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Summary 8 

Surface-based common-offset ground-penetrating radar (GPR) reflection profiling is a popular 9 

geophysical exploration technique for obtaining high-resolution images of the shallow 10 

subsurface in a cost-effective manner. One drawback of this technique is that, without 11 

complementary borehole information in form of dielectric permittivity and/or porosity logs 12 

along the profile, it is currently not possible to obtain reliable estimates of the high-frequency 13 

electromagnetic velocity distribution of the probed subsurface region. This is problematic 14 

because adequate knowledge of the velocity is needed for accurate imaging and depth 15 

conversion of the data, as well as for quantifying the distribution of soil water content. To 16 

overcome this issue, we have developed a novel methodology for estimating the detailed 17 

subsurface velocity structure from common-offset GPR reflection measurements, which does 18 

not require additional conditioning information. The proposed approach combines two key 19 

components: Diffraction analysis is used to infer the smooth, large-scale component of the 20 

velocity distribution, whereas the superimposed small-scale fluctuations are inferred via 21 

inversion of the reflected wavefield. We test and validate our method on two synthetic datasets 22 
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having increasing degrees of complexity and realism before applying it to a field example from 23 

the Boise Hydrogeophysical Research Site (BHRS), where independent control data in the 24 

form of neutron-neutron porosity logs are available for validation. The results obtained 25 

demonstrate the viability and robustness of the proposed approach. Further, due to its efficiency, 26 

both in terms of field effort and computational cost, the method can be readily extended to 3D, 27 

which further enhances its attractiveness compared to multi-offset-based GPR velocity 28 

estimation techniques. 29 

 30 

Abbreviated title: Velocity estimation from common-offset GPR data 31 
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1 Introduction 36 

Ground-penetrating radar (GPR) is a high-resolution geophysical exploration technique that 37 

has the potential of providing images of shallow subsurface structure with a resolution in the 38 

meter to decimeter range (e.g., Knight 2001; Annan 2005; Klotzsche et al. 2018; Lai et al., 39 

2018). Whereas borehole-based GPR transmission techniques have proven to be well-suited to 40 

full-waveform inversion approaches (e.g., Ernst et al. 2007; Klotzsche et al. 2019), estimating 41 

the detailed velocity structure of the subsurface from surface-based GPR reflection data is 42 

notoriously difficult. This is problematic because: (i) the overwhelming majority of GPR data 43 

are acquired in reflection mode along the Earth’s surface; (ii) accurate velocity information is 44 



 3 

necessary for proper imaging of reflection data; and (iii) the high-frequency electromagnetic 45 

wave velocity in the GPR regime has a strong and direct sensitivity to soil water content, which 46 

is a key parameter for many hydrogeological, agricultural, and engineering applications (e.g., 47 

Huisman et al. 2003). 48 

 49 

One common approach for subsurface velocity estimation from reflection GPR measurements 50 

is to collect data at multiple transmitter-receiver offsets and to perform either normal-moveout 51 

(NMO) velocity analysis (e.g., Greaves et al. 1996; Huisman et al. 2003; Perroud & Tygel 2005) 52 

or reflection tomography (e.g., Bradford 2008). With regard to NMO, the inherent assumption 53 

of 1D horizontal layering means that it cannot effectively deal with the highly heterogeneous 54 

velocity structures that are rather common in near-surface investigations. Although reflection 55 

tomography is able to overcome this issue, it comes at a rather high computational cost and 56 

requires inherently subjective horizon picking. Further, as pointed out by Bradford et al. (2009), 57 

reflection tomography only recovers the large-scale component of the subsurface velocity 58 

distribution that is needed to properly focus and image the GPR data, which is of substantially 59 

lower resolution than the reflection image itself. The latter problem can be potentially 60 

alleviated through waveform inversion approaches (e.g., Busch et al. 2012; Lavoué et al. 2014); 61 

however their success so far has been limited due to the rather narrow range of reflection angles 62 

and antenna radiation patterns that are highly complex, largely unknown, and site-dependent 63 

(e.g., Lampe & Holliger 2003). Finally, a clear drawback of multi-offset GPR acquisitions is 64 

their high cost in terms of acquisition time, which increases approximately linearly with the 65 

considered number of transmitter-receiver offsets for the common case of GPR systems having 66 
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a single transmitter and receiver antenna. Indeed, such surveys become largely impractical in 67 

the context of long 2D profiles and, particularly, 3D acquisitions. 68 

 69 

For the above reasons, the vast majority of surface-based GPR reflection surveys are performed 70 

using the traditional bi-static, common-offset approach, where a single transmitter-receiver 71 

antenna pair, separated by a small fixed distance, is incrementally moved along the 72 

measurement profile (e.g., Annan 2005). While the estimation of the subsurface velocity 73 

distribution from such data is substantially more difficult than for multi-offset GPR surveys, 74 

significant efforts have been made during the past decade because of the high potential rewards. 75 

In this regard, Schmelzbach et al. (2012) present an impedance inversion approach for 76 

common-offset GPR data that is based on a convolution model for the GPR traces, where 77 

borehole dielectric permittivity or porosity logs are used to recover the low-frequency part of 78 

the velocity structure that cannot be obtained from the reflection data. Zeng et al. (2015) and 79 

Liu et al. (2018) adopt similar approaches to estimate the distribution of soil water content and 80 

to characterize buried archaeological remains, respectively. Xu et al. (2021) also assume a 81 

convolution model for the GPR traces, but combine stochastic simulation with simulated 82 

annealing optimization in order to generate velocity realizations that honor the GPR 83 

measurements and borehole porosity log data along the profile. Forte et al. (2013; 2014) assume 84 

a locally 1D layered subsurface structure and use picked reflection amplitudes to recursively 85 

estimate the GPR velocity in a series of identified subsurface layers, in which the velocity is 86 

assumed constant. Other authors estimate the spatial distribution of GPR velocity from 87 

common-offset data via the analysis of diffractions present in the recordings. Novais et al. 88 
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(2008) use velocity continuation to generate several migrated sections and analyze the 89 

associated diffraction focusing to build a root-mean-square (RMS) velocity model. Clair & 90 

Holbrook (2017) apply the seismic diffraction imaging and velocity analysis workflow 91 

proposed by Fomel et al. (2007) to common-offset GPR data in order to estimate snow water 92 

equivalent. Yuan et al. (2019) employ a similar approach to characterize the velocity structure 93 

of surficial chalk deposits. Although all of the above methods have the ability to estimate 94 

subsurface properties from common-offset GPR measurements, they all suffer from inherent 95 

limitations. Notably, the reflection-based methods have the potential to provide high-resolution 96 

results, but they generally require complementary information such as borehole logs, which are 97 

usually not available. Conversely, diffraction-based methods require a suitably dense and even 98 

distribution of diffractions in the data and, even under ideal circumstances, can only resolve 99 

the large-scale velocity structure. 100 

 101 

In this study, we present a novel velocity estimation method for surface-based common-offset 102 

