes (DUBs) (44, 66) 

 

The role of ubiquitylation in the regulation of cell surface expression and endocytosis of ion 

channels and transporters has emerged with the finding that the WW domains of the 

NEDD4/NEDD4-like E3 ligases bind to the proline-rich PY motifs of ENaC (core motif: 

PPXY, where P is a proline, Y a tyrosine, and X any amino-acid), motifs that are deleted in 

Liddle’s syndrome (96) (Figure 1B). In this study, the authors used the PY-containing region 
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of the βENaC subunit as bait in a two-hybrid screen to identify proteins, which interact with 

ENaC, and identified NEDD4-2. It was then shown that each of the three ENaC subunits α, β 

and γ contains a PY motif in the C-terminus (85, 93, 96). Interestingly, NEDD4-2 is expressed 

in tissues that also express ENaC (37). It was proposed that the enhanced cell surface ENaC 

expression observed in Liddle’s patients might be due to a defect in ubiquitylation and 

degradation of the channel (Figure 1C). This hypothesis was confirmed in 1999, by the 

finding that indeed the regulation of ENaC by NEDD4-2 was defective in Liddle’s syndrome 

(2). Another study later showed that the NEDD4-2 WW3-4 domains regulate ENaC (25, 37). 

In 2006, Knight et al. found out that Liddle’s syndrome mutations enhance Na+ transport by 

acting on ENaC surface expression and open probability (41). One year later, Wiemuth et al. 

demonstrated that ENaC is multi-monoubiquitylated at the cell surface (104), and two other 

independent groups showed that the PY motifs on ENaC, that are mutated in Liddle’s 

syndrome, regulate the internalization of the channel, its sorting and recycling (50) and that 

NEDD4-2 catalyzes the plasma membrane ENaC ubiquitylation and degradation (113). 

However, whether ENaC is mono- or poly-ubiquitylated remains controversial. Some groups 

have proposed that ENaC is poly-ubiquitylated and targeted to proteasomal degradation (53-

55), while others suggested that the channel is either mono- or multimono-ubiquitylated at the 

surface of the cell (81, 104, 113). One explanation might be that ENaC is polyubiquitylated in 

the endoplasmic reticulum (ER), in the context of ERAD (ER-associated degradation), where 

misfolded or unassembled proteins are degraded via ubiquitin-proteasome pathway (10), 

whereas the assembled channel expressed at the cell surface is likely degraded via 

endosomal/lysosomal degradation involving multi-monoubiquitylation (97, 112) (Figure 1). 

Direct evidence of ERAD-based regulation of ENaC has been provided by Brodsky and 

collaborators (10).  

 



 Ronzaud and Staub 7 

As mentioned above, ubiquitylation is a process that is reversible, catalyzed by DUBs (66). 

ENaC has been proposed to be regulated by several of these DUBs, including USP2-45, 

USP8, USP10 and UCH-L3 (8, 11, 21, 114). Although deubiquitylation of ENaC appears to 

be an appealing concept for ENaC regulation, the physiological relevance of these 

observations remain to be proven, especially as a recent report of a Usp2 knockout model 

provides no evidence for the involvement of USP2 in the control of Na+ homeostasis or blood 

pressure control (71).  

 

To elucidate the relationship between the regulation of ENaC and the control of Na+ balance 

and hypertension, an in vivo model for Liddle’s syndrome was generated by mutating the β 

subunit of the mouse ENaC, resulting in a truncated βENaC as found in Liddle’s patients (73). 

Under high-Na+ diet, these Liddle mice presented the Liddle phenotype characterized by 

higher blood pressure, metabolic alkalosis, and hypokalemia, together with heart and kidney 

hypertrophy. The cell surface density of functional ENaC, but not the open probability, was 

enhanced in the kidneys of Liddle mice (14). In addition, whereas the γENaC subunit was 

rapidly internalized in control mice, it was retained at the plasma membrane of CNT in Liddle 

mice (73). Accordingly, measures in isolated perfused CCD and in confluent primary cultures 

of microdissected CCD isolated from Liddle mice exhibited higher ENaC activity (73).  

