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1. Introduction

Assignments of scarce resources are attracting a lot of attention in economic design.1 Many
studies, both theoretical and empirical, focus on indivisible resources, e.g., in auctions (Myerson,
1981; Hortaçsu and McAdams, 2010), school choice (Abdulkadiroğlu and Sönmez, 2003; Kapor
et al., 2020), and medical resource allocation (Pathak et al., 2021). Existing literature often
investigates such indivisible resource allocation problems with ”unit-demand”, i.e., each agent
only consumes one object. Additionally, when monetary transfers are not allowed, many studies
focus on the so-called housing market model (Shapley and Scarf, 1974). This model is an
exchange economy in which each agent owns an object (say, a house); each agent has preferences
over houses and consumes exactly one house. When preferences are strict, the strict core (defined
by a weak blocking notion) is non-empty (Shapley and Scarf, 1974),2 and can be easily calculated
by the so-called top-trading-cycles (TTC) algorithm (due to David Gale). Moreover, TTC also
satisfies important incentive properties, strategy-proofness (Roth, 1982) and even group strategy-
proofness (Bird, 1984). Furthermore, TTC is the unique mechanism satisfying Pareto efficiency,
individual rationality, and strategy-proofness (Ma, 1994; Svensson, 1999).

Although in some important cases (e.g., kidney exchange, school choice, etc.), unit-demand
is an appropriate assumption, in many other cases, agents may wish to receive more than one
object. Many studies analyze such situations (Pápai, 2001, 2007; Manjunath and Westkamp,
2021; Biró et al., 2022a,b; Echenique et al., 2022). However, if we relax the unit-demand as-
sumption to allow for “multi-unit demands,” i.e., each agent can consume more than one object,
most of the positive results obtained under the unit-demand assumption disappear (Klaus and
Miyagawa, 2002; Ehlers and Klaus, 2003). In the thesis, we consider an extension of the classical
Shapley-Scarf housing markets by allowing multi-unit demands: multiple-type housing markets
(Moulin, 1995).3 In this model, objects are of different types (say, houses, cars, etc.), and agents
are “balanced” in the sense that all agents have the same numbers and types of endowments
and demands.

The analysis of multiple-type housing markets is relevant for three reasons. First, similar to
Shapley-Scarf markets, they are applicable to many real-world problems: a familiar example
for most readers would be students’ enrollments at many universities, where courses are taught
in small groups and multiple sessions (Klaus, 2008). Additionally, various other scenarios exist
where individuals may wish to exchange their assigned resources, including term paper topics
and dates during a course (Mackin and Xia, 2016), staff, operating rooms, and dates in hospitals
to improve surgery schedules (Huh et al., 2013), and shifts in work settings due to personal
reasons (Manjunath and Westkamp, 2021). Furthermore, recent technological developments
have enabled the allocation of several resource types together, such as cloud computing (Ghodsi
et al., 2011, 2012) and 5G network slicing (Peng et al., 2015; Bag et al., 2019; Han et al.,

1See the Nobel prize lectures in economic sciences in 2012 and 2020 for examples.
2Roth and Postlewaite (1977) show that the strict core is single-valued.
3In Echenique et al. (2022), multiple-type housing markets are called categorical economies.
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2019). Such situations can be modeled as multiple-type housing markets. Thus, the analysis
of multiple-type housing markets may impact the real world. Second, from a theoretical point
of view, this is a simple extension of Shapley-Scarf housing markets with multi-unit demands.
Therefore, the analysis of multiple-type housing markets, as a first step, is potentially useful for
addressing issues for other multi-unit demand models (Pápai, 2007; Anno and Kurino, 2016).
Third, for multiple-type housing markets, agents are balanced in the sense that all agents have
the same numbers and types of endowments and demands. This balanced structure provides
some tractability and hence some hope for positive results.

Despite their importance and generality, there is little research on multiple-type housing mar-
kets. One main reason for this is that for multiple-type housing markets, mainly we only have
negative results. For instance, even with additively separable preferences, (i) the strict core
may be empty, and (ii) no mechanism satisfies Pareto efficiency, individual rationality, and
strategy-proofness (Konishi et al., 2001).

In this thesis, we revisit multiple-type housing markets and aim to uncover potential positive
results based on the two negative results above. Specifically, in response to the first negative
result, we focus on the situation where a strict core allocation always exists and re-examine the
classical questions of implementation theory for the strict core. Contrary to classical results
(Maskin, 1999; Sönmez, 1999; Takamiya, 2003, 2009), we find that the implementation of the
strict core is tighter in our model; loosely speaking, our results suggest that not all strict core
allocations are implementable.

Then, we turn to more general domains where a strict core allocation may not exist. In this
case, a possibility is to weaken the strict core to other solution concepts. Following Wako (2005),
instead of the strict core, we consider another solution concept, the commodity-wise competitive
allocation, and its corresponding mechanism, the coordinatewise top trading cycles mechanism
(cTTC). By providing a full characterization of cTTC, we prove that cTTC is outstanding as it
respects individual rationality, achieves some efficiency, e.g., unanimity, and keeps the incentive
robustness, e.g., strategy-proofness.

Finally, to address the second negative result, we explore weaker efficiency properties to de-
termine their compatibility with individual rationality and strategy-proofness. By providing
two characterizations, we prove that our efficiency properties are desirable because they (i) are
compatible with individual rationality and strategy-proofness, and (ii) help us to identify two
specific mechanisms, cTTC and the bundle top-trading-cycles mechanism (bTTC).

Overall, in the thesis, we have been successful in uncovering new insights. To the best of our
knowledge, we are the first to have obtained characterizations of TTC extensions from studying
the multiple-type housing markets, making our findings an important contribution to the field.
Not only are our results valuable in the context of the multiple-type housing market model,
but they also have potential applications in other studies within the broader field of economic
design. Our findings provide a new perspective on the model and open up new avenues for further
research. Additionally, the methodology to obtain our results is new: we obtain results for the
relatively small and technical domain of lexicographic preferences, then we use these results to
obtain further results for large preference domains. Our methodology could be useful for other
studies looking for more efficient ways to analyze higher dimensional models. In summary, the
positive results we obtained from this study not only contribute to a better understanding of
the multiple-type housing market model, but also have implications for other areas of research
and can be applied to other fields.

2



We proceed by providing a more in-depth summary of each chapter. Since all chapters focus
on the same model, we formally introduce the model in the technical introduction.

In the first chapter, we focus on a restricted preference domain where strict core allocations
always exist. We investigate the strict core implementation problem through various equilibrium
concepts. For classical models, such as Shapley-Scarf housing markets and allocation problems
with rich preferences, strict core allocations are fully implementable, i.e., all strict core allocations
can be obtained in Nash or strict strong Nash equilibrium (Ma, 1994; Sönmez, 1999; Takamiya,
2009). In contrast to this full implementation, we show that for multiple-type housing markets,
all strict strong Nash equilibrium outcomes are strict core allocations, but not vice versa, i.e.,
there are strict core allocations that cannot be implemented in strict strong Nash equilibrium.
Moreover, by providing examples, we show the tightness of our results. This chapter was written
in collaboration with Bettina Klaus. I played a role in every aspect of this chapter, from
proposing the research question and formally defining the concepts, to proving the results and
writing the research paper.

In the second chapter, we examine a more general preference domain where strict core allo-
cations may not exist. Furthermore, we consider another solution concept, the commodity-wise
competitive allocation, which is always selected by cTTC. We then investigate cTTC and fully
characterize it by compelling properties. Specifically, we show that cTTC is the only mechanism
satisfying individual rationality, unanimity, strategy-proofness, and non-bossiness. This chapter
was written in collaboration with Bettina Klaus and Flip Klijn. I played a role in every aspect of
this chapter, from proposing the research question and formally defining the concepts, to proving
the results and writing the research paper.

The third chapter is single-authored. Since for multiple-type housing markets, Pareto efficiency
is incompatible with individual rationality and strategy-proofness, I consider two efficiency prop-
erties that are weaker than Pareto efficiency : coordinatewise efficiency and pairwise efficiency. I
show that these two properties (i) are both compatible with individual rationality and strategy-
proofness and (ii) help us identify two specific mechanisms. On various domains of preference
profiles, together with other well-known properties individual rationality, strategy-proofness,
and non-bossiness, coordinatewise efficiency and pairwise efficiency respectively characterize
two mechanisms, cTTC and bTTC.

Finally, we provide some information in the appendices, including the proofs and the inde-
pendence examples.

3



2. Technical Introduction

2.1. Multiple-type housing markets

We consider a barter economy formed by n agents and n ×m objects. Let N = {1, . . . , n} be
a finite set of agents, where n ≥ 2. A nonempty subset of agents S ⊆ N is a coalition. There
exist m ≥ 1 (distinct) types of objects and n (distinct) objects of each type. We denote the set
of object types by T = {1, ...,m}. For each t ∈ T , the set of type-t objects is Ot = {ot1, ..., otn},
and the set of all objects is O = {o11, o21, . . . , o1n, o2n, . . . , omn }, where |O| = n × m. Each agent
owns exactly one object of each type. Without loss of generality, let oti be agent i’s endowment
of type-t. Thus, each agent i’s endowment is a list ei = (o1i , . . . , o

m
i ). Moreover, each agent

consumes exactly one object of each type, and hence, each agent’s (feasible) consumption set is
Πt∈TO

t. An element in Πt∈TO
t is a (consumption) bundle. Note that for m = 1, our model is

the classical Shapley-Scarf housing market model (Shapley and Scarf, 1974).

An allocation x partitions the set of all objects O into n bundles assigned to agents. Formally,
x = {x1, . . . , xn} is such that for each t ∈ T ,

⋃
i∈N xt

i = Ot and for each pair i ̸= j, xt
i ̸= xt

j.
The set of all allocations is denoted by X, and the endowment allocation is denoted by e =
{e1, . . . , en}. Given an allocation x ∈ X, for each agent i ∈ N , we say that xi is agent i’s
allotment at x and for each type t ∈ T , xt

i is agent i’s type-t allotment at x. For simplicity,
sometimes we will restate an allocation as a list x = (x1, . . . , xn) ∈ (Πt∈TO

t)N . Given x, let
xt = (xt

1, . . . , x
t
n), and x−i = (x1, . . . , xi−1, xi+1, . . . , xn) be the list of all agents’ allotments,

except for agent i’s allotment; and xS = (xi)i∈S to be the list of allotments of the members of
coalition S.

Each agent i has complete, antisymmetric, and transitive preferences Ri over all bundles
(allotments), i.e., Ri is a linear order over Πt∈TO

t.1 For two allotments xi and yi, xi is weakly
better than yi if xi Ri yi, and xi is strictly better than yi if [xi Ri yi and not yi Ri xi], denoted
xi Pi yi. Since preferences over allotments are strict, xi and yi are indifferent only if xi = yi. We
denote preferences as ordered lists, e.g., Ri : xi, yi, zi instead of xi Pi yi Pi zi. The set of all
preferences is denoted by R, which we will also refer to as the strict preference domain.

There are no consumption externalities: each agent i ∈ N only cares about his own allotment
xi. Hence, i’s preferences over allotments can be extended to his preferences over allocations.
So, with some abuse of notation, we use the same notation Ri to denote agent i’s preferences
over allocations as well. That is, for each agent i ∈ N and for any two allocations x, y ∈ X,
x Ri y if and only if xi Ri yi.

2

1Preferences Ri are complete if for any two allotments xi, yi, xi Ri yi or yi Ri xi; they are antisymmetric if
xiRi yi and yiRi xi imply xi = yi; and they are transitive if for any three allotments xi, yi, zi, xiRi yi and yiRi zi
imply xi Ri zi.

2Note that when extending strict preferences over allotments to preferences over allocations without con-
sumption externalities, strictness is lost because any two allocations where an agent gets the same allotment are
indifferent to that agent.

4



A preference profile is a list R = (R1, . . . , Rn) ∈ RN . We use the standard notation R−i =
(R1, . . . , Ri−1, Ri+1, . . . , Rn) to denote the list of all agents’ preferences, except for agent i’s
preferences. For each coalition S ⊆ N we define RS = (Ri)i∈S and R−S = (Ri)i∈N\S to be the
lists of preferences of the members of S and N \ S, respectively.

In addition to the domain of strict preferences, we consider preference subdomains based on
agents’ “marginal preferences”: assume that for each agent i ∈ N and for each type t ∈ T , i
has complete, antisymmetric, and transitive preferences Rt

i over the set of type-t objects Ot.
We refer to Rt

i as agent i’s type-t marginal preferences, and denote by Rt the set of all type-t
marginal preferences. We use the standard notation Rt = (Rt

1, . . . , R
t
n) to denote the list of all

agents’ marginal preferences of type-t, and R−t = (R1, . . . , Rt−1, Rt+1, . . . , Rm) to denote the
list of all agents’ marginal preferences of all types except for type-t. Then, we can define the
following two preference domains.

(Strictly) Separable preferences. Agent i’s preferences Ri ∈ R are separable if for each
t ∈ T there exist type-t marginal preferences Rt

i ∈ Rt such that for any two allotments xi and
yi,

if for all t ∈ T, xt
i R

t
i y

t
i , then xi Ri yi.

Rs denotes the domain of separable preferences.

Before introducing our next preference domain, we introduce some notation. We use a bijective
function πi : T → T to order types according to agent i’s “importance”, with πi(1) being the
most important and πi(m) being the least important object type. For simplicity, sometimes we
restate πi by an ordered list of types, e.g., by πi = (2, 3, 1), we mean that πi(1) = 2, πi(2) = 3,
and πi(3) = 1. For each agent i ∈ N and each allotment xi = (x1

i , . . . , x
m
i ), We rearrange xi

with respect to the object-type importance order πi to obtain xπi
i = (x

πi(1)
i , . . . , x

πi(m)
i ).

(Separably) Lexicographic preferences. Agent i’s preferences Ri ∈ R are (separably) lex-
icographical if they are separable with type-t marginal preferences (Rt

i)t∈T and there exists an
object-type importance order πi : T → T such that for any two allotments xi and yi,

if x
πi(1)
i P

πi(1)
i y

πi(1)
i or

if there exists a positive integer k ≤ m− 1 such that

x
πi(1)
i = y

πi(1)
i , . . . , x

πi(k)
i = y

πi(k)
i , and x

πi(k+1)
i P

πi(k+1)
i y

πi(k+1)
i ,

then xi Pi yi.

Rl denotes the domain of lexicographic preferences.

Remark 1. Representation of lexicographic preferences
Note that any lexicographic preference relation Ri ∈ Rl is uniquely determined by agent i’s
marginal preferences (Rt

i)t∈T and an object-type importance order πi. For example, consider a
situation with two object-types T = {H(ouse), C(ar)} and three agents N = {1, 2, 3} with each
agent i’s endowment equal to oi = (Hi, Ci). Assume that agent i has lexicographic preferences
Ri : (H1, C1), (H1, C2), (H1, C3), (H2, C1), (H2, C2), (H2, C3), (H3, C1), (H3, C2), (H3, C3). Then,
agent i’s type importance order is πi : H, C, and his marginal preferences are RH

i : H1, H2, H3,
and RC

i : C1, C2, C3. Hence, agent i’s preferences Ri can alternatively be written as Ri =
(RH

i , R
C
i , πi).
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For an even compacter description of agent i’s lexicographic preferences, we can also rely on
the strict ordering of objects that is induced by the object-type importance order together with
his marginal preferences:

Ri : H1, H2, H3, C1, C2, C3.

Additionally,
Rl ⫋ Rs ⫋ R.

⋄

A (multiple-type housing) market is a triple (N, e,R); as the set of agentsN and the endowment
allocation remain fixed throughout, we will simply denote the market (N, e,R) by R. Thus, the
strict preference profile domain RN also denotes the set of all markets with strict preferences.
Similarly, RN

s is also the set of all markets with separable preferences and RN
l is also the set of

all markets with lexicographic preferences.

2.2. Mechanisms and their properties

Note that all following definitions for the domain of strict preference profiles RN can be formu-
lated for the domain of separable preference profilesRN

s or the domain of lexicographic preference
profiles RN

l .

Amechanism is a function f : RN → X that selects for each market R an allocation f(R) ∈ X,
and

• for each i ∈ N , fi(R) denotes agent i’s allotment

• for each i ∈ N and each t ∈ T , f t
i (R) denotes agent i’s type-t allotment. Moreover, f t(R)

denotes the allocation of type-t, i.e., f t(R) = (f t
1(R), . . . , f t

n(R)).

We next introduce and discuss some well-known properties for allocations and mechanisms.

First, we consider a voluntary participation condition for an allocation x to be implementable
without causing agents any harm: no agent will be worse off than at his endowment. Let
R ∈ RN . An allocation x ∈ X is individually rational (at R) if for each agent i ∈ N , xi Ri ei.

Individual rationality: For each R ∈ RN , f(R) is individually rational.

Next, we consider two well-known efficiency criteria. Let R ∈ RN . An allocation y ∈ X is a
Pareto improvement over allocation x ∈ X at R if for each agent i ∈ N , yiRi xi, and for at least
one agent j ∈ N , yj Pj xj. An allocation is Pareto efficient at R if no Pareto improvement.

Pareto efficiency: For each R ∈ RN , f(R) is Pareto efficient.

An allocation x ∈ X is unanimously best at R if for each agent i ∈ N and each allocation
y ∈ X, we have x Ri y.

3

Unanimity: For each R ∈ RN , f(R) is unanimously best whenever it exists.

If a unanimously best allocation exists (at R), then that allocation is the only Pareto efficient
allocation (at R). Hence, Pareto efficiency implies unanimity.

3Since all preferences are strict, the set of unanimously best allocations is empty or single-valued.
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The next two properties, strategy-proofness and group strategy-proofness, are two of the
properties that are most frequently used in the literature on mechanism design. They model
that no agent / coalition can benefit from misrepresenting his / their preferences.

Strategy-proofness: For each R ∈ RN , each i ∈ N , and each R′
i ∈ R, fi(Ri, R−i)Rifi(R

′
i, R−i).

Group strategy-proofness: For each R ∈ RN , there are no coalition S ⊆ N and no preference
list R′

S = (R′
i)i∈S ∈ RS such that for each i ∈ S, fi(R

′
S, R−S) Ri fi(R), and for some j ∈ S,

fj(R
′
S, R−S) Pj fj(R).

Next, we consider a well-known property for mechanisms that restricts each agent’s influence:
no agent can change other agents’ allotments without changing his own allotment by changing
his reported preference.

Non-bossiness: For each R ∈ RN , each i ∈ N , and each R′
i ∈ R, fi(Ri, R−i) = fi(R

′
i, R−i)

implies f(Ri, R−i) = f(R′
i, R−i).

By the definition, it is easy to verify that group strategy-proofness implies strategy-proofness
and non-bossiness. However, the converse is not true. To be more precise, (i) for strict pref-
erences, group strategy-proofness coincides with strategy-proofness and non-bossiness (Alva,
2017), but (ii) for separable preferences and lexicographic preferences, the former is stronger
than the latter. See Lemma 1 and Proposition 1 in Chapter 2 for details.

2.3. TTC extensions

We next focus on the domain of lexicographic preferences Rl and extend Gale’s famous top
trading cycles (TTC) algorithm to multiple-type housing markets.

The multiple-type top trading cycles (mTTC) algorithm
Input. A multiple-type housing market problem R ∈ RN

l .

Step 1. Building step. We construct a (directed) graph G(1) with the set of nodes N ∪ O.
For each object o ∈ O, we add a directed edge to its owner and for each agent i ∈ N , we add a
directed edge to his most preferred object in O. For each directed edge (i, o) ∈ N × O we say
that agent i points to object o.

Implementation step. A trading cycle is a directed cycle in graph G(1). Given the finite
number of nodes, at least one trading cycle exists. We assign to each agent i in a trading cycle
the object that he pointed to, and denote the object assigned to him in this step by ai(1); we
denote the corresponding set of objects assigned through trading cycles by A(1). Thus, each
agent i ∈ N receives a (possibly empty) partial allotment xi(1) = {ai(1)}.

Removal step. Let N(2) := N (for m ≥ 2, no agents are removed at Step 1). We now remove
all objects that were assigned through trading cycles from set O and set U(2) := O \A(1) (these
are the objects that have not been allocated yet). For each agent i ∈ N , we now derive the set
of feasible continuation objects Ui(2) by removing all objects in U(2) that are of a type that is
already present in agent i’s partial allotment xi(1). Go to the next step 2.

In general, at Step q (≥ 2) we have the following:

Step q. If U(q) (or alternatively N(q)) is empty, then stop; otherwise do the following.
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Building step. We construct a (directed) graph G(q) with the set of nodes N(q) ∪ U(q). For
each object o ∈ U(q), we add a directed edge to its owner and for each agent i ∈ N , we add a
directed edge to his most preferred feasible continuation object in Ui(q) (according to Ri).

Implementation step. A trading cycle is a directed cycle in graph G(q). Given the finite
number of nodes, at least one trading cycle exists. We assign to each agent i in a trading cycle
the object that he pointed to, and denote the object assigned to him in this step by ai(q);
we denote the corresponding set of objects assigned through trading cycles by A(q). Up to
and including this step, each agent i ∈ N(q) has received a (possibly empty) partial allotment
xi(q) = ∪q

p=1{ai(p)}.

Removal step. We now remove all agents who have received a (complete) allotment and denote
the set of remaining agents by N(q+1). Next, we remove all objects that were assigned through
trading cycles from set U(q) and set U(q + 1) := U(q) \ A(q) (these are the objects that have
not been allocated yet). For each agent i ∈ N(q), we now derive the set of feasible continuation
objects Ui(q + 1) by removing all objects in U(q + 1) that are of a type that is already present
in agent i’s partial allotment xi(q). Go to the next step q + 1.

Output. The mTTC algorithm terminates when all objects in O are assigned to some agent
i ∈ N (it takes at most n ·m steps). Let the final step be Q, so the final allocation is x(Q) =
{x1(Q), . . . , xn(Q)}. We set x(R) := x(Q) as the mTTC allocation at R.

Multiple-type top trading cycles mechanism (mTTC): The multiple-type top trading
cycles mechanism (mTTC) mTTC (introduced by Sikdar et al., 2017), selects for each market
R ∈ RN

l the mTTC allocation x(R), i.e., mTTC(R) = x(R) and mTTCi(R) = xi(R).

The type-t TTC algorithm
Consider a market (N, e,R) such that R ∈ RN

l . For each type t ∈ T , let (N, et, Rt) =
(N, (ot1, . . . , o

t
n), (R

t
1, . . . , R

t
n)) be its associated type-t submarket.

We define the top trading cycles (TTC) allocation for each type-t submarket as follows.

Input. A type-t submarket (N, et, Rt).

Step 1. Let N1 := N and Ot
1 := Ot. We construct a directed graph with the set of nodes

N1 ∪ Ot
1. For each agent i ∈ N1, there is an edge from the agent to his most preferred type-t

object in Ot
1 according to Rt

i. For each edge (i, o) we say that agent i points to type-t object o.
For each type-t object o ∈ Ot

1, there is an edge from the object to its owner.

A trading cycle is a directed cycle in the graph. Given the finite number of nodes, at least one
trading cycle exists. We assign each agent in a trading cycle the type-t object he points to and
remove all trading cycle agents and type-t objects. If there are some agents (and hence objects)
left, we move to the next step. Otherwise we stop.

Step k. Let Nk be the set of agents that remain after Step k − 1 and Ot
k be the set of type-t

objects that remain after Step k−1. We construct a directed graph with the set of nodes Nk∪Ot
k.

For each agent i ∈ Nk, there is an edge from the agent to his most preferred type-t object in Ot
k

according to Rt
i. For each type-t object o ∈ Ot

k, there is an edge from the object to its owner.
At least one trading cycle exists and we assign each agent in a trading cycle the type-t object he
points to and remove all trading cycle agents and objects. If there are some agents (and hence
objects) left, we move to the next step. Otherwise we stop.
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Output. The type-t TTC algorithm terminates when each agent in N is assigned an object in
Ot, which takes at most n steps. We denote the object in Ot that agent i ∈ N obtains in the
type-t TTC algorithm by TTCt

i (e
t, Rt) and the final type-t allocation by TTCt(et, Rt).

The cTTC allocation / mechanism: The coordinatewise top trading cycles (cTTC) alloca-
tion, cTTC(R), is the collection of all type-t TTC allocations, i.e., for each R ∈ RN

s ,

cTTC(R) =
( (

TTC1
1(R

1), . . . , TTCm
1 (Rm)

)
, . . . ,

(
TTC1

n(R
1), . . . , TTCm

n (Rm)
) )

.

The cTTC mechanism (introduced by Wako, 2005) selects for each market its cTTC allocation.

Finally, we consider another TTC extension, which only allows agents to trade their endow-
ment bundles completely.
The bundle top trading cycles (bTTC) algorithm / mechanism The bundle top trading
cycles mechanism (bTTC) assigns to each market R the unique top-trading allocation that results
from the TTC algorithm if agents are only allowed to trade their whole endowments among each
other.
Formally, for each market R and i ∈ N , let Ri|e be the restriction4 of Ri to endowments

{e1, . . . , en} and R|e ≡ (Ri|e)i∈N be the restriction profile. We then use the TTC algorithm to
compute the bTTC allocation for R|e. Note that the difference with the classical TTC algorithm
(for Shapley-Scarf housing markets) is that instead of an object, each agent can only point to a
whole endowment.
The bTTC mechanism assigns the bTTC allocation above to each market.

Remark 2. Generalizability
(i) mTTC is only well-defined for lexicographic preferences, (ii) cTTC is well-defined for lexico-
graphic preferences and separable preferences, and (iii) bTTC is well-defined for lexicographic
preferences, separable preferences, and strict preferences. ⋄

Example 1. Illustration of the three mechanisms
Let N = {1, 2, 3}. Consider a market R ∈ RN

l with two types: T = {H(ouse), C(ar)}, O =
{H1, H2, H3, C1, C2, C3}, and each agent i’s endowment is (Hi, Ci). The preference profile R is
as follows:5

R1 : H2, H3,H1, C3, C2,C1,

R2 : C1,C2, C3, H3,H2, H1,

R3 : H2, H1,H3, C1,C3, C2.

First, consider mTTC.

Step 1. Building step. G(1) = (N ∪O,E(1)) with set of directed edges
E(1) = {(H1, 1), (H2, 2), (H3, 3), (C1, 1), (C2, 2), (C3, 3), (1, H2), (2, C1), (3, H2)}.
Implementation step. The trading cycle 1 → H2 → 2 → C1 → 1 forms. Then, a1(1) = H2 and
a2(1) = C1; x1(1) = {H2}, x2(1) = {C1}, and x3(1) = ∅; and A(1) = {H2, C1}.
Removal step. N(2) = N , U(2) = O \ A(1) = {H1, H3, C2, C3}, U1(2) = {C2, C3}, U2(2) =
{H1, H3}, and U3(2) = {H1, H3, C2, C3}.

4That is, for each i ∈ N , Ri|e are preferences over {e1, . . . , en} such that for each ej , ek ∈ {e1, . . . , en},
ej Ri|e ek if and only if ej Ri ek.