GPR reflection data that combines the advantages of the reflection- and diffraction-based 103 

techniques described above. To estimate the low-frequency background velocity field, 104 

diffractions are separated from the unmigrated GPR data and subjected to migration velocity 105 

analysis based on a prescribed focusing measure. After migrating the GPR data using the 106 

derived velocity field, the reflected wavefield is isolated and used to deduce the small-scale 107 

velocity fluctuations. The latter is accomplished via sparse inversion based on an iteratively 108 

reweighted least-squares strategy assuming a convolutional model for each GPR trace. The 109 

final high-resolution velocity distribution is obtained by combining the large-scale diffraction-110 
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based and the fine-scale reflection-based estimates. 111 

 112 

The paper proceeds as follows. We begin by describing the methodological background of the 113 

proposed velocity estimation method. Next, we show the application of our method to two 114 

synthetic datasets, which differ in their degree of complexity and realism. Finally, we apply the 115 

proposed approach to common-offset 100-MHz GPR field data acquired at the Boise 116 

Hydrogeophysical Research Site (BHRS) near Boise, Idaho, USA. 117 

 118 

2 Methodology 119 

We assume in our work that the subsurface velocity distribution 𝑣(𝑥, 𝑧) can be regarded as 120 

the sum of a smoothly varying or constant background velocity field 𝑣0(𝑥, 𝑧) and a small-121 

scale velocity fluctuation field ∆𝑣(𝑥, 𝑧) (e.g., Pullammanappallil et al. 1997; Poppeliers 2007; 122 

Irving et al. 2009; Scholer et al. 2010)  123 

 𝑣(𝑥, 𝑧) = 𝑣0(𝑥, 𝑧) + ∆𝑣(𝑥, 𝑧). (1) 

To determine 𝑣(𝑥, 𝑧) from a common-offset GPR reflection dataset, we separate the recorded 124 

wavefield into its diffracted and reflected components, which are used to estimate 𝑣0 and ∆𝑣, 125 

respectively. This inherently assumes that the background velocity field is smooth at the scale 126 

of a dominant GPR wavelength and beyond, such that it does not contribute to the reflected 127 

wavefield. Figure 1 illustrates schematically the steps involved in our velocity estimation 128 

procedure. First, diffractions are separated and analyzed in order to infer the spatially variable 129 

RMS and interval velocity structures. The latter serves as 𝑣0, whereas the former is used to 130 

migrate the common-offset GPR data, after which the dominant reflections are separated. 131 
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Assuming a convolutional relationship between the velocity perturbation field and the 132 

reflection data based on an estimated mixed-phase wavelet, a L1-norm constrained inversion 133 

is then used to infer ∆𝑣. Below we describe in detail this inversion workflow in terms of the 134 

following four main components: (i) diffraction separation, (ii) background velocity estimation, 135 

(iii) reflected wavefield prediction, and (iv) velocity perturbation inversion. 136 

 137 

2.1 Diffraction separation 138 

The diffracted wavefield is obtained in our methodology via plane-wave destruction (PWD) 139 

filtering (Fomel, 2002). The underlying assumption when using this approach is that reflections 140 

correspond primarily to coherent events having slowly changing slopes in the x-t domain, 141 

whereas the slopes associated with diffractions are significantly more spatially variable. The 142 

goal of PWD filtering is to destroy locally planar events in the data corresponding to an 143 

estimated slope field 𝜎(𝑥, 𝑡). By regularizing the estimation problem, it is possible to destroy 144 

only those events whose slopes change slowly in space, thereby isolating the diffracted energy. 145 

 146 

A local plane wave in the x-t domain can be expressed by the following differential equation 147 

(e.g., Fomel, 2002): 148 

 
𝜕𝑢

𝜕𝑥
+ 𝜎

𝜕𝑢

𝜕𝑡
= 0, (2) 

where 𝑢(𝑥, 𝑡) is the wavefield and 𝜎 is the local slope. If the local slope in a seismic or GPR 149 

dataset is unchanging in time, the wavefields observed at two adjacent trace positions 𝑥𝑖 and 150 

𝑥𝑖+1 are related by a time shift 𝜎∆𝑥, where ∆𝑥 is the trace spacing. That is,  151 
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 𝑢(𝑥𝑖+1, 𝑡) = 𝑢(𝑥𝑖 , 𝑡 + 𝜎∆𝑥), (3) 

which has the Fourier transform 152 

 𝑈(𝑥𝑖+1, 𝜔) = 𝑈(𝑥𝑖 , 𝜔)𝑒𝑖𝜔𝜎∆𝑥. (4) 

Equation (4) shows that we can predict the trace at position 𝑥𝑖+1 from the trace at position 𝑥𝑖 153 

by application of a linear phase shift. To apply this concept to data with temporally variable 154 

local slopes, Fomel (2002) used the fractional delay filter of Thiran (1971) to derive a localized, 155 

discrete, time-domain approximation to 𝑒𝑖𝜔𝜎∆𝑥 whose coefficients depend nonlinearly on the 156 

local slope values. Prediction of a trace using its neighbor can then be accomplished by matrix-157 

vector multiplication 158 

 𝐮𝑖+1 = 𝐏𝑖,𝑖+1𝐮𝑖 , (5) 

where 𝐏𝑖,𝑖+1 is a time-variable convolution matrix linking trace vectors 𝐮𝑖+1 and 𝐮𝑖, whose 159 

entries are a nonlinear function of the local slope field 𝜎(𝑥, 𝑡). 160 

 161 

The PWD problem seeks to estimate 𝜎(𝑥, 𝑡) by minimizing the prediction error for an entire 162 

seismic or GPR section, thereby destroying the local plane waves in the data. Considering the 163 

section 𝐬  as a column vector containing all of the traces, i.e., 𝐬 = [𝐬1
T 𝐬2

T … 𝐬n
T]T , this is 164 

described by 165 

 𝐫 = 𝐃𝐬, (6) 

where 𝐫 is the destruction residual, and 𝐃 is the destructor matrix defined by: 166 

 𝐃 = [

−𝐏1,2 𝐈 0 ⋯ 0

0 −𝐏2,3 𝐈 ⋯ 0
⋯ ⋯ ⋯ ⋯ ⋯
0 ⋯ 0 −𝐏n−1,n 𝐈

], (7) 

with 𝐈  representing identity operator. The estimation of 𝜎(𝑥, 𝑡)  is accomplished via 167 
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regularized nonlinear least-squares minimization of equation (6), where shaping regularization 168 