 

NEDD4-2-mediated ubiquitylation of ENaC is under the tight control of the mineralocorticoid 

hormone aldosterone, which prevents the interaction between the channel and the ubiquitin-

protein ligase (Figures 1A and B). This is mediated by the serum- and glucocorticoid-induced 

kinase 1 (SGK1): under aldosterone stimulus, SGK1 expression is induced and the kinase 

phosphorylates NEDD4-2, resulting in the recruitment of 14-3-3 proteins that disrupt the 

NEDD4-2/ENaC interaction and subsequent ubiquitylation and degradation of the channel (6, 
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13, 15, 33, 46, 91, 92). A number of alternative mechanisms of regulation by SGK1 or 

NEDD4-2 have also been suggested, including the direct phosphorylation of ENaC by SGK1 

(16), or direct phosphorylation of ENaC by ERK kinase which may facilitate the interaction 

with NEDD4-2 (86). Pearce and collaborators provided evidence for an ENaC regulatory 

complex that comprises NEDD4-2, SGK1, GILZ, RAF-1 and CNK3. It was proposed that the 

complex may integrate the activities of various signaling pathways involved in ENaC 

regulation, including those regarding steroid receptors, PI-3 kinase, mTOR and RAF-MEK-

ERK pathways (95).. Very recently, another novel mode of regulation of ENaC, comprising 

the ubiquitin-like protein NEDD8, was also described (18, 51). 

 

In vivo Nedd4-2 knockout models: new insights in the role of NEDD4-2-mediated 

regulation of Na+ transport and blood pressure  

As described above, genetic mutations in human and in vitro biochemical and overexpression 

studies suggested that the interaction between NEDD4-2 and ENaC is crucial for regulating 

Na+ balance and blood pressure. Moreover, single nucleotide polymorphisms (SNPs) in 

human Nedd4L (that encodes NEDD4-2) have been linked to hypertension (19). To validate 

the role of NEDD4-2 in vivo, several groups have generated in the last few years mouse 

knockout models of Nedd4L (for summary of these mouse models, see Table 1). The first 

model was developed by the group of Baoli Yang. In these Nedd4L knockout mice, the exons 

6 to 8 of the Nedd4L gene were removed in a constitutive manner(Nedd4L-Δ6-8 mice) (87). 

Surprisingly, despite the predicted function of NEDD4-2 as a major regulator of ENaC, the 

Nedd4L-Δ6-8 knockout mice were viable and only displayed cardiac hypertrophy and a mild 

salt-sensitive hypertensive phenotype. The  extracellular volume and Na+/K+ balance were not 

impaired (87). The protein expression of the three subunits of ENaC was enhanced in the 

knockout mice and the increased blood pressure under high-Na+ diet could be treated by 
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injecting amiloride to the mice, suggesting overactive ENaC. However, the plasma 

aldosterone levels were normal under standard and high-Na+ diet, indicating a rather mild 

ENaC-overactivation phenotype.  

Another Nedd4L total knockout model has been generated by Sharan Kumar’s group, by 

deleting exons 15-16 of the Nedd4L gene in the mouse (7). In contrast to Yang’s mice, the 

model of Kumar displayed perinatal lethality resulting from premature fetal lung fluid 

clearance as a consequence of increased ENaC expression and activity in embryonic lungs 

(7). Expression of the three ENaC subunits α, β and γ was increased in lungs and kidneys of 

E18.5 embryos and the amiloride-sensitive ENaC-mediated current was strongly enhanced in 

embryonic knockout lung cells. These data clearly indicate that NEDD4-2 is important for the 

regulation of ENaC in the kidney and that it is a key regulator of ENaC function in the lung, 

leading to lethality when deleted (7). These data also confirmed what was observed in the 

βENaC Liddle mice, in which the mutation in βENaC prevented the down-regulation of the 

channel by NEDD4-2. Indeed, these mice also showed increased alveolar fluid clearance due 

to ENaC overactivity (72-74).  

The same year, the group of Daniela Rotin published another Nedd4L knockout model, but 

this time by inactivating Nedd4L specifically in the lungs (40). This study showed that 

ablating the exon 15 and the downstream region of the Nedd4L gene in mice leads to a 

phenotype resembling lung cystic fibrosis, with airway mucus obstruction, intense 

inflammation and lethality at the age of three weeks. These observations were accompanied 

with increased protein abundance of the three ENaC subunits, enhanced ENaC currents and 

amiloride-sensitive dehydration, and increased dryness of the lungs (40). These results 

confirm what was observed in transgenic mice overexpressing ENaC (56) and confirm the 

crucial role of lung NEDD4-2 in regulating ENaC expression and activity by ubiquitylation. 