5In all examples we indicate endowments in boldface.
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Step 2. Building step. G(2) = (N(2) ∪ U(2), E(2)) with set of directed edges
E(2) = {(H1, 1), (H3, 3), (C2, 2), (C3, 3), (1, C3), (2, H3), (3, H1)}.

Implementation step. The trading cycle 1 → C3 → 3 → H1 → 1 forms. Then, a1(2) = C3 and
a3(2) = H1; x1(2) = {H2, C3}, x2(2) = {C1}, and x3(2) = {H1}; and A(2) = {H1, C3}.

Removal step. N(3) = {2, 3}, U(3) = U(2) \ A(2) = {H3, C2}, U1(3) = ∅, U2(3) = {H3}, and
U3(3) = {C2}.

Step 3. Building step. G(3) = (N(3) ∪ U(3), E(3)) with set of directed edges
E(3) = {(H3, 3), (C2, 2), (2, H3), (3, C2)}.

Implementation step. The trading cycle 2 → H3 → 3 → C2 → 2 forms. Then, a2(3) = H3 and
a3(3) = C2; x1(3) = {H2, C3}, x2(3) = {H3, C1}, and x3(3) = {H1, C2}; and A(3) = {H3, C2}.

Removal step. N(4) = ∅ and U(4) = ∅.

Thus, mTTC(R) = ((H2, C3), (H3, C1), (H1, C2)).

Second, consider cTTC.

We have two submarkets: the house submarket and the car submarket. The corresponding
preference profiles are as follows.

RH
1 : H2, H3,H1,

RH
2 : H3,H2, H1,

RH
3 : H2, H1,H3.

RC
1 : C3, C2,C1,

RC
2 : C1,C2, C3,

RC
3 : C1,C3, C2.

It is easy to see that TTCH(RH) = (H1, H3, H2) and TTCC(RC) = (C3, C2, C1), and hence
cTTC(R) = ((H1, C3), (H3, C2), (H2, C1)).

Finally, consider bTTC.

The corresponding restrictions of R are as follows.

R1|e : e2, e3, e1,

R2|e : e1, e2, e3,

R3|e : e2, e1, e3.

Thus, bTTC(R) = (e2, e1, e3) = ((H2, C2), (H1, C1), (H3, C3)). ⋄
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3. CHAPTER 1
Preference Revelation Games and Strict
Cores of Multiple-type Housing Markets

3.1. Introduction

In a classical Shapley-Scarf housing market (Shapley and Scarf, 1974), each agent is endowed
with an indivisible object, e.g., a house, consumes exactly one house, and ranks all houses in the
market. The question then is to (re)allocate houses among the agents without using monetary
transfers and by taking agents’ preferences and endowments into account.

A common solution concept for Shapley-Scarf housing markets is the strict core solution, which
assigns the set of allocations where no group of agents has an incentive (via weak blocking)
to deviate by exchanging their endowments within the group. When agents’ preferences are
strict, the strict core solution exhibits a remarkable number of positive features: it is non-
empty (Shapley and Scarf, 1974), always a singleton, and coincides with the unique competitive
allocation (Roth and Postlewaite, 1977). In addition, it can be easily calculated by the so-called
top-trading-cycles (TTC) algorithm (due to David Gale). Furthermore, as a strictly core-stable
mechanism, TTC is strategy-proof (Roth, 1982), and it is the unique mechanism satisfying
individual rationality, Pareto efficiency, and strategy-proofness (Ma, 1994; Svensson, 1999).

Multiple-type housing markets are an extension of Shapley-Scarf housing markets, which are
first introduced by Moulin (1995).1 In multiple-type housing markets, there are multiple types
of indivisible objects, each agent is endowed with one object of each type and consumes exactly
one object of each type. Multiple-type housing markets are often described with houses and
cars as metaphors for indivisible object types. While these and related housing market models
appear to be rather stylized, they give valuable insights into many real-world applications such
as dynamic resource allocation problems (Monte and Tumennasan, 2015), the assignment of
student-presentations (Mackin and Xia, 2016), cloud computing (Ghodsi et al., 2011, 2012),
the assignment of medical resources (Huh et al., 2013), and 5G network slicing (Peng et al.,
2015; Bag et al., 2019; Han et al., 2019). A more familiar example for most readers would be
the situation of students’ enrollment at many universities where courses are taught in parallel
sessions (Klaus, 2008).

Konishi et al. (2001) are the first to analyze multiple-type housing markets. They demon-
strate that when increasing the dimension of the classical Shapley-Scarf housing market model
by adding other types of indivisible objects, most of the positive results obtained for the one-
dimensional single-type case disappear: even for additively separable preferences, the strict core

1There are many other extensions, such as the multi-demand models of Pápai (2001, 2007), Ehlers and Klaus
(2003), and Manjunath and Westkamp (2021).
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may be empty and no individually rational, Pareto efficient, and strategy-proof mechanism ex-
ists. One of the reasons for this is that, in contrast to single-type housing markets, multiple-type
housing markets cannot be transformed into well-behaved coalition formation games (Banerjee
et al., 2001; Bogomolnaia and Jackson, 2002; Quint and Wako, 2004); e.g., an agent may ex-
change his house within a trading coalition S1 but exchange his car with a different trading
coalition S2.

There has been very little work on multiple-type housing markets after Konishi et al. (2001)’s
negative results. The following papers considered different solutions for different sub-domains of
preferences.

For separable preferences, Konishi et al. (2001) and Wako (2005) suggest an alternative solu-
tion to the strict core solution by first using separability to decompose a multiple-type housing
market into “coordinate-wise submarkets” and second, determining the strict core in each sub-
market. Wako (2005) calls the resulting outcome the commodity-wise competitive allocation
and shows that it is implementable in (self-enforcing) coalition-proof Nash equilibria. Klaus
(2008) calls the mechanism that always selects this unique allocation the coordinate-wise core
rule, and shows that it satisfies individual rationality, second-best incentive compatible,2 and
strategy-proofness.

On the domain of generalized lexicographic preferences, Sikdar et al. (2017, 2019) extend
the TTC algorithm and define a new mechanism: the multiple-type top-trading-cycles mech-
anism (mTTC), and they show that mTTC outputs a strict core allocation; hence, the strict
core for generalized lexicographic preferences is non-empty. Strict-core stability implies individ-
ual rationality and Pareto efficiency of mTTC. However, they demonstrate that mTTC is not
strategy-proof and that the strict core may be multi-valued.

Our contributions

Takamiya (2009) considers the more generalized model of objects allocation introduced by
Sönmez (1999), which contains Shapley-Scarf housing markets as a special case (see Appendix A
for a description of the generalized indivisible goods allocation model and some further discus-
sions). In particular, Takamiya’s results imply that for Shapley-Scarf housing markets and for
individually rational and Pareto efficient mechanisms, the set of strict strong Nash equilibrium
outcomes of the preference revelation game is the strict core (we state this result as Corollary 1).

Similarly, we examine the relationship between the strict strong Nash equilibrium outcomes of
the preference revelation games and the strict core allocations of multiple-type housing markets.
Takamiya’s (2009) results do not translate into our higher dimensional model. First, multiple-
type housing markets may have an empty strict core, even if preferences are separable. Then,
a promising subdomain that guarantees the non-emptiness of the strict core is the domain of
lexicographic preferences. However, lexicographic preferences do not satisfy the domain richness
condition Takamiya (2009) needs for his main result (we discuss this in detail in Appendix A).

We prove that on the domain of lexicographic preferences, the set of all strict strong Nash
equilibrium outcomes of the preference revelation game, induced by a strictly core-stable mech-
anism, is a subset of the strict core, but not vice versa, i.e., there are strict core allocations

2That is, there exists no other strategy-proof mechanism that Pareto dominates the coordinate-wise core
rule.
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that cannot be implemented via strict strong Nash equilibrium (Theorem 1). This result can be
extended to a more general set of preference domains that satisfy strict core non-emptiness and
a minimal preference domain richness assumption (Theorem 2). Throughout the chapter, we
motivate our approach and discuss some comparative statics aspects of our results via various
examples.

3.2. Preliminaries

Note that all following definitions for the domain of strict preference profiles RN can be formu-
lated for the domain of separable preference profilesRN

s or the domain of lexicographic preference
profiles RN

l .

Core

In order to introduce the standard cooperative solutions of the weak and the strict core, we
introduce two blocking notions: an allocation x ∈ X is strictly blocked by coalition S ⊆ N if
each member of S is better off after coalition S reallocated their endowments among themselves.
Formally, for market R ∈ RN , an allocation x ∈ X is strictly blocked by coalition S ⊆ N if there
exists an allocation y ∈ X such that:

(1) at allocation y agents in S reallocate their endowments, i.e., for each i ∈ S and each t ∈ T ,
yti ∈ {otj}j∈S, and

(2) all agents in S are strictly better off, i.e., for each i ∈ S, yi Pi xi.

An allocation x ∈ X is weakly blocked by coalition S ⊆ N if condition (2) is replaced by

(2’) all agents in S are weakly better off with at least one of them being strictly better off, i.e.,
for each i ∈ S, yi Ri xi, and for at least one j ∈ S, yj Pj xj.

Given the blocking notions above, we can restate individual rationality and Pareto efficiency
as follows. An allocation is individually rational if it is not weakly or strictly blocked by any
singleton coalition {i} and an allocation is Pareto efficient if it is not weakly blocked by the set
of all agents N .

We now introduce the first type of (possibly empty- or multi-valued) solution to multiple-type
housing markets that we will consider: core solutions.

Definition (The strict / weak core and strict / weak core-stability).
Let R ∈ RN . An allocation is a strict core allocation (at R) if it is not weakly blocked by any
coalition; the set of all strict core allocations is the strict core.
Similarly, an allocation is a weak core allocation (at R) if it is not strictly blocked by any

coalition; the set of all weak core allocations is the weak core.
Let SC(R) and WC(R) denote its strict core and weak core, respectively.
A mechanism f on RN is strictly core-stable if it selects only strict core allocations. Similarly,

a mechanism f on RN is weakly core-stable if it selects only weak core allocations.
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Note that for all R ∈ RN , SC(R) ⊆ WC(R), and that all strict core allocations satisfy
individual rationality and Pareto efficiency. So, if a mechanism is strictly core-stable, then it
is individually rational and Pareto efficient as well. Furthermore, for some R ∈ RN , WC(R) is
empty.

Preference revelation games

We now formulate a natural preference revelation game.

Given R ∈ RN and a mechanism f : RN → X, the preference revelation game induced by f is
the strategic game Γf (R) = (RN , f, R), where R is each agent’s strategy space, f is the outcome
function, and each agent i evaluates outcomes with Ri.

Definition (Nash / strict strong Nash equilibria).
Let R ∈ RN and consider its corresponding preference revelation game Γf (R).
A strategy profile R∗ ∈ RN is a Nash equilibrium of Γf (R) if for each agent i ∈ N and each

strategy R′
i ∈ R, fi(R

∗) = fi(R
∗
i , R

∗
−i) Ri fi(R

′
i, R

∗
−i). We denote the set of Nash equilibria by

Nash(Γf (R)) and the set of Nash equilibrium outcomes by f(Nash(Γf (R))).
A strategy profile R∗ ∈ RN

l is a strict strong Nash equilibrium3 of Γf (R) if for each coalition
S ⊆ N and each strategy list R′

S ∈ RS,

[for each agent i ∈ S, fi(R
′
S, R

∗
−S)Ri fi(R

∗
S, R

∗
−S)] implies

[for each agent i ∈ S, fi(R
′
S, R

∗
−S) = fi(R

∗
S, R

∗
−S)].

We denote the set of strict strong Nash equilibria by sNash(Γf (R)) and the set of strict strong
Nash equilibrium outcomes by f(sNash(Γf (R))). Note that sNash(Γf (R)) ⊆ Nash(Γf (R)) ⊆
RN .

Given a preference revelation game Γf (R), we say that agent i plays a truth-telling strategy if he
truthfully reports his preferences Ri. If all agents play truth-telling strategies, then R = (Ri)i∈N
is a truth-telling strategy profile at Γf (R). Note that if f is strategy-proof, then truth-telling
is a weakly dominant strategy for each agent and the truth-telling strategy profile is a weakly
dominant strategy Nash equilibrium.4

3.3. Results

3.3.1. Motivating examples

As mentioned in the introduction, for Shapley-Scarf housing markets with strict preferences, the
unique strict core allocation can be obtained by a unique individually rational, Pareto efficient,

3The set of strict strong Nash equilibria is a refinement of the set of strong Nash equilibria: a strategy profile
R∗ ∈ RN is a strong Nash equilibrium of Γf (R) if for each coalition S ⊆ N and each strategy list R′

S ∈ RS , [for
each agent i ∈ S, fi(R

′
S , R

∗
−S) Ri fi(R

∗
S , R

∗
−S)] implies [for some agent j ∈ S, fj(R

′
S , R

∗
−S) = fj(R

∗
S , R

∗
−S)]. For

a discussion of the existence of strict strong Nash equilibria we refer to Remark 3. Note that in Example 3, our
proof shows that the strict core allocation x′ cannot be obtained in a strong Nash equilibrium, either.

4For Γf (R) and i ∈ N , a strategy R∗
i ∈ R is weakly dominant if for each R′ ∈ RN , fi(R

∗
i , R

′
−i)Ri fi(R

′). A
Nash equilibrium R∗ is a weakly dominant strategy Nash equilibrium if for each i ∈ N , R∗

i is a weakly dominant
strategy.
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and strategy-proof mechanism (Ma, 1994; Svensson, 1999), the top-trading cycles mechanism.
Later, Sönmez (1999) considers a generalization of Shapley and Scarf (1974)’s housing markets,
generalized indivisible goods allocation problems (see Appendix A), and shows that, whenever
the preference domain satisfies a certain condition of richness and if there exists a mechanism
satisfying individual rationality, Pareto efficiency, and strategy-proofness, then for any problem
having a non-empty strict core, the strict core is essentially single-valued5 and the mechanism
chooses a strict core allocation. Takamiya (2003) shows the following converse result: whenever
the preference domain satisfies a certain condition of richness and if the strict core solution is
essentially single-valued, then any selection from the strict core solution is strategy-proof.
However, for multiple-type housing markets, these results do not hold anymore: Konishi et al.

(2001) (Sikdar et al., 2017, respectively) show that on the domain of separable preferences
(lexicographic preferences, respectively), no mechanism satisfies individual rationality, Pareto
efficiency, and strategy-proofness. Note that neither the domain of separable preferences nor
the domain of lexicographic preferences satisfies the domain richness condition of Sönmez (1999)
(see Appendix A).

The following example shows that on the one hand an individually rational and Pareto efficient
mechanism can pick an allocation at which no agent has an incentive to misrepresent his pref-
erences while on the other hand the strict core may be multi-valued (without being essentially
single-valued).

Example 2 (Non-manipulability and a multi-valued strict core).
Consider R ∈ RN

l with N = {1, 2, 3}, T = {H(ouse), C(ar)}, O = {H1, H2, H3, C1, C2, C3},
each agent i’s endowment (Hi, Ci), and

R1 : H2,H1, H3, C3,C1, C2,

R2 : H3,H2, H1, C1,C2, C3,

R3 : H2,H3, H1, C1,C3, C2.

Applying mTTC to R, at Step 1, the trading cycle 2 → H3 → 3 → H2 → 2 forms; the trading
cycle at Step 2 is 1 → H1 → 1; the trading cycle at Step 3 is 1 → C3 → 3 → C1 → 1;
and at Step 4, we have 2 → C2 → 2. The final outcome is the strict core allocation x =
((H1, C3), (H3, C2), (H2, C1)).
Note that at R, no agent has an incentive to misrepresent his preferences: agent 3 has no

incentive to misreport his preferences because he receives his best allotment. Agent 1 cannot
obtain his best house H2 by misreporting his preferences (it is traded in Step 1 between agents
2 and 3). Given that, he receives the best possible allotment and has no incentive to misreport
his preferences. Finally, agent 2 already obtains his best house and if he tries to obtain his best
car by misreporting his preferences, he cannot obtain his best house; thus, he has no incentive
to misreport his preferences. Finally, the strict core is not unique: ((H1, C3), (H3, C1), (H2, C2))
is also a strict core allocation. ⋄

Recall that for multiple-type housing markets with lexicographic preferences, no mechanism
satisfies individual rationality, Pareto efficiency, and strategy-proofness (Sikdar et al., 2017).
Hence, strict core stability and strategy-proofness are also not compatible. Thus, in our context,

5The strict core is essentially single-valued if for each agent, any two strict core allocations are equivalent.
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strategy-proofness, or truth-telling being a weakly dominant strategy Nash equilibrium in the
corresponding preference revelation game, is a very strong requirement. Therefore, we next
consider implementation through a different equilibrium concept: strict strong Nash equilibrium.

For generalized indivisible goods allocation problems, Takamiya (2009) studies the relation-
ship between coalitional equilibria and the strict core. Takamiya’s main result implies that for
Shapley-Scarf housing markets and for a preference revelation game induced by an individually
rational and Pareto efficient mechanism f , the set of strict strong Nash equilibrium outcomes
equals the strict core.

Corollary 1 (Takamiya, 2009). For each Shapley-Scarf housing market R ∈ RN and each
individually rational and Pareto efficient mechanism f , we have

f(sNash(Γf (R))) = SC(R).
The following example shows that Corollary 1 does not extend to multiple-type housing mar-

kets with lexicographic preferences.

Example 3 (Corollary 1 does not extend to RN
l ).

Consider R ∈ RN
l , N = {1, 2, 3}, T = {H(ouse), C(ar)}, O = {H1, H2, H3, C1, C2, C3}, each

agent i’s endowment (Hi, Ci), and

R1 : H2,H1, H3, C3, C2,C1,

R2 : H1,H2, H3, C1,C2, C3,

R3 : H1,H3, H2, C1,C3, C2.

Applying mTTC to R, at Step 1, the trading cycle 1 → H2 → 2 → H1 → 1 forms; the trading
cycle at Step 2 is 3 → H3 → 3; the trading cycle at Step 3 is 1 → C3 → 3 → C1 → 1;
and at Step 4 we have 2 → C2 → 2. The final outcome is the strict core allocation x =
((H2, C3), (H1, C2), (H3, C1)).
There is another strict core allocation x′ = ((H2, C2), (H1, C1), (H3, C3)). We show that

mTTC(sNash(ΓmTTC(R))) = {x} ⊊ {x, x′} = SC(R).
First, we prove that truth-telling, i.e., reporting preference profile R, is a strict strong Nash

equilibrium. Suppose that truth-telling is not a strict strong Nash equilibrium. Then, a profitable
deviation from R and x exists, i.e., there exist S ⊆ N and R′

S ∈ RS
l such that for each agent

i ∈ S, mTTCi(R
′
S, R−S)Ri xi and for some agent j ∈ S, mTTCj(R

′
S, R−S) Pj xj. We now show

that no such S ⊆ N exists.
Note that at x, agent 1 receives his best allotment and thus coalition {1} has no profitable

deviation from R. Furthermore, if agent 1 takes part in a profitable deviation, then he must still
receive (H2, C3).
For coalitions {2} or {1, 2}, agent 2 can only be better off by receiving (H1, C1). However, he

can only receive C1 at Step 1 of mTTC by misreporting his preferences as R′
2 : C1, · · · . However,

with R′
2, at Step 2, agent 3 would receive H1 and agent 2 would not be better off.

For coalitions {3} or {1, 3}, agent 3 can only be better off by receiving (H1, C1). However,
then H3 has to be assigned to agent 1 or agent 2, which would violate individual rationality
(recall that agent 1 only participates in a deviating coalition if he still receives H2 and agent 2
then would receive H3).
Next, consider coalition {2, 3}, which has a conflict of interest. Agent 2 can only be better off

by receiving (H1, C1), which leaves agent 3 with an allotment that is worse than x3 = (H3, C1),
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and agent 3 can only be better off by receiving (H1, C1), which leaves agent 2 with an allotment
that is worse than x2 = (H1, C2).
Finally, the grand coalition {1, 2, 3} cannot profitably deviate because mTTC is Pareto effi-

cient. Hence, no profitable deviation from R and x exists.

Second, we prove that x′ is not a strict strong Nash equilibrium outcome. Assume that there
is a strict strong Nash equilibrium R′ = (R′

1, R
′
2, R

′
3) such that mTTC(R′) = x′. We show that

there is a profitable deviation for coalition {1, 3}, i.e., there exists R′′ = (R′′
1, R

′
2, R

′′
3) such that

for each agent i ∈ {1, 3}, mTTCi(R
′′)Ri x

′
i and for some agent j ∈ {1, 3}, mTTCj(R

′′) Pj x
′
j.

There are two cases depending on agent 2’s object-type importance order at R′
2.

Case 1. Agent 2 misreported his importance order at R′
2, i.e., π

′
2 : C,H.

Recall that mTTC2(R
′) = (H1, C1). Hence, by individual rationality of mTTC, at R′, agent

2 ranked C1 above C2 and

R′
2 : C3, C1,C2, · · · , or

R′
2 : C1,C2, C3, · · · , or

R′
2 : C1, C3,C2, · · · .

Next, consider strategy profile R′′ = (R′′
1, R

′
2, R3) obtained by agents 1 and 3 deviating from

R′ such that
R′′

1 : C3,C1, C2, H2,H1, H3.

Applying mTTC to R′′, at Step 1, the trading cycle 1 → C3 → 3 → H1 → 1 forms; and
at Step 2 we have 2 → C1 → 1 → H2 → 2. The final outcome is mTTC(R′′) = y =
((H2, C3), (H3, C1), (H1, C2)). Since y1 P1 x

′
1 and y3 P3 x

′
3, coalition {1, 3} has an incentive to

deviate from R′ to R′′, which implies that R′ is not a strict strong Nash equilibrium; a contra-
diction.

Case 2. Agent 2 truthfully reported his importance order at R′
2, i.e., π

′
2 : H,C.

Recall that mTTC2(R
′) = (H1, C1). Hence, by individual rationality of mTTC, at R′, agent

2 ranked H1 above H2 and
R′

2 : H3, H1,H2, · · · , or

R′
2 : H1,H2, H3, · · · , or

R′
2 : H1, H3,H2, · · · .

Next, consider strategy profile R′′ = (R1, R
′
2, R

′′
3) obtained by agents 1 and 3 deviating from

R′ such that
R′′

3 : H3, H1, H2, C1,C3, C2.

Applying mTTC to R′′, at Step 1, the trading cycle 3 → H3 → 3 forms; and we also have
1 → H2 → 2 → H1 → 1 (this cycle, depending on R′

2, occurs at Step 1 or Step 2). Subsequently,
we have the trading cycle 1 → C3 → 3 → C1 → 1. The final outcome is mTTC(R′′) =
x = ((H2, C3), (H1, C2), (H3, C1)). Since x1 P1 x

′
1 and x3 P3 x

′
3, coalition {1, 3} has an incentive

to deviate from R′ to R′′, which implies that R′ is not a strict strong Nash equilibrium; a
contradiction. ⋄
Based on Corollary 1 and Example 3 one could now conjecture that for each multiple-type

housing market R ∈ RN
l and each individually rational and Pareto efficient mechanism f ,

we have f(sNash(Γf (R))) ⊆ SC(R). That conjecture is almost correct; however, we need to
strengthen individual rationality and Pareto efficiency to strict core-stability (see Example 5).
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3.3.2. Main results

We show that for lexicographic preferences, if a mechanism is strictly core-stable, then any strict
strong Nash equilibrium of the corresponding preference revelation game will induce a strict
core allocation. However, for some multiple-type housing markets with lexicographic preferences,
there exist strict core allocations that cannot be implemented via strict strong Nash equilibrium.

Theorem 1. Let f be a strictly core-stable mechanism on RN
l .

Then, for each R ∈ RN
l and the corresponding preference revelation game Γf (R) = (RN

l , f, R),
the set of strict strong Nash equilibrium outcomes is a subset of the strict core, that is,

f(sNash(Γf (R))) ⊆ SC(R).

Furthermore, there exist R ∈ RN
l such that f(sNash(Γf (R))) ⊊ SC(R).

We would like to emphasize that strict core-stability of f is key for this result. Clearly, if for
some preference profiles, the strict core is empty, then a strictly core-stable mechanism f cannot
exist. Thus, in this first result, we restrict the preference profile domain to RN

l with the intent
to generalize Theorem 1 later on.

Proof. Let f be a strictly core-stable mechanism on RN
l .

First, let R ∈ RN
l and assume by contradiction, that f(sNash(Γf (R))) ̸⊆ SC(R). Let R′ ∈ RN

l

be such that R′ ∈ sNash(Γf (R)) and f(R′) = x ̸∈ SC(R). Hence, x can be weakly blocked by
a coalition S and there exists an allocation y such that (1) for each i ∈ S and each t ∈ T ,
yti ∈ {otj}j∈S, and (2’) for each i ∈ S, yi Ri xi , and for some j ∈ S, yj Pj xj.

Now we consider the profile (R̂S, R
′
−S) ∈ RN

l such that each agent i ∈ S ranks allotment yi
as his best allotment; for each i ∈ S, it then holds that R̂i : yi, · · · , i.e., each agent i, for each
object type t, ranks yti as best type-t object. We want to show that coalition S has an incentive
to deviate from R′

S to R̂S. To this end, we first prove the following claim.

Claim 1. For each i ∈ S, we have fi(R̂S, R
′
−S) = yi.

Let z = f(R̂S, R
′
−S). Suppose that for some agent j ∈ S, zj ̸= yj. We show that z is not a

strict core allocation at (R̂S, R
′
−S), i.e., z ̸∈ SC(R̂S, R

′
−S).

At (R̂S, R
′
−S), for each agent i ∈ S, yi R̂i zi because yi is his best allotment. Since zj ̸= yj,

yj P̂ j zj. Therefore, at (R̂S, R
′
−S), allocation z can also be weakly blocked by coalition S via

allocation y. Thus, f(R̂S, R
′
−S) ̸∈ SC(R̂S, R

′
−S), which contradicts that f is strictly core-stable.

2

Strictly speaking, by Claim 1, we now only know that f(R̂S, R
′
−S) = y′ such that y′S = yS.

However, since allotments to agents in N \ S play no role in our proof, it is without loss of
generality to assume that y′ = y. Hence, when coalition S deviates from R′

S to R̂S, by Claim 1
and without loss of generality, f(R̂S, R

′
−S) = y. Thus, since f(R′) is weakly blocked by S via y,

for each i ∈ S, fi(R̂S, R
′
−S)Ri fi(R

′) and for j ∈ S, fj(R̂S, R
′
−S) Pj fj(R

′); contradicting that R′

is a strict strong Nash equilibrium.
Example 3 exhibits a profile R ∈ RN

l such that f(sNash(Γf (R))) ⊊ SC(R) (recall that in
Example 3 there is a unique strict strong Nash equilibrium outcome while multiple strict core
allocations exist).
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Remark 3. Existence of strict strong Nash equilibria, an open problem
The existence of (strict) strong Nash equilibria is proven for specific classes of games, such as
social choice / voting (Dutta and Sen, 1991), congestion games (Holzman and Law-Yone, 1997),
cost sharing games (Epstein et al., 2009), and continuously convex games (Nessah and Tian,
2014). However, in general, (strict) strong Nash equilibria need not exist.6

Question: Let f be a strictly core-stable mechanism on RN
l . For each problem

R ∈ RN
l , do we have f(sNash(Γf (R))) ̸= ∅?

