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A B S T R A C T

The standard approach to signal difference-to-noise ratio (SDNR) analysis requires a region of interest (ROI)
positioned within the object to measure signal-difference, restricting this metric to flat-topped objects with large,
sharply delineated areas. This work develops a generalized expression for SDNR (SDNRg) calculated from a ROI
encompassing the object. Signal power, defined as the deviation of pixel values from the mean background due
to the object, is used instead of signal-difference. Comparison was first made by simulating ideal flat-topped discs
with sharp edges and diameters between 1 and 80 pixels, into a uniformly noisy background using a known
signal-difference. For discs covering more than 20 pixels, SDNRg and standard SDNR (SDNRst) were within 3%,
while for discs of less than 20 pixels, SDNRg was within 26% of the truth compared to 58% for SDNRst.
Generalized and standard SDNR were compared for radiography images of three different phantoms with mi-
crocalcification-like objects (MTM-100 phantom), hemispheric objects of different thicknesses with a Gaussian
intensity distribution and mammography quality control (QC) images. Applied to Gaussian details, SDNRg was
between 20% and 45% higher than SDNRst, depending on object thickness, while for the QC images, SDNRg was
with 1.7% of the standard SDNR. Compared to the standard SDNR, SDNRg is applicable to non-uniform signals,
where an explicit contrast measurement is not suitable, and has improved accuracy when assessing SDNR of
small objects.

1. Introduction

Object detection in a uniform noisy background is, to a first ap-
proximation, correlated with the signal difference-to-noise ratio (SDNR)
for a range of object sizes and shapes, imaging modalities and image
characteristics [1–6]. A target SDNR approach has been used for sta-
bility controls of image quality [7], to find the minimal dose necessary
to achieve the limiting image quality defined in guidelines for a given
beam quality and imaging system [8], and to characterize object de-
tectability [9,10].

The standard SDNR analysis relies on object contrast (mean signal
difference), which can be measured precisely for a flat-topped signal
(object) with sharp edges (perfect resolution) and a sufficiently large
area to place a region of interest (ROI) inside [11,12]. The object ROI
must be placed within the object thereby avoiding the periphery and
any contamination from the surrounding background. This can be dif-
ficult to achieve, particularly in small objects composed of a restricted
number of pixels/voxels with an irregular outline or shape. Further-
more, for non-flat objects or in the presence of edge effects (edge en-
hancement, partial volume effects), the spatial distribution of pixel

values in the object is not uniform. In this case, the SDNR will use a
mean signal-difference that is sensitive to the ROI position and size
within the object.

This work presents a generalized approach to SDNR, termed SDNRg,
in which the whole signal power due to the object is considered instead
of mean contrast or peak object signal. The signal power is measured
from a ROI that encompasses the whole object. The model is validated
through measurements made on a synthetic image that satisfy the
limiting conditions for standard SDNR measurement, and for radio-
graphy images of test objects of different shapes, sizes and contrasts.
SDNRg is shown to improve the accuracy of the measurement for small
objects, and extends the metric to non-uniform objects or objects with
edge enhancement. This generalized form of SDNR is also suitable for
images with reduced zero-frequency content and objects with strong
edge effects, such as the reconstructed planes generated by digital
breast tomosynthesis (DBT) systems.
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2. Material and methods

2.1. Generalized SDNR

We consider any object of Nobj pixels (for instance, disc in Fig. 1) in
an image with a homogenous noisy background. We define the ‘energy’
(W) added to a uniform background in a ROI of N pixels as the squared
deviation of pixel values from a mean background value d̄b.
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This energy can be due to a deterministic signal generated by an
object or can come from stochastic fluctuations (noise). The ‘power’ is
the energy normalized by the number of pixels in the ROI: W N/ . The
symbol σ2 will refer to the power when it is equal to the variance cal-
culated in different ROIs of the image.