Interestingly, Kimura et al. could rescue the lung defects by nasally administrating amiloride 
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to the newly born lung-specific Nedd4L knockout mice, suggesting that the observed lung 

phenotype was resulting from defect in ENaC degradation due to NEDD4-2 ablation (40). 

Very recently, Ronzaud et al. have published a new Nedd4L knockout mouse model, where 

exons 6 to 8 of the Nedd4L gene have been removed (using the same floxed allele as Shi et 

al.) in an inducible and renal tubule-specific manner (Nedd4LPax8/LC1 knockout mice) using a 

combination of the Cre-loxP and Tet-On systems (78). As expected, these mice displayed salt-

sensitive hypertension, decreased plasma aldosterone levels and increased renal β- and γENaC 

protein expression. However, the urine and plasma Na+ and K+ levels were normal in the 

knockout mice. In addition, the cellular localization of β- and γENaC was mainly 

cytoplasmic, and γENaC was found in its uncleaved form. Surprisingly, the Nedd4LPax8/LC1 

knockout mice showed reduced αENaC mRNA levels and proteolytic cleavage, suggesting 

down-regulation of the channel (Figure 1D). Interestingly, the ENaC down-regulation that 

accompanied the reduced plasma aldosterone could be rescued by giving aldosterone to the 

knockouts. Thus, these data confirmed that NEDD4-2 is important for mediating the 

degradation of β- and γENaC, that aldosterone is crucial for regulating renal αENaC 

expression (4), and that αENaC is needed for apical trafficking of the two other ENaC 

subunits (80). Of interest, no mutation in the human αENaC gene was found to cause Liddle’s 

syndrome. In addition, injection of amiloride in Nedd4LPax8/LC1 knockout mice did not reduce 

the elevated blood pressure, indicating that the hypertensive phenotype is not due to increased 

ENaC function. Therefore, the Nedd4LPax8/LC1 knockout mice question the previous in vitro 

and in vivo studies that showed the implication of NEDD4-2-mediated ubiquitylation in the 

regulation of αENaC. 

It is difficult to reconcile the different phenotypes obtained with all these Nedd4L knockout 

mouse models, as they are differing at several levels: genetic background, part of the Nedd4L 

gene that was deleted, targeted tissue, and knockout strategy (constitutive or inducible). 
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However, their comparison opens new questions regarding NEDD4-2 function and tissue-

specificity. First, it should be noted that Shi et al. did not specify whether the observed 

enhanced α, β and γENaC subunits were expressed apically or within the cell. In addition, the 

absence of any decrease in plasma aldosterone is in contrast to what is observed in Liddle’s 

patients. It has been proposed that the absence of lung phenotype and lethality in the Shi et 

al.’s model could be explained by the presence of a shorter Nedd4L splice isoform (7). 

Indeed, the region of the Nedd4L gene that has been deleted in the Shi et al.’s model is known 

to be subjected to differential splicing (34). However, using different antibodies against 

NEDD4-2, Ronzaud et al. were not able to detect any shorter NEDD4-2 isoform in the 

Nedd4LPax8/LC1 knockout mice, at least in the kidney (78). It is also plausible that other 

NEDD4 family members might compensate for the loss of NEDD4-2 in the lung, although 

Ronzaud et al. did not observe any increase in NEDD4-1, the closest family member (78). 

Another possibility could be that the mixed genetic background used in the Shi et al.’s model 

contributes to the milder phenotype of these mice compared to those developed by Kumar and 

Rotin (7, 40).  

Moreover, it is also difficult to reconcile the phenotype of the Nedd4LPax8/LC1 knockout mice 

with what has been observed in mouse models of Liddle’s syndrome, where the activity of 

ENaC is increased despite the low plasma aldosterone and where the three ENaC subunits are 

accumulating in the plasma membrane (72). It is likely that loss of the regulator NEDD4-2 

affects other downstream factors like NCC up-regulation and consequent compensatory 

mechanisms, or other factors involved in the control of ENaC function or trafficking (99), 

whereas mutations in the ENaC subunits would affect the channel directly. Thus, it would be 

of interest to generate Nedd4L knockout mice specifically in the CNT and CD, without 

targeting the DCT, to avoid the effects of NEDD4-2 loss on NCC expression and function, 

and thus see the impact on ENaC only. 
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Ubiquitylation and regulation of NCC-mediated Na+ reabsorption and blood pressure: 

an emerging field 

Given the relevance of NCC activity in human hypertension (90), many studies have focused 

on how NCC is regulated. It was first described in 2006 by Pacheco-Alvarez et al. that NCC 

phosphorylation on T53, T58 and S71 is crucial for its activity (68). Later, it was shown that 

the WNK pathway is implicated in both NCC phosphorylation and trafficking (59). WNK1, 