For Shapley-Scarf housing markets and the TTC mechanism, truth-telling is a strict strong
Nash equilibrium. Thus, for higher-dimensional multiple-type housing markets, one could con-
jecture that, mTTC allocations can always be implemented in strict strong Nash equilibrium.
The following example shows that the mTTC allocation cannot always be implemented truthfully
in strict strong Nash equilibrium.
Consider R ∈ RN

l with N = {1, 2, 3}, T = {H(ouse), C(ar)}, O = {H1, H2, H3, C1, C2, C3},
each agent i’s endowment (Hi, Ci), and

R1 : H2,H1, H3, C3,C1, C2,

R2 : H3, H1,H2,C2, C1, C3,

R3 : H1, H2,H3,C3, C1, C2.

Applying mTTC to R, at Step 1, the trading cycle 1 → H2 → 2 → H3 → 3 → H1 → 1 forms; the
trading cycles at Step 2 are 2 → C2 → 2 and 3 → C3 → 3; and at Step 3 we have 1 → C1 → 1.
The final outcome is the strict core allocation x = ((H2, C1), (H3, C2), (H1, C3)).
However, the truth-telling profile R is not a strict strong Nash equilibrium: agent 1 has an

incentive to misreport the following preferences

R′
1 : C3,C1, C2, H2,H1, H3.

For profile R′ = (R′
1, R2, R3), the mTTC allocation is x′ = ((H2, C3), (H3, C2), (H1, C1)). Since

x′
1 = (H2, C3) P1 (H2, C1) = x1, R is not a strict strong Nash equilibrium.
The above example illustrates that an implementation of the mTTC allocation in strict strong

Nash equilibrium might require some agents to (possibly mutually) change their object type
sequences. We neither found a systematic way for agents to change their object type sequences
to show existence of strict strong Nash equilibria, nor did we manage to construct a counter
example. ⋄

A more general result

Note that the proof of Theorem 1 did not use many properties of the lexicographic preference
domain. It turns out that our result can easily be extended to other preference domains. Consider
a subdomain of preferences R̂ ⊆ R that satisfies the following two assumptions.

Assumption 1 (Strict core existence and minimal preference domain richness). Pref-
erence domain R̂ ⊆ R satisfies

6Hoefer and Skopalik (2013) point out the following technical difficulty of finding strong Nash equilibria: “a
strong Nash equilibrium must be the optimal solution of multiple non–convex optimization problems.”
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(a) strict core existence if for each problem R ∈ R̂N , SC(R) ̸= ∅; and

(b) minimal preference domain richness if for each allocation x ∈ X, each agent i can position
xi as his best allotment; i.e., for each x ∈ X, there exists a profile R̂ ∈ R̂N such that for
each i ∈ N , R̂i : xi, · · · .

Assumption 1 is simple and reasonable. Assumption 1 (a) allows us to focus on the solution
of the strict core and for that the strict core should always be non-empty. Assumption 1 (b) is
a very weak preference domain richness condition that is different from the one used by Sönmez
(1999, Assumption B) and weaker than the one imposed by Takamiya (2009, Condition A). We
discuss the preference domain richness conditions of Sönmez (1999) and Takamiya (2009) in
Appendix A.

Remark 4. Preference domains satisfying Assumption 1
The domains of weak and strict preferences for Shapley-Scarf housing markets and the lexico-
graphic preference domain for multiple-type housing markets all satisfy Assumption 1. There
are various larger lexicographic domains, e.g., those of Monte and Tumennasan (2015) and Sik-
dar et al. (2017, generalized lexicographical preferences), that satisfy Assumption 1. Hence, our
Theorem 1 applies to these settings as well (see the following Theorem 2). ⋄

We now show that Theorem 1 can be extended to any preference domain R̂ ⊆ R satisfying
Assumption 1.

Theorem 2. Let R̂ satisfy Assumption 1 and let f be a strictly core-stable mechanism on R̂N .
Then, for each problem R ∈ R̂N and the corresponding preference revelation game Γf (R) =

(R̂N , f, R), the set of strict strong Nash equilibrium outcomes is a subset of the strict core, that
is, f(sNash(Γf (R))) ⊆ SC(R).

Furthermore, there exist R ∈ R̂N such that f(sNash(Γf (R))) ⊊ SC(R).

Proof. The proof is the same as that of Theorem 1 since in that proof the only properties of
the preference domain that were (implicitly) used were strict core existence and minimal domain
richness.

The role of assumptions in Theorems 1 and 2

In Theorems 1 and 2, we make three sufficient assumptions: (a) strict core existence, (b) minimal
preference domain richness, and (c) strict core-stability of f . We now show that if assumptions
(a) and (c) do not hold, then our result(s) need not be true. We do not discuss the role of
minimal preference domain richness for our result since we believe that, once ranking certain
allotments first is not possible for the agents, one starts to discuss very unstructured preference
domains.

(a) For some R ∈ RN
s it is possible that SC(R) = ∅ and sNash(Γf (R)) ̸= ∅. See Example 4

below.

(c) If f is individually rational and Pareto efficient but not strictly core-stable (even if f is
defined on RN

l ), then the allocation induced by f may not be a strict core allocation. See
Example 5 below.
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Example 4 (Strict core existence is important for our result to hold).
Consider Example 2.2 in Konishi et al. (2001), i.e., consider R ∈ RN

s with N = {1, 2, 3},
T = {H(ouse), C(ar)}, O = {H1, H2, H3, C1, C2, C3}, each agent i’s endowment (Hi, Ci), and

R1 : (H1, C3), (H3, C3), (H1, C2), (H1,C1), · · · ,

R2 : (H2, C3), (H2, C1), (H3, C3), (H3, C1), (H2,C2), · · · ,

R3 : (H2, C1), (H2, C2), (H3, C1), (H1, C1), (H3, C2), (H1, C2), (H2, C3), (H3,C3), (H1, C3).

Note that SC(R) = ∅ (see Konishi et al., 2001, Example 2.2).

Now, consider a mechanism f that chooses a strict core allocation whenever the strict core is
nonempty and otherwise it determines an allocation by serial dictatorship based on the sequence
of agents 1� 3� 2: agent 1 moves first and chooses his most preferred allotment; then agent 3
moves and, considering only the remaining objects, chooses his most preferred allotment; finally
agent 2 receives the remaining objects. By definition, f is strictly core-stable whenever this is
possible.
At the preference revelation game Γf (R), by truth-telling agents 1 and 3 get their best

allotments, and hence, agent 2’s strategy does not influence the outcome. Thus, the truth-
telling strategy profile is a strict strong Nash equilibrium, i.e., R ∈ sNash(Γf (R)), and its
outcome is f(R) = ((H1, C3), (H3, C2), (H2, C1)). Since the strict core is empty, we thus have
f(sNash(Γf (R))) ̸⊆ SC(R). ⋄

Example 5 (Strict core-stability of f is important for our result to hold).
We introduce the so-called trading cycles and chains (TCC) algorithm / mechanism on RN

l .
The first step of the TCC algorithm is the same as that of the mTTC algorithm: let each agent
point to his most preferred object and clear all trading cycles. Furthermore, “deactivate” all
agents who have received an object from another agent ; a deactivated agent cannot point to an
object in the next steps of the algorithm.
The main difference between TCC and mTTC now arises: only agents who did not receive

any object from another agent yet are active and can proceed to the next step and point to their
most preferred object among those objects that have not been assigned yet. In the following
steps, if there is a trading cycle, then we assign objects to the agents in the trading cycle.
However, if there is no trading cycle (this can happen due to the fact that some agents are

inactive), then we clear a so-called trading chain where the last object belongs to a de-activated
agent - we select a trading chain according to a tie-breaking rule, e.g., if two agents i and j point
to the same object, then we break the tie in favor of agent j > i. Agents along the chain receive
the object they point to (except the last agent in the chain who was inactive). Again, deactivate
all agents who have received an object from another agent.
Continue clearing first trading cycles then trading chains until all agents are deactivated.

Then, we activate all agents and repeat the TCC algorithm to allocate the remaining objects.
Since at each step of the TCC algorithm, each agent who receives an object receives his

most preferred object among all of his feasible continuation objects, the TCC mechanism is
individually rational and Pareto efficient. The following example shows that the TCC mechanism
is not strictly core-stable.

Consider R ∈ RN
l with N = {1, 2, 3}, T = {H(ouse), C(ar)}, O = {H1, H2, H3, C1, C2, C3},

each agent i’s endowment (Hi, Ci), and

R1 : C2,C1, C3, H2,H1, H3,
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R2 : C1,C2, C3, H1, H3,H2,

R3 : H1, H2,H3, C2, C1,C3.

Applying mTTC to R yields the unique strict core allocation x = ((H2, C2), (H1, C1), (H3, C3)).
The TCC algorithm at R proceeds as follows. At Step 1 trading cycle 1 → C2 → 2 → C1 → 1

forms, is executed, and agents 1 and 2 are deactivated. At Step 2, agent 3 points to his most
preferred object H1 and since this forms a trading chain, agent 3 receives H1 and is deactivated.
Then, all agents are activated again. At Step 3, trading cycle 3 → C3 → 3 forms, is executed,

and hence agent 3 is removed since he cannot receive more objects. Finally, agent 1 points
to H2 and agent 2 points to H3, and since this forms a trading chain, agent 1 and 2 receive
H2 and H3, respectively. The final allocation is y = ((H2, C2), (H3, C1), (H1, C3)). Allocation
y is individually rational and Pareto efficient, but it is weakly blocked by coalition {1, 2} via
allocation x.

Let fTCC be the TCC mechanism. We prove that truth-telling, i.e., reporting preference
profile R, is a strict strong Nash equilibrium. Suppose that truth-telling is not a strict strong
Nash equilibrium. Then, there exist S ⊆ N and R′

S ∈ RS
l such that for each agent i ∈ S,

fTCC
i (R′

S, R−S)Ri yi and for some agent j ∈ S, fTCC
j (R′

S, R−S) Pj yj.
Note that at y, agent 1 receives his best allotment and thus, if agent 1 takes part in a profitable

deviation, then he must still receive (H2, C2). This implies that

(a) there is no profitable deviation for coalition {1}.
(b) We next show that there is no profitable deviation for coalitions {2} and {1, 2}. Note that
agent 2 can only be better off by receiving (H1, C1). Consider (R

′
1, R

′
2) (possibly R′

1 = R1) and
note that for this to be a profitable deviation, agents 1 and 2 still need to trade in the first step
of the TCC algorithm, which means that they are not active in the second step where agent 3
now can choose an object.
If agents 1 and 2 traded cars C1 and C2 or car C1 and house H2, then agent 3 will choose H1

in the second step. Thus, agent 2 cannot receive (H1, C1) and hence would not be better off.
If agents 1 and 2 traded house H1 and car C2, then agent 3 will choose H2 in the second step.

Thus, the third step is a normal trading step in which agent 1 will point to the only remaining
house H3, agent 3 points at car C1, and hence the final allocation is ((H3, C2), (H1, C3), (H2, C1)).
Thus, agent 2 would not be better off.
If agents 1 and 2 traded houses H1 and H2, then both of them participated in the preference

deviation. Then, agent 3 will choose H3. However, since agent 3 still did not receive any object
from another agent yet, he remains the only active agent and will choose car C2 in the third step.
Now, the final allocation is either ((H2, C1), (H1, C3), (H3, C2)) or ((H2, C3), (H1, C1), (H3, C2)).
Thus, agent 1 or agent 2 is worse off.

(c) We next show that there is no profitable deviation for coalitions {3} and {1, 3}. Note that
agent 3 can only be better off by receiving (H1, C1) or (H1, C2). Consider (R′

1, R
′
3) (possibly

R′
1 = R1) and note that agents 1 and 2 still trade in the first step of the TCC algorithm (either

because agents 1 and 2 report true preferences, or because agent 1 participates in the deviation
and hence must still receive (H2, C2)).
If agent 1 did not participate in the deviation, then agents 1 and 2 trade cars C1 and C2 in

the first step of the TCC algorithm. But then, agent 3 cannot be bettor off since C1 and C2 are
already assigned.
Assume that agent 1 participated in the deviation. Then, agent 1 must still receive (H2, C2).

Hence, since agent 2 reports preference truthfully, agent 2 will receive car C1 in the first step.

22



Thus, agent 3 can only be better off by receiving (H1, C2), which is not compatible with agent
1 receiving (H2, C2). Hence, agent 3 cannot be better off.

(d) We next show that there is no profitable deviation for coalition {2, 3}. Note that agent 2
can only be better off by receiving (H1, C1), but this would make agent 3 worse off. Thus, agent
2 would have to receive y2 = (H3, C1) at a profitable deviation and in order for agent 3 to be
better off, he would have to receive (H1, C2). This implies that agent 1 receives (H2, C3), which
violates individual rationality.

(e) Finally, the grand coalition {1, 2, 3} cannot profitably deviate because the TCC mechanism
is Pareto efficient. ⋄

3.4. Conclusion

We consider multiple-type housing markets when agents have lexicographic preferences Rl; or
alternatively, preferences are drawn from a preference domain R̂ that guarantees strict core
existence and that satisfies a minimal preference domain richness condition (see Assumption 1).
We show that if a mechanism is strictly core-stable, then any strict strong Nash equilibrium
outcome of its corresponding preference revelation game is a strict core allocation (Theorems 1
and 2). The converse statement is not true, i.e., there exist markets with strict core allocations
that cannot be implemented in strict strong Nash equilibrium (Example 3). We also demonstrate
the necessity of two crucial assumptions (strict core non-emptiness and strict core-stability of
mechanisms) in our results (Examples 4 and 5).

Comparing our results to Takamiya’s result for Shapley-Scarf housing markets, Corollary 1
(see Appendix A for the generalized individual goods allocation model considered in Takamiya,
2009), our results (Theorems 1 and 2) have two differences with his main result.
First, we show that not all strict core allocations may be implementable through strict strong

Nash equilibria of the preference revelation game while Takamiya (2009) shows full implementa-
tion for Shapley-Scarf housing markets. The main reason for our partial implementation versus
his full implementation result is that our preference domains are less rich than the ones he
considers. Neither separable nor lexicographic preferences satisfy Takamiya’s preference domain
richness condition (Takamiya, 2009, Condition A, see Appendix A). For example, for multiple-
type housing market problems with lexicographic preferences, no agent can protect an allotment
by positioning it as his first best and his endowment as his second best allotment (an argument
that is crucial in Takamiya’s proof).
Second, we require strict core-stability for our mechanisms while Takamiya (2009) only requires

individual rationality and Pareto efficiency. In Takamiya’s model, each agent only demands one
object. Thus, each agent will trade within only one coalition. Therefore, once the induced
allocation (the equilibrium outcome) is individually rational and Pareto efficient, no coalition
can block it.7 However, the same is not true for multiple-type housing markets because each
agent may trade different objects with different coalitions. That is, a multiple-type housing
market cannot be easily transformed into a coalition formation game.

7See Takamiya’s (2009) proof of Theorem (B) for details.
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4. CHAPTER 2
A Characterization of the
Coordinate-Wise Top-Trading-Cycles
Mechanism for Multiple-Type Housing
Markets

4.1. Introduction

In many applied matching problems, indivisible goods that are in unit demand have to be
assigned without monetary transfers. One of the most prominent such problems is modeled by
classical Shapley-Scarf housing markets (Shapley and Scarf, 1974). Shapley and Scarf (1974)
consider an exchange economy in which each agent owns an indivisible object (say, a house);
each agent has preferences over houses and consumes exactly one house. The objective of
the market designer then is to reallocate houses among agents. When preferences are strict,
Shapley and Scarf (1974) show that the strict core (defined by a weak blocking notion) has
remarkable features: it is non-empty, and can be easily calculated by the so-called top-trading-
cycles (TTC) algorithm (due to David Gale). Moreover, TTC satisfies important incentive
properties, strategy-proofness (Roth, 1982) as well as the stronger property of group strategy-
proofness (Bird, 1984). Furthermore, it is known that TTC is the unique mechanism satisfying
Pareto efficiency, individual rationality, and strategy-proofness (Ma, 1994; Svensson, 1999).

However, more general problems of exchanging indivisible objects that are in multi-unit de-
mand are known to be very difficult. In this chapter, we consider an extension of the classical
Shapley-Scarf housing markets by allowing multi-unit demand: multiple-type housing markets,
to use the language of Moulin (1995). In this model, objects are of different types (say, houses,
cars, etc.) and agents initially own and exactly wish to consume one object of each type. A famil-
iar example for most readers would be the situation of students’ enrollment at many universities
where courses are taught in small groups and in multiple sessions (Klaus, 2008). Furthermore,
for term paper presentations during a course, students may want to exchange their assigned
topics and dates (Mackin and Xia, 2016); hospitals may want to improve their surgery schedule
for surgeons by swapping surgery staff, operating rooms, and dates (Huh et al., 2013); and in
cloud computing (Ghodsi et al., 2011, 2012) and 5G network slicing (Peng et al., 2015; Bag et al.,
2019; Han et al., 2019), there may be several types of resources that agents require, including
CPU, memory, and storage.

This model is firstly studied by Konishi et al. (2001). Their results are mainly negative:
they show that even if we further restrict preferences to be strict and additively separable, the
strict core may still be empty. Moreover, no mechanism satisfies Pareto efficiency, individual
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rationality, and strategy-proofness.

Despite their negative results, for (strictly) separable preferences, Wako (2005) suggests an
alternative solution concept to the strict core by first decomposing a multiple-type housing mar-
ket into coordinatewise submarkets and second, determining the strict core in each submarket.
Wako (2005) calls this unique outcome the commoditywise competitive allocation and shows
that it is implementable in (self-enforcing) coalition-proof Nash equilibria but not in strong
Nash equilibria.1

Based on Wako’s result, we investigate the mechanism that always selects the commoditywise
competitive allocation; since this allocation can be obtained by using the TTC algorithm for each
object type, we refer to it as the coordinatewise TTC mechanism (cTTC). Although cTTC is not
Pareto efficient, it does have many desirable properties: it is individually rational, strategy-proof,
and second-best incentive compatible, i.e., it is not Pareto dominated by any other strategy-proof
mechanism (Klaus, 2008). In view of these positive results, one may wonder whether cTTC can
be characterized by weakening Pareto efficiency and strengthening strategy-proofness.

For Shapley-Scarf housing markets with strict preferences, a characterization along these lines
is provided by Takamiya (2001): he shows that TTC is the only mechanism satisfying unanim-
ity, individual rationality, and group strategy-proofness.2 Based on Takamiya’s result, one could
now conjecture that this characterization of TTC for Shapley-Scarf housing markets can be car-
ried over to cTTC for multiple-type housing markets. That conjecture is almost true; however,
we need to weaken group strategy-proofness to strategy-proofness and non-bossiness.3 In other
words, inspired by Takamiya’s result for Shapley-Scarf housing markets, we show that, remark-
ably, cTTC is the only mechanism satisfying unanimity (or ontoness), individual rationality,
strategy-proofness, and non-bossiness (see Theorems 3 and 4 for lexicographic and separable
preferences, respectively). We obtain corresponding results when replacing [strategy-proofness
and non-bossiness] with effective group (or pairwise) strategy-proofness (Corollaries 2 and 3).

Our characterizations of cTTC constitute the first characterizations of an extension of the
prominent TTC to multiple-type housing markets. Furthermore, our results suggest that when
preferences are separable, cTTC is outstanding; first, because some efficiency in the form of
unanimity is preserved (even if full Pareto efficiency cannot be reached), and second, because
of its incentive robustness in the form of strategy-proofness, non-bossiness, and effective group
(pairwise) strategy-proofness (even if full group strategy-proofness cannot be reached). More-
over, we also provide several impossibility results (Theorem 5 and Corollary 4) for strict (but
otherwise unrestricted) preferences:

• there is no mechanism satisfying unanimity, individual rationality, and strategy-proofness
(Theorem 5);

• there is no mechanism satisfying ontoness, individual rationality, strategy-proofness, and
non-bossiness (Corollary 4).

1However, (1) the commoditywise competitive allocation may be Pareto inefficient; and (2) the mechanism
that always selects this allocation is not group strategy-proof (see Wako, 2005, Section 6, for details).

2In fact, Takamiya’s characterization is based on ontoness, a weakening of unanimity. However, in the
presence of group strategy-proofness, ontoness coincides with unanimity.

3When preferences are strict but otherwise unrestricted, the combination of strategy-proofness and non-
bossiness is equivalent to group strategy-proofness. Example 6 shows that this is not true for separable prefer-
ences.
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The chapter proceeds as follows. In the following section, Section 4.2, we introduce some
properties of mechanisms, and some relevant results. We state our results in Section 4.3. In
Subsection 4.3.1, we first show that for lexicographic preferences, a mechanism is unanimous (or
onto), individually rational, strategy-proof, and non-bossy if and only if it is cTTC (Theorem 3).
In Subsection 4.3.2, using Theorem 3, we obtain a corresponding characterization for separable
preferences (Theorem 4). We would like to emphasize that the proof strategy to use lexicographic
preferences as a “stepping stone” to obtain a corresponding result for separable preferences is,
to the best of our knowledge, new. In Subsections 4.3.1 and 4.3.2 we obtain corresponding
results when replacing [strategy-proofness and non-bossiness] with effective group (or pairwise)
strategy-proofness (Corollaries 2 and 3). In Subsection 4.3.3, we finally show several impossibility
results (Theorem 5 and Corollary 4). Section 4.4 concludes with a discussion of our results and
how they relate to the literature.

4.2. Preliminaries

Note that all following definitions and results for the domain of strict preference profiles RN can
be formulated for the domain of separable preference profiles RN

s or the domain of lexicographic
preference profiles RN

l .
First, we introduce a weaker condition than unanimity that guarantees that no allocation is

a priori excluded.

Definition (Ontoness).
A mechanism on RN is onto if each allocation is selected to some markets. In other words, a
mechanism is onto if it is an onto function.

It is immediate that unanimity implies ontoness (see also Lemma 2).

Next, we introduce a strategic robustness property that is stronger than strategy-proofness
and weaker than group strategy-proofness. Serizawa (2006) introduces and analyzes effective
pairwise strategy-proofness for various economic models: a mechanism that is effectively pair-
wise strategy-proof excludes unilateral as well as “self-enforcing” pairwise manipulations. Re-
cently, Biró et al. (2022a) extend Serizawa’s self-enforcing notion of pairwise strategy-proofness
to robustness against coalitional deviations of arbitrary sizes (assuming “minimality of the self-
enforcing manipulations”).4

Definition (Effective group (pairwise) strategy-proofness).
A coalition of agents S ⊆ N can manipulate mechanism f in a self-enforcing manner if there
exist some R ∈ RN and some R′

S ∈ RS such that

• coalition S can manipulate mechanism f at R via R′
S:

for each i ∈ S, fi(R
′
S, R−S)Ri fi(R) and for some j ∈ S, fj(R

′
S, R−S) Pj fj(R) and

• coalition S is self-enforcing : for each i ∈ S, fi(R
′
S, R−S)Ri fi(Ri, R

′
S\{i}, R−S).

If a coalition of agents S can manipulate mechanism f at R via R′
S, then S is a minimal

manipulating coalition at R via R′
S if there is no S ′ ⊊ S such that S ′ can manipulate mechanism

f atR viaR′
S′ . A mechanism onRN is effectively group strategy-proof if no minimal manipulating

4Biró et al. (2022a) refer to their property as self-enforcing group strategy-proofness.
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coalition of agents can manipulate f in a self-enforcing manner; it is effectively pairwise strategy-
proof if it is strategy-proof and no pair of agents can manipulate f in a self-enforcing manner.

Alva (2017, Proposition 1) shows that strategy-proofness and non-bossiness are equivalent to
effective pairwise strategy-proofness, and Biró et al. (2022a, Proposition 11) show that strategy-
proofness and non-bossiness are equivalent to effective group strategy-proofness. Thus, these
studies provide an intuition of why the invariance property non-bossiness can be considered to
be an incentive property as well. Both results apply to our model as well.

Lemma 1 (Alva, 2017; Biró et al., 2022a).
A mechanism on RN is strategy-proof and non-bossy if and only if it is effectively group (or
pairwise) strategy-proof.

We already mentioned that unanimity implies ontoness. We next show that, in the presence
of strategy-proofness and non-bossiness, ontoness implies unanimity.

Lemma 2.

(a) If a mechanism on RN is unanimous, then it is onto.

(b) If a mechanism on RN is strategy-proof, non-bossy, and onto, then it is unanimous.

Proof. (a) Let f on RN be unanimous. Fix any allocation x ∈ X. Let R ∈ RN be a preference
profile such that x is unanimously best under R. Then, by unanimity of f , f(R) = x. Hence,
f is an onto function.

(b) Let f onRN be strategy-proof, non-bossy, and onto. Let x ∈ X and R ∈ RN be a preference
profile such that x is unanimously best under R. By ontoness of f , there exists a preference
profile R′ ∈ R such that f(R′) = x. Let i ∈ N and y = f(Ri, R

′
−i). By strategy-proofness of

f , we have yi Ri xi. Since xi is agent i’s most preferred allotment, we have yi = xi. Then, by
non-bossiness of f , we have f(Ri, R

′
−i) = y = x = f(R′). By applying this argument repeatedly

for all agents in N\{i}, we find that f(R) = x = f(R′). So, f is unanimous.

Shapley-Scarf housing market results

As mentioned before, for m = 1 our model equals the classical Shapley-Scarf housing market
model (Shapley and Scarf, 1974) and cTTC reduces to the standard TTC mechanism. The
Shapley-Scarf housing market (with strict preferences) results that are pertinent for our analysis
of multiple-type housing markets are the following.

Result 1 (Bird, 1984).
For Shapley-Scarf housing markets, TTC is group strategy-proof.

Note that group strategy-proofness implies strategy-proofness and non-bossiness. Thus, Re-
sult 1 also implies that TTC is non-bossy (Miyagawa, 2002, explicitly shows this). Also note
that when preferences are strict and unrestricted, the combination of strategy-proofness and
non-bossiness coincides with group strategy-proofness. Recently, Alva (2017) identifies prefer-
ence domain properties such that this equivalence holds.
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Result 2 (Pápai, 2000; Takamiya, 2001; Alva, 2017).
For Shapley-Scarf housing markets, a mechanism on RN is strategy-proof and non-bossy if and
only if it is group strategy-proof.

Result 3 (Ma, 1994; Svensson, 1999).
For Shapley-Scarf housing markets, only TTC is Pareto efficient, individually rational, and
strategy-proof.

Result 4 (Takamiya, 2001).
For Shapley-Scarf housing markets, only TTC is onto, individually rational, strategy-proof, and
non-bossy.