(Fomel 2007a) is used to control the smoothness of the estimated slope field. In our case, the 169 

considered lateral smoothing radius for the regularization must be large enough to estimate a 170 

slope field that well represents the reflections in the dataset, but not the diffractions. The 171 

prediction residual corresponding to the estimated slope field is simply the GPR section with 172 

the reflection events removed. All of the above steps are performed in our work using the 173 

programs ‘sfdip’ and ‘sfpwd’ in Madagascar (https://reproducibility.org/), an open-source data 174 

analysis package. 175 

 176 

2.2 Background velocity estimation 177 

Once the diffracted wavefield has been separated, the next step is to use it to estimate the low-178 

frequency background velocity field 𝑣0, which, due to its smoothness at the wavelength scale, 179 

does not to contribute to the reflected wavefield. To this end, we first estimate the RMS velocity 180 

distribution by examining the focusing of diffractions during migration using a suite of constant 181 

velocity values. Fomel et al. (2007) proposed a migration focusing metric based on local 182 

kurtosis, whereas Decker et al. (2017) considered the local semblance attribute. Here, we use 183 

the latter measure, which can be defined as 184 

 𝑠(𝑥, 𝑡, 𝑣) =
( 𝐹𝑣(𝑎(𝑥, 𝑡)))

2

𝐹𝑣( 𝑎2(𝑥, 𝑡))
, (8) 

where 𝑎(𝑥, 𝑡) denotes the diffraction amplitude as a function of horizontal position 𝑥 and 185 

time 𝑡 , and operator 𝐹𝑣  denotes time migration using constant velocity 𝑣 . Migration is 186 

performed on both the diffracted wavefield and its square using the velocity continuation 187 
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method of Fomel (2003), which results in two space-time-velocity cubes. In Madagascar, this 188 

step is accomplished using the program ‘sfvelcon’. The division in equation (8) is then 189 

performed in a regularized manner using the program 'sfdivn' in order to constrain the 190 

smoothness of the resulting local semblance cube (Fomel, 2007b). Using the automatic picking 191 

algorithm 'sfpick' (Fomel, 2009), the maxima on each time-velocity panel are next selected, 192 

which yields a 1D RMS velocity curve at each trace location. These curves are combined into 193 

a 2D RMS velocity model, which is finally provided as input to the constrained Dix inversion 194 

program 'sfdix' (Fomel and Guitton, 2006) to estimate 𝑣0(𝑥, 𝑡). 195 

 196 

2.3 Reflection separation 197 

In order to obtain the reflected wavefield that is used in our inversion procedure to estimate the 198 

velocity perturbation ∆𝑣 , two steps are performed. First, the GPR profile is time-migrated 199 

based on the inferred RMS velocity model from Section 2.2 using the velocity continuation 200 

method described in Fomel (2003). This has the effect of collapsing diffractions and moving 201 

dipping reflectors to their correct positions in terms of vertical traveltime, and is accomplished 202 

using the Madagascar programs 'sfvelcon' and 'sfslice'. Then, we apply the PWD method to the 203 

migrated reflection section in order to estimate the local slopes, which in this case are used to 204 

predict the time-migrated reflected wavefield void of migration artifacts and random noise 205 

(Fomel and Guitton, 2006). The latter step is accomplished using the Madagascar program 206 

‘sfpwdsmooth2’. Note that our use of PWD here is different compared to what was presented 207 

in Section 2.1, where the method was used to suppress reflected energy in the data and isolate 208 

the diffracted wavefield. In this regard, it is important to note that a high-quality reflection 209 
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section cannot be obtained by simply subtracting the diffracted wavefield from the GPR data. 210 

Indeed, predicting the reflected wavefield from the estimated slopes of the time-migrated 211 

image results in a cleaner section that is much more amenable to the velocity perturbation 212 

inversion described next. 213 

 214 

2.4 Velocity perturbation inversion 215 

To estimate the velocity perturbation field ∆𝑣,  we perform sparse inversion of the time-216 

migrated reflected GPR wavefield obtained in Section 2.3. To this end, we assume that the 217 

wavefield can be effectively described using the so-called primary reflectivity section (PRS) 218 

model (e.g., Gibson and Levander, 1990; Holliger et al., 1994; Irving et al., 2009), whereby the 219 

time-migrated data, 𝑑(𝑥, 𝑡) , are expressed as the convolution product of the GPR source 220 

wavelet, w(𝑡), and the subsurface reflectivity distribution, 𝑟(𝑥, 𝑡) 221 

 𝑑(𝑥, 𝑡) = w(𝑡) ∗ 𝑟(𝑥, 𝑡). (9) 

Equation (9) is well known to provide an adequate model for zero-offset seismic or GPR 222 

reflection data when single scattering prevails and dispersion is absent (e.g., Yilmaz, 2001). P 223 

Although the second assumption is only strictly valid for GPR data acquired in perfectly 224 

electrically resistive environments, experience has shown that this model is able to 225 

accommodate the limited dispersion effects linked to low-loss conditions for which the GPR 226 

method is suitable (e.g., Irving et al., 2009; Xu et al., 2020). Indeed, such effects in GPR data 227 

tend to be inherently rather minor, as it is simply impossible to acquire high-quality GPR 228 

reflection data in strongly dispersive environments.  229 

 230 
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As the subsurface reflectivity can be approximated using the temporal derivative of the velocity 231 

perturbation field (e.g., Pullammanappallil et al. 1997; Poppeliers 2007), and because the 232 

temporal derivative operator may be treated as a finite-difference filter whose position within 233 

a convolution equation can be shifted (Irving et al. 2009; Scholer et al. 2010), equation (9) 234 

leads to 235 

 
𝑑(𝑥, 𝑡) ≈ w(𝑡) ∗

𝜕

𝜕𝑡
∆𝑣(𝑥, 𝑡)

= 𝑔(𝑡) ∗ ∆𝑣(𝑥, 𝑡),
 (10) 

where 𝑔(𝑡) represents the time-differentiated GPR wavelet. Expression (10) provides a linear 236 

relationship between the time-migrated reflected GPR wavefield and the velocity perturbation 237 

field, which forms the basis for our inversion procedure. Indeed, considering data vector 𝐝 238 

containing all of the GPR traces arranged into a single column, i.e., 𝐝 = [𝐝1
T 𝐝2

T … 𝐝n
T]T, and 239 

model vector 𝐦 containing the corresponding velocity perturbations underlying each trace 240 

arranged into a single column, i.e., 𝐦 = [𝚫𝐯1
T 𝚫𝐯2

T 𝚫𝐯3
T … 𝚫𝐯n

T]T, we have 241 

 𝐝 = 𝐆𝐦, (11) 

where 𝐆  is a block-diagonal matrix containing 𝑛  replicates of the convolution matrix 242 

associated with the time-differentiated wavelet 𝑔(𝑡). 243 

 244 

To define the kernel matrix 𝐆, information on the GPR source wavelet is required. In this work, 245 

we estimate 𝑤(𝑡) from the reflected wavefield using the method of Schmelzbach & Huber 246 