WNK4 and a third family member (WNK3) all activate SPAK/OSR1 that phosphorylate NCC 

and stimulate its activity (69, 76). In addition, WNK4 down-regulates NCC abundance at the 

cell surface, by promoting the lysosome-mediated degradation of the cotransporter (26, 42, 

103, 108). However, it has long remained unclear how NCC trafficking to the cell surface is 

regulated. Based on two independent in vitro studies, it has been proposed that WNK4 could 

divert NCC to the lysosomal pathway, possibly by regulating the interaction between the 

cotransporter and the lysosome-targeting receptor sortilin (111) and the AP3 adaptor complex 

(101). In PHAII patients, resulting from mutations in both WNK1 and WNK4 kinases, 

enhanced NCC phosphorylation and cell surface expression are observed, leading to increased 

Na+ reabsorption and hypertension (83, 109, 110). In contrast, WNK4-overexpressing 

transgenic mice develop characteristics of Gitelman’s syndrome characterized by decreased 

NCC expression and function (45). Intriguingly, total WNK4 knockout mice characterized by 

the group of Gerardo Gamba showed rather an incomplete form of Gitelman’s syndrome with 

decreased NCC expression, phosphorylation and activity, but without any changes in blood 

pressure and urinary calcium excretion (12).  

Aldosterone has been shown to increase NCC protein expression without affecting the NCC 

mRNA levels (1, 39, 63), suggesting a posttranslational mechanism. In the past few years, 
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many in vitro studies suggested that NCC ubiquitylation plays an important role in the 

regulation of the cotransporter. Ko et al. showed for the first time that NCC is internalized via 

a dynamin-dependent mechanism (42) and that this process is regulating NCC, resulting in a 

decreased activity of the cotransporter (43). They showed that the increased NCC 

ubiquitylation and decreased activity, observed after treating mDCT cells that endogenously 

express NCC with phorbol-ester, could be prevented using an E1 ubiquitin-activating enzyme 

inhibitor. Interestingly, a recent study showed that NCC phosphorylation prevents its 

ubiquitylation (31). In addition, Heise et al. showed that WNK1 and WNK4 phosphorylate 

NEDD4- 2 on the same sites as SGK1 does (30), suggesting that phosphorylation and 

ubiquitylation could regulate NCC concomitantly. Supporting this hypothesis, Arroyo et al. 

showed in vitro that NEDD4–2 co-immunoprecipitates with NCC and induces its 

ubiquitylation, decreasing the expression of the cotransporter at the plasma membrane and its 

activity. Moreover, like for ENaC regulation, SGK1 prevented the NEDD4–2 effect on NCC 

(3). There is also in vivo evidence that SGK1 is involved in NCC regulation (22, 23). The 

implication of NEDD4-2 in NCC regulation has now been confirmed in vivo with the 

generation of the Nedd4LPax8/LC1 knockout mouse model. Ronzaud et al. showed that NCC 

protein expression and phosphorylation were elevated in the Nedd4LPax8/LC1 knockout mice , 

as well as NCC function as the high blood pressure and hypercalciuria observed in the 

knockouts could be corrected by thiazide treatment (78). Taken together with the decreased 

αENaC and the absence of amiloride effect on the increased blood pressure, it was proposed 

that the elevated NCC-mediated Na+ reabsorption resulting from NEDD4-2 ablation is 

compensated by reduced ENaC function. Similarly, the increased NCC observed in the 

kidney-specific ks-wnk1 knockout mice was also compensated by down-regulation of the 

three ENaC subunits (28).  The observation that NEDD4-2 is involved in NCC regulation is 
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also supported by recent studies of a SNP in the NEDD4-2 gene, which appears to affect 

thiazide sensitivity (60). 