Extension of existing Shapley-Scarf housing market results to
multiple-type housing markets

The results in the previous subsection imply that for Shapley-Scarf housing markets (with strict
preferences), TTC satisfies

• Pareto efficiency and hence unanimity and ontoness;

• individual rationality ; and

• group strategy-proofness and hence strategy-proofness and non-bossiness.

cTTC inherits most of these properties, except for Pareto efficiency and group strategy-
proofness. Hence, TTC Results 1, 2, and 3 do not extend to cTTC when more than one object
type is allocated.

Proposition 1. On the domain of (i) lexicographic preferences and (ii) separable preferences,

• cTTC satisfies unanimity, ontoness, individual rationality, strategy-proofness, non-bossiness,
and effective group (pairwise) strategy-proofness.

• cTTC satisfies neither Pareto efficiency nor group strategy-proofness.

Proof. It is straightforward to check that cTTC on RN
s is individually rational and unanimous

(and hence onto).

We next show that cTTC on RN
s inherits strategy-proofness from TTC. Let R ∈ RN

s , i ∈ N ,
and R̂i ∈ Rs with marginal preferences (R̂1

i , . . . , R̂
m
i ). By the definition and strategy-proofness

of TTC, for each t ∈ T , cTTCt
i (R) = TTCt

i (R
t)Rt

i TTC
t
i (R̂

t
i, R

t
−i) = cTTCt

i (R̂i, R−i). Then, by

the separability of preferences, we have cTTCi(R)RicTTCi(R̂i, R−i) and cTTC is strategy-proof.

Finally, to show that cTTC on RN
s is non-bossy, let R ∈ RN

s , i ∈ N , and R̂i ∈ Rs,
with marginal preferences (R̂1

i , . . . , R̂
m
i ), be such that cTTCi(R) = cTTCi(R̂i, R−i). Thus,

for each t ∈ T , cTTCt
i (R) = cTTCt

i (R̂i, R−i). Moreover, by definition of cTTC, we have
for each t ∈ T , cTTCt

i (R) = TTCi(R
t) and cTTCt

i (R̂i, R−i) = TTCi(R̂
t
i, R

t
−i). Thus, for

each t ∈ T , TTCi(R
t) = TTCi(R̂

t
i, R

t
−i), and since TTC is non-bossy, we have that for each

t ∈ T , TTC(Rt) = TTC(R̂t
i, R

t
−i). Then, for each t ∈ T , cTTCt(R) = cTTCt(R̂i, R−i). Thus,

cTTC(R) = cTTC(R̂i, R−i) and cTTC is non-bossy.
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Since cTTC on RN
s is strategy-proof and non-bossy, by Lemma 1, it is also effectively group

(pairwise) strategy-proof.

Example 6 below shows that cTTC on RN
s is neither Pareto efficient nor group strategy-

proof.

Example 6 (cTTC is neither Pareto efficient nor group strategy-proof ).
Consider the market with N = {1, 2}, T = {H(ouse), C(ar)}, O = {H1, H2, C1, C2}, and where
each agent i’s endowment is (Hi, Ci). The preference profile R ∈ RN

l is as follows:

R1 : H2,H1,C1, C2,

R2 : C1,C2,H2, H1.

Thus, agent 1, who primarily cares about houses, would like to trade houses but not cars, and
agent 2, who primarily cares about cars, would like to trade cars but not houses. One easily
verifies that cTTC(R) =

(
(H1, C1), (H2, C2)

)
, the no-trade allocation. However, note that since

preferences are lexicographic, both agents would be strictly better off if they traded cars and
houses. Thus, allocation

(
(H2, C2), (H1, C1)

)
Pareto dominates cTTC(R). Hence, cTTC is not

Pareto efficient. Furthermore, assume that both agents (mis)report their preferences as follows:

R′
1 : H2,H1, C2,C1,

R′
2 : C1,C2, H1,H2.

Then, cTTC(R′) =
(
(H2, C2), (H1, C1)

)
, making both agents better off compared to cTTC(R).

Hence, cTTC is not group strategy-proof. Finally, note that

cTTC1(R1, R
′
2) = (H2, C1) P1 (H2, C2) = cTTC1(R

′)

and
cTTC2(R

′
1, R2) = (H2, C1) P2 (H1, C1) = cTTC2(R

′),

and hence R′ is not a manipulation in a self-enforcing manner; cTTC does not violate effective
group (pairwise) strategy-proofness. ⋄

While Example 6 shows that cTTC is not Pareto efficient, Klaus (2008) shows that it is
second-best incentive compatible, i.e., there exists no other strategy-proof mechanism that Pareto
dominates cTTC. At the end of her paper, Klaus (2008) presents a mechanism for classical
housing markets that is different from the TTC mechanism and satisfies individual rationality,
second-best incentive compatibility, and strategy-proofness. This mechanism can be extended
to multiple-type housing markets by applying it coordinatewise; thus, cTTC is not the unique
mechanism that satisfies these properties.

Example 6 also shows that cTTC does not satisfy the three properties that are used in Result 3.
Is there another mechanism that does satisfy the three properties? The following result gives
an answer in the negative: there is no mechanism that satisfies Pareto efficiency, individual
rationality, and strategy-proofness, neither on the domain of separable preference profiles nor
on the domain of lexicographic preference profiles.

Result 5 (Impossible trinity).
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(a) For multiple-type housing markets with separable preferences, no mechanism is Pareto
efficient, individually rational, and strategy-proof (Konishi et al., 2001, Proposition 4.1).

(b) For multiple-type housing markets with lexicographic preferences, no mechanism is Pareto
efficient, individually rational, and strategy-proof (Sikdar et al., 2017, Theorem 2).

Result 5 implies that there is no other mechanism that does better than cTTC by satisfying
the three properties on either the domain of separable preference profiles or the domain of
lexicographic preference profiles. However, cTTC on RN

s (RN
l , respectively) does satisfy all

the properties used in Result 4. In the next section we answer the question if Takamiya’s
characterization of TTC for Shapley-Scarf housing markets can be extended to characterize
cTTC for multiple-type housing markets.

Finally, Proposition 1 also demonstrates that the equivalence of strategy-proofness and non-
bossiness with group strategy-proofness (Result 2) does not extend to multiple-type housing mar-
kets with separable or lexicographic preferences (because strategy-proofness and non-bossiness
do not imply group strategy-proofness).

4.3. Characterizing cTTC

From now on, we focus on the multiple-type extension of the Shapley-Scarf housing market model
as introduced by Moulin (1995) with more than 1 agent and more than 1 type, i.e., |N | = n > 1
and |T | = m > 1.5

4.3.1. Characterizing cTTC for lexicographic preferences

We first show that Takamiya’s result (Takamiya, 2001, Corollary 4.16) can indeed be extended
to characterize cTTC for lexicographic preferences.

Theorem 3. For multiple-type housing markets with lexicographic preferences, only cTTC is

• unanimous (or onto),

• individually rational,

• strategy-proof, and

• non-bossy.

From Proposition 1 it follows that cTTC satisfies unanimity (or ontoness), individual ratio-
nality, strategy-proofness, and non-bossiness. Next, we explain the uniqueness part of the proof;
the full proof that there is no other mechanism that satisfies the above properties is relegated
to Appendices B and C.1.

First, we establish several auxiliary results for a mechanism f satisfying the properties of
Theorem 3: invariance of f under (Maskin) monotonic transformations (Lemma 3) and marginal
individual rationality (Lemma 4). Next, we assume that a mechanism f that is not equal to

5One agent multiple-type housing market problems are rather trivial since no trade occurs and for just one
object type, we are back to the Shapley-Scarf housing market model.
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cTTC, but has the same properties, exists. We then obtain a contradiction via a well-constructed
sequence of preference profiles (by using the lexicographic nature of preferences).

Lemma 1 (Alva, 2017; Biró et al., 2022a) implies the following corollary.

Corollary 2. For multiple-type housing markets with lexicographic preferences, only cTTC is

• unanimous (or onto),

• individually rational, and

• effectively group (or pairwise) strategy-proof.

Note that even if one does not consider the domain of lexicographic preference profiles as an
interesting or relevant preference profile domain for multiple-type housing markets, Theorem 3
serves as an important stepping stone to establish the corresponding characterization of cTTC
for separable preferences, see Subsection 4.3.2. To the best of our knowledge, the technical tool
of “lifting up” a result from lexicographic preferences to separable preferences is used here for
the first time.

We establish the logical independence of the properties in Theorem 3 (Corollary 2) in Ap-
pendix C.3.

4.3.2. Characterizing cTTC for separable preferences

Note that for lexicographic preferences, under cTTC, the importance order of types plays no
role because the allocation of each type only depends on the agents’ marginal preferences of
each type, i.e., for each market R and type t, cTTCt(R) = TTC(Rt

1, . . . , R
t
n). Thus, one could

conjecture that Theorem 3 also holds for separable preferences. This conjecture is correct.

Theorem 4. For multiple-type housing markets with separable preferences, only cTTC is

• unanimous (or onto),

• individually rational,

• strategy-proof, and

• non-bossy.

From Proposition 1 it follows that cTTC on RN
s satisfies unanimity (or ontoness), individual

rationality, strategy-proofness, and non-bossiness. Next, we explain the uniqueness part of the
proof; the full proof that there is no other mechanism that satisfies the above properties is
relegated to Appendix C.2.

The uniqueness part of the proof works as follows. We assume that a mechanism is unanimous
(or onto), individually rational, strategy-proof, and non-bossy. By Theorem 3, we know that if
all agents happen to have lexicographic preferences, then the cTTC allocation is selected. Next,
we consider a preference profile such that only one agent has separable and non-lexicographic
preferences. We show that for this agent, if he (mis)reports lexicographic preferences without
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changing his marginal preferences, then he must receive the same allotment. According to Theo-
rem 3, the allotment (in fact, the whole allocation) then equals the cTTC allotment (allocation).
Hence, f selects the cTTC allocation if all but one agent have lexicographic preferences. By
applying this preference replacement argument, one by one, for all other agents, we conclude
that f equals cTTC on the domain of separable preference profiles.

Lemma 1 (Alva, 2017; Biró et al., 2022a) implies the following corollary.

Corollary 3. For multiple-type housing markets with separable preferences, only cTTC is

• unanimous (or onto),

• individually rational, and

• effectively group (or pairwise) strategy-proof.

The examples in Appendix C.3 are well-defined on the domain of separable preference profiles
and establish the logical independence of the properties in Theorem 4 (Corollary 3).

4.3.3. Impossibility results for strict preferences

Note that cTTC is not well-defined for strict preferences since for non-separable preferences,
marginal type preferences cannot be derived. Then, a natural question is if there exists an
extension of cTTC to the domain of strict preference profiles that satisfies our properties. First,
observe that the impossibility trinity result (Result 5) implies that for strict preferences, no
mechanism satisfies Pareto efficiency, individual rationality, and strategy-proofness. Our next
result shows that weakening Pareto efficiency to unanimity cannot resolve this impossibility.

Theorem 5. For multiple-type housing markets with strict preferences, no mechanism is

• unanimous,

• individually rational, and

• strategy-proof.

Proof. Without loss of generality, let m = 2. Suppose that there is a mechanism f : RN → X
that is unanimous, individually rational, and strategy-proof. Let x, y ∈ X\{e} be such that at
x agents 1 and 2 swap their endowments of type 2, i.e.,

x1 = (o11, o
2
2, o

3
1, o

4
1, . . . , o

m
1 ),

x2 = (o12, o
2
1, o

3
2, o

4
2, . . . , o

m
2 ),

and for each i = 3, . . . , n, xi = oi

and at y agents 1 and 2 swap their endowments of type 1, i.e.,

y1 = (o12, o
2
1, o

3
1, o

4
1, . . . , o

m
1 ),

y2 = (o11, o
2
2, o

3
2, o

4
2, . . . , o

m
2 ),

and for each i = 3, . . . , n, yi = oi.
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Obviously, x ̸= y.
Let R ∈ RN be such that agents 1 and 2 prefer only their allotments at x and y to their

endowments, they disagree on which allocation is the better one, and each other agent ranks his
endowments highest, i.e.,

R1 : x1, y1, o1, . . . ,

R2 : y2, x2, o2, . . . ,

and for each i = 3, . . . , n, Ri : oi, . . . .

Note that R ∈ RN\RN
s . There are only three individually rational allocations at R: x, y, and e.

Let

• R′
1 : x1, o1, . . .,

• R′
2 : y2, o2, . . .,

• R′′
1 : y1, o1, . . ., and

• R′′
2 : x2, o2, . . ..

Suppose that f(R) = e. Then, by unanimity of f , f(R′′
2, R−2) = x, which implies that

agent 2 has an incentive to misreport R′′
2 at R; contradicting strategy-proofness of f . Therefore,

f(R) ∈ {x, y}.
Suppose that f(R) = x. Then, by strategy-proofness of f , f2(R

′
2, R−2) ̸= y2 and hence by

individual rationality of f , f(R′
2, R−2) = e. However, by unanimity of f , f(R′′

1, R
′
2, R−{1,2}) = y,

which implies that agent 1 has an incentive to misreport R′′
1 at (R

′
2, R−2); contradicting strategy-

proofness of f .
Suppose that f(R) = y. Then, by strategy-proofness of f , f1(R

′
1, R−1) ̸= x1 and hence, by

individual rationality of f , f(R′
1, R−1) = e. However, by unanimity of f , f(R′

1, R
′′
2, R−{1,2}) = x,

which implies that agent 2 has an incentive to misreport R′′
2 at (R

′
1, R−1); contradicting strategy-

proofness of f .

Examples 7, 8, and 9 in Appendix C.3 are well-defined on the domain of strict preference
profiles and establish the logical independence of the corresponding properties in Theorem 5.

Our next impossibility result is established by weakening unanimity to ontoness and by adding
non-bossiness.

Corollary 4. For multiple-type housing markets with strict preferences, no mechanism is

• onto,

• individually rational,

• strategy-proof, and

• non-bossy.6

6Note that Lemma 1 (Alva, 2017; Biró et al., 2022a) implies that we can replace strategy-proofness and
non-bossiness by effective group (or pairwise) strategy-proofness. In fact, on the domain of strict preference
profiles, strategy-proofness and non-bossiness imply group strategy-proofness.
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Proof. Lemma 2 (b) together with Theorem 5 implies Corollary 4.

Examples 7, 8, and 9 in Appendix C.3 are well-defined on the domain of strict preference
profiles and establish the logical independence of ontoness, individual rationality, and strategy-
proofness in Corollary 4. The non-bossiness example, Example 10, in Appendix C.3 can be
extended to strict preferences for Shapley-Scarf housing markets; for multiple-type housing mar-
kets and with separable preferences, the mechanism is extended by applying it coordinatewise
to all object types. The latter extension method does not work for strict preferences and the
independence of non-bossiness from the other properties in Corollary 4 is an open problem for
multiple-type housing markets.

4.4. Discussion

Shapley-Scarf housing markets

Our results (Theorem 3 and Theorem 4) can be compared to Takamiya (2001, Corollary 4.16)
for Shapley-Scarf housing markets. In the proof of Theorem 3 we make explicit use of the steps
used by the TTC algorithm to compute the TTC allocation. In contrast, Takamiya’s proof is not
based on the TTC algorithm. Instead, his proof is based on strict core-stability, i.e., the absence
of weak blocking coalitions and profitable coalitional deviations. His proof consists of two steps:
(1) strict core-stability implies group strategy-proofness and (2) group strategy-proofness and
ontoness together imply Pareto efficiency. Since cTTC neither satisfies Pareto efficiency nor
group strategy-proofness, our results and proof strategy are logically independent. Moreover,
Takamiya’s proof strategy cannot be extended to multiple-type housing markets because weak
blocking coalitions and profitable coalitional deviations need not coincide (see Theorems 1 and
2 for details).

Furthermore, comparing the classical TTC characterization (Result 3) with that of Takamiya
(2001) yields the following result. For Shapley-Scarf housing markets, an individually ratio-
nal and strategy-proof mechanism is Pareto efficient if and only if it is unanimous and non-
bossy. However, this result does not extend to multiple-type housing markets, as illustrated in
Example 6, which shows that cTTC is not Pareto efficient (recall that there, the no-trade
allocation cTTC(R) = ((H1, C1), (H2, C2)) is Pareto dominated by the full-trade allocation
((H2, C2), (H1, C1))).

Object allocation problems with multi-demand and without ownership

Our results can be compared to Monte and Tumennasan (2015) and Pápai (2001) for object
allocation problems with multi-demand and without ownership, i.e., agents can consume more
than one object, and the set of objects is a social endowment.

While Monte and Tumennasan (2015) still assume that objects are of different types and agents
can only consume one object of each type, Pápai (2001) imposes no consumption restriction.7

Although both models are slightly different, their characterization results are similar: the only
mechanisms satisfying Pareto efficiency, strategy-proofness, and non-bossiness are sequential

7In Pápai (2001), agents can consume any set of objects, and their preferences are linear orders over all sets
of objects.
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dictatorships. Clearly, if agents, like in our model, have property rights, sequential dictatorship
mechanisms will not satisfy individual rationality. Thus, their characterization results imply an
impossibility result for our model, in line with our Theorem 5; however, note that our efficiency
notion in Theorem 5, unanimity, is weaker than Pareto efficiency.

Object allocation problems with multi-demand and with ownership

Finally, we compare our results (Theorems 3 and 4) to Pápai (2003).

Similarly to Pápai (2001), Pápai (2003) considers a more general model of allocating objects
to the set of agents who can consume any set of objects. In contrast to Pápai (2001), each
object now is owned by an agent and each agent has strict preferences over all objects, and his
preferences over sets of objects are monotonically responsive to these “objects-preferences.”8 In
our model, we impose more structure by assuming that (i) the set of objects is partitioned into
sets of exogenously given types and (ii) each agent owns and consumes one object of each type.

Pápai (2003) considers strategy-proofness and non-bossiness (as we do) and she introduces two
additional (non-standard) properties: trade sovereignty and strong individual rationality. Trade
sovereignty requires that every feasible allocation that consists of “admissible transactions”
should be realized at some preference profile; it allows for trade restrictions and some objects
never being traded and is hence weaker than ontoness (for details see Pápai, 2003). Strong
individual rationality requires that for each agent and all preference relations with the same
objects-preferences as the agent has, individual rationality holds (for details see Pápai, 2003).
Note that strong individual rationality is stronger than individual rationality. For instance,
if agent 1’s endowment is (H1, C1), and his objects-preferences are R1 : H2, H1, C1, C2, then
allotment (H2, C2) is not strongly individually rational.9

Pápai (2003) shows that the set of mechanisms satisfying trade sovereignty, strong individual
rationality, strategy-proofness, and non-bossiness coincides with the set of segmented trading
cycle mechanisms. In this class of mechanisms, all objects are (endogenously) decomposed into
different segments that can be expressed as the components of a trading possibility graph (which
can express trading restrictions that can even mean that certain objects cannot be traded).
Agents can own at most one object per segment and the TTC algorithm is then executed
separately for each segment. The set of segmented trading cycle mechanisms is large and, for
our model, would include cTTC, the no-trade mechanism, and many segmented trading cycles
mechanisms with restricted trades.

cTTC is a specific segmented trading cycle mechanism in the sense that all segments are a
priori determined by object types. Thus, our characterization result of cTTC can be seen as
characterizing a specific segmented trading cycle mechanism while Pápai characterizes the whole

8Formally, let O be a finite set of objects. A preference relation ⪰ over all non-empty sets of objects is
monotonically responsive if (i) it is monotonic, i.e., for any two non-empty subsets of objects, A,B ⊆ O, A ⊆ B
implies that B ⪰ A; and (ii) responsive, i.e., there exists a strict “objects-preference relation” over all objects,
R, such that for any two distinct objects o, o′ ∈ O, and a subset of objects A ⊆ O\{o, o′}, o P o′ implies that
{o} ∪ A ≻ {o′} ∪ A. In our model, since agents’ allotments have a fixed number of objects, monotonicity of
preferences over sets of objects plays no role. Furthermore, given our constraint that each agent needs to receive
an object of each type, responsiveness corresponds to separability.

9Let ≻̃1 : (H2, C1), (H1, C1), (H2, C2), (H1, C2) and ≻̂1 : (H2, C1), (H2, C2), (H1, C1), (H1, C2). Note that
both preferences are responsive to R1. We see that (H2, C2) ≻̂1 (H1, C1) but (H1, C1) ≻̃1 (H2, C2). Thus,
(H2, C2) is individually rational at ≻̂1 but not individually rational at ≻̃1.

35



class of segmented trading cycle mechanisms. On the one hand, we weaken strong individual
rationality to individual rationality but strengthen trade sovereignty to ontoness. On the other
hand, we consider two different preference domains that reflect some responsiveness through
separability. Therefore, while there is a close connection between our models and results, there
is no direct logical relation between Pápai (2003)’s result and ours (Theorems 3 and 4).
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5. CHAPTER 3
Efficiency in Multiple-Type Housing
Markets

5.1. Introduction

The assignment of indivisible scarce resources is a central problem in economics. This type of
problem has been extensively studied under special, commonly used assumptions. For instance,
many studies, such as those on auctions (Myerson, 1981), allow monetary transfers a priori. In
cases where monetary transfers are not allowed, research tends to focus on unit-demand models,
such as the Shapley-Scarf housing markets (Shapley and Scarf, 1974).

In many important situations, however, agents may desire more than one object (Huh et al.,
2013; Manjunath and Westkamp, 2021). Thus, in this chapter, we relax the unit-demand as-
sumption and focus on the multiple-type housing markets (Moulin, 1995), which is an extension
of the Shapley-Scarf housing markets. In this model, objects are labeled by different types and
assigned to a group of agents. Each agent owns one object of each type and consumes exactly
one object of each type, with no monetary transfers during the reallocation process. As a result,
agents have preferences over bundles, each consisting of one object of each type.

Similar to Shapley-Scarf housing markets, multiple-type housing markets apply to numerous
real-world problems. To emphasize this, we provide two motivating examples below that can be
modeled as multiple-type housing markets.1

Course reallocation. At many universities in Europe, Ph.D. candidates are hired as full-time
employees and required to serve as teaching assistants for multiple courses. A common scenario
is that they may be assigned to one undergraduate course and one graduate course per year.
However, teaching assistants’ interests may change over time, which means that the distribution
of course assignments made this year may not be efficient in the next year. For example, a
teaching assistant who previously taught an advanced game theory course may now wish to
teach macro courses instead, and another teaching assistant who taught asset pricing this year
may also want to switch his course. Therefore, reallocating courses among them may be Pareto
improving.

Job rotation. Every doctor enrolled in a hospital residency program is obligated to take turns
being on an emergency duty schedule every month. The schedule includes all doctors in the

1In the following two examples, although teaching assistants may not officially own certain courses, they often
inherit the previously assigned curriculum, which can be considered as their ownership of the course. Similarly,
doctors may also unofficially inherit their time slot from the previous year, which can be regarded as their
ownership of the slot. Furthermore, some people may officially own certain duties in certain situations, see Klaus
(2008) in detail.
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hospital and covers an entire year. The schedule is automatically carried over to the next year,
but can be modified at the beginning of each year. When making changes, the preferences of
each doctor regarding their duty schedule in the new year can be taken into consideration.

When there is only one type, our model reduces to the Shapley-Scarf housing market model
(Shapley and Scarf, 1974), and it is known that for such markets, Pareto efficiency is com-
patible with individual rationality and strategy-proofness. Furthermore, these three properties
together uniquely identify the prominent top-trading-cycles mechanism (TTC) (Ma, 1994; Svens-
son, 1999). However, when there are multiple types, Pareto efficiency is incompatible with indi-
vidual rationality and strategy-proofness (Konishi et al., 2001). Therefore, we aim to determine
the level of efficiency that remains feasible by preserving individual rationality and strategy-
proofness, i.e., we investigate which type of efficiency property is compatible with these two
criteria. To address this question, we consider two weaker efficiency properties, coordinatewise
efficiency and pairwise efficiency, on several domains of preference profiles: the strict preference
domain, the (strictly) separable preference domain, and the lexicographic preference domain.

First, we show that for lexicographic and separable preferences, coordinatewise efficiency is
compatible with individual rationality and strategy-proofness. We show that these three proper-
ties uniquely identify one mechanism, the coordinatewise top-trading-cycles mechanism (cTTC),
which is an extension of TTC (Theorem 6). However, for strict preferences, coordinatewise ef-
ficiency is also incompatible with individual rationality and strategy-proofness (Theorem 7).
We then turn to our second efficiency property, pairwise efficiency. We show that for lexi-
cographic preferences, separable preferences, and strict preferences, only another TTC exten-
sion, the bundle top-trading-cycles mechanism (bTTC), satisfies individual rationality, group
strategy-proofness (or the combination of strategy-proofness and non-bossiness), and pairwise
efficiency (Theorems 8 and 9). Finally, we propose several variations of our efficiency properties.
We find that each of them is either satisfied by cTTC or bTTC, or leads to an impossibility
result (together with individual rationality and strategy-proofness). Therefore, our characteri-
zations can be primarily interpreted as a compatibility test, where we determine whether certain
efficiency properties are compatible with individual rationality and strategy-proofness. Loosely
speaking, any “reasonable” efficiency property (defined by efficiency improvements) that is not
satisfied by cTTC or bTTC is incompatible with individual rationality and strategy-proofness.2

5.1.1. Our contributions

Our results contribute to the following strands of literature.

Strategic robustness and efficiency. In economic design, the characterization of strategi-
cally robust and efficient mechanisms is an important issue (Holmström, 1979; Barberà et al.,
1997; Moulin, 1980; Ma, 1994; Pycia and Ünver, 2017; Shinozaki, 2023). Standard properties
of strategic robustness and efficiency are strategy-proofness and Pareto efficiency, respectively.
However, when agents consume more than one object, the combination of strategy-proofness
and Pareto efficiency essentially results in serially dictatorial mechanisms (Klaus and Miya-
gawa, 2002; Monte and Tumennasan, 2015). However, such mechanisms ignore property rights
driven by the endowments, which violates individual rationality. In other words, in the presence

2It is worth noting that there might be a few restrictive efficiency properties compatible with these require-
ments that are not satisfied by cTTC or bTTC; however, such exceptions may not be particularly interesting to
focus on. In Appendix D.2, we provide an example of one exception and demonstrate that it is uninteresting.
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of individual rationality, strategy-proofness and Pareto efficiency are incompatible. This impos-
sibility leads to a common trade-off between strategic robustness and efficiency in the literature
(Arrow, 1950; Gibbard, 1973; Satterthwaite, 1975; Myerson and Satterthwaite, 1983; Alva and
Manjunath, 2020).

We want to keep individual rationality since it induces voluntary participation. That is, agents
may lose interest in participating in a individually irrational mechanism. To ensure strategic
robustness, it is important for the social planner to have knowledge of agents’ true preferences in
order to efficiently allocate resources. For example, if agents report some fake preferences, then,
some allocations that are efficient with respect to reported preferences, may not be efficient for
their true preferences. To avoid such situations, a mechanism that is both individually rational
and strategy-proof should be used. Therefore, we search for a plausible mechanism by relaxing
Pareto efficiency while keeping individual rationality and strategy-proofness. There are various
weakened efficiency properties that could be used, and some of them are satisfied by several
mechanisms (Klaus, 2008; Anno and Kurino, 2016; Feng et al., 2022a). However, coordinatewise
efficiency and pairwise efficiency, are unique in that (i) they are compatible with individual
rationality and strategy-proofness, and (ii) they are only satisfied by two specific mechanisms,
respectively. In this respect, our results are closely related to Pápai (2007), Klaus (2008), Anno
and Kurino (2016), Nesterov (2017), Alva and Manjunath (2019), Shinozaki and Serizawa (2022),
and Shinozaki (2022).