The mean background signal d̄b and standard deviation σb are
measured in one or several ROIs placed around the object (ROIs 1–4 in
Fig. 1). A large ROI of N pixels that encompasses the whole object and a
part of the surrounding background (ROI 5 in Fig. 1) generates a mean
pixel value d̄ (Eq. (2)) and a variance of pixel values σ2 (Eq. (3)).
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Substituting ∑ = += d N σ d( ¯ )i
N

i1
2 2 2 from Eq. (3) into Eq. (1):

= + − + = − +W N σ d Nd d Nd N d d σ( ¯ ) 2 ¯ ¯ ¯ (( ¯ ¯ ) )b b b
2 2 2 2 2 (4)

This energy can be separated into three contributions, related to the
powers Ps, σn

2 and σb
2.

1) signal energy (due to the object):

=W N Ps obj s (4a)

2) noise energy due to stochastic fluctuations within the object:

=W N σn obj n
2 (4b)

3) noise energy due to stochastic fluctuations outside the object:

= −W N N σ( )b obj b
2 (4c)

Wn and Wb can be summed because they represent noise energy in
different regions of the image (inside and outside the object). Ws can be

summed with the noise energy because it comes from a deterministic
signal added to background noise fluctuations.

= + + = + + −W W W W N P N σ N N σ( )s n b obj s obj n obj b
2 2 (5)

The signal power Ps is obtained from Eqs. (4) and (5).
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A signal larger or smaller than the mean background will give a
positive signal power in Eq. (6) because of the difference squared

−d d( ¯ ¯ )b
2. The signal power is therefore sensitive to the amplitude of the

difference, not to the sign of this difference. This remark also applies to
the standard SDNR, where the absolute signal difference is used. The
SDNR is the ratio between the square root of the signal and noise
powers.
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Eq. (7) gives a general formulation of SDNR that encompasses the
whole signal power, including signal non-uniformities like edge en-
hancements or partial volume effects. This is termed the “generalized
SDNR (SDNRg)”.

The practical calculation of Eq. (7) needs to address two points.
First, a precise estimation of Nobj used for SDNRg may be challenging for
images with a low SDNR. Prior knowledge of the object size or adequate
object segmentation methods can be used for this purpose. This aspect
is discussed in the paragraph 3.5. Secondly, the noise within the object
(σn) is not measurable for non-flat-topped objects (σn

2 will encompass
both signal and noise powers), and a reasonable assumption about noise
behaviour within the object has to be made. Two typical situations are
presented.

Case 1:. Uniform noise in the object equal to background noise ( =σ σn b).
This case applies to thin objects that hardly influence the noise. Eqs. (6) and
(7) revert to Eqs. (8) and (9), respectively.
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If formula (9) is used instead of Eq. (7) when noise in the object is
different from the background noise, SDNRg will deviate from the true
value. The error remains very low for most practical situations, and has
to be considered only for low SDNR with > >σ σn b or < <σ σn b (Fig. 2).

Case 2:. Image with a noise variance proportional to the mean pixel value in
each point of the image. This case is expected for quantum limited images for
x-ray projection modalities. For images with pixel values expressed in
exposure values, the noise in the object is related to background noise
according to Eq. (10).
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where d̄obj is the mean pixel value in the object.
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Eqs. (6), (7) and (10) give:
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Fig. 1. Synthetic image of a disc in a uniform noisy background with an ex-
ample of ROIs that can be used for generalized SDNR measurement.
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In the following sections, Eq. (13) is applied to small objects in the
form of microcalcifications and to extended non-uniform objects.

2.2. Link between the generalized and standard SDNR

This section investigates the differences between the generalized
and standard SDNR (SDNRst). SDNRst can be expressed using Eq. (11)
for d̄obj.
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By definition, signal power and SDNR should be independent of the
ratio N N/ obj. The large ROI of smallest possible size follows the
boundary of the object, with =N Nobj and =d d¯ ¯obj. As a consequence,
Eqs. (6) and (7) are equal to Eqs. (15) and (16), respectively.
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Ps is therefore greater or equal to the object contrast (Eq. (18)),
and SDNRg is greater or equal to SDNRst (Eq. (19)), depending on the
object characteristics.