(2015), which assumes that a typical mixed-phase GPR source wavelet can be considered as a 247 

minimum-phase wavelet that has been shifted by a constant phase angle. To first estimate the 248 

corresponding minimum-phase wavelet, we perform standard least-squares spiking 249 

deconvolution on the reflected wavefield and take the inverse of the deconvolution operator 250 
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(e.g., Buttkus, 2000). A search of the phase rotation angle that maximizes the kurtosis when 251 

applied to this minimum-phase wavelet is then used to obtain the final mixed-phase GPR 252 

source wavelet. The practical validity of this source wavelet estimation procedure was recently 253 

demonstrated by Xu et al. (2021). Note that the effects of minor dispersion in the GPR data are, 254 

at least in part, accounted for in the sense that an effective wavelet that best fits the considered 255 

dataset in its entirety, rather than the true emitted GPR source signal, is estimated. 256 

 257 

To invert for the velocity perturbation 𝐦  given the reflection data 𝐝 , we minimize the 258 

following objective function 259 

 𝜃(𝐦) = ||𝐆𝐦 − 𝐝||𝟐
𝟐 + λ ‖𝐃𝐦‖1, (12) 

where ‖∙‖𝑝 denotes the L-p norm, 𝜆 is a trade-off parameter that controls the desired balance 260 

between fitting the data and honoring the prescribed prior information about the model, and 261 

matrix 𝐃 is given by 262 

 𝐃 = [
𝐃x

α 𝐃t
]. (13) 

Here, 𝐃x and 𝐃t are finite-difference matrices that approximate the first derivatives of the 263 

velocity perturbation model in the horizontal and temporal directions, respectively, and α is 264 

an anisotropy parameter that controls the degree of desired smoothing between the temporal 265 

and horizontal directions. The choice of α  should reflect the expected aspect ratio of the 266 

underlying GPR velocity heterogeneity. 267 

 268 

Equation (12) corresponds to a regularized least-squares inversion with blocky model prior 269 

constraints. That is, in seeking to minimize the L1-norm of the first derivatives of the velocity 270 



 14 

perturbation field, we tend to recover models that have a sparse first derivative structure, 271 

meaning a piecewise-constant or blocky appearance. Note that this approach has similarities to 272 

sparse spike deconvolution in seismic data processing, which uses sparsity constraints to 273 

recover the underlying reflectivity series from a seismic trace (e.g., Claerbout and Miur, 1973; 274 

Oldenburg et al., 1983; Velis, 2008). Our method differs, however, in the sense that (i) we use 275 

sparsity applied to the first derivative of the velocity perturbation field and invert for the latter 276 

directly, rather than inverting for a sparse reflectivity series; and (ii) we invert all traces at once 277 

with both vertical and lateral regularization constraints in order to estimate the full 2D velocity 278 

perturbation field. 279 

 280 

Due to the presence of the L1-norm, the minimization of equation (12) is nonlinear. To address 281 

this, we use an iteratively reweighted least squares (IRLS) approach based on the following 282 

approximation of the Lp-norm proposed by Ekblom (1973):  283 

 ‖𝐱‖𝑝 ≈ ∑(𝑥𝑖
2 + 𝜖2)𝑝/2

𝑛

𝑖=1

, (14) 

where 𝜖 is a small user-defined value (e.g., Farquharson and Oldenburg, 1998). Taking the 284 

derivative of equation (12) with respect to 𝐦  and setting it to zero, and considering 285 

approximation (14), we arrive at 286 

 (2𝐆𝐓𝐆 + λ𝐃𝑇𝐑𝐃) 𝐦 = 2𝐆𝐓𝐝, (15) 

where 287 

 𝐑𝑖𝑖 =
1

|(𝐃𝐦)𝑖| + 𝜖
 (16) 

is a diagonal reweighting matrix. We solve for 𝐦 iteratively as follows: 288 

 289 
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(1) Set 𝐑 = 2𝐈. 290 

(2) Solve equation (15) for 𝐦 using the conjugate gradient method. 291 

(3) Update 𝐑 using equation (16) and the result for 𝐦 obtained in Step 2. 292 

(4) Return to Step (2) and iteratively update 𝐦 until a defined maximum number of iterations 293 

or desired data fit is reached. 294 

 295 

In carrying out the above steps, the first iteration of our inversion procedure solves for the 296 

velocity perturbation field corresponding to an L2-norm constraint on the model derivative 297 

term in equation (12). This and subsequent solutions are then used within the IRLS reweighting 298 

scheme in order to gradually converge to the L1-norm solution, typically within a few iterations. 299 

Once ∆𝑣(𝑥, 𝑡)  has been obtained, it is added to the estimated background velocity model 300 

𝑣0(𝑥, 𝑡) from Section 2.2. As a final step, the resulting subsurface velocity field in terms of 301 

vertical two-way traveltime, 𝑣(𝑥, 𝑡), is converted to depth to obtain the desired 𝑣(𝑥, 𝑧). 302 

 303 

3 Results 304 

3.1 Application to synthetic data 305 

In the following, we test and validate the velocity estimation technique outlined in Section 2 306 

and illustrated in Figure 1 by applying it to synthetic common-offset GPR reflection data. We 307 

first consider a layered subsurface velocity model containing a small number of well-defined 308 

point-type diffractors. We then move to an arguably more realistic scenario involving a 309 

stochastic velocity distribution characterized by the explicit absence of idealized diffracting 310 
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structures. 311 

 312 

3.1.1 Layered model 313 

Our layered velocity model, which is shown in Figure 2a, is similar to that recently considered 314 

by Yuan et al. (2019) in a diffraction imaging study. The model contains two main velocity 315 

units separated by a dipping interface. A thin horizontal bed, with a thickness of 0.5 m, is 316 

present in the underlying unit. Both the upper and lower units contain three circular diffractors 317 

with diameters ranging from 0.4 to 0.6 m. The corresponding relative dielectric permittivities 318 

of the upper and lower layers, the thin bed, and the diffractors are 9, 16, 25, and 4, respectively. 319 

The electrical conductivity of all materials is fixed at a constant value of 1 mS/m, and the 320 

magnetic permeability is assumed to be equal to its value in free space. 321 

 322 

Synthetic common-offset GPR reflection data were simulated over the layered velocity model 323 

using the gprMax software (Warren et al. 2016), which solves Maxwell’s equations using the 324 

finite-difference time-domain (FDTD) method. The transmitter and receiver antennas, which 325 

are approximated by point electric dipoles, were spaced 0.5 m apart and moved at 0.1 m 326 

increments along the survey profile. The source antenna current function was specified as a 327 