TTC based mechanisms. The top-trading-cycles (TTC) algorithm (due to David Gale) is
commonly used for object allocation problems with unit demand. In particular, as we men-
tioned earlier, for Shapley-Scarf housing markets with strict preferences, only TTC satisfies in-
dividual rationality, strategy-proofness, and Pareto efficiency. Thus, one could conjecture that
for multiple-type housing markets, some extensions of TTC would still satisfy some desirable,
although perhaps not all of the three properties. We confirm this conjecture by proving several
characterizations of two TTC extensions: cTTC and bTTC. Our characterizations successfully
extend characterizations of TTC from one dimensional Shapley-Scarf housing markets to higher
dimensional multiple-type housing markets. Moreover, such characterizations give strong sup-
port for the use of TTC extensions. Our characterizations are related to Feng et al. (2022a,b),
Altuntaş et al. (2021), and Biró et al. (2022a). We provide a detailed discussion in Section 5.3.

Complementary preferences. As we mentioned earlier, our characterization for bTTC is also
valid for strict preferences. The analysis on the domain of strict preference is demanding, because
it allows agents’ preferences to exhibit complementarity. Thus, our results also contribute to
the literature on allocation problems with complements (Sun and Yang, 2006; Che et al., 2019;
Rostek and Yoder, 2020; Jagadeesan and Teytelboym, 2021; Huang, 2023).

5.1.2. Organization

The chapter proceeds as follows. In the following section, we introduce two efficiency properties
and state our results, and conclude with a discussion of our results and how they relate to the
literature in Section 5.3. In Appendix C, we provide the proofs of our results that are not
included in the main text. In Appendix D.3, we provide several examples to establish the logical
independence of the properties in our characterizations.

39



5.2. Results

In this section, we consider two efficiency properties that (i) are weaker than Pareto efficiency
and (ii) are compatible with individual rationality and strategy-proofness. Specifically, we will
explore whether cTTC and bTTC satisfy these properties.

5.2.1. Coordinatewise efficiency

Here, we consider a natural modification of Pareto efficiency for multiple-type housing markets,
coordinatewise efficiency, which rules out Pareto improvements within a single type. Let R ∈
RN . An allocation y ∈ X is a coordinatewise improvement of allocation x ∈ X at R if (i) y is a
Pareto improvement of x, and (ii) y and x only differ in one type t ∈ T , i.e., yt ̸= xt and for each
τ ∈ T \ {t}, yτ = xτ . An allocation is coordinatewise efficient at R if there is no coordinatewise
improvement.

Definition (Coordinatewise efficiency).
A mechanism on RN is coordinatewise efficient if it only selects coordinatewise efficient alloca-
tions.

One easily verifies that Pareto efficiency implies coordinatewise efficiency, and coordinatewise
efficiency implies unanimity.

Remark 5. Coordinatewise efficiency for subdomain
For a multiple-type housing market with separable preferences, coordinatewise efficiency simply
means that the selected allocation of each type is Pareto-efficient for agents’ marginal preferences
for the type. Formally, f : RN

s → X is coordinatewise efficient if for each R ∈ RN
s and each

t ∈ T , f t(R) is Pareto efficient at Rt.
Moreover, since TTC is Pareto efficient for Shapley-Scarf housing markets, it is easy to see

that for each R ∈ RN
s and each t ∈ T , cTTCt(R) is Pareto efficient at Rt, and hence cTTC is

coordinatewise efficient. ⋄

We first characterize cTTC using coordinatewise efficiency.

Theorem 6. For multiple-type housing markets with (i) lexicographic preferences and (ii) sep-
arable preferences, only cTTC satisfies

• individual rationality,

• strategy-proofness, and

• coordinatewise efficiency.

We prove Theorem 6 in Appendix D.1. It is known that cTTC satisfies (i) individual ratio-
nality and strategy-proofness (Proposition 1), and (ii) coordinatewise efficiency (see Remark 5).
For uniqueness, the proof consists of two steps. Given a mechanism f on the domain of sep-
arable preferences satisfying all our three properties. We first consider a restricted domain of
preference profiles. We show that f always selects the cTTC allocation on this restricted domain
(Proposition 1). Then by replacing agents’ preferences, one by one, from our restricted domain
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to the lexicographic preference domain and separable preference domain, respectively, we extend
this result to the domain of (i) lexicographic preference profiles and (ii) separable preference
profiles.

We would like to make two additional remarks to emphasize the significance of our result.

Remark 6. Second-best incentive compatibility
For multiple-type housing markets with separable preferences, Klaus (2008) weakens Pareto
efficiency to another efficiency property, second-best incentive compatibility. She shows that
cTTC is second-best incentive compatible, i.e., there exists no other strategy-proof mechanism
that Pareto dominates cTTC. However, she also shows that there exists another mechanism that
is individually rational, strategy-proofness, and second-best incentive compatible. In a follow-up
work, Anno and Kurino (2016) investigate second-best incentive compatibility for independent
mechanisms, i.e., the mechanisms that treat each submarket independently and separately. In
other words, under an independent mechanism, the selected allocation of each type only depends
on agents’ marginal preferences for each type. They also show that cTTC is not the unique
independent mechanism that satisfies these properties. Thus, Theorem 6 complement to Klaus
(2008) and Anno and Kurino (2016): by strengthening second-best incentive compatibility to
coordinatewise efficiency, we find that cTTC is the only independent mechanism that satisfies
individual rationality, strategy-proofness, and coordinatewise efficiency. ⋄

Remark 7. Individual rationality
Although one might view Theorem 6 as a trivial extension of Result 3, we want to stress that our
finding actually adds novelty to the field. In particular, a major challenge with multiple-type
housing markets is that individual rationality is weakened considerably. For instance, when
agents lexicographically prefer one type over others, if an agent receives a better object than his
endowment for his most important object type, then individual rationality of the allotment is
respected even if we ignore the endowments of the other object types. Let us consider a small
domain where there are two types of objects, houses and cars, and all agents lexicographically
prefer houses over cars. In this domain, an alternative mechanism exists that differs from cTTC
and still satisfies individual rationality, coordinatewise efficiency, and strategy-proofness:
Step 1: First apply TTC to houses. If agent 1 received a new house at Step 1 (and hence

improves upon his own house), then move his endowed car to the bottom of his marginal pref-
erences for cars (in terms of cTTC, agent 1 is not allowed to point at his own car until the end
of the algorithm).
Step 2: Apply TTC to cars with the adjusted preferences. ⋄

Since cTTC is not well-defined for strict preferences, a natural question is whether there exists
an extension of cTTC for strict preferences that satisfies our desired properties. Our answer is
no.

Theorem 7. For multiple-type housing markets with strict preferences, no mechanism satisfies

• individual rationality,

• strategy-proofness, and

• coordinatewise efficiency.
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Theorem 7 is implied by Theorem 5 as coordinatewise efficiency is stronger than unanimity,
and hence we omit the proof.

Theorem 7 also leads to a new question: whether there is an efficiency property that is
compatible with individual rationality and strategy-proofness for strict preferences. We will
address this question in the next subsection.

5.2.2. Pairwise efficiency

Unanimity is a weak efficiency property. However, for strict preferences, it is still incompatible
with individual rationality and strategy-proofness (Theorem 5). Therefore, for strict preferences,
it seems difficult to find an efficiency property that is compatible with individual rationality and
strategy-proofness. To establish a suitable efficiency property, we consider efficiency improve-
ments that only involve a small number of agents (Goldman and Starr, 1982). To be precise, here
we consider pairwise efficiency that rules out efficiency improvements by pairwise reallocation
(Ekici, 2022). Let R ∈ RN . An allocation x ∈ X is pairwise efficient at R if there is no pair of
agents {i, j} ⊆ N such that xj Pi xi and xi Pj xj.

Definition (Pairwise efficiency).
A mechanism on RN is pairwise efficient if it only selects pairwise efficient allocations.

For Shapley-Scarf housing markets, the result related to pairwise efficiency, that is pertinent
for our analysis of multiple-type housing markets is the following.

Result 6 (Ekici, 2022).
For Shapley-Scarf housing markets, only TTC is individually rational, strategy-proof, and pair-
wise efficient.

By using arguments similar to arguments in Result 6, we also obtain that bTTC inherits
pairwise efficiency from the underlying top trading cycles algorithm for the restricted market
R|e. Also, it is known that bTTC is individually rational and strategy-proof (Feng et al.,
2022b). Hence, based on Result 6, one could now conjecture that for multiple-type housing
markets, bTTC is identified by these three properties. That conjecture is nearly correct, but to
fully support it, we need to strengthen strategy-proofness to group strategy-proofness (or the
combination of strategy-proofness and non-bossiness: recall that for strict preferences, group
strategy-proofness coincides with the combination of strategy-proofness and non-bossiness).

Theorem 8. For multiple-type housing markets with strict preferences, only bTTC satisfies

• individual rationality,

• group strategy-proofness (or the combination of strategy-proofness and non-bossiness),
and

• pairwise efficiency.

Quite interestingly, this characterization is also valid for (i) lexicographic preferences and (ii)
separable preferences, even if we weaken group strategy-proofness to the combination of strategy-
proofness and non-bossiness (recall that for separable preferences, group strategy-proofness is
stronger than the combination of strategy-proofness and non-bossiness).
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Theorem 9. For multiple-type housing markets with (i) lexicographic preferences and (ii) sep-
arable preferences, only bTTC satisfies

• individual rationality,

• strategy-proofness,

• non-bossiness, and

• pairwise efficiency.

Corollary 5. For multiple-type housing markets with (i) lexicographic preferences and (ii) sep-
arable preferences, only bTTC satisfies

• individual rationality,

• group strategy-proofness, and

• pairwise efficiency.

We prove Theorems 8 and 9 in Appendix D.2. Here we only explain the intuition of the unique-
ness part of the proof. We first consider lexicographic preferences. On this domain, consider a top
trading cycle that forms at the first step of bTTC. We first show that, by individual rationality,
strategy-proofness, non-bossiness, and pairwise efficiency, agents in this top trading cycle receive
their bTTC allotments. We can then consider agents who trade at the second step of bTTC by
following the same arguments as for first step trading cycles, and so on. Thus, we find that on
this domain, only bTTC satisfies individual rationality, strategy-proofness, non-bossiness, and
pairwise efficiency. Then, following a similar approach as in the proof of Theorem 6, we extend
this result to the domain of separable preference profiles and strict preference profiles.

We provide four additional remarks to facilitate the reader’s understanding.

Remark 8. Interpretation of Theorems 8 and 9
How to interpret our characterization of bTTC? There are three ways to explain it. First, as a
positive result, Theorems 8 and 9 demonstrate that bTTC is identified by a list of properties.
Consequently, the social planner should select bTTC if he cares about these properties. Second,
Theorems 8 and 9 reveal the trade-off between efficiency and strategic robustness (group strategy-
proofness) in the presence of individual rationality : if the social planner wishes to achieve
stronger efficiency, he needs to weaken group strategy-proofness. Third, Theorems 8 and 9
suggest that bTTC can be used as a benchmark for the reallocation of multiple-type housing
markets, in the sense that no mechanism should perform worse than bTTC. ⋄

Remark 9. Independence of Theorems 8 and 9
Theorem 8 is not a more general result or a trivial extension of Theorem 9 (Corollary 5), and
Theorem 9 (Corollary 5) is not a direct implication of Theorem 8. There is a logical independence
between proving a characterization on different domains.3 On the one hand, we may have a
characterization on some domain but not on a subdomain. For instance, for Shapley-Scarf
housing markets, the characterization of TTC for strict preferences (Result 3) is not necessarily

3For a detailed discussion of the role of domains in characterizations, see Thomson (2022, Section 11.3).
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valid on some subdomain (Bade, 2019). Conversely, a mechanism satisfying a given list of
properties may not exist on a larger domain, even if it does exist on a smaller domain. For
instance, while our characterization of cTTC (Theorem 6) is valid on the domain of separable
preference profiles, it may not hold true in certain superdomains (Theorem 7). ⋄

Remark 10. Constraints and efficiency
Trading constraints frequently occur in reality (Shinozaki and Serizawa, 2022). On the one
hand, constraints may exclude some desirable outcomes, on the other hand, they may help us
to guarantee positive results (Raghavan, 2015). For instance, to ensure the existence of the
core, Kalai et al. (1978) impose restrictions on trades among certain agents and Pápai (2007)
restricts the set of feasible trades. However, this also raises a new question for the mechanism
designer: which constraint should be enforced? In other words, if any constraint is admissible,
which constraint is the most suitable? Theorems 8 and 9 partially answer this question: if we
still want to achieve some efficiency, then, without loss of other properties, allowing agents to
trade their endowments completely is sufficient and necessary to achieve pairwise efficiency. ⋄

Remark 11. Non-bossiness
It is surprising that in our characterization of bTTC, non-bossiness is also involved, in comparison
with Result 6. Why is this the case? For Shapley-Scarf housing markets, each agent only
demands one object. Thus, each agent will trade within only one coalition. Therefore, non-
bossiness is redundant since each agent can only influence the coalition in which he is involved.
However, the same is not true for multiple-type housing markets because each agent may trade
different objects with different coalitions. To see this point, refer to Example 18 in Appendix D.3.
⋄

Moreover, based on our results (Theorems 6, 8, and 9), we also have the following observation,
which essentially shows a trade-off between our two efficiency properties in the presence of
individual rationality and strategy-proofness.

Observation 1. For multiple-type housing markets, even with separable preferences, an indi-
vidually rational and strategy-proof mechanism cannot satisfy both coordinatewise efficiency
and pairwise efficiency.

5.2.3. Other efficiency properties

We will now discuss other efficiency properties that are derived from coordinatewise efficiency
and pairwise efficiency.

First, we consider a weaker version of coordinatewise efficiency that only involves two agents.

Let R ∈ RN . An allocation y ∈ X is a pairwise coordinatewise improvement of allocation
x ∈ X at R if (i) y is a coordinatewise improvement of x, and (ii) y and x only differ in two
agents i, j ∈ N at one type t ∈ T , i.e., for some t ∈ T and for some distinct i, j ∈ N , yti = xt

j,
ytj = xt

i, for each k ∈ N \ {i, j}, ytk = xt
k, and for each τ ∈ T \ {t}, yτ = xτ . An allocation is

pairwise coordinatewise efficient at R if there is no pairwise coordinatewise improvement.

Definition (Pairwise coordinatewise efficiency).
A mechanism on RN is pairwise coordinatewise efficient if it only selects pairwise coordinatewise
efficient allocations.
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Our results in Theorems 6 and 7 are still true if we replace coordinatewise efficiency with
pairwise coordinatewise efficiency.

Theorem 10. For multiple-type housing markets

• with (i) lexicographic preferences and (ii) separable preferences, only cTTC satisfies indi-
vidual rationality, strategy-proofness, and pairwise coordinatewise efficiency.

• with strict preferences, no mechanism satisfies individual rationality, strategy-proofness,
and pairwise coordinatewise efficiency.

The proofs are the same as in Theorems 6 and 7 and hence we omit them. Note that The-
orem 10 implies that pairwise coordinatewise efficiency and pairwise efficiency are logically
independent: cTTC satisfies the former but violates the latter, and bTTC satisfies the latter
but violates the former.

Second, we consider a stronger version of pairwise efficiency that involves larger coalitions:
coalitional efficiency (Tierney, 2022).4 This property says that the selected allocation cannot be
improved by the reallocation of allotments, keeping bundled allotments intact.

Let R ∈ RN . An allocation x ∈ X is coalitionally efficient at R if there is no coalition
S ≡ {i1, i2, . . . , iK} ⊆ N such that for each iℓ ∈ S, xiℓ Piℓ xiℓ+1

(mod K).5

Definition (Coalitional efficiency).
A mechanism on RN is coalitionally efficient if it only selects coalitionally efficient allocations.

Our characterization of bTTC is still valid if we replace pairwise efficiency with coalitional
efficiency, because bTTC satisfies coalitional efficiency from the underlying TTC algorithm for
the restricted market R|e.

Theorem 11. For multiple-type housing markets (i) with lexicographic preferences, (ii) with
separable preferences, and (iii) with strict preferences, only bTTC satisfies individual rational-
ity, group strategy-proofness (or the combination of strategy-proofness and non-bossiness), and
coalitional efficiency.

All the efficiency properties discussed above have certain constraints on efficiency improve-
ments. For example, coordinatewise efficiency and pairwise coordinatewise efficiency only con-
sider efficiency improvements within one type ({ot1, . . . , otn}), while pairwise efficiency and coali-
tional efficiency only consider efficiency improvements within the full endowments of a coalition
(S ⊆ N with {ei}i∈S). A natural question is whether it is possible to consider something in
between, such as efficiency improvements for more than one type but less than all types.
Let R ∈ RN . An allocation x ∈ X is T ′-types pairwise efficient at R if there is no pair of

agents {i, j} ⊆ N and a strict subset of types T ′ ⊊ T such that yi Pi xi and yj Pj xj, where
yi = ((xt

j)t∈T ′ , (xt
i)t∈T\T ′) and yj = ((xt

i)t∈T ′ , (xt
j)t∈T\T ′).

Definition (T ′-types pairwise efficiency).
A mechanism on RN is T ′-types pairwise efficient if it only selects T ′-types pairwise efficient
allocations.

4Tierney (2022) originally refers to it as conditional optimality.
5For Shapley-Scarf housing markets, coalitional efficiency is equivalent to Pareto efficiency.
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Remark 12. Restriction on |T ′|
By the definition of T ′-types pairwise efficiency, it is easy to see that T ′-types pairwise efficiency
is stronger than pairwise coordinatewise efficiency. If we do not assume that T ′ ⊊ T , i.e.,
|T ′| = m is also possible, then this new property is also stronger than pairwise efficiency. By
Observation 1, we know that no individually rational and strategy-proof mechanism satisfies it.
Given T ′ ⊊ T , if there are only two types, i.e., |T | = m = 2, then T ′-types pairwise efficiency

coincides with pairwise coordinatewise efficiency. ⋄

The following result reveals the strength of T ′-types pairwise efficiency.

Theorem 12. If |T | = m > 2, then even for multiple-type housing markets with lexicographic
preferences, no mechanism satisfies individual rationality, strategy-proofness, and T ′-types pair-
wise efficiency.

Proof. Let N = {1, 2} and T = {1, 2, 3}. Let R ∈ RN
l be such that

R1 : o
1
2,o

1
1,o

3
1, o

3
2, o

2
2,o

2
1.

R2 : o
1
1,o

1
2, o

3
1,o

3
2, o

2
1,o

2
2.

So, agent 1 would like to trade type-1 and type-2 but not type-3, and agent 2 would like to
trade all types.
Let f be individually rational and T ′-types pairwise efficient. Thus, by T ′-types pairwise

efficiency of f , two agents trade in type-1 and type-2, i.e., f 1
1 (R) = o12, f

1
2 (R) = o11 and f 2

1 (R) =
o22, f

2
2 (R) = o21. We only need to consider the allocation in type-3. There are two cases.

Case 1. Agents trade in type-3, i.e., f 3
1 (R) = o32 and f 3

2 (R) = o31. Then f1(R) = (o12, o
2
2, o

3
2).

Let R′
1 : o3

1, o
3
2, o

1
2,o

1
1, o

2
2,o

2
1. By individual rationality of f , agent 1 receives his type-3 en-

dowment, i.e., f 3
1 (R

′
1, R2) = o31. By T ′-types pairwise efficiency of f , agents 1 and 2 still

trade in type-1 and type-2 at (R′
1, R2), i.e., f

1
1 (R

′
1, R2) = o12, f

1
2 (R

′
1, R2) = o11 and f 2

1 (R
′
1, R2) =

o22, f
2
2 (R

′
1, R2) = o21. Thus, f1(R

′
1, R2) = (o12, o

2
2, o

3
1) P1 (o

1
2, o

2
2, o

3
2) = f1(R), which implies that f

is not strategy-proof.

Case 2. Agents do not trade in type-3, i.e., f 2
1 (R) = o21 and f 2

2 (R) = o22. Then f2(R) =
(o11, o

2
1, o

3
2).

Let y = (y1, y2) = ((o12, o
2
1, o

3
2), (o

1
1, o

2
2, o

3
1)), i.e., agents only trade in type-1 and type-3.

Let R′
2 : o31,o

3
2,o

1
2, o

1
1,o

2
2, o

2
1. If agents do not trade in type-3 at (R1, R

′
2), then by individual

rationality of f , f2(R1, R
′
2) = o2 and hence f(R1, R

′
2) = e. This contradicts T ′-types pairwise

efficiency of f , since y1 P1 o1 and y2 P2 o2. Thus, type-3 is traded at (R1, R
′
2). Therefore, by

individual rationality of f , type-1 is also traded, otherwise o1P1f1(R1, R
′
2). Thus, f

1
2 (R1, R

′
2) = o11

and f 3
2 (R1, R

′
2) = o31. So, f2(R1, R

′
2) P2 (o

1
1, o

2
1, o

3
2) = f2(R), which implies that f is not strategy-

proof.

We conclude this section with an important remark.

Remark 13. Constrained efficiency improvements
Based on Result 5, we know that for an efficiency property based on efficiency improvements,
constraints on efficiency improvements must be made in order to ensure compatibility with
individual rationality and strategy-proofness.6 In this section, we examine two categories of

6Recall that Pareto efficiency is an efficiency property based on efficiency improvements without any con-
straints over improvements.
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Table 5.1.: efficiency properties and their implicit restriction conditions

CE pE pCE cE T ′-pE

constrained improvements for one type + − + − −

constrained improvements for all types − + − + −

constrained improvements for two agents − + + − +

compatibility with IR and SP + (T6) + (T8) + (T10) + (T11) − (T12)

We present a summary of our results in the table above. The first row describes five efficiency proper-
ties that we consider in this section. In the first column, the first three items represent three restriction
conditions that we discussed in Remark 13, and the last item means the compatibility with individual
rationality and strategy-proofness.
The notation “+” (“−”) in a cell means that the property satisfies (violates) the condition. The no-
tation for the first three rows is determined by the definition of our efficiency properties. The com-
patibility with individual rationality and strategy-proofness for the last row is obtained from Theo-
rems 6, 8, 10, 11, and 12, respectively.
Abbreviations in the first row respectively refer to:
CE stands for coordinatewise efficiency,
pE stands for pairwise efficiency,
pCE stands for pairwise coordinatewise efficiency,
cE stands for coalitional efficiency, and
T ′-pE stands for T ′-types pairwise efficiency.

constraints, those regarding the constrained improvements with a certain number of object
types, and those pertaining to the constrained improvements with a certain number of agents,
to guarantee compatibility with individual rationality and strategy-proofness. On the one hand,
when it comes to restrictions over object types, only two constraints prove to be useful: (i)
improvements for one type only and (ii) improvements for all types together. On the other
hand, restrictions over agents may be unnecessary. To be more precise, even if we only consider
improvements for two agents, we can only achieve impossibility as long as there are no restrictions
on object types. ⋄

5.3. Discussion

We finish the chapter with a discussion of other characterizations of TTC extensions.

Another characterization of cTTC

Here, we discuss the relation between our characterization of cTTC in this chapter (Theorem 6)
and the characterizations presented in the previous chapter on the basis of individual ratio-
nality, strategy-proofness, non-bossiness, and unanimity (Theorems 3 and 4). To distinguish
between them, note that Theorems 3 and 4 are established by weakening Pareto efficiency to
unanimity and strengthening strategy-proofness to the combination of strategy-proofness and
non-bossiness, whereas in Theorem 6 we do not require non-bossiness. On the other hand, in
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Theorem 6 we use coordinatewise efficiency, which is stronger than unanimity. Hence, the incen-
tive property in Theorem 6 is weaker while the efficiency property is stronger than in Theorems 3
and 4, and these two characterizations are logically independent.

Another characterization of bTTC

Here, we discuss the relation between our characterization of bTTC (Theorems 8 and 9) and
Feng et al. (2022b)’s characterization of bTTC by means of individual rationality, group strategy-
proofness and anonymity.7 Since (i) there is no logical relation between anonymity and pairwise
efficiency, and (ii) the incentive property in our characterization for separable preferences is
weaker, our results are logically independent.

Object allocation problems with multi-demands and with ownership

Next, we compare our results to Altuntaş et al. (2021) and Biró et al. (2022a). Each considers
an extension of Shapley-Scarf housing markets.
Altuntaş et al. (2021) consider a general model for allocating objects to agents who can

consume any set of objects. Each object is owned by an agent, but now each agent has strict
preferences over all objects and his preferences over sets of objects are monotonically responsive
to these “objects-preferences”. In our model, we impose more structure by assuming that (i) the
set of objects is partitioned into exogenously given types and (ii) each agent owns and wishes to
consume one object of each type. For this more general model, Altuntaş et al. (2021) consider
another TTC extension: the “generalized top trading cycles mechanism (gTTC),” which satisfies
individual rationality and Pareto efficiency but violates strategy-proofness. By strengthening
individual rationality and weakening strategy-proofness, they provide a characterization of gTTC
for lexicographic preferences. Thus, their results complement ours: if we exclude strategy-
proofness, then there exists another TTC extension, which performs better than our mechanisms
in terms of efficiency.

Biró et al. (2022a) consider another extension where each agent owns a set of homogeneous
and agent-specific objects, and they consider a modification of bTTC to their model with the
“endowments quota constraint”. This constraint means that for each agent, the number of
objects he can consume is the same as the number of objects he is endowed with. They show
that this modification is neither Pareto efficient nor strategy-proof. Thus, their results show the
limitation of bTTC in their model, while in our model, bTTC is group strategy-proof.

7Anonymity says that the mechanism is defined independently of the names of the agents. And they show
that for separable preferences and for strict preferences, only the class of hybrid mechanisms between the no-trade
mechanism and bTTC, satisfies all of their properties.

48



6. Appendices

A. The generalized indivisible goods allocation model

A generalized indivisible goods allocation problem (as first introduced by Sönmez, 1999) is a list
(N,ω,Af , R) where N = {1, . . . , n} is a finite set of agents and for each i ∈ N , ω(i) denotes the
endowment of agent i; we will interpret ω(i) as a set of objects. An allocation is a multi-valued
function x : N ⇒

⋃
i∈N ω(i) such that (i) for any i, j ∈ N , i ̸= j, x(i) ∩ x(j) = ∅ (no two agents

can receive the same object) and (ii)
⋃

i∈N x(i) =
⋃

i∈N ω(i) (there is no free disposal); A denotes
the set of all allocations. Next, a subset Af ⊆ A is exogenously fixed as the set of all feasible
allocations. For each agent i ∈ N , agent i’s preference relation Ri is a complete and transitive
binary relation on Af . The set R of preferences over allocations in Af is assumed to satisfy the
following properties.