≥ −P d d| ¯ ¯ |s obj b (18)

≥SDNR SDNRg st (19)

The validity of the standard SDNR is restricted to flat-topped objects
with sharply delineated areas in uniform noisy backgrounds. For this
particular case, Ps and object contrast are equal and the generalized
SDNR (Eq. (16)) reverts to the standard SDNR (Eq. (14)).

2.3. SDNR assessment

The accuracy and robustness of the proposed generalized SDNR
were tested and compared to the standard SDNR with a set of experi-
ments.

2.3.1. Ideal case of flat discs
The behaviour of the generalized and standard SDNR for the ideal

condition of a sharp-edged flat object in a uniform noisy background
was studied for synthetic images of discs of various radii between 1 and
80 pixels (areas between ∼3 and 20,106 pixels) within an image of
N=200×200 pixels (N constant in all simulations). Fig. 1 shows an
example for a disc of 1000 pixels. The background has a mean pixel
value =d̄ 100b and a Gaussian noise of variance =σ 100b

2 . The discs,
centred in the image, have a mean pixel value =d̄ 200obj and a Gaussian
noise of variance =σ 200n

2 . The discs have sharp edges, and no blur was
applied to the images, giving a resolution limited by the pixel size.
SDNRg (Eq. (7)) and SDNRst (Eq. (14)) were computed for 100 different
statistically independent realizations of Gaussian noise for each disc
size. d̄ and σ were calculated from the whole images. A Boolean sub-
traction of the disc in the images gave d̄b, d̄obj, σb and σn. The average
value and standard deviation of the 100 SDNR realizations gave in-
formation on the accuracy and variability of the standard and gen-
eralized SDNR as a function of the object size.

2.3.2. Application to small objects
A mammography MTM-100 phantom (Medi-Test, France) was im-

aged on a Hologic Selenia Dimensions system at 28 kV and W/Rh
anode/filter combination at five exposure levels (117, 156, 202, 248
and 308mAs). The SDNR for the first group of microcalcifications (six
spheres of diameter 0.3 mm) were calculated from the pre-processed
(‘For Processing’) and processed (‘For Presentation’) images. SDNRg was
calculated using Eq. (13). The large ROI included the six micro-
calcifications and Nobj was estimated from the known object size and
pixel size (70 µm). The background ROI was positioned between the
microcalcifications. The peak signal of the microcalcifications was used
instead of d̄obj for the standard SDNR, as it is usually done when the
object covers a few number of pixels.

2.3.3. Application to non-uniform objects
SDNRg to SDNRst were compared for (non-flat) objects of different

shapes and contrasts. A test object made of a 20mm thick PMMA plate
containing five hemispheric objects with a Gaussian shape varying
between 1 and 3mm in steps of 0.5 mm was imaged on the flat panel
detector of a Siemens FLC Compact general radiography system (60 kV
– 1.7 mAs – focus-to-detector distance 1.2 m). The 12-bit ‘For
Processing’ DICOM image was then processed with an edge enhance-
ment filter and a low-pass filter, giving five objects on three images
with different processing. d̄b and σb were measured in four 10×10mm
ROIs placed next to the four sides of the objects, and averaged (ROIs
like in Fig. 1). ROIs of 8× 8mm placed within each object gave d̄obj for
SDNRst. A large 20× 20mm ROI including the object gave d̄ and σ for
SDNRg, calculated with Eq. (13). Nobj was estimated from the known
objects diameter (12mm), pixel size (139 µm) and geometrical mag-
nification due to the x-ray beam divergence (1%).