Ricker wavelet having a dominant frequency of 100 MHz, which resulted in a propagating 328 

electromagnetic pulse corresponding to the first derivative of this function. The resulting 329 

synthetic GPR data were then contaminated with 2% Gaussian random noise (Figure 2b) prior 330 

to being subjected to a standard processing flow involving (i) elimination of the direct air and 331 

ground arrivals from the data by subtracting the average trace calculated over a time window 332 
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from 0 to 36 ns using a moving spatial window of 50 traces; (ii) amplitude scaling to 333 

compensate for energy spreading, absorption, and scattering using a gain function of the form 334 

𝑔(𝑡) = (1 + 𝑎𝑡)𝑒𝑏𝑡; and (iii) 5-300 Hz bandpass filtering. With time measured in nanoseconds, 335 

the parameters 𝑎 and 𝑏 were chosen empirically to be 0.3 ns-1 and 0.2 ns-1, respectively, such 336 

that the gain function brought all amplitudes along a given trace to the same average level. 337 

Figure 3a shows the resulting unmigrated processed data section. 338 

 339 

Following the velocity estimation workflow outlined in Section 2 and illustrated in Figure 1, 340 

diffractions were first separated from the processed data using PWD filtering (Figure 3b). The 341 

diffracted wavefield was then subjected to velocity continuation and local kurtosis analysis in 342 

order to estimate the RMS velocity structure (Figure 3c), which was used in a Dix inversion 343 

procedure to obtain the low-frequency background velocity field diplayed in Figure 3d. Note 344 

that this result shows some resemblance to the underlying model in Figure 2a. However, it fails 345 

to adequately represent the dipping interface as a sharp discontinuity having a constant slope, 346 

and it entirely misses the thin bed. In Figure 3e, we show the GPR reflection data after time 347 

migration based on the estimated RMS velocity structure in Figure 3c. We see that the data 348 

have been adequately imaged apart from some residual “smiles”, which are attenuated through 349 

the application of PWD to isolate the specular reflections (Figure 3f). From the separated 350 

reflection image, a mixed-phase GPR wavelet was estimated (Schmelzbach & Huber 2015), 351 

which is compared with the first derivative of the Ricker source current function in Figure 3g. 352 

Figure 3h shows the velocity perturbation field inferred through our L1-norm inversion 353 

approach using a value of α = 10  and after 5 IRLS iterations. We observe that the high-354 
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frequency elements present in Figure 2a have now been estimated, but not the low-frequency 355 

velocity trend. Finally, Figures 3i and 3j show the complete estimated velocity model, equal to 356 

the sum of the background and perturbation fields, in terms of two-way traveltime and after 357 

conversion to depth, respectively. The comparison with the reference velocity model (Figure 358 

2a) is quite favorable, which clearly illustrates the potential benefits of the proposed 359 

diffraction- and reflection-based velocity estimation approach. In this context, is important to 360 

emphasize that the former can only resolve the smooth large-scale velocity structure and, hence, 361 

entirely misses the presence of the thin bed (e.g., Yuan et al. 2019) whereas, on its own, the 362 

latter requires coincident borehole information for calibration and recovery of the large-scale 363 

component of the velocity structure (e.g., Schmelzbach et al. 2012; Xu et al. 2021). 364 

 365 

3.1.2 Heterogeneous model 366 

We now test our proposed methodology on an arguably more realistic model of the shallow 367 

subsurface. In this regard, we consider the stochastic velocity distribution shown in Figure 4a, 368 

which is meant to emulate a heterogeneous surficial alluvial environment. The model was 369 

geostatistically generated based on the von Kármán autocorrelation function, which describes 370 

a band-limited fractal medium (e.g., Tronicke & Holliger 2005) and is given by 371 

 𝐶(𝑟) =
𝑟𝜈𝐾𝜈(𝑟)

2𝜈−1Γ(𝜈)
, (17) 

where 𝐾𝜈(𝑟) is the modified Bessel function of the second kind of order 0 ≤ 𝜈 ≤ 1, Γ is the 372 

gamma function and 373 

 𝑟 = √(𝑥/𝑎𝑥)2 + (𝑧/𝑎𝑧)2 (18) 

is the weighted radial autocorrelation lag with 𝑎𝑥 and 𝑎𝑧 denoting the correlation lengths 374 
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along horizontal and vertical directions x and z, respectively. Values of 𝜈 = 0.5, 𝑎𝑥 = 2.0 m, 375 

and 𝑎𝑧 = 0.2  m were considered, along with a mean velocity of 0.1 m/ns and a standard 376 

deviation equal to 0.01 m/ns. The generated multi-Gaussian velocity realization was then 377 

transformed into a facies-type distribution through thresholding, whereby six units having 378 

constant velocities equal to 0.079, 0.092, 0.100, 0.105, 0108, and 0.116 m/ns were specified. 379 

 380 

To generate synthetic common-offset GPR reflection data over the velocity model in Figure 4a, 381 

we again used the gprMax software (Warren et al. 2016). Velocity values 𝑣 were converted to 382 

relative dielectric permittivity 𝜀  for the FDTD modeling using the low-loss approximation 383 

𝑣 ≈ 1 √𝜀𝜇⁄ , where the magnetic permeability 𝜇 was assumed equal to its value in free space. 384 

As was done previously, the electrical conductivity was fixed at a constant value of 1 mS/m. 385 

For the source antenna current function, we considered for this simulation the derivative of a 386 

Blackman-Harris window having a dominant frequency of 100 MHz (Irving and Knight, 2006). 387 

The spacing between the transmitter receiver antennas was again set to 0.5 m, and traces were 388 

simulated every 0.1 m along the profile. Figure 4b shows the resulting synthetic GPR data with 389 

the addition of 2% Gaussian noise. Processing of these data was essentially identical to that for 390 

the layered synthetic velocity model except that the averaging window used for the first-arrival 391 

removal was set from 0 to 25 ns, and the gain parameters 𝑎 and 𝑏 were set to 0.2 ns-1 and 392 

0.2 ns-1, respectively. The processed GPR section is shown in Figure 5a. 393 

 394 

Figure 5b shows the diffracted wavefield estimated from the processed data in Figure 5a, which 395 

was used to infer the RMS velocity structure (Figure 5c) and, subsequently, the background 396 
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velocity field through Dix inversion (Figure 5d). In Figure 5e, we show the time-migrated GPR 397 

section based on the RMS velocity field, from which the reflected wavefield was obtained 398 

(Figure 5f). The latter was used to estimate an effective mixed-phase source wavelet, which is 399 

shown in Figure 5g and seen to compare favorably to the true source wavelet corresponding to 400 

the derivative of the considered input current function. Finally, in Figures 5h, 5i, and 5j, we 401 

show the inverted velocity perturbation field obtained after 5 IRLS iterations using a value of 402 