Assumption A (Sönmez, 1999): An agent is indifferent between an allocation and the en-
dowment allocation if and only if he keeps his endowment, i.e., for each i ∈ N , each Ri ∈ R,
and each x ∈ Af ,

x Ii ω if and only if x(i) = ω(i).

Assumption B (Sönmez, 1999): For any preference relation Ri (i ∈ N), and any allocation
x that is at least as good as the endowment allocation, there exists a preference relation R′

i such
that (i) all allocations that are better than x at Ri are better than x at R′

i, (ii) all allocations
that are worse than x at Ri are worse than x at R′

i, and (iii) the endowment allocation ranks
right after (or indifferent to) x. Formally, for each i ∈ N , each Ri ∈ R, and each x ∈ Af with
x Ri ω, there is R′

i such that

1. for all y ∈ Af \ {x}, y Ri x if and only if y R′
i x,

2. for all y ∈ Af \ {x}, x Ri y if and only if x R′
i y,

3. for all y ∈ Af \ {x}, x Pi y if and only if x P ′
i y and x R′

i ω R′
i y.

Assumption B is a preference domain richness condition.

The above general model can be specified to a range of well-known models such as Shapley-
Scarf housing markets (Shapley and Scarf, 1974), marriage and roommate markets (Gale and
Shapley, 1962), hedonic coalition formation problems (Banerjee et al., 2001), and network for-
mation problems (Jackson and Wolinsky, 1996).

Apart from domain richness Assumption B, our multiple-type housing market problems also
fits the generalized indivisible goods allocation model as introduced by Sönmez (1999): for each
i ∈ N , ω(i) = {o1i , . . . , omi }, Af = X, and agents’ preferences over allotments are extended
straightforwardly to preferences over feasible allocations by assuming that there are no con-
sumption externalities, i.e., any agent is indifferent between two allocations at which he receives
the same allotment. Furthermore, by our assumption that agents’ preferences over allotments
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are strict, Assumption A is satisfied. However, the preference domain richness Assumption B is
violated for our marginal type-preference based domains, even for the larger preference domain
of separable preferences:

Consider R ∈ RN
s with N = {1, 2}, T = {H(ouse), C(ar)}, O = {H1, H2, C1, C2}, each agent

i’s endowment is (Hi, Ci), and agent 1’s marginal preferences are

RH
1 : H2, H1

and
RC

1 : C2, C1.

Thus, separability implies that either

R1 : (H2, C2), (H1, C2), (H2, C1), (H1,C1), · · ·

or
R1 : (H2, C2), (H2, C1), (H1, C2), (H1,C1), · · · .

It is not possible to derive separable preferences R′
1 over agent 1’s allotments such that (H2, C2)

is the best allotment (this is only the case when both objects are acceptable and ranked first in
the marginal preferences) and the endowment is ranked right behind, i.e.,

R′
1 : (H2, C2), (H1,C1), · · ·

is not possible. This implies that no separable preference relation R′
1 over allocations satisfying

Assumption B can be derived.

Takamiya (2009) also considered generalized indivisible goods allocation problems but he
imposed the following conditions on preferences, which are slightly different from Assumptions A
and B in Sönmez (1999).

Condition A (Takamiya, 2009):
(i) There are no consumption externalities, i.e., for each i ∈ N , each Ri ∈ R, and each x, y ∈ Af ,
if x(i) = y(i) then x Ii y;
(ii) For any allocation x, each agent i can rank allocations that contain x(i) as his most preferred
allocations, and rank allocations that contain his endowment right behind, i.e., for each i ∈ N
and each x ∈ Af , there exists a preference relation Ri ∈ R such that
(a) for all y ∈ Af such that y(i) ̸= x(i), x Pi y; and
(b) for all y ∈ Af such that y(i) ̸∈ {x(i), ω(i)}, ω Pi y.

1

Condition A(ii) is a preference domain richness condition.

Condition B (Takamiya, 2009): If a coalition S is autarkic at two feasible allocations x and
y, which means that in both allocations they reallocated their endowments among themselves,
then a new feasible allocation is obtained by allocating allotments according to x to all agents
in S and by allocating allotments according to y to all agents in N \ S, i.e., if there are two
feasible allocations x, y ∈ Af and a coalition S ⊆ N such that ∪i∈Sx(i) = ∪i∈Sy(i) = ∪i∈Sω(i),
then ((x(i))i∈S, (y(i))i∈N\S) ∈ Af .

1In our model, where Takamiya’s Condition A(i) is satisfied, we can restate Condition A in terms of strict
preferences over allotments as follows: for each i ∈ N and each allotment xi, there exists a preference relation
Ri ∈ R such that for all allotments x′

i ̸∈ {oi, xi}, xi Ri oi Ri x
′
i.
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Condition B is a richness condition on the set of feasible allocations.

Apart from domain richness Condition A(ii), our multiple-type housing market problems also
fits the generalized indivisible goods allocation model considered by Takamiya (2009): we extend
preferences over allotments to feasible allocations by assuming Condition A(i) and since coali-
tions can freely reallocate endowments among themselves, Condition B is satisfied as well. The
same example that shows that for separable preferences Sönmez’s preference domain richness
Assumption B is not satisfied, shows that Takamiya’s preference domain richness Condition A(ii)
is not satisfied either.

To summarize, in our model with separable preferences, both of the domain richness conditions
that were used before give the flexibility to position an agent’s endowment right behind an
allotment. The intuitive use of this condition in proofs is to be able to truncate an agent’s
preferences right behind a specific allotment and guarantee that by individual rationality, the
agent receives his endowment, his previously received allotment, or a better allotment. In our
model, neither preference domain richness condition is satisfied; hence, the corresponding results
of Sönmez (1999) and Takamiya (2009) need not hold anymore. We show how the lack of domain
richness in our model changes the results compared to Takamiya’s results.

B. Auxiliary properties and results

In Appendix B, we introduce auxiliary properties and prove results that help us to prove The-
orem 3 in Appendix C.1. While some of the results in Appendix B can also be proven for
separable preferences, we focus on lexicographic preferences because Theorem 3 deals with such
preferences.

We introduce the well-known property of (Maskin) monotonicity, i.e., the invariance under
monotonic transformations of preferences at a selected allocation.
Let i ∈ N . Given preferences Ri ∈ Rl and an allotment xi, let L(xi, Ri) = {yi ∈ Πt∈TO

t |
xi Ri yi} be the lower contour set of Ri at xi. Preference relation R′

i ∈ Rl is a monotonic
transformation of Ri at xi if L(xi, Ri) ⊆ L(xi, R

′
i). Similarly, given a preference profile R ∈ RN

l

and an allocation x, a preference profile R′ ∈ RN
l is a monotonic transformation of R at x if for

each i ∈ N , R′
i is a monotonic transformation of Ri at xi.

Monotonicity: For each R ∈ RN
l and each monotonic transformation R′ ∈ RN

l of R at f(R),
f(R′) = f(R).

We show that strategy-proofness and non-bossiness imply monotonicity.

Lemma 3. If a mechanism on RN
l is strategy-proof and non-bossy, then it is monotonic.

Proof. The proof is a straightforward extension of Takamiya (2001, Theorem 4.12) and Pápai
(2001, Lemma 1). Suppose mechanism f on RN

l is strategy-proof and non-bossy. Let R ∈ RN
l

and let x = f(R). Let R′ ∈ RN
l be a monotonic transformation of R at x. Let i ∈ N and

y = f(R′
i, R−i). By strategy-proofness of f , we have xiRi yi, which implies that yi ∈ L(xi, Ri) ⊆

L(xi, R
′
i). However, by strategy-proofness of f , we also have yi R

′
i xi. Thus, since yi ∈ L(xi, R

′
i),

xi = yi. Then, by non-bossiness of f , we have x = y. By applying this argument sequentially
for all agents in N\{i}, we find that f(R) = x = f(R′).
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The converse of Lemma 3 is not true: the domain of lexicographic preferences is not rich
enough to satisfy Alva’s (2017) preference domain richness condition two-point connectedness.

Next, we introduce a “marginal version” of a monotonic preference transformation. Let i ∈ N .
Given preferences Ri ∈ Rl and an allotment xi, for each type t, consider the associated marginal
preferences Rt

i and marginal allotment xt
i. Let L(xt

i, R
t
i) = {yti ∈ Ot | xt

i R
t
i y

t
i} be the lower

contour set of Rt
i at x

t
i. Marginal preference relation R̂t

i is a monotonic transformation of Rt
i at

xt
i if L(x

t
i, R

t
i) ⊆ L(xt

i, R̂
t
i).

Fact 1. Let xi be an allotment. Let Ri, R̂i be lexicographic preferences such that (1) πi = π̂i

and (2) for each t ∈ T , R̂t
i is a monotonic transformation of Rt

i at x
t
i. Then, R̂i is a monotonic

transformation of Ri at xi.

Proof. We show that L(xi, Ri) ⊆ L(xi, R̂i). Let yi ∈ L(xi, Ri) with yi ̸= xi. Then, xi Pi yi.

Restate yi and xi as yπi
i = (y

πi(1)
i , . . . , y

πi(m)
i ) and xπi

i = (x
πi(1)
i , . . . , x

πi(m)
i ), respectively. Let k

be the first type for which xi and yi assign different objects, i.e., for all l < k, y
πi(l)
i = x

πi(l)
i and

y
πi(k)
i ̸= x

πi(k)
i . Since xi Pi yi and preferences are lexicographic, we have x

πi(k)
i P

πi(k)
i y

πi(k)
i . Thus,

y
πi(k)
i ∈ L(x

πi(k)
i , R

πi(k)
i ) ⊆ L(x

πi(k)
i , R̂

πi(k)
i ), which implies that x

πi(k)
i P̂

πi(k)
i y

πi(k)
i . Then, since

πi = π̂i, xi P̂i yi, i.e., yi ∈ L(xi, R̂i).

Therefore, by monotonicity, if an agent always receives an allotment and shifts each of its
objects up in the marginal preferences (without changing his importance order), he still receives
that allotment and the allotments of the other agents do not change either.

C. Proofs in Chapter 2

Now, for lexicographic preferences, we introduce a new property, marginal individual rationality,
which is a stronger property than individual rationality.

Definition (Marginal individual rationality).
A mechanism f on RN

l is marginally individually rational if for each R ∈ RN
l , each i ∈ N , and

each t ∈ T , f t
i (R)Rt

i o
t
i.

Lemma 4. A mechanism on RN
l is unanimous, individually rational, strategy-proof, and non-

bossy, then it is marginally individually rational.

Proof. Suppose mechanism f on RN
l is unanimous, individually rational, strategy-proof, non-

bossy, and not marginally individually rational, i.e., there exist a preference profile R ∈ RN
l , an

agent i ∈ N , and a type t ∈ T such that oti P
t
i f

t
i (R). Then, by individual rationality of f , we

know that t ̸= πi(1).

Let x ≡ f(R). Consider a preference profile R̂ ∈ RN
l such that

for agent i,

• R̂t
i : o

t
i, x

t
i, . . . ,

• for each τ ∈ T\{t}, R̂τ
i : xτ

i , . . . , and

• π̂i = π;
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and for each agent j ∈ N\{i},

• for each τ ∈ T , R̂τ
j : xτ

j , . . . , and

• π̂j = πj.

Note that, by Fact 1, R̂ is a monotonic transformation of R at x. By Lemma 3, f is monotonic.
Thus, f(R̂) = x.

Next, consider a preference profile (R̄i, R̂−i) ∈ RN
l , where R̄i is such that

• for each τ ∈ T , R̄τ
i = R̂τ

i , and

• π̄i(1) = t.

Note that R̄i can be interpreted as a linear order over all objects such that R̄i : o
t
i, . . ., i.e., object

oti is the most preferred object.

Let y ≡ f(R̄i, R̂−i). By individual rationality of f , yti = oti. Thus, yi ̸= xi. By strategy-
proofness of f , xi = f(R̂i, R̂−i) P̂i f(R̄i, R̂−i) = yi. Since agent i gains in type t by misreporting
at R̂ (i.e., yti = oti P̂

t
i f

t
i (R̂) = xt

i), he must lose in some other more important type according to
π̂i. That is, there is a type t′ ̸= t such that (1) π̂−1

i (t′) < π̂−1
i (t) and (2) xt′

i P̂
t′
i yt

′
i . In particular,

xt′
i ̸= yt

′
i .

Next, consider a preference profile R̄ ≡ (R̄i, R̄−i) such that

for each agent j ∈ N\{i},

• R̄t
j : y

t
j, . . . ,

• for each τ ∈ T\{t}, R̄τ
j = R̂τ

i , and

• π̄j = π̂j.

Note that the only relevant difference between R̄ and (R̄i, R̂−i) is that under R̄, each agent
j ̸= i positions ytj as his most preferred type-t object. Thus, R̄ is a monotonic transformation of

(R̄i, R̂−i) at y. Therefore, by monotonicity of f , f(R̄) = y.

However, under R̄, for each agent k ∈ N , his most preferred allotment is zk = (x1
k, . . . , x

t−1
k , ytk,

xt+1
k , . . . , xm

k ). Note that z = (zk)k∈N ∈ X is an allocation because z is a mixture of y (for type
t) and x (for other types). Thus, by unanimity of f , f(R̄) = z. So, y = z. However, for type t′,
zt

′
i = xt′

i ̸= yt
′
i , a contradiction.

C.1. Proof of Theorem 3: uniqueness

Proof of Theorem 3: uniqueness. Suppose that there is a mechanism f : RN
l → X, differ-

ent from the cTTC mechanism, that satisfies the properties listed in Theorem 3 (by Lemma 2,
ontoness and unanimity can be used interchangeably). Then, there is a market R such that
y ≡ f(R) ̸= cTTC(R) ≡ x. In particular, there is a type t such that (yt1, . . . , y

t
n) ̸= (xt

1, . . . , x
t
n).

By Lemma 3, both mechanisms, f and cTTC, are monotonic. By Lemma 4, both mechanisms,
f and cTTC, are marginally individually rational. Since both mechanisms are marginally in-
dividually rational, for each i ∈ N and each τ ∈ T , yτi R

τ
i o

τ
i and xτ

iR
τ
i o

τ
i . So, we can define a

preference profile R̂ ∈ RN
l such that
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for each agent i ∈ N ,

• R̂t
i :

{
xt
i, y

t
i , o

t
i, . . . if xt

i R
t
i y

t
i

yti , x
t
i, o

t
i, . . . if yti R

t
i x

t
i

• for each τ ∈ T\{t}, R̂τ
i : yτi , o

τ
i , . . . , and

• π̂i = πi.

Note that, by Fact 1, R̂ is a monotonic transformation of R at y. Since f is monotonic, f(R̂) = y.
Furthermore, since R̂t is a monotonic transformation of Rt at xt, monotonicity of the TTC
mechanism implies cTTCt(R̂) = TTC(R̂t) = xt.

Next, consider a preference profile R̄ ∈ RN
l such that

for each agent i ∈ N ,

• R̄t
i : x

t
i, o

t
i, . . . ,

• for each τ ∈ T\{t}, R̄τ
i = R̂τ

i , and

• π̄i = πi.

Note that the only relevant difference between R̄ and R̂ is that under R̄, each agent i ∈ N
positions xt

i as his most preferred type-t object and his endowment oti as his second preferred.

Under R̄, each agent i’s most preferred allotment is zi ≡ (y1i , . . . , y
t−1
i , xt

i, y
t+1
i , . . . , ymi ). Note

that z = (zi)i∈N ∈ X is an allocation because z is a mixture of x (for type t) and y (for other
types). Thus, by unanimity of f , f(R̄) = z.

Recall that since (xt
1, . . . , x

t
n) = cTTCt(R̂) = TTC(R̂t), (xt

1, . . . , x
t
n) is obtained by applying

the TTC algorithm to preference profile R̂t. For each i ∈ N , let si be the step of the TTC
algorithm at which agent i receives object xt

i. Without loss of generality, assume that if i < i′

then si ≤ si′ .

Next, we will show that f(R̂) = z by using that f(R̄) = z and replacing, step-by-step, each R̄i

with R̂i. More specifically, we will replace the individual preferences in the order n, n− 1, . . . , 1.

We first show that f(R̄−n, R̂n) = z. Suppose xt
n R̂t

n ytn. Then, (R̄−n, R̂n) is a monotonic
transformation of R̄ at z. By monotonicity of f , f(R̄−n, R̂n) = f(R̄) = z.

Now suppose ytn P̂ t
n xt

n. Let τ ∈ T such that πn(τ) = 1 < πn(t) (if πn(t) = 1, then skip this
step). Since f is strategy-proof, preferences are lexicographic, and τ is the most important type
for agent n, we have f τ

n(R̄−n, R̂n)R̂
τ
nf

τ
n(R̄). Since τ ̸= t, f τ

n(R̄) = zτn = yτn and f τ
n(R̄−n, R̂n)R̂

τ
ny

τ
n.

Since τ ̸= t, it follows from the definition of R̂τ
n that yτn is the best type-τ object. So,

f τ
n(R̄−n, R̂n) = yτn. Now one can, sequentially, from more to less important types, apply similar
arguments to show that

for each type t′ ∈ T with πn(t
′) < πn(t), f

t′

n (R̄−n, R̂n) = yt
′

n = f t′

n (R̄). (6.1)

Since f ismarginally individually rational, f t
n(R̄−n, R̂n) ∈ {xt

n, y
t
n, o

t
n}. Suppose f t

n(R̄−n, R̂n) =
otn and otn ̸= xt

n. Then, f t
n(R̄) = ztn = xt

n P̂
t
n o

t
n = f t

n(R̄−n, R̂n), which together with (6.1) would
contradict the strategy-proofness of f . Hence, f t

n(R̄−n, R̂n) ∈ {xt
n, y

t
n}.

54



Suppose that f t
n(R̄−n, R̂n) = ytn. By the definition of the TTC algorithm, xt

n is agent n’s
most preferred type-t object among the remaining objects at Step sn of the TTC algorithm at
preference profile R̂t. Therefore, object ytn is removed (i.e., assigned to some agent) at some
Step s∗ < sn of the TTC algorithm at preference profile R̂t.

Let C be the trading cycle of the TTC algorithm at preference profile R̂t that contains ytn.
Suppose C only contains one agent, say j ̸= n. Then, among all objects present at Step s∗, agent j
most prefers his own endowment, i.e., otj = ytn. Hence, x

t
j = cTTCt

j(R̂) = TTCj(R̂
t) = ytn = otj.

So, by definition of R̄, we have that at (R̄−n, R̂n) agent j’s marginal preferences of type t are given
by R̄t

j : otj, . . .. By marginal individual rationality of f , f t
j (R̄−n, R̂n) = ytn, which contradicts

f t
n(R̄−n, R̂n) = ytn.

Hence, C consists of agents i1, i2, . . . , iK (with K ≥ 2) and type-t objects oti1 , . . . , o
t
iK

such
that n ̸∈ {i1, . . . , iK} and ytn ∈ {oti1 , . . . , o

t
iK
}. Without loss of generality, the cycle C is or-

dered (i1, i2, . . . , iK). Note that at (R̄−n, R̂n), for each ik ∈ {i1, . . . , iK}, agent ik’s marginal
preferences of type t are R̄t

ik
: otik+1

(= xt
ik
), otik , . . . (modulo K). Without loss of generality, as-

sume that ytn = oti1 . It follows from f t
n(R̄−n, R̂n) = ytn and marginal individual rationality of

f that f t
iK
(R̄−n, R̂n) = otiK . Subsequently, for each agent ik ∈ {i2, . . . , iK}, f t

ik
(R̄−n, R̂n) = otik .

Therefore, f t
i1
(R̄−n, R̂n) ̸= oti2 . Moreover, f t

i1
(R̄−n, R̂n) ̸= oti1 because f t

n(R̄−n, R̂n) = ytn = oti1 .

Thus, oti1 P̄i1 f t
i1
(R̄−n, R̂n), which violates marginal individual rationality of f . Therefore,

f t
n(R̄−n, R̂n) ̸= ytn. Hence,

f t
n(R̄−n, R̂n) = xt

n = f t
n(R̄). (6.2)

Having established (6.1) and (6.2), one can use arguments similar to those for (6.1) to show
that

for each type t′ ∈ T with πn(t
′) > πn(t), f

t′

n (R̄−n, R̂n) = yt
′

n = f t′

n (R̄). (6.3)

From (6.1), (6.2), and (6.3) it follows that for each type τ ∈ T , f τ
n(R̄−n, R̂n) = f τ

n(R̄). Hence,
fn(R̄−n, R̂n) = fn(R̄). By non-bossiness of f , f(R̄−n, R̂n) = f(R̄) = z.

By applying repeatedly the same arguments for agents i = n − 1, . . . , 1, we can sequentially
replace each R̄i with R̂i, and conclude that f(R̂) = f(R̄) = z. However, since (yt1, . . . , y

t
n) ̸=

(xt
1, . . . , x

t
n), there exists an agent j such that ytj ̸= xt

j. Hence, f t
j (R̂) = ytj ̸= xt

j = ztj, a
contradiction.

C.2. Proof of Theorem 4: uniqueness

Proof of Theorem 4: uniqueness. Suppose that mechanism f : RN
s → X satisfies the prop-

erties listed in Theorem 4 (by Lemma 2, ontoness and unanimity can be used interchangeably).
We will show that for each R ∈ RN

s , f(R) = cTTC(R). We introduce the following notation.
For any agent i ∈ N and any two separable preferences Ri, R̄i ∈ Rs, we write Ri ∼ R̄i if they
induce the same marginal preferences, i.e., for each t ∈ T , Rt

i = R̄t
i.

Let R ∈ RN
s such that each agent has lexicographic preferences, i.e., R ∈ RN

l . Since the
restriction of f to RN

l satisfies the properties listed in Theorem 3, it immediately follows from
Theorem 3 that f(R) = cTTC(R).

Let R ∈ RN
s such that only one agent does not have lexicographic preferences. We can assume,

without loss of generality, that R1 ∈ Rs\Rl and for each agent j ̸= 1, Rj ∈ Rl. Let y ≡ f(R).
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For each t ∈ T , define R′
1(t) ∈ Rl such that R′

1(t) ∼ R1 and the most important type of R′
1(t)

is type t. Since R1 ∼ R′
1(1) ∼ R′

1(2) ∼ · · · ∼ R′
1(m), it follows from the definition of cTTC that

x ≡ cTTC(R) = cTTC(R′
1(1), R−1) = cTTC(R′

1(2), R−1) = · · · = cTTC(R′
1(m), R−1). We will

show that y = x.

Let t ∈ T . From the case where each agent has lexicographic preferences, it follows that
f(R′

1(t), R−1) = cTTC(R′
1(t), R−1) = x. By strategy-proofness of f when moving from (R′

1(t),
R−1) to (R1, R−1), x1 = f1(R

′
1(t), R−1) R

′
1(t) f1(R1, R−1) = y1. Then, since R′

1(t) ∼ R1 and
R′

1(t) is a lexicographic preference relation where t is the most important type, xt
1 R

t
1 y

t
1.

Since for each t ∈ T , xt
1R

t
1 y

t
1 and since R1 ∈ Rs, we have x1R1 y1. By strategy-proofness of f

when moving from (R1, R−1) to (R′
1(t), R−1), we have that y1 = f1(R1, R−1)R1 f1(R

′
1(t), R−1) =

x1. Hence, x1 = y1. By non-bossiness of f , we have that y = f(R1, R−1) = f(R′
1(t), R−1) = x.

Let R ∈ RN
s such that exactly two agents do not have lexicographic preferences. We can

assume, without loss of generality, that R1, R2 ∈ Rs\Rl and for each agent j ̸= 1, 2, Rj ∈ Rl.
Let y ≡ f(R).

For each t ∈ T , define R′
2(t) ∈ Rl such that R′

2(t) ∼ R2 and the most important type of R′
2(t)

is type t. Since R2 ∼ R′
2(1) ∼ R′

2(2) ∼ · · · ∼ R′
2(m), it follows from the definition of cTTC that

x ≡ cTTC(R) = cTTC(R′
2(1), R−2) = cTTC(R′

2(2), R−2) = · · · = cTTC(R′
2(m), R−2). We will

show that y = x.

Let t ∈ T . At preference profile (R′
2(t), R−2), only agent 1 has non-lexicographic prefer-

ences. Thus, from the previous case, f(R′
2(t), R−2) = cTTC(R′

2(t), R−2) = cTTC(R) = x.
By strategy-proofness of f when moving from (R′

2(t), R−2) to (R2, R−2), we have that x2 =
f2(R

′
2(t), R−2) R

′
2(t) f2(R2, R−2) = y2. Then, since R′

2(t) ∼ R2 and R′
2(t) is a lexicographic

preference relation where t is the most important type, xt
2 R

t
2 y

t
2.

Since for each t ∈ T , xt
2 R

t
2 y

t
2 and since R2 ∈ Rs, we have x2 R2 y2. By strategy-proofness of

f when moving from (R2, R−2) to (R′
2(t), R−2), y2 = f2(R2, R−2)R2 f2(R

′
2(t), R−2) = x2. Hence,

x2 = y2. By non-bossiness of f , we have that y = f(R2, R−2) = f(R′
2(t), R−2) = x.

We can apply repeatedly the same arguments to obtain that for each k = 0, 1, . . . , n and
each preference profile R ∈ RN

s where exactly k agents have non-lexicographic preferences,
f(R) = cTTC(R). Thus, for each R ∈ RN

s , f(R) = cTTC(R).

C.3. Independence of properties in Chapter 2

The following examples establish the logical independence of the properties in Theorem 3 (Corol-
lary 2) on RN

l . We label the examples by the property/properties that is/are not satisfied.

Example 7 (Ontoness and unanimity).
The no-trade mechanism that always assigns the endowment allocation to each market is indi-
vidually rational, (group) strategy-proof, and non-bossy, but neither onto nor unanimous. ⋄

The no-trade mechanism in Example 7 is well-defined on RN
l , RN

s , and RN .

Example 8 (Individual rationality).
By ignoring property rights that are established via the endowments, we can easily adjust the
well-known mechanism of serial dictatorship to our setting: based on an ordering of agents,
we let agents sequentially choose their allotments. Serial dictatorship mechanisms have been
shown in various resource allocation models to satisfy Pareto efficiency (and hence ontoness
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and unanimity), strategy-proofness, and non-bossiness; since property rights are ignored, they
violate individual rationality (e.g., see Monte and Tumennasan, 2015, Theorem 1). ⋄

The serial dictatorship mechanism in Example 8 is well-defined on RN
l , RN

s , and RN .

Example 9 (Strategy-proofness).
We adapt so-called Multiple-Serial-IR mechanisms introduced by Biró et al. (2022b) for their
circulation model to our multiple-type housing markets model. A Multiple-Serial-IR mechanism
is determined by a fixed order of the agents. At any preference profile and following the order,
the mechanism lets each agent pick his most preferred allotment from the available objects such
that this choice together with previous agents’ choices is compatible with an individually rational
allocation. Formally,

Input. An order δ = (i1, . . . , in) of the agents and a multiple-type housing market R ∈ RN
l .