2.3.4. Application to QC test images
SDNRg obtained with Eqs. (7) and (9) were compared to SDNRst for

images used for quality controls (QC) in mammography (European
Guidelines 2006). A 50mm PMMA thickness with a 10×10×0.2mm
aluminium square sandwiched at a height of 20mm and placed at
60mm from the chest wall was imaged using the AEC (auto-filter) mode
on a Hologic Selenia Dimensions system (31 kV – 151 mAs – W/Rh).
The 12-bit ‘For Processing’ DICOM image was used. d̄b and σb were
measured in four 10×10mm ROIs placed next to the four sides of the
aluminium square, and averaged (ROIs like in Fig. 1). A 8×8mm ROI
placed within the Al square gave d̄obj for SDNRst and σn for SDNRg. A
large 20×20mm ROI including the Al square gave d̄ and σ for SDNRg.
The object was delimited in the image with a threshold pixel value to
estimate Nobj.

Fig. 2. Deviation from the true value of SDNRg (colour scale) as a function of
the ratio σ σ/n b if Eq. (9) is used instead of Eq. (7) (ratio Eqs. (9)/(7)).
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3. Results and discussion

3.1. Ideal case of flat discs

The known true SDNR value for all the disc sizes is equal to 10,
illustrated by the line in Fig. 3. When the object is sufficiently large,
statistical uncertainty in the calculated variances becomes small enough
to show the invariance of SDNRg regarding the ratio N N/ obj (Fig. 3).
Considering discs of more than 20 pixels, SDNRg and SDNRst agreed
within 3%, while for discs of less than 20 pixels, SDNRg was within 26%
of the true value compared to 58% for SDNRst. The standard and gen-
eralized SDNR show the same oscillations around the true SDNR value
for small discs, with an accuracy increasing with the object area. These
oscillations are important only for objects covering a few pixels. The
number of pixels attributed to the object or background (as a function
of their value) varies with visible thresholds when the object area varies
around a small number of pixels. As a consequence, the statistical va-
lues in the ROIs alternatively give under- and overestimations around
the true value when the object size grows from a very small number of
pixels. The amplitude of the oscillations decreases with increasing ob-
ject area. SDNRg is more accurate than SDNRst for small objects. The
mean object signal used for the standard SDNR is more sensitive to
random fluctuations of noise in the object than the signal power cal-
culated over the large ROI including the object. It is of note this cal-
culation does not include the random positioning of the object ROI
needed for the standard SDNR, which is an additional source of varia-
bility for small objects. The generalized SDNR is less operator depen-
dent, and gives a more robust and accurate evaluation of signal power
and SDNR for small objects.

3.2. Application to small objects

The standard and generalized SDNR for the microcalcifications in
the mammography (MTM-100) phantom increase as a power function
of the exposure level (mAs), for both raw and processed images (linear
log-log fitted curves in Fig. 4), with SDNRst greater than SDNRg. This
result is expected for quantum limited images. Image processing

decreases the background noise and increases the signal power with
edge enhancement, thus increases SDNR. In this particular case, the
standard SDNR overestimates the signal power because the peak value
is used for the object signal.

3.3. Application to non-uniform objects

As expected, the standard and generalized SDNR increase with the
contrast of the Gaussian objects, and increase/decrease when correla-
tion between neighbouring pixel values increases/decreases due to
image filtering (Fig. 5). Here, SDNRg is systematically higher than
SDNRst, as expected for non-uniform objects (Eq. (18)). The difference,
between 20% and 35% for the five Gaussian objects on the pre-pro-
cessed image, is higher for the thicker objects, and is higher (between
30% and 45%) for the image with edge enhancement compared to the

Fig. 3. Mean values and standard deviation (error bars) of SDNRst and SDNRg as a function of the object size, obtained over 100 random realizations of noise.

Fig. 4. Standard and generalized SDNR of microcalcifications measured on pre-
processed and processed mammography images for different exposure levels.
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two other images (pre-processed and blurred). The difference between
SDNRg and SDNRst increases when the object shape moves away from
the ideal case of a flat-topped object. The difference is higher for the
edge enhanced images because SDNRg includes the additional signal
power at the object perimeter due to the edge enhancement processing,
whereas SDNRst is based only on the mean signal inside the object.
There was a difference of just 1% between formulations (9) and (13) for
SDNRg (data not shown), calculated on linearized images with pixel
values expressed in exposure values, showing the approximation ≈σ σn b

is suitable for projection images with usual SDNR values (Fig. 2).