 

It has been shown that NEDD4 and NEDD4-like proteins can bind to and ubiquitylate target 

proteins that have no PY motif using PY-motif-containing adaptors (32, 47, 64).  Arroyo et al. 

showed that, in contrast to ENaC for which the NEDD4-2-mediated inhibition can be 

prevented when SGK1 phosphorylates NEDD4-2 on S328, the inhibition of NCC by the 

SGK1-NEDD4-2 pathway can be prevented by phosphorylation of NEDD4-2 on both S222 

and S328 sites (3).  The fact that NCC and ENaC are regulated by the SGK1-NEDD4-2 

pathway in a different manner and that NCC does not contain any PY motif suggest that 

NEDD4-2 controls NCC indirectly. Whether NCC and NEDD4-2 interact via an adaptor and 

its identity represent questions for further investigation.  

Interestingly, the Nedd4LPax8/LC1 knockout mice did not show all the PHAII characteristics, 

despite the strong NCC up-regulation. This contrasts with other mouse models for PHAII, like 

the PHAII-Wnk4 (Q562E) transgenic mice developed by Lalioti et al. In these mice, the 

elevated NCC and other PHAII features were abolished after breeding with NCC knockouts 

(45). Similarly, thiazide treatment of the Wnk4-D561A mutant mice developed by Yang et al. 

could prevent the increased NCC expression and phosphorylation and the associated 

hypertension and hyperkalemia (110). More and more studies suggest that PHAII cannot 

result from overactive NCC only, but rather from the misregulation of other channels and 

transporters. For instance, the ks-wnk1 knockouts described above display some but not all 

PHAII features (28). Moreover, NCC- overexpressing mice showed no increase in blood 

pressure or Ca2+ excretion (58). Finally, the increased ROMK protein expression in the 
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Nedd4LPax8/LC1 knockouts (78) may result in elevated K+ excretion, thus preventing the 

hyperkalemia normally observed in PHAII patients (28).  

Very interestingly, two other groups have recently identified another ubiquitin-protein ligase 

pathway affecting NCC cell surface abundance and involved in the pathology of PHAII, thus 

further supporting the importance of ubiquitylation in NCC regulation. Using exome 

sequencing, Boyden et al. identified mutations in two genes encoding the KLHL3 and CUL3 

proteins that led to PHAII (9). These two proteins are part of a Cullin-RING E3 ubiquitin-

protein ligase complex and, very interestingly, are expressed in DCT like NCC (9, 70). The 

same findings were reported by an independent group: Louis-Dit-Picard et al. also used 

combined whole-exome sequencing with linkage analysis and identified mutations in Kelch3 

that encodes the KLHL3 protein (48). They confirmed the co-expression of KLHL3 and NCC 

and showed in vitro that KLHL3 down-regulates NCC expression at the cell surface and that 

the reverse is observed after Kelch3 silencing. These recent findings strongly support the 

relevance of ubiquitylation in the control of NCC function.  

However, the observations that KLHL3 and CUL3 proteins down-regulate NCC expression at 

the cell surface do not prove the direct effect of these regulators on the cotransporter. Khan et 

al. have recently shown that phosphorylation of NCC controls its ubiquitylation and might 

play a role in NCC expression at the cell surface (31). In addition, some light has been very 

recently shed on the possible involvement of KLHL3/CUL3 in WNK1 or WNK4 

ubiquitylation (67, 88, 102, 106). It has been shown in vitro that the KLHL3/CUL3 complex 

interacts with WNK1 and WNK4, but not with NCC, and ubiquitylates and degrades the two 

WNK isoforms. Very interestingly, the WNK region, which interacts with KLHL3, is also 

that mutated in PHAII (67, 88).  
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Taken all these data together, we propose a model for the differential effect of ubiquitylation 

via NEDD4-2 or via KLHL3/CUL3 on NCC regulation in normal and pathological conditions 

(Figure 2). In conditions of RAAS activation (increased angiotensin II and aldosterone), NCC 

could be activated by phosphorylation via the WNKs and NEDD4-2-mediated ubiquitylation 

of NCC would be inhibited by SGK1 and possibly by the WNK kinases, thus maintaining 

sufficient NCC expression at the cell surface. In conditions of RAAS inactivation (decreased 

angiotensin II and aldosterone), NCC could be inactivated via two pathways: the 

KLHL3/CUL3 complex could interact with and ubiquitylate the WNKs, thus decreasing 