α = 10, along with the final estimated velocity model in terms of two-way traveltime and depth, 403 

respectively. Comparison of Figure 5j with the underlying velocity model in Figure 4a 404 

demonstrates remarkably good agreement, but also points to two interesting aspects of the 405 

proposed velocity estimation method that did not become evident in its application to the more 406 

idealized layered model (Figures 2 and 3). The first concerns the influence of the direct wave 407 

and its muting, which, in the presence of small-scale heterogeneity, inherently affects the 408 

viability and accuracy of the velocity estimation over a depth range corresponding to 409 

approximately one dominant wavelength, that is, the first ~1 m depth. The second observation 410 

concerns the importance of the background velocity model and its impact on the final result. 411 

This is illustrated by the fact that our final velocity model (Figure 5j) misses the pervasive low-412 

velocity zone between ~2 and ~3.5 m depth in the central and right-hand side of the model 413 

from ~7 m to ~20 m lateral distance, which can be directly related to the limited resolution of 414 

the estimated background velocity model. 415 

 416 
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3.2 Application to field data 417 

3.2.1 Database 418 

We now apply the proposed velocity estimation method to a field GPR dataset acquired at the 419 

Boise Hydrogeophysical Research Site (BHRS). The BHRS is a research wellfield located on 420 

a gravel bar adjacent to the Boise River near Boise, Idaho, USA (Figure 6). The surficial aquifer 421 

consists of late Quaternary fluvial deposits dominated by gravel and sand, and is underlain by 422 

a layer of red clay at ~20 m depth (Barrash & Clemo 2002). The depth of the groundwater table 423 

at the site varies seasonally between ~2 m and ~4 m. Over the past two decades, the BHRS has 424 

been extensively utilized for the testing, validation, and improvement of a wide variety of 425 

geophysical and hydrogeological characterization methods (e.g., Tronicke et al. 2004; Bradford 426 

et al. 2009; Dafflon et al. 2009, 2011; Hochstetler et al. 2016; Xu et al. 2020, 2021). 427 

 428 

The considered common-offset, bi-static GPR reflection prosfile is a part of 3D survey 429 

performed at the BHRS in 1998 using a Pulse Ekko Pro 100 system (Sensors & Software Inc.) 430 

with 100 MHz nominal center frequency antennas, and can be considered as a reference for 431 

surface-based GPR reflection data collected in alluvial environments (e.g., Xu et al., 2020, 432 

2021). The profile has a length of 30 m and crosses three boreholes, B5, A1, and B2, for which 433 

neutron-neutron porosity logs are available below the groundwater table (Figure 6). While the 434 

exact values have not been reported, the depth of the latter at the time of acquisition of the GPR 435 

data and neutron-neutron logs was approximately 2 m. The GPR data were collected using a 436 

constant antenna spacing of 1 m, a lateral trace increment of 0.1 m, and a time sampling interval 437 

of 0.8 ns. For each recorded trace, 32 stacks were performed to improve the signal-to-noise 438 
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ratio. Antenna positioning errors and differences in antenna coupling across the profile were 439 

estimated to be negligible. Figure 7 shows the GPR reflection section after minor pre-440 

processing. 441 

 442 

3.2.2 Velocity estimation 443 

The considered field GPR data were subjected to a processing flow consisting of, in order, 444 

time-zero correction, DC shift removal, “de-wow” filtering, removal of the direct air and 445 

ground arrivals, correction for the antenna offset, and amplitude scaling. Time-zero was 446 

determined based on the first deflection of the data above the ambient noise level. While 447 

slightly different approaches are possible, we estimate that the corresponding uncertainties do 448 

not exceed ~2 ns. To correct for antenna offset, we used the average velocity of the vadose 449 

zone of 0.14 m/ns inferred from previous work (e.g., Bradford, 2008; Bradford et al., 2009). 450 

Contrary to our synthetic examples which involved an antenna spacing of 0.5 m, correction for 451 

the larger offset between the antennas in the case of the BHRS data was deemed necessary and 452 

should lead to negligible differences in traveltime beneath the direct air and ground arrivals 453 

compared to the corresponding zero-offset acquisition. Due to the proximity of the direct 454 

arrivals to the reflection from the groundwater table, we used a manual surgical mute to remove 455 

them as opposed to the average trace subtraction technique considered previously. As was done 456 

for the synthetic data, amplitude scaling was performed using a gain function of the form 457 

𝑔(𝑡) = (1 + 𝑎𝑡)𝑒𝑏𝑡, where the parameters 𝑎 and 𝑏 that best balanced the amplitudes along 458 

any given trace were found to be 0.5 ns-1 and 0.8 ns-1, respectively. It is important to emphasize 459 

that, with this choice of gain function that smoothly varies in time, the relative reflection 460 
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amplitudes along the GPR traces are importantly well preserved, which would not be the case 461 

with the use of an AGC-type amplitude scaling. 462 

 463 

Figure 8a shows the processed GPR section, to which we then applied the proposed velocity 464 

estimation methodology. Following the workflow described in Section 2 and illustrated in 465 

Figure 1, we began with the separation of the diffractions (Figure 8b) which, although not 466 

evident in the original processed data, turn out to be quite abundant, particularly in the central 467 

part of the profile. This was followed by the estimation of the RMS velocity structure (Figure 468 

8c) and subsequent Dix inversion to infer the background velocity field (Figure 8d). The latter 469 

points to the presence of a rather prominent low-velocity zone at intermediate depths in the 470 

left-hand side of the profile. The inferred RMS velocity structure was then used to perform 471 

time-migration of the GPR section (Figure 8e) which, overall, appears to result in an adequate 472 

focusing and imaging of the data. An exception are the artefacts introduced into the uppermost 473 

part of the section, which are likely related to the harsh surgical muting of the direct wave as 474 

well as its potential interference with the neighboring reflection from the groundwater table. 475 

Figure 8f shows the reflected wavefield that was extracted from the migrated section, which 476 

we see to be largely devoid of these artefacts. After estimating the effective mixed-phase source 477 

wavelet (Figure 8g) using the method of Schmelzbach and Huber (2015), we proceeded to 478 

invert the imaged reflected wavefield for the underlying velocity perturbations using a value 479 

of α = 10 , whose choice was based on the typical aspect ratio encountered in similar 480 

heterogeneous environments as well as previous BHRS studies (Gelhar, 1993; Xu et al., 2020, 481 

2021). The results, which are shown in Figure 8h, clearly depict the dramatic velocity 482 
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discontinuity associated with the groundwater table. Finally, Figures 8i and 8j show the 483 

superposition of the large-scale background velocity structure (Figure 8d) and the inverted 484 

small-scale velocity perturbation field (Figure 8h) in terms of two-way traveltime and depth, 485 

respectively. Note that in deriving the latter, we also accounted for some mild topographic 486 

variations that were present along the profile. Note that, in the case fo significant topographic 487 

variations, such variations would need to be corrected for earlier in our analysis procedure. 488 