3.4. Application to QC test images

The values measured in the three ROIs in the QC mammography
image are reported in Table 1. Eq. (14) gave =SDNR 7.12st . With
N=87600 pixels and Nobj=24024 pixels in the large (back-
ground+ object) ROI, Eqs. (7) and (9) gave SDNRg equal to 7.10 and
7.00, respectively. The difference of 6.5% between the noise in the
object and in its surrounding background is the source of the 1.4%
difference between these two estimations of SDNRg. The standard and
generalized SDNR are expected to be equal for this kind of (flat) object
with sharp edges. The maximal difference of 1.7% between SDNRst and
SDNRg remains at an acceptable level for QC applications.

3.5. Limitations of the model

Both the standard and generalized SDNR are first order metrics,
with the same inherent limitations due to mathematical assumptions in
the model. These metrics need spatial stationarity of signal and noise
within the ROIs used for the estimation of the mean and variance of
pixel values, and give no information on the spatial frequency content
of signal and noise, which is important for object detectability [13]. If
stationarity of signal or noise is not met in the ROIs, the variance of
pixels values will increase dramatically and jeopardize the SDNR
measure. This effect tends to increase with ROI size [14], and therefore

the use of reasonably small ROIs is recommended for radiography
images. When using Eq. (9) for generalized SDNR, one has to ensure the
noise within the object is not significantly different from the back-
ground noise, otherwise the generalized SDNR can deviate from the
true value. In this case, the more general Eq. (7) has to be used with a
direct measurement of noise within the object (for objects with a flat
signal on the image), or with a suitable estimation or model for object
noise (σn). The error remains very low for most practical situations, and
has to be considered only for low SDNR with > >σ σn b or < <σ σn b
(Fig. 2).

A precise estimation of Nobj needed in SDNRg may be difficult for
images with a low SDNR. Several methods may be considered for this
purpose. The object size on the image may be calculated from the real
(known) object size, corrected for geometrical factors such as magni-
fication, or delimited on an image acquired with a high SDNR. In the
case of unclear object boundaries (e.g. in low SDNR image), object
segmentation based on intensity threshold or gradient methods can be
considered. Automated SDNRg calculations can be obtained by sorting
the pixels belonging to the background and to the object itself.

Final remarks concern the validation of SDNRg using human ob-
servers. Standard SDNR can be linked to human detectability perfor-
mance using the Rose model [11,15], for simple targets in uniform
noise. We would expect that the generalized SDNR can be used in the
Rose model in place of SDNRst, for example to include the effect of edge
enhancements on detectability. The generalized SDNR takes the whole
signal power into account, to which the observer will be sensitive (i.e.
the observer may accumulate as ‘signal’), while the standard SDNR
quantifies only the mean signal-background difference. The comparison
between SDNRg, SDNRst and human reader detection performance for a
range of targets, including small details and non-uniform or structured
targets, requires rigorous observer studies; these are the topic of future
study.

4. Conclusion

This work has introduced and tested a new generalized metho-
dology for assessing the SDNR that accounts for the total signal power
generated by an object in an image, independent of object shape and
edge characteristics. The one proviso of the new method is an estimate
of the number of pixels within the object of interest. The equivalence to
standard SDNR analysis based on object contrast was demonstrated for
the ideal case of a flat object in an image with perfect spatial resolution.
Compared to the standard SDNR, the generalized SDNR gives a more
accurate estimate for small objects, non-flat objects and/or objects with
non-sharp edges (blur, partial volume effects, edge enhancement).
Moreover, the generalized method removes the variability associated
with ROI positioning and size within the object. The generalized SDNR
is also more robust in the presence of small structures characterized by
low signal statistics where the standard SDNR approach often just uses
the peak signal. The generalized formulation is proposed as an alter-
native to the standard SDNR method and is expected to improve the
reliability of the SDNR based methods often used in quality control
protocols.
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