WNKs expression and resulting in decreased NCC phosphorylation and expression at the cell 

surface; in parallel, NEDD4-2 would ubiquitylate NCC and thus decrease its cell surface 

expression. In PHAII patients, mutations in either the WNKs or the KLHL3/CUL3 complex 

inhibit the interaction between the WNKs and the KLHL3/CUL3. As a result, WNK 

expression raises, leading to elevated NCC phosphorylation and expression. This results in 

elevated Na+ reabsorption, high blood pressure, RAAS inactivation, hypercalciuria and 

hyperkalemia. How the KLHL3/CUL3 and NEDD4-2 pathways interact with each other 

remains unknown. One hypothesis could be that the WNKs inhibit NEDD4-2 either directly 

or via SGK1 activation (30, 107). Finally, in case of NEDD4-2 ablation, NCC cannot be 

ubiquitylated and degraded, resulting in increased NCC surface expression and function, 

elevated Na+ reabsorption, high blood pressure, RAAS inactivation and hypercalciuria. In the 

Nedd4LPax8/LC1 knockout mice, the increased NCC was phosphorylated, indicating that the 

WNK pathway is activated (78). How the KLHL3/CUL3 and NEDD4-2 pathways interact 

with each other remains unknown. 
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Conclusions 

The recent studies in the field of ubiquitylation revealed the importance of this process in the 

regulation of Na+ reabsorption and blood pressure by the kidney. However, the importance of 

well-known ubiquitylated targets like ENaC has probably to be redefined, and novel targets 

like NCC are now emerging.  

Indeed, as discussed very recently by Ellison (20), there is more and more evidence 

suggesting that the absence of NEDD4-2-mediated ubiquitylation is not a prerequisite for up-

regulating ENaC (5, 78). The recent data in this field rather suggest that 1) the αENaC 

abundance (and thus ENaC function) is mainly regulated by aldosterone and that 2) the 

principal effect of NEDD4-2 on ENaC might be the regulation of the channel degradation 

inside the cell and not its removal from the cell surface. This last proposal should however be 

taken with precaution as others have suggested that ubiquitylation plays an important role in 

driving ENaC endocytosis (35). 

In fact, the recent studies have rather demonstrated the critical role of ubiquitylation in renal 

physiology by modulating the abundance of NCC. However, the underlying mechanisms of 

how NCC phosphorylation and ubiquitylation interact with each other to regulate NCC 

remain to be clarified. The observation that NEDD4-2 regulates NCC activity by 

ubiquitylation and reduction of  its surface expression (3, 78), whereas KLHL3/CUL3 seem to 

target WNK1/4 (67, 88, 102, 106), may lead to the hypothesis that NEDD4-2 regulates NCC 

activity via direct ubiquitylation, whereas KLHL3/CUL3 may act indirectly by ubiquitylating 

the NCC regulators, namely the WNKs, thus decreasing NCC phosphorylation. Importantly, 

inhibiting the NEDD4-2-NCC pathway appears not to be sufficient for resulting in a PHAII 

phenotype, whereas ablating the KLHL3/CUL3-WNK-NCC pathway does. Of interest, the 

work of Melanie Cobb has shown in vitro that the WNKs can inhibit NEDD4-2 either directly 
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or via SGK1 activation (30, 107). How exactly and in which physiological conditions the 

HECT ubiquitin-ligase NEDD4-2 pathway and the RING ubiquitin-ligases KLHL3 and CUL3 

pathway are involved in the modulation of NCC represent important questions for further 

investigation.  
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Figure legends  

Table 1. Comparative table of the different Nedd4-2 knockout mouse models.  

Figure 1. Model of NEDD4-2-mediated ubiquitylation of ENaC in normal and pathological 

conditions. A. In conditions of RAAS activation, aldosterone induces SGK1 expression that 

leads to phosphorylation and inhibition of NEDD4-2, thus disrupting the NEDD4-2/ENaC 

interaction and subsequent ubiquitylation and degradation of the channel. In parallel, 

misfolded or unassembled polyubiquitylated ENaC channels are degraded via the ubiquitin-

proteasome pathway in the ER in the context of ERAD (ER-associated degradation). The 

deubiquitinating enzymes (DUBs) are also involved in deubiquitylation and recycling of 

ENaC. B. In conditions of RAAS inactivation, aldosterone and SGK1 are low, whereas 