 489 

Although the inferred velocity distribution presented in Figure 8j is clearly dominated by the 490 

sharp transition from high to low velocities across the water table, the underlying saturated 491 

zone shows a significant degree of velocity heterogeneity. This heterogeneity largely emulates 492 

the structure depicted by the reflected wavefield in Figure 8d and, as such, is geologically 493 

plausible. To further assess the realism of our results, we compare them with the neutron-494 

neutron porosity logs available in the saturated zone for boreholes B5, A1, and B2 (Figure 6). 495 

To this end, we transform the porosity logs to GPR velocity 𝑣 using a standard petrophysical 496 

mixing model (e.g., Huisman et al. 2003)  497 

 𝑣 =
𝑐

√𝜀𝑟
𝑠(1 − 𝜙) + √𝜀𝑟

𝑤𝜙
, (19) 

where 𝑐 = 0.3 m/ns is the speed of light in free space, 𝜙 is the porosity, and 𝜀𝑟
𝑠 = 4.6 and 498 

𝜀𝑟
𝑤 = 80 are the relative dielectric permittivities of the dry solid matrix and water, respectively. 499 

A relative dielectric permittivity of 4.6 for the dry matrix corresponds to the average value for 500 

quartz (e.g., Schön, 2015) and, as such, is widely regarded as being suitable for alluvial 501 

environments in general and the BHRS in particular. Indeed, Dafflon et al. (2009) demonstrated 502 

the overall suitability of a relative dielectric permittivity of 4.6 for the solid matrix at the BHRS. 503 
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While variations in this parameter on the order of 10 to 15% are conceivable, the associated 504 

uncertainties are minor and, hence, largely irrelevant compared to other sources of uncertainty 505 

in our inversion results and the neutron-neutron logs. 506 

 507 

Figure 9 shows the comparison between the GPR-derived velocity and the converted porosity 508 

logs at the borehole locations. Overall, we see that the curves are in good agreement, not only 509 

in terms of the trend, but also with regard to the absolute values. In this context, it is important 510 

to note that the inferred velocity estimates are at least as accurate as those previously inferred 511 

from multi-offset GPR reflection tomography (Bradford et al., 2009), while at the same time 512 

exhibiting a significantly higher resolution. Arguably, the most conspicuous mismatch between 513 

the GPR- and neutron-neutron-based velocity profiles is a seemingly systematic depth shift of 514 

~+0.5 m of the former with regard to the latter, which was recently discussed by Xu et al. 515 

(2021). This could be related to the depth calibration of the neutron-neutron logs and/or to a 516 

systematic overestimation of the GPR velocity in the vadose zone, the latter of which is the 517 

most poorly constrained part of our inferred velocity model due to partial interference between 518 

the direct arrivals and the reflection from the water table. Conversely, this apparent mismatch 519 

is unlikely to be related to the time-zero determination, whose uncertainty is estimated to be 520 

on the order of 2 ns. 521 

 522 

4 Discussion and Conclusions 523 

We have presented in this paper a novel method for estimating the detailed high-frequency 524 

electromagnetic velocity distribution in the shallow subsurface from surface-based common-525 
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offset GPR reflection data. The smooth background component of the velocity structure is 526 

estimated from the diffracted part of the recorded wavefield, whereas the superimposed small-527 

scale fluctuations are inferred from the associated reflected component. An important and 528 

distinguishing feature of our methodology is that, in contrast to previous related approaches 529 

(e.g., Schmelzbach et al. 2012; Liu et al. 2018; Xu et al. 2021), it does not require any borehole 530 

calibration and/or conditioning information. It does, however, inherently rely upon the 531 

presence of diffractions in the GPR data. In this regard, it is important to note that, although 532 

diffractions are often not immediately obvious in a GPR profile, they can become much more 533 

evident after wavefield separation. This is clearly illustrated in Figure 8. 534 

 535 

The proposed technique was tested and validated on synthetic data corresponding to two 536 

velocity models of differing complexity and realism: one an idealized layered model containing 537 

a small number of discrete diffractors, and the other a stochastic facies-based model emulating 538 

the typical heterogeneity observed in surficial alluvial environments (e.g., Gelhar 1993; 539 

Tronicke et al. 2004; Tronicke and Holliger 2005). These synthetic tests not only illustrate the 540 

fundamental validity and robustness of our method, but also allow us to identify a number of 541 

features that merit attention during its application. Successful validation of our approach on the 542 

BHRS field data further illustrates its capacity for estimating complex velocity structures. 543 

 544 

Results for our synthetic test involving the stochastic subsurface model (Figures 4 and 5) 545 

showed a loss of accuracy in the shallowest part of the inferred velocity distribution due to the 546 

elimination of the direct air and ground arrivals, which removed important reflections from this 547 
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zone. Processing techniques used for this purpose, such as subtracting the average trace in a 548 

corresponding time window, will thus affect the inferred velocity model over an initial depth 549 

range of roughly 1-2 dominant wavelengths (Figures 4 and 5). Another interesting feature 550 

emerging from the stochastic synthetic example is the fact that we fail to fully resolve the thin 551 

low-velocity zone between ~2 m and ~3.5 m depth, notably in the central and right-hand side 552 

of the profile. A bias in the estimated background velocity distribution over these depths 553 

(Figure 5d) is likely the cause of this result. Given that this region has a density of diffractions 554 

that is comparable to the rest of the model, this may point to the inherently limited resolution 555 

of the inferred background velocity field. Under ideal circumstances, diffraction-based velocity 556 

analysis can be expected to achieve a resolution on the order of one dominant wavelength, 557 

which for the considered synthetic data is of the order of ~1 m. In practice, however, the 558 

achievable resolution critically depends on the so-called smoothing radius parameter, which 559 

controls the regularization of a number of steps in the diffraction velocity analysis procedure 560 

(Fomel et al., 2007). As recently illustrated by Yuan et al. (2019), a smoothing radius that is 561 

too small leads to unstable estimates of the diffraction-derived velocity model, whereas one 562 

that is too large will lower unnecessarily its resolution. While we made every effort to 563 

determine an optimal value of the smoothing radius for all data considered in this study, there 564 

may be regions in the final velocity model where the large- and small-scale components 565 

inadequately complement each other due to the limited resolution of the former. 566 