Step 0. Let Y (0) be the set of individually rational allocations in X.

Step 1. Let Y1 be the set of agent i1’s allotments that are compatible with some allocation in
Y (0), i.e., Y1 consists of all yi1 ∈ Πt∈TO

t for which there exists an allocation x ∈ Y (0) such that
xi1 = yi1 .

Let y∗i1 be agent i1’s most preferred allotment in Y1, i.e., for each yi1 ∈ Y1, y
∗
i1
Ri yi1 .

Let Y (1) ⊆ Y (0) be the set of allocations in Y (0) that are compatible with y∗i1 , i.e., Y (1) consists
of all x ∈ Y (0) with xi1 = y∗i1 .

Step k = 2, . . . , n. Let Yk be the set of agent ik’s allotments that are compatible with some
allocation in Y (k − 1).

Let y∗ik be agent ik’s most preferred allotment in Yk.

Let Y (k) ⊆ Y (k − 1) be the set of allocations in Y (k − 1) that are compatible with y∗ik .

Output. The allocation of the Multiple-Serial-IR mechanism associated with δ at R is
MSIR(δ, R) ≡ (y∗1, y

∗
2, . . . , y

∗
n).

Given an order δ, the associated Multiple-Serial-IR mechanism ∆ assigns to each market R the
allocation ∆(R) ≡ MSIR(δ, R).

Biró et al. (2022b) show that Multiple-Serial-IR mechanisms are individually rational and
Pareto efficient.

Next, we show that Multiple-Serial-IR mechanisms are non-bossy. Let δ = (i1, . . . , in) be an
order of the agents and let ∆ denote the associated Multiple-Serial-IR mechanism.
Let R ∈ RN

l , i ∈ N , and R′
i ∈ Rl. Let R′ ≡ (R′

i, R−i), x ≡ ∆(R), and y ≡ ∆(R′). Assume
yi = xi. We show that y = x.
Let ik ≡ i. Since yi = xi and for each ℓ = 2, . . . , k−1, k+1, . . . , n, R′

iℓ
= Riℓ , agent i1’s choice

at Step 1 under R′ is restricted in the same way as agent i1’s choice at Step 1 under R. Thus, since
R′

i1
= Ri1 , we have yi1 = xi1 . Similar arguments show that for each ℓ = 2, . . . , k−1, k+1, . . . , n,

yiℓ = xiℓ . Hence, ∆ is non-bossy.

In the context of multiple-type housing markets, Konishi et al. (2001) show that there is no
mechanism that is Pareto efficient, individually rational, and strategy-proof. Since Multiple-
Serial-IR mechanisms are Pareto efficient and individually rational, they are not strategy-proof.
We include a simple illustrative example for n = 2 agents and m = 2 types for completeness.

Let N = {1, 2} and T = {H(ouse), C(ar)}. For each i ∈ N , let (Hi, Ci) be agent i’s endow-
ment. Let R ∈ RN

l be given by
R1 : H2,H1, C2,C1,
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R2 : H1,H2,C2, C1.

Consider the Multiple-Serial-IR mechanism ∆ induced by δ = (1, 2), i.e., agent 1 moves first
(note that since there are only two agents, when agent 1 picks his allotment, the final allocation
is completely determined). Since allocation x ≡ ((H2, C2), (H1, C1)) is individually rational at
R and x1 = (H2, C2) is agent 1’s most preferred allotment, ∆(R) = x.
Next, consider R′

2 : C2, C1, H1,H2. Note that at (R1, R
′
2), only y ≡ ((H2, C1), (H1, C2)) and

e are individually rational. Thus, agent 1 can only pick y1 or o1. Since y1 R1 o1, agent 1 picks
y1 and hence ∆(R1, R

′
2) = y. Finally, we see that y2 R2 x2, which implies that agent 2 has an

incentive to misreport R′
2 at R. Hence, the Multiple-Serial-IR mechanism induced by δ = (1, 2)

is not strategy-proof. ⋄

The mechanism in Example 9 is well-defined on RN
l , RN

s , and RN .

Note that if n = 2, then any mechanism is non-bossy. Thus, for our last independence
example, we assume n > 2.

Example 10 (Non-bossiness).
We first provide an example of a mechanism for n = 3 and m = 1. Let N = {1, 2, 3} and
T = {H(ouse)}. Let R ∈ RN . We say that agents 1 and 3 are in conflict if H2 is the most
preferred object for both R1 and R3. Similarly, we say that agents 1 and 2 are in conflict if H3

is the most preferred object for both R1 and R2. Let mechanism f be defined as follows: for
each R ∈ RN ,

(a) if agents 1 and 2 are in conflict, then (i) transform R2 to R̄2 by dropping H3 to the
bottom, i.e., R̄2 : . . . , H3, while keeping the relative order of H1 and H2, and (ii) set
f(R) ≡ TTC(R1, R̄2, R3);

(b) if agents 1 and 3 are in conflict, then (i) transform R3 to R̄3 by dropping H2 to the
bottom, i.e., R̄3 : . . . , H2, while keeping the relative order of H1 and H3, and (ii) set
f(R) ≡ TTC(R1, R2, R̄3);

(c) if agent 1 is not in conflict with either agent 2 or agent 3, then f(R) ≡ TTC(R).

It is easy to verify that f is individually rational and unanimous. We prove that f is strategy-
proof on the next page. To see that f is bossy, let R be such that

R1 : H3,H1, H2,

R2 : H3,H2, H1,

R3 : H2,H3, H1.

Then, since agents 1 and 2 are in conflict, we have R̄2 : H2, H1, H3 and f(R) = TTC(R̄2, R−2).
In particular, for each i = 1, 2, 3, fi(R) = Hi. Next consider R′

1 : H1, . . .. Then, f(R′
1, R−1) =

TTC(R′
1, R−1). In particular, f1(R

′
1, R−1) = H1, f2(R

′
1, R−1) = H3, and f3(R

′
1, R−1) = H2.

Therefore, f1(R
′
1, R−1) = H1 = f1(R), f2(R

′
1, R−1) = H3 ̸= H2 = f2(R), and f3(R

′
1, R−1) =

H2 ̸= H3 = f3(R). Hence, f is bossy (and not Pareto efficient).

Next, we extend mechanism f from n = 3 to any n > 3. Let n > 3 and recall that m = 1. An
object o ∈ O is acceptable for agent i ∈ N if oRi Hi. Let mechanism g be defined as follows: for
each R ∈ RN ,
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Case (A) if some agent i ∈ {4, . . . , n} finds some object different from his endowment accept-
able, then set g(R) ≡ TTC(R);

Case (B) if each agent i ∈ {4, . . . , n} only finds his own endowment acceptable, then

• let N ′ ≡ {1, 2, 3} and for each i ∈ N ′, let gi(R) ≡ fi(R|N ′) where R|N ′ denotes the
preferences of agents in N ′ restricted to {H1, H2, H3};

• for each agent i ∈ {4, . . . , n}, gi(R) ≡ Hi.

Since f and TTC are individually rational and unanimous, g is individually rational and
unanimous. Since f is bossy, g is bossy as well.

Next, we show that g is strategy-proof. First, we verify that no agent i ∈ {4, . . . , n} can
profitably misreport his preferences. If R is in case (A), then a misreport by agent i that creates
another profile in case (A) does not lead to a more preferred allotment because TTC is strategy-
proof ; a misreport that creates a profile in case (B) assigns endowment Hi to agent i. In either
case, the misreport does not yield a more preferred allotment for agent i. If R is in case (B),
then each agent i ∈ {4, . . . , n} obtains his most preferred object (his own endowment) and hence
cannot gain by misreporting his preferences.
Second, no agent in {1, 2, 3} can “move” R from case (A) to case (B) nor from case (B) to case

(A). If R is in case (A), no agent in {1, 2, 3} can profitably misreport his preferences because
TTC is strategy-proof. If R is in case (B), no agent in {1, 2, 3} can profitably misreport his
preferences because f is strategy-proof. Hence, g is strategy-proof.

Finally, we extend mechanism g from Shapley-Scarf housing markets to multiple-type housing
markets with lexicographic (or separable) preferences by applying it coordinatewise to all object
types. Let h be the mechanism that assigns the objects of each type t according to g. Then, h
is unanimous (and hence onto), individually rational, and strategy-proof, but bossy. ⋄

The mechanism in Example 10 is well-defined on RN
l and RN

s (but not on RN).

Proof of strategy-proofness in Example 10

We show that mechanism f on RN defined in Example 10 for n = 3 and m = 1 is strategy-proof.

Proof. Let R ∈ RN . We consider three cases.

Case 1. Preferences of agent 1 are R1 : H1, . . ..
By individual rationality of f , f1(R) = H1 and since this is his most preferred object, agent 1
cannot gain by misreporting his preferences.
Let R′

2 be some misreport of agent 2. Since agents 1 and 2 (nor 1 and 3) are not in conflict
at R nor at (R1, R

′
2, R3), mechanism f yields the corresponding TTC allocations at R and

(R1, R
′
2, R3). Hence, by strategy-proofness of TTC, agent 2 does not have a profitable deviation

at R. Similarly, agent 3 does not have a profitable deviation at R.

Case 2. Preferences of agent 1 are R1 : H2, H1, H3. (Since agents 2 and 3 play a symmetric
role in the definition of f , similar symmetric arguments work for H3, H1, H2.)
Agents 1 and 2 are not in conflict. Hence, by strategy-proofness of TTC, agent 2 does not have
a profitable deviation at R.
Next, we verify that agent 1 does not have a profitable deviation at R.
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Case 2.a. Preferences of agent 2 are R2 : H2, . . ..
Note that by individual rationality of f we have f2(R) = H2. So, f1(R) = H1. Reporting any
other preferences will not give him H2 either. So, agent 1 does not have a profitable deviation
at R.

Case 2.b. Preferences of agent 2 are R2 : H3, H2, H1 and preferences of agent 3 are R3 :
H2, H3, H1.
Agents 1 and 3 are in conflict and one easily verifies that f(R) is the no-trade allocation. In
particular, agent 1 receives his endowment H1 at R. Obviously, misreporting R′

1 : H1, . . . gives
him H1. Any other misreport of agent 1’s preferences yields the no-trade allocation. So, agent 1
does not have a profitable deviation at R.

Case 2.c. Preferences of agent 2 are R2 : H1, . . . or preferences of agent 2 are R2 : H3, H1, H2 or
[ preferences of agent 2 are R2 : H3, H2, H1 and preferences of agent 3 are not R3 : H2, H3, H1 ].
It is easy but cumbersome to verify that f1(R) = H2, i.e., agent 1 receives his most preferred
object H2. So, agent 1 does not have a profitable deviation at R.

Finally, we verify that agent 3 does not have a profitable deviation at R.

Case 2.I. Preferences of agent 3 are R3 : H3, . . ..
By individual rationality of f , f3(R) = H3 and since this is his most preferred object, agent 3
cannot gain by misreporting his preferences.

Case 2.II. Preferences of agent 3 are R3 : H1, . . ..
Agents 1 and 3 are not in conflict and by strategy-proofness of TTC, agent 3 does not have a
profitable deviation at R.

Case 2.III. Preferences of agent 3 are R3 : H2, H3, H1.
Agents 1 and 3 are in conflict and one easily verifies that f3(R) = H3. Any possible profitable
misreport of preferences by agent 3 requires that H2 is acceptable and appears in second position.
Hence, the only possible candidate for a profitable deviation is R′

3 : H1, H2, H3. However, if R2 :
H1, . . . or R2 : H2, . . . , then f3(R1, R2, R

′
3) = H3; and if R2 : H3, . . . , then f3(R1, R2, R

′
3) = H1.

So, agent 3 does not have a profitable deviation at R.

Case 2.IV.i. Preferences of agent 3 are R3 : H2, H1, H3 and preferences of agent 2 are R2 : H1, . . .
or R2 : H2, . . ..
Agents 1 and 3 are in conflict and for any possible deviation R′

3, f3(R1, R2, R
′
3) = H3 = f3(R).

Hence, agent 3 does not have a profitable deviation at R.

Case 2.IV.ii. Preferences of agent 3 are R3 : H2, H1, H3 and preferences of agent 2 are R2 :
H3, . . ..
Agents 1 and 3 are in conflict and one easily verifies that f3(R) = H1. Any possible profitable
misreport of preferences by agent 3 requires that H2 is acceptable and appears in second position.
Hence, the only possible candidate for a profitable deviation is R′

3 : H1, H2, H3. However,
f3(R1, R2, R

′
3) = H1. So, agent 3 does not have a profitable deviation at R.

Case 3. Preferences of agent 1 are R1 : H2, H3, H1. (Since agents 2 and 3 play a symmetric
role in the definition of f , similar symmetric arguments work for H3, H2, H1.)
Agents 1 and 2 are not in conflict. Hence, by strategy-proofness of TTC, agent 2 does not have
a profitable deviation at R.
Next, we verify that agent 1 does not have a profitable deviation at R.

Case 3.a. Preferences of agent 2 are R2 : H1, . . ..
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One immediately verifies that f1(R) = H2, which is his most preferred object. So, agent 1 does
not have a profitable deviation at R.

Case 3.b. Preferences of agent 2 are R2 : H2, . . . and preferences of agent 3 are R3 : H1, . . . or
R3 : H2, H1, H3.
Then, for any possible deviation R′

1, f1(R
′
1, R2, R3) = H3 = f1(R). Hence, agent 1 does not have

a profitable deviation at R.

Case 3.c. Preferences of agent 2 are R2 : H2, . . . and preferences of agent 3 are R3 : H3, . . . or
R3 : H2, H3, H1;
or

Case 3.d. Preferences of agent 2 are R2 : H3, H2, H1 and preferences of agent 3 are R3 : H3, . . .
or R3 : H2, H3, H1.
In cases 3.c and 3.d, we have that for any possible deviation R′

1, f1(R
′
1, R2, R3) = H1 = f1(R).

Hence, agent 1 does not have a profitable deviation at R.

Case 3.e. Preferences of agent 2 are R2 : H3, . . . and preferences of agent 3 are R3 : H1, . . .;
or

Case 3.f. Preferences of agent 2 are R2 : H3, H2, H1 and preferences of agent 3 are R3 :
H2, H1, H3;
or

Case 3.g. Preferences of agent 2 are R2 : H3, H1, H2 and preferences of agent 3 are R3 : H2, . . .;
or

Case 3.h. Preferences of agent 2 are R2 : H3, H1, H2 and preferences of agent 3 are R3 : H3, . . .;
In cases 3.e, 3.f, 3.g, and 3.h, f1(R) = H2, i.e., agent 1 receives his most preferred object H2.
So, agent 1 does not have a profitable deviation at R.

Finally, we verify that agent 3 does not have a profitable deviation at R. Cases 3.I, 3.II, and
3.III below are as 2.I, 2.II, and 2.III. There is a small difference between cases 2.IV and 3.IV.

Case 3.I. Preferences of agent 3 are R3 : H3, . . ..
By individual rationality of f , f3(R) = H3 and since this is his most preferred object, agent 3
cannot gain by misreporting his preferences.

Case 3.II. Preferences of agent 3 are R3 : H1, . . ..
Agents 1 and 3 are not in conflict and by strategy-proofness of TTC, agent 3 does not have a
profitable deviation at R.

Case 3.III. Preferences of agent 3 are R3 : H2, H3, H1.
Agents 1 and 3 are in conflict and one easily verifies that f3(R) = H3. Any possible prof-
itable misreport of preferences by agent 3 requires that H2 is acceptable and appears in the
second position. Hence, the only possible candidate for a profitable deviation is R′

3 : H1, H2, H3.
However, if R2 : H1, . . . , then f3(R1, R2, R

′
3) = H3; and if R2 : H3, . . . or R2 : H2, . . . , then

f3(R1, R2, R
′
3) = H1. So, agent 3 does not have a profitable deviation at R.

Case 3.IV.i. Preferences of agent 3 are R3 : H2, H1, H3 and preferences of agent 2 are R2 : H1, . . ..
Agents 1 and 3 are in conflict and for any possible deviation R′

3, f3(R1, R2, R
′
3) = H3 = f3(R).

Hence, agent 3 does not have a profitable deviation at R.

Case 3.IV.ii. Preferences of agent 3 are R3 : H2, H1, H3 and preferences of agent 2 are R2 : H2, . . .
or R2 : H3, . . ..
Agents 1 and 3 are in conflict and one easily verifies that f3(R) = H1. Any possible profitable
misreport of preferences by agent 3 requires that H2 is acceptable and appears in second position.
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Hence, the only possible candidate for a profitable deviation is R′
3 : H1, H2, H3. However,

f3(R1, R2, R
′
3) = H1. So, agent 3 does not have a profitable deviation at R.

D. Proofs in Chapter 3

We list one useful result based on strategy-proofness, non-bossiness, and monotonicity.

Fact 2. Let f be a strategy-proof and non-bossy mechanism. Let R ∈ RN
l , x ≡ f(R), i ∈ N ,

and R∗
i ∈ Rl be preferences that only differ from Ri in the marginal preference of the most

important type (type-t), i.e., (1) πi = π∗
i where π∗

i (t) = 1, and (2) for each τ ̸= t, Rτ
i = R∗τ

i .
If f t

i (R
∗
i , R−i) = xt

i, then f(R∗
i , R−i) = x.

Proof. It is without loss of generality to assume that t = 1 and πi : 1, . . . ,m. Let y ≡ f(R∗
i , R−i)

and assume y1i = x1
i . By strategy-proofness of f , xiRi yi and yiR

∗
i xi. Since Ri are lexicographic

preferences, xi Ri yi implies x2
i R

2
i y

2
i . Similarly, since R∗

i are lexicographic preferences, yi R
∗
i xi

implies y2i R
∗2
i x2

i . Since R
2
i = R∗2

i , we find that x2
i = y2i . Applying the same argument sequentially

for type-τ marginal preferences with τ = 3, . . . ,m yields xi = yi. By non-bossiness of f ,
x = y.

D.1. Proof of Theorem 6

Here we only show the uniqueness.
Let f : RN

l → X be a mechanism satisfying individual rationality, strategy-proofness, and
coordinatewise efficiency.

A result for restricted preferences

We first consider a restricted domainRN
π ⊊ RN

l such that all agents share the same importance
order π. It is without loss of generality to assume that π : 1, . . . ,m.

Proposition 2. For each R ∈ RN
π , f(R) = cTTC(R).

The proof of Proposition 2 consists of three claims.

First, we show that for each market with restricted preferences, f assigns the cTTC allocation
of type-1.

Claim 1. For each R ∈ RN
π , f

1(R) = cTTC1(R).

Proof. Let C be a first step top trading cycle under TTC1 at R involving a set of agents
SC ⊆ N . We first show that C is executed at f(R), i.e., for each i ∈ SC , f

1
i (R) = cTTC1

i (R),
by induction on |SC |.
Induction basis. |SC | = 1. In this case, agent i ∈ SC points to his type-1 endowed object,
i.e., C = (i → o1i → i). Since preferences are lexicographic, agent i would be strictly worse off if
he received any other type-1 object. Thus, by individual rationality of f , C is executed.

Induction hypothesis. Let K ∈ {2, . . . , n}. Suppose that C is executed when |SC | < K.
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Induction step. Let |SC | = K. Without loss of generality, assume that SC = {1, . . . , K} and
C = (1 → o12 → 2 → o13 → . . . → K → o11 → 1).
By contradiction, assume that C is not executed. Thus, there is an agent i ∈ SC who does

not receive o1i+1, i.e., f
1
i (R) ̸= o1i+1. It is without loss of generality to assume that i = 2. We

proceed by contradiction in two steps.
Step 1. Let R̂2 ∈ Rπ be such that for agent 2 and type-1 objects, only o13(= cTTC1

2(R)) is
acceptable (apart from his type-1 endowment), i.e.,

R̂1
2 : o

1
3, o

1
2, . . . ,

for each t ∈ T \ {1} : R̂t
2 = Rt

2, and

π̂2 = π : 1, . . . ,m.

Let
R̂ ≡ (R̂2, R−2).

Since R̂2 ∈ Rl and f is individually rational, f 1
2 (R̂) ∈ {o13, o12}. By strategy-proofness of f ,

f 1
2 (R) ̸= o13 implies that f 1

2 (R̂) ̸= o13, otherwise instead of R2, agent 2 has an incentive to
misreport R̂2 at R. Thus, f 1

2 (R̂) = o12. Thus, agent 1 cannot receive o12(= cTTC1
1(R)) from

agent 2 because it is assigned to agent 2. Overall, we find that

f 1
2 (R̂) = o12 ̸= o13 and f 1

1 (R̂) ̸= o12. (6.4)

Step 2. Let
ˆ̂
R1 ∈ Rπ be such that for agent 1 and type-1 objects, only o12 and o13 are acceptable

(apart from his type-1 endowment), i.e.,

ˆ̂
R1

1 : o
1
2, o

1
3, o

1
1, . . . , (if K = 2 then here we have

ˆ̂
R1

1 : o
1
2, o

1
1, . . .)

for each t ∈ T \ {1} :
ˆ̂
Rt

1 = Rt
1, and

ˆ̂π1 = π : 1, . . . ,m.

Let
ˆ̂
R ≡ (

ˆ̂
R1, R̂−1) = (

ˆ̂
R1, R̂2, R3, . . . , Rn).

By individual rationality of f , f 1
1 (

ˆ̂
R) ∈ {o13, o12, o11}. By strategy-proofness of f , f 1

1 (R̂) ̸= o12

(see (6.4)) implies that f 1
1 (

ˆ̂
R) ̸= o12, otherwise instead of R̂1(= R1), agent 1 has an incentive to

misreport
ˆ̂
R1 at R̂.

We then show that f 1
1 (

ˆ̂
R) = o13. Let R̃1

1 : o13, o
1
1, . . . and let R̃1 be obtained from R1 by

replacing type-1 marginal preferences R1
1 with type-1 marginal preferences R̃1

1. That is, R̃1 =

(R̃1
1, R

2
1, . . . , R

m
1 , π). At (R̃1,

ˆ̂
R−1), there is a top trading cycle C ′ = (1 → o13 → 3 → . . . → K →

o11 → 1) that only involves K − 1 agents. Thus, by the induction hypothesis, C ′ is executed and

f 1
1 (R̃1,

ˆ̂
R−1) = o13. See the figure below.
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1 o12

K o1K ...

o13o11

2

R2 / R̂2

RK

R̃1

R1

Therefore, by strategy-proofness of f , f 1
1 (

ˆ̂
R) = o13, otherwise instead of

ˆ̂
R1, agent 1 has an

incentive to misreport R̃1 at
ˆ̂
R.

Moreover, f 1
1 (

ˆ̂
R) = o13 implies that f 1

2 (
ˆ̂
R) ̸= o13. By individual rationality of f , f 1

2 (
ˆ̂
R) = o12.

Overall, we find that

f 1
1 (

ˆ̂
R) = o13 and f 1

2 (
ˆ̂
R) = o12. (6.5)

However, this equation implies that f is not coordinatewisely efficient since agents 1 and

2 can be better off by swapping their type-1 allotments. That is, for y ≡ f(
ˆ̂
R), there is a

coordinatewise improvement z such that (i) z11 = y12(= o12), z
1
2 = y11(= o13), and (ii) all others are

the same as y. Thus, we conclude that C is executed when |SC | = K.

It suffices to show that C is executed at f(R) because once we have shown that agents who
trade at the first step of TTC (of type-1) always receive their TTC allotments of type-1 under
f , we can consider agents who trade at the second step of TTC (for type-1) by following the
same proof arguments as in the first step trading cycles, and so on. Thus, the proof of Claim 1
is completed.

Note that at step 1 and step 2 of the proof of Claim 1, we only require that agents in SC have
restricted preferences in Rπ, i.e., if RSC

∈ RSC
π then for any R−SC

∈ R−SC
l , f 1

SC
(RSC

, R−SC
) =

cTTC1
SC
(RSC

, R−SC
). Therefore, Claim 1 implies the following fact.

Fact 3 (Restricted preferences).
For each R ∈ RN

π , let C ≡ {C1, C2, . . . , CI} be the set of top trading cycles that are obtained
via the TTC algorithm of type-1 at R1. Moreover, for each top trading cycle Ci ∈ C, assume
that Ci is executed at step si, and without loss of generality, assume that if i < i′ then si ≤ si′ .
For each Ci ∈ C, if all agents in SC1 , SC2 , . . . , SCi−1

, SCi
have restricted preferences, then

C1, . . . ,
Ci−1, Ci are executed, regardless of the preferences of other agents in Ci+1, . . . , CI . That is, for
each Ci ∈ C, let S ′ ≡ ∪i

k=1SCk
. If R is such that for each j ∈ S ′, Rj ∈ Rπ, then f 1

S′(R) =
cTTC1

S′(R).

Next, we show that f is “coordinatewisely individually rational” at type-2.

Claim 2. For each R ∈ RN
π and each i ∈ N , f 2

i (R)R2
i o

2
i .
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Proof. By contradiction, assume that there exist R ∈ RN
π and i ∈ N such that o2i P

2
i f 2

i (R).
Let y ≡ f(R). Recall that by Claim 1, y1 = cTTC1(R) = TTC1(R1). It is without loss of

generality to assume that i = 1. Since R̂1 ∈ Rl and f is individually rational,

y11 ̸= o11. (6.6)

Let R̂1 ∈ Rπ be such that

R̂2
1 : o

2
1, y

2
1, . . . ,

for each t ∈ T \ {2}, R̂t
1 : y

t
1, o

t
1, . . . , and

π̂1 = π : 1, . . . ,m.

By strategy-proofness of f , f1(R̂1, R−1) = y1. Note that π̂1 = π : 1, . . . ,m and (R̂1, R−1) ∈
RN

π . By Claim 1, f 1(R̂1, R−1) = cTTC1(R̂1, R−1) = y1.
Let R̄1 ∈ Rl be such that R̄1 and R̂1 only differ in the importance order, where the orders of

type-1 and type-2 are switched, i.e.,

for each t ∈ T, R̄t
1 = R̂t

1, and

π̄1 : 2, 1, 3, . . . ,m.

By individual rationality of f , f 2
1 (R̄1, R−1) = o21 and hence f 1

1 (R̄1, R−1) ∈ {y11, o11}. Since R1

is lexicographic, any allotment z1 with z11 = y11 and z21 = o21 is strictly better than y1 at R1.
By strategy-proofness of f , f 1

1 (R̄1, R−1) ̸= f 1
1 (R̂1, R−1) = y11; otherwise agent 1 has an incen-

tive to misreport R̄1 at (R̂1, R−1). Thus,

f 1
1 (R̄1, R−1) = o11. (6.7)

Next, we show that (6.7) contradicts coordinatewise efficiency of f .
let ℓ be the step of the TTC algorithm at which agent 1 receives his type-1 object y11. Let C

be the corresponding top trading cycle that involves agent 1, i.e., 1 ∈ SC .
Note that by Claim 1 and Fact 3, all top trading cycles that are obtained before step ℓ are

executed at f(R̄1, R−1). Thus, by the definition of TTC, for each agent in SC , the object that
he pointed at in C is his most preferred type-1 object among the unassigned type-1 objects, i.e.,
for each i ∈ SC , all better type-1 objects for him, are assigned to someone else via some top
trading cycles that are obtained before step ℓ.
Since y11 ̸= o11 (see (6.6)), |SC | > 1. We show a contradiction by induction on |SC |.