NEDD4-2 is highly expressed. NEDD4-2 ubiquitylates ENaC and leads either to degradation 

of the channel or to its recycling. It remains unclear whether NEDD4-2-mediated ENaC 

ubiquitylation happens on the channel at the cell surface or on the intracellular pool. C. In 

Liddle patients, mutations in the PY motifs of ENaC result in absence of interaction between 

ENaC and NEDD4-2 and thus defect in ubiquitylation and degradation of the channel, leading 

to permanently enhanced cell surface ENaC expression. D. In NEDD4LPax8/LC1 KO mice 

generated by Ronzaud et al. (78), it was shown that absence of NEDD4-2 protein expression 

leads to increased intracellular expression of βENaC and γENaC, but not αENaC. It was 

proposed that αENaC is regulated at the transcriptional level by aldosterone, thus leading to 

diminished ENaC activity to compensate increased NCC-mediated Na+ reabsorption (see 

Figure 2). 

Figure 2. Proposed model for the differential effect of ubiquitylation via NEDD4-2 or via 

KLHL3/CUL3 on NCC regulation in normal and pathological conditions. A. In conditions of 

RAAS activation, the WNK kinases phosphorylate and activate NCC and at the same time 
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SGK1, and possibly the WNKs, inhibit the NEDD4-2-mediated ubiquitylation of the co-

transporter, thus maintaining sufficient NCC expression at the cell surface. B. In conditions of 

RAAS inactivation, NCC is inactivated via two pathways: the KLHL3/CUL3 complex 

ubiquitylates the WNKs, thus decreasing WNKs expression and resulting in decreased NCC 

phosphorylation and expression at the cell surface; in parallel, NCC is ubiquitylated by 

NEDD4-2, which decreases its cell surface expression. C. In PHAII patients, mutations in 

either the WNKs or the KLHL3/CUL3 complex inhibit the interaction between the WNKs 

and the KLHL3/CUL3. This results in a raise of WNKs expression, leading to elevated NCC 

phosphorylation and expression. This leads to elevated Na+ reabsorption andblood pressure, 

RAAS inactivation, hypercalciuria and hyperkalemia. D. In case of NEDD4-2 ablation, NCC 

cannot be ubiquitylated and degraded, resulting in increased NCC surface expression and 

function, elevated Na+ reabsorption and blood pressure, RAAS inactivation and 

hypercalciuria.  
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Table 1.  

 

 

 

n.d.: not determined; n.c.: not changed; HT: hypertension; +/-: heterozygous. 

 

 

 

  Shi et al, 2009 Boase et al, 2011 Kimura et al, 2011 Ronzaud et al, 2013 

Global phenotype Mild Liddle Lethal / lung phenotype Lethal / lung phenotype Mild PHAII 
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t 

Type Total Total Lung-spe cific Inducible  renal tubule-          
spe cific 

Deleted region Exons 6-8                                             
(ATG-C2-WW1)  

Exon 15                             
(WW3)  

Exon 15 + downstream       
(WW3-WW4-HECT)  

Exons 6-8                               
(ATG-C2-WW1)                    
(as Shi et al, 2009) 

P
ro

te
in

 e
xp

re
ss

io
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Nedd4-2  

 

125kD : absent                                 
110kD : present                                    
72kD : n.d.                                           
46kD : present (Boase et al, 2011) 

125kD : absent                    
110kD : absent 

46kD : absent 

n.d. 

  

125kD : absent in 
microdissected tubules           
110kD : absent                       
40kD :  absent 

ENaC  ↑ α-, β-, γ-ENaC in kidney ↑  α-, β-, γ-ENaC               
in lungs and kidney 

↑  α-ENaC in lungs ↓  α-ENaC in kidney              
↑  β-, γ-ENaC in kidney 

NCC  n.c. ↑ (Ronzaud et al, 2013) n.d. ↑ 

F
u
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ti

on
 ENaC activity ↑ ↑ ↑ ↓ 

NCC activity n.c. (slight ↑) n.d. n.d. ↑ 
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al
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Aldosterone Standard / high-Na+ : n.c.                    
Low-Na+ : ↑ 

n.d. n.d. Standard / high-Na+ : ↓  

Blood pressure ENaC-dependent                                  
salt-sensitive HT 

Slight HT in +/- n.d. NCC-dependent                     
salt-sensitive HT 

Calciuria n.d. n.d. n.d. ↑ 
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