 567 

Arguably, the most important criterion that must be fulfilled for our method to perform 568 

satisfactorily is the presence of an ample amount evenly distributed diffractions throughout the 569 
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recorded constant-offset GPR section. Given the inherent heterogeneity of the shallow 570 

subsurface (e.g., Gelhar, 1993; Hubbard and Rubin, 2005; Dafflon et al., 2009; Xu et al., 2021), 571 

this condition is likely to be fulfilled even if the diffracted energy is not directly obvious in the 572 

original recorded data (Figures 5 and 8). Nonetheless, in the case where an sufficient amount 573 

of diffracted energy cannot be retrieved through wavefield separation and/or where the 574 

diffraction events are highly unevenly distributed throughout the probed subsurface region, 575 

standard common-midpoint-type analyses may still be used to estimate the large-scale velocity 576 

structure with our methodology. Under these circumstances, only the estimation of the 577 

background field would change, and the inversion for the small-scale velocity fluctuations 578 

would remain the same.  579 

 580 

Two final assumptions upon which our method relies are that the recorded GPR wavefield is 581 

largely non-dispersive and is dominated by single scattering. This allows us to use a 582 

convolutional model to describe the reflection data, which in turn permits us to pose the 583 

velocity perturbation estimation procedure as a highly efficient linear inverse problem. Limited 584 

signal attenuation, and thus limited dispersion, is a prerequisite for acquiring surface-based 585 

common-offset GPR reflection data of adequate quality and depth of penetration. The practical 586 

validity of this assumption is notably underscored by the success of numerous studies explicitly 587 

relying upon an adequate estimation of the GPR source wavelet (e.g., Schmelzbach et al., 2012; 588 

Schmelzbach and Huber, 2015; Liu et al., 2018; Xu et al., 2021). While it is theoretically 589 

conceivable that there exist environments where multiple scattering becomes sufficiently 590 

important in GPR studies, the results of extensive testing of the convolutional model on 591 
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synthetic and field data suggest that the effects of multiples are largely negligible in near-592 

surface environments (e.g., Irving et al., 2009; Schmelzbach et al., 2012; Xu et al., 2020,2021). 593 

Indeed, in such environments, the combination of small reflection coefficients and signal 594 

attenuation due to conductivity-related losses means that multiply reflected energy is not strong. 595 

The latter is consistent with a methodological study involving acoustic waves in strongly 596 

heterogeneous environments, where it was found that multiple scattering only becomes 597 

important for strong local velocity fluctuations, corresponding to standard deviations of the 598 

order of 10% and more, in combination with long propagation paths in excess of ~20 dominant 599 

wavelengths (e.g., Holliger, 1997). These conditions are generally not fulfilled for surface-600 

based constant-offset GPR reflection data.  601 

 602 

An important characteristic of this work is that the proposed methodology is rather 603 

straightforward. After basic processing of the GPR data in MATLAB, wavefield separation, 604 

diffraction velocity analysis, and Dix inversion are carried out using the Madagascar software 605 

package, which is well-established for this purpose. The subsequent wavelet estimation and 606 

L1-norm inversion are then again performed in MATLAB. For all of the datasets considered in 607 

this study, the total time required to complete all of the steps in our workflow is on the order 608 

of one day. The IRLS inversion procedure itself proved to be stable and to converge to 609 

consistent estimates of the velocity perturbation field after approximately five iterations. In 610 

practical terms, the latter amounted to less than one minute of CPU time on a modest laptop 611 

computer. Finally, the inherent computational efficiency of the convolutional model used in 612 

our approach implies that the extension of the proposed method to 3D is conceptually 613 
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straightforward. The only challenge that we anticipate in this regard is the still somewhat 614 

limited practical maturity of 3D diffraction velocity analysis techniques (e.g., Merzlikin et al. 615 

2017; Bauer et al., 2020). A direct benefit of 3D analysis is that errors introduced into the 616 

background velocity estimation procedure by out-of-plane diffractions can be avoided. 617 
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Figure 1. Flowchart illustrating the proposed method for estimating the detailed subsurface 

velocity structure from surface-based common-offset GPR reflection data.



 36 

 
Figure 2. a) Layered model velocity with discrete diffractors and b) corresponding synthetic 

common-offset GPR reflection data with 2% Gaussian random noise added.
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Figure 3. Velocity estimation process for the layered synthetic velocity model presented in 

Figure 2a. From the a) processed GPR section, the b) diffracted wavefield is separated and 

used to estimate the c) RMS velocity structure. Using Dix inversion, the d) low-frequency 

background velocity field 𝑣0(𝑥, 𝑡) is obtained. e) Time-migrated GPR section based on the 

RMS velocity structure, from which the f) reflected wavefield is obtained. g) Comparison of 

estimated GPR wavelet with the true source wavelet. h) Velocity perturbation field ∆𝑣(𝑥, 𝑡) 

obtained by inverting the reflected wavefield. The final estimated velocity structure 

(background+perturbation) is shown in terms of i) traveltime and j) depth.
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Figure 4. a) Stochastic velocity model and b) corresponding synthetic common-offset GPR 

reflection data with 2% Gaussian random noise added.
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Figure 5. Velocity estimation process for the stochastic synthetic velocity model presented in 

Figure 4a. From the a) processed GPR section, the b) diffracted wavefield is separated and 

used to estimate the c) RMS velocity structure. Using Dix inversion, the d) low-frequency 

background velocity field 𝑣0(𝑥, 𝑡) is obtained. e) Time-migrated GPR section based on the 

RMS velocity structure, from which the f) reflected wavefield is obtained. g) Comparison of 

estimated GPR wavelet with the true source wavelet. h) Velocity perturbation field ∆𝑣(𝑥, 𝑡) 

obtained by inverting the reflected wavefield. The final estimated velocity structure 

(background+perturbation) is shown in terms of i) traveltime and j) depth.
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Figure 6. Map of the BHRS showing the location of considered common-offset GPR reflection 

profile (blue dashed line). The profile is aligned with boreholes B5, A1, and B2 (yellow circles).
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Figure 7. Common-offset GPR reflection section from the BHRS after minor preprocessing 

consisting of time-zero correction and “de-wow” filtering.
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Figure 8. Velocity estimation process for the BHRS field data presented in Figure 7. From the 

a) processed GPR section, the b) diffracted wavefield is separated and used to estimate the c) 

RMS velocity structure. Using Dix inversion, the d) low-frequency background velocity field 

𝑣0(𝑥, 𝑡) is obtained. e) Time-migrated GPR section based on the RMS velocity structure, from 

which the f) reflected wavefield is obtained. g) Estimated GPR source wavelet. h) Velocity 

perturbation field ∆𝑣(𝑥, 𝑡) obtained by inverting the reflected wavefield. The final estimated 

velocity structure (background+perturbation) is shown in terms of i) traveltime and j) depth.
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Figure 9. Comparison of the velocity estimated from the common-offset GPR reflection data 

from the BHRS along boreholes a) B5, b) A1 and c) B2 (black solid lines) with the 

corresponding converted neutron-neutron porosity logs (blue dashed lines). 
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