Induction basis. |SC | = 2. Without loss of generality, let C = (1 → o12 → 2 → o11 → 1). Since
f 1
1 (R̄1, R−1) = o11 (see (6.7)), agent 2 does not receive his most (feasible) preferred object o11.
Thus, f(R̄1, R−1) is not coordinatewisely efficient since there is a coordinatewise improvement
such that agent 1 receives o12, agent 2 receives o11, and all others are the same as f(R̄1, R−1).
The following induction arguments for K > 2 are similar to the proof of Claim 1.

Induction hypothesis. Let K ∈ {2, . . . , n}. Suppose that C is executed when |SC | < K.

Induction step. Let |SC | = K. Without loss of generality, assume that SC = {1, . . . , K} and
hence C = (1 → o12 → 2 → . . . → K − 1 → o1K → K → o11 → 1).

Recall that by (6.7), agent 1 receives his type-1 endowment and hence agent K does not

receive his most (feasible) preferred object o11. Let
ˆ̂
RK ∈ Rπ be such that for agent K and

type-1 objects, only o11 and o12 are acceptable (apart from his type-1 endowment), i.e.,
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ˆ̂
RK

1 : o11, o
1
2, o

1
K , . . . ,

for each t ∈ T \ {1} :
ˆ̂
Rt

K = Rt
K , and

ˆ̂πK = π : 1, . . . ,m.

Let
ˆ̂
R ≡ (

ˆ̂
RK , R̄1, RN\{1,K}). By individual rationality of f , f 1

K(
ˆ̂
R) ∈ {o11, o12, o1K}. By strategy-

proofness of f , f 1
K(R̂) ̸= o11 (see (6.7)) implies that f 1

K(
ˆ̂
R) ̸= o11, otherwise instead of RK , agent

K has an incentive to misreport
ˆ̂
RK at (R̄1, R−1).

We then show that f 1
K(

ˆ̂
R) = o12. Let R̃1

K : o12, o
1
K , . . . and let R̃K be obtained from RK by

replacing type-1 marginal preferences R1
K with type-1 marginal preferences R̃1

K . That is, R̃K =

(R̃1
K , R

2
K , . . . , R

m
K , π). At (R̃K ,

ˆ̂
R−K), there is a top trading cycle C ′ = (2 → . . . → K → o12 → 2)

that only involves K − 1 agents. Thus, by Fact 3 and the induction hypothesis, C ′ is executed

and f 1
K(R̃K ,

ˆ̂
R−1) = o12. See the figure below.

1 o12

K o1K ...

o11

2
R1 / R̄1

R̃K

RK /
ˆ̂
RK

R2

Therefore, by strategy-proofness of f , f 1
K(

ˆ̂
R) = o12, otherwise instead of

ˆ̂
RK , agent K has an

incentive to misreport R̃K at
ˆ̂
R. Moreover, f 1

K(
ˆ̂
R) = o12 implies that f 1

1 (
ˆ̂
R) ̸= o12. By individual

rationality of f , f 1
1 (

ˆ̂
R) = o11. Overall, we find that

f 1
K(

ˆ̂
R) = o12 and f 1

1 (
ˆ̂
R) = o11. (6.8)

However, this equation above implies that f is not coordinatewisely efficient since agents 1
and K can be better off by swapping their type-1 allotments.

Next, we show that f also selects the cTTC allocation of type-2.

Claim 3. For each R ∈ RN
π , f

2(R) = cTTC2(R).

Proof. The proof is similar to Claim 1, the main difference is that instead of individual ratio-
nality, we use Claim 2.
Let C be a first step top trading cycle at cTTC2(R) involving a set of agents SC ⊆ N .
Similar to Claim 1, we only show that C is executed at f(R) by induction on |SC |. It suffices

to show that C is executed at f(R) because once we have shown that agents who trade at the
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first step of the TTC algorithm (of type-2) always receive their TTC allotments of type-2 under
f , we can consider agents who trade at the second step of the TTC (of type-2) by following the
same proof arguments as for first step trading cycles, and so on.
Induction basis. |SC | = 1. In this case, agent i ∈ SC points to his type-2 endowed object,
i.e., C = (i → o2i → i). Since preferences are lexicographic, agent i would be strictly worse off if
he received any other type-2 object. Thus, by Claim 2, C must be executed.

Induction hypothesis. Let K ∈ {2, . . . , n}. Suppose that C is executed when |SC | < K.

Induction step. Let |SC | = K. Without loss of generality, assume that SC = {1, . . . , K} and
C = (1 → o22 → 2 → o23 → . . . → K → o21 → 1).
By contradiction, assume that C is not executed. Thus, there is an agent i ∈ SC who does

not receive o2i+1, i.e., f
2
i (R) ̸= o2i+1. It is without loss of generality to assume that i = 2. We

proceed by contradiction in two steps.
Step 1. Let R̂2 ∈ Rπ be such that for agent 2 and type-2 objects, only o23 is acceptable (apart
from his type-2 endowment), i.e.,

R̂2
2 : o

2
3, o

2
2, . . . ,

for each t ∈ T \ {2} : R̂t
2 = Rt

2, and

π̂2 = π : 1, . . . ,m.

By Claim 2, f 2
2 (R̂) ∈ {o23, o22}. By strategy-proofness of f , f 2

2 (R) ̸= o13 implies that f 2
2 (R̂) ̸= o23,

otherwise instead of R2, agent 2 has an incentive to misreport R̂2 at R. Thus, f 2
2 (R̂) = o22. Thus,

agent 1 cannot receive o22 from agent 2 because it is assigned to agent 2. Overall, we find that

f 2
2 (R̂) = o22 ̸= o23 and f 2

1 (R̂) ̸= o22. (6.9)

Step 2. Let
ˆ̂
R1 ∈ Rπ be such that for agent 1 and type-2 objects, only o22 and o23 are acceptable

(apart from his type-2 endowment), i.e.,

ˆ̂
R2

1 : o
2
2, o

2
3, o

2
1, . . . , (if K = 2 then here we have

ˆ̂
R2

1 : o
2
2, o

2
1, . . .)

for each t ∈ T \ {1} :
ˆ̂
Rt

1 = Rt
1, and

ˆ̂π1 = π : 1, . . . ,m.

Let
ˆ̂
R ≡ (

ˆ̂
R1, R̂−1) = (

ˆ̂
R1, R̂2, R3, . . . , Rn). By Claim 2, f 2

1 (
ˆ̂
R) ∈ {o23, o22, o21}. By strategy-

proofness of f , f 2
1 (R̂) ̸= o22 (see (6.9)) implies that f 2

1 (
ˆ̂
R) ̸= o22, otherwise instead of R̂1(= R1),

agent 1 has an incentive to misreport
ˆ̂
R1 at R̂.

We then show that f 2
1 (

ˆ̂
R) = o23. To see it, consider R̃

2
1 : o

2
3, o

2
1, . . . and R̃1 = (R1

1, R̃
2
1, R

3
1, . . . , R

m
1 , π).

At (R̃1,
ˆ̂
R−1), there is a top trading cycle C ′ = (1 → o23 → 3 → . . . → K → o21 → 1) that only

involves K − 1 agents. Thus, by the induction hypothesis, C ′ is executed and f 2
1 (R̃1,

ˆ̂
R−1) = o23.

Therefore, by strategy-proofness of f , f 2
1 (

ˆ̂
R) = o23, otherwise instead of

ˆ̂
R1, agent 1 has an

incentive to misreport R̃1 at
ˆ̂
R. Moreover, f 2

1 (
ˆ̂
R) = o23 implies that f 2

2 (
ˆ̂
R) ̸= o23. By Claim 2,

f 2
2 (

ˆ̂
R) = o22. Overall, we find that

f 2
1 (

ˆ̂
R) = o23 and f 2

2 (
ˆ̂
R) = o22. (6.10)
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However, this equation above implies that f is not coordinatewisely efficient since agents 1
and 2 can be better off by swapping their type-2 allotments.
Thus, the proof of Claim 3 is completed.

By Claim 1 and Claim 3, we know that for each R ∈ RN
π , the allocations of type-1 and type-2

under f are the same as cTTC allocation, i.e., f 1(R) = cTTC1(R) and f 2(R) = cTTC2(R). By
applying similar arguments, we can also show that f 3(R) = cTTC3(R) and so on. Thus, we
conclude that for each R ∈ RN

π , and each t ∈ T , f t(R) = cTTCt(R), which completes the proof
of Proposition 2.

Proof of Theorem 6

The proof of Theorem 6 will be shown by extending Proposition 2 to the domain of separable
preference profiles.
Let S̄ ⊆ N and R be such that only agents in S̄ do no have restricted (but separable)

preferences, i.e., R−S̄ ∈ R−S̄
π and for each i ∈ S̄, Ri ∈ Rs \Rπ. We show that f(R) = cTTC(R)

by induction on |S̄|.
We first consider the case that only one agent i does no have restricted (but separable)

preferences, i.e., S̄ = {i}. We will show that f still selects the cTTC allocation.

Lemma 5. For each R ∈ RN
s , each i ∈ N with Ri ∈ Rs \Rπ and R−i ∈ R−i

π , f(R) = cTTC(R).

The proof of Lemma 5 consists of four claims.

It is without loss of generality to assume that i = 1. Thus, R1 ∈ Rs \ Rπ. Let y ≡ f(R) and
x ≡ cTTC(R).
We first show that agent 1 still receives his cTTC allocation at R, i.e., y1 = x1.

Claim 4. y1 = x1.

Proof. By contradiction, suppose that y1 ̸= x1.
Let R̄1 ∈ Rπ be such that R̄1 and R1 share the same marginal preferences, i.e., for each t ∈ T ,

R̄t
1 = Rt

1. Note that (R̄1, R−1) ∈ RN
π and hence by Proposition 2, f(R̄1, R−1) = cTTC(R) = x.

Note that if for each t ∈ T , xt
1R

t
1 y

t
1, then x1P1 y1 as x1 ̸= y1. However, this implies that agent

1 has an incentive to misreport R̄1 at R. Thus, by strategy-proofness of f , there exists one type
τ ∈ T such that yτ1 P

τ
1 xτ

1.
By the definition of cTTC, xτ

1 R
τ
1 o

τ
1 and hence yτ1 ̸= ot1. Overall, we have

yτ1 P
τ
1 xτ

1 R
τ
1 o

τ
1. (6.11)

Let R̂1 ∈ Rπ be such that for each type t ∈ T , agent 1 positions yt1 first and ot1 second, i.e.,

for each t ∈ T : R̂t
1 : y

t
1, o

t
1, . . . , and

π̂1 = π : 1, . . . ,m.

Let
R̂ ≡ (R̂1, R−1).
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By strategy-proofness of f , f1(R̂) = f1(R) = y1; otherwise agent 1 has an incentive to
misreport R1 at R̂. Since R̂ ∈ RN

π , by Proposition 2, f(R̂) = cTTC(R̂). In particular,
yτ1 = cTTCτ

1 (R̂).
Next, to obtain the contradiction, we show that cTTCτ

1 (R̂) = oτ1. By the definition of cTTC,

cTTCτ
1 (R̂) = TTCτ

1 (R̂
τ ) ∈ {yτ1 , oτ1}. (6.12)

Recall that cTTCτ (R) = TTCτ (Rτ ) = xτ and yτ1 P
τ
1 xτ

1 R
τ
1 o

τ
1 (see (6.11)). Thus, by strategy-

proofness of TTC, xτ
1 = TTCτ

1 (R
τ ) Rτ

1 TTCτ
1 (R̂

τ ). Together with (6.12), we conclude that
TTCτ

1 (R̂
τ ) = oτ1. It implies that cTTCτ

1 (R̂1, R−1) = oτ1 ̸= yτ1 .

Note that Claim 4 implies that for each R = (R1, R−1) ∈ (Rs \ Rπ) × RN\{1}
π , f1(R) =

cTTC1(R).
Next, we show that y = x by applying similar arguments in Claims 1, 2, and 3.

Claim 5. For each R = (R1, R−1) ∈ (Rs \ Rπ)×RN\{1}
π , f 1(R) = cTTC1(R).

Proof. Let ℓ be the step of the TTC algorithm at which agent 1 receives type-1 object y11(=
x1
1 = cTTC1

1(R)). Let C be the corresponding top trading cycle that involves agent 1, i.e.,
1 ∈ SC .
Note that by Claim 1 and Fact 3, all top trading cycles that are obtained before step ℓ are

executed at f(R). Moreover, if C is executed, then again by Claim 1 and Fact 3, all remaining
top trading cycles are also executed. Thus, it suffices to show that C is executed, i.e., for each
i ∈ SC , f

1
i (R) = cTTC1

i (R).
Since all top trading cycles that are obtained before step ℓ are executed, by the definition of

TTC, we know that for each agent in SC , the object that he pointed at in C is his most preferred
type-1 object among the unassigned type-1 objects, i.e., for each i ∈ SC , all better type-1 objects
for him, are assigned to someone else via top trading cycles that are obtained before step ℓ.
Similar to Claim 1, we show that C is executed at f(R) by induction on |SC |.

Induction basis. |SC | = 1. In this case, SC = {1}. By Claim 4, f 1
1 (R) = cTTC1

1(R).

Induction hypothesis. Let K ∈ {2, . . . , n}. Suppose that C is executed when |SC | < K.

Induction step. Let |SC | = K. Without loss of generality, assume that SC = {1, . . . , K} and
C = (1 → o12 → 2 → . . . → K → o11 → 1).

By contradiction, assume that C is not executed. Thus, there is an agent i ∈ SC \ {1} who
does not receive o1i+1, i.e., f

1
i (R) ̸= o1i+1. We proceed by contradiction in two steps.

Step 1. Let R̂i ∈ Rπ be such that for agent i and type-1 objects, only o1i+1 is acceptable (apart
from his type-1 endowment), i.e.,

R̂1
i : o

1
i+1, o

1
i , . . . ,

for each t ∈ T \ {1} : R̂t
i = Rt

i, and

π̂1 = π : 1, . . . ,m.

Note that at R̂i, if i does not receive o
1
i+1, then by individual rationality of f , he must receive

his type-1 endowment o1i .
Let R̂ ≡ (R̂i, R−i). Since R̂i ∈ Rl and f is individually rational, f 1

i (R̂) ∈ {o1i+1, o
1
i }. By

strategy-proofness of f , f 1
i (R) ̸= o1i+1 implies that f i

2(R̂) ̸= o1i+1, otherwise instead of Ri, agent
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i has an incentive to misreport R̂i at R. Thus, f 1
i (R̂) = o1i . Thus, agent i− 1 cannot receive o1i

from agent i because it is assigned to agent i. Overall, we find that

f 1
i (R̂) = o1i ̸= o1i+1 and f 1

i−1(R̂) ̸= o1i . (6.13)

Step 2. Let
ˆ̂
Ri−1 ∈ Rπ be such that for agent i − 1 and type-1 objects, only o1i and o1i+1 are

acceptable (apart from his type-1 endowment), i.e.,

ˆ̂
R1

i−1 : o
1
i , o

1
i+1, o

1
i−1, . . . , (if K = 2 then here we have

ˆ̂
R1

i−1 : o
1
i , o

1
i−1, . . .)

for each t ∈ T \ {1} :
ˆ̂
Rt

i−1 = Rt
i−1, and

ˆ̂πi−1 = π : 1, . . . ,m.

Let
ˆ̂
R ≡ (

ˆ̂
Ri−1, R̂−1). By individual rationality of f , f 1

i−1(
ˆ̂
R) ∈ {o1i+1, o

1
i , o

1
i−1}. By strategy-

proofness of f , f 1
i−1(R̂) ̸= o1i (see (6.13)) implies that f 1

i−1(
ˆ̂
R) ̸= o1i , otherwise instead of R̂i−1,

agent i− 1 has an incentive to misreport
ˆ̂
Ri−1 at R̂.

We then show that f 1
i−1(

ˆ̂
R) = o1i+1. To see it, consider R̃1

i−1 : o1i+1, o
1
i−1, . . . and R̃i−1 =

(R̃1
i−1, R

2
i−1, . . . , R

m
i−1, π). At (R̃i−1,

ˆ̂
R−(i−1)), there is a top trading cycle C ′ = (i − 1 → o1i+1 →

i + 1 → o1i+2 → . . . → i − 2 → o1i−1 → i − 1) that only involves K − 1 agents. Thus, by the

induction hypothesis, C ′ is executed and f 1
i−1(R̃1,

ˆ̂
R−1) = o1i+1. Therefore, by strategy-proofness

of f , f 1
i−1(

ˆ̂
R) = o1i+1, otherwise instead of

ˆ̂
Ri−1, agent i − 1 has an incentive to misreport R̃i−1

at
ˆ̂
R. Moreover, f 1

i−1(
ˆ̂
R) = o1i+1 implies that f 1

i (
ˆ̂
R) ̸= o1i+1. By individual rationality of f ,

f 1
i (

ˆ̂
R) = o1i . Overall, we find that

f 1
i−1(

ˆ̂
R) = o1i+1 and f 1

i (
ˆ̂
R) = o1i . (6.14)

However, this equation implies that f is not coordinatewisely efficient since agents i− 1 and
i can be better off by swapping their type-1 allotments.

The next two claims, Claims 6 and 7, can be proven by a similar way to Claim 2 and 3,
respectively. Thus, we omit the proofs. Note that the key point is that since agent 1 still receives
his cTTC allocation, we only need to show that agents who still have restricted preferences, will
also receive their cTTC allocation. Thus the proofs of Claim 2 and 3 are still valid for the case
where only agent 1 does not have restricted preferences.

Claim 6. For each R = (R1, R−1) ∈ (Rs \ Rπ)×RN\{1}
π , and each i ∈ N , f 2

i (R)R2
i o

2
i .

Claim 7. For each R = (R1, R−1) ∈ (Rs \ Rπ)×RN\{1}
π , f 2(R) = cTTC2(R).

Thus, similar to the proof of Proposition 2, by Claims 4, 5, 6, and 7, we conclude that for
each R ∈ RN

s , and each S̄ ⊆ N , such that |S̄| = 1 and R−S̄ ∈ R−S̄
π , f(R) = cTTC(R). Thus,

the proof of Lemma 5 is completed.

Now, we are ready to prove Theorem 6. Let R ∈ RN
l and S̄ ⊆ N be such that exactly only

agents in S̄ have non restricted (but separable) preferences, we show that f(R) = cTTC(R).
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Lemma 6. For each R ∈ RN
s and each S̄ ⊆ N such that R−S̄ ∈ R−S̄

π , f(R) = cTTC(R).

The proof of Lemma 6 is showing by induction on |S̄|.
Induction basis. |S̄| = 1. This is done by Lemma 5.

Induction hypothesis. Let K ∈ {2, . . . , n}. Suppose that f(R) = cTTC(R) when |S̄| < K.

Induction step. Let |S̄| = K. Similar to Lemma 5, the proof of this part consists of four
claims.

We first show that agents in S̄ still receive their cTTC allotments.

Claim 8. For each R = (RS̄, R−S̄) ∈ (Rs \ Rπ)
S̄ ×R−S̄

π , and each i ∈ S̄, fi(R) = cTTCi(R).

Proof. Let y ≡ f(R) and x = cTTC(R). By contradiction, assume that there is an agent i ∈ S̄
who does not receive his cTTC allotment xi. Without loss of generality, assume that i = 1.
Let R̄1 ∈ Rπ be such that R̄1 and R1 share the same marginal preferences, i.e., for each t ∈ T ,

R̄t
1 = Rt

1. Let R̄ ≡ (R̄1, R−1).
Note that at R̄, there are onlyK−1 agents (in S̄\{1}) who have non restricted (but separable)

preferences. Thus, by the induction hypothesis and the definition of cTTC, f(R̄) = cTTC(R̄) =
cTTC(R) = x. Then, the remaining proof is exactly the same as the proof of Claim 4 and hence
we omit it.

The following three claims can be proven by a similar way to Claims 5, 6, and 7, respectively.
Thus, we omit the proofs. Note that the key point is that since agents in S̄ still receive their
cTTC allocation, we only need to show that agents who still have restricted preferences, will
also receive their cTTC allocation. Thus the proofs are still valid for the case where only agents
in S̄ do not have restricted preferences.

Claim 9. For each R = (RS̄, R−S̄) ∈ (Rs \ Rπ)
S̄ ×R−S̄

π , f 1(R) = cTTC1(R).

Claim 10. For each R = (RS̄, R−S̄) ∈ (Rs \ Rπ)
S̄ ×R−S̄

π , and each i ∈ N , f 2
i (R)R2

i o
2
i .

Claim 11. For each R = (RS̄, R−S̄) ∈ (Rs \ Rπ)
S̄ ×R−S̄

π , f 2(R) = cTTC2(R).

Hence, we conclude that for each R ∈ RN
s , and each S̄ ⊆ N , such that |S̄| = K and R−S̄ ∈

R−S̄
π , f(R) = cTTC(R). Thus, the proof of Lemma 6 is completed. Therefore, Theorem 6 is

proven by applying Lemma 6 with S̄ = N . Note that the proof for separable preferences and
the proof for lexicographic preferences are exactly same, thus we only prove one of them.

D.2. Proofs of Theorems 8 and 9

We only show the uniqueness here. Before doing it, we redefine bTTC for lexicographic prefer-
ences as follows.

Alternative definition of bTTC

We restate bTTC for lexicographic preferences by adjusting the multiple-type top trading cycles
(mTTC) algorithm from Feng and Klaus (2022).

The bundle top trading cycles (bTTC) algorithm / mechanism.
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Input. A multiple-type housing market (N, e,R) with R ∈ RN
l .

Step 1. Building step. Let N(1) = N and U(1) = O. We construct a directed graph G(1)
with the set of nodes N(1) ∪ U(1). For each o ∈ U(1), we add an edge from the object to its
owner and for each i ∈ N(1), we add an edge from the agent to his most preferred object in O
(according to the linear representation of Ri). For each edge (i, o) ∈ N ×O we say that agent i
points to object o.

Implementation step. A trading cycle is a directed cycle in graph G(1). Given the finite
number of nodes, at least one trading cycle exists. We assign to each agent i in a trading cycle
the object that he pointed to, and denote the object assigned to him in this step by ai(1).
Moreover, let ei(1) be the whole endowment of object ai(1)’s owner, and assign the allotment
xi(1) = {ei(1)} to agent i. If agent i ∈ N was not part of a trading cycle, then xi(1) = ∅.
Removal step. We remove all agents and objects that were assigned in the implementation
step, let N(2) and U(2) be the remaining agents and objects, respectively. Go to Step 2.

In general, at Step q (≥ 2) we have the following:

Step q. If U(q) (or equivalently N(q)) is empty, then stop; otherwise do the following.

Building step. We construct a directed graph G(q) with the set of nodes N(q) ∪ U(q). For
each o ∈ U(q), we add an edge from the object to its owner and for each i ∈ N , we add an
edge from the agent to his most preferred feasible continuation object in Ui(q) (according to the
linear representation of Ri).

Implementation step. A trading cycle is a directed cycle in graph G(q). Given the finite
number of nodes, at least one trading cycle exists. We assign to each agent i in a trading cycle
the object that he pointed to, and denote the object assigned to him in this step by ai(q).
Moreover, let ei(q) be the whole endowment of object ai(q)’s owner, and assign the allotment
xi(q) = {ei(q)} to agent i. If agent i ∈ N was not part of a trading cycle, then xi(q) = ∅.
Removal step. We remove all agents and objects that were assigned in the implementation
step, let N(q+1) and U(q+1) be the remaining agents and objects, respectively. Go to Step q+1.

Output. The bTTC algorithm terminates when all objects in O are assigned (it takes at
most n steps). Assume that the final step is Step q∗. Then, the final allocation is x(q∗) =
{x1(q

∗), . . . , xn(q
∗)}.

The bundle top trading cycles mechanism (bTTC), bTTC, assigns to each market R ∈ RN
l the

allocation x(q∗) obtained by the bTTC algorithm.

Example 11 (bTTC).
Consider R ∈ RN

l with N = {1, 2, 3}, T = {H(ouse), C(ar)}, O = {H1, H2, H3, C1, C2, C3}, and

R1 : H2, H3,H1, C3, C2,C1,

R2 : C1,C2, C3, H3,H2, H1,

R3 : H2, H1,H3, C1,C3, C2.

The bTTC allocation at R is obtained as follows.
Step 1. Building step. G(1) = (N ∪O,E(1)) with set of directed edges
E(1) = {(H1, 1), (H2, 2), (H3, 3), (C1, 1), (C2, 2), (C3, 3), (1, H2), (2, C1), (3, H2)}.
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Implementation step. The trading cycle 1 → H2 → 2 → C1 → 1 forms. Then, a1(1) = H2,
a2(1) = C1, and e1(1) = {H2, C2}, e2(1) = {H1, C1}; thus, x1(1) = {H2, C2}, x2(1) = {H1, C1},
and x3(1) = ∅.
Removal step. N(2) = 3, U(2) = {H3, C3}.
Step 2. Building step. G(2) = (N(2) ∪ U(2), E(2)) with set of directed edges E(2) =
{(H3, 3), (C3, 3), (3, H3)}.
Implementation step. The trading cycle 3 → H3 → 3 forms. Then, a3(2) = H3 and
e3(2) = {H3, C3}; x1(2) = {H2, C2}, x2(2) = {H1, C1}, and x3(2) = {H3, C3}.
Removal step. N(3) = ∅ and U(3) = ∅.
Thus, the bTTC algorithm computes the allocation x = ((H2, C2), (H1, C1), (H3, C3)). ⋄

Let R ∈ RN
l , let C(R) be a set of top trading cycles that are obtained at step 1 of the re-defined

bTTC above at (R). We say that a trading cycle C is a first step top trading cycle if C ∈ C(R).
For each first step top trading cycle C, let SC ⊆ N be the set of agents who are involved in C,
and for each i ∈ SC , let ci be the object that agent i points at in C, and ti be the type of object
ci, i.e., ci ∈ Oti . We say that a trading cycle C is executed at f(R) if for each i ∈ SC , agent i
receives ci at f(R). Moreover, for each i ∈ SC and ci ∈ O, let i′ be the owner of ci. Since i and
i′ are involved in C, i′ ∈ SC. We say that a trading cycle C is fully executed at f(R) if for each
i ∈ SC , agent i receives ei′ at f(R), i.e., fi(R) = ei′ .

Next, we show the first part of Theorem 9: the characterization of bTTC for lexicographic
preferences.

Theorem 13. A mechanism f : RN
l → X is individually rational, strategy-proof, non-bossy,

and pairwise efficient if and only if it is bTTC.

Proof of Theorem 13

Let f : RN
l → X be individually rational, strategy-proof, non-bossy, and pair-efficient. Note

that by Lemma 3, f is monotonic.
We first explain the intuition of the proof. Consider a first step top trading cycle that forms

at the first step of bTTC. First, we show that if this first-step top trading cycle is formed by
only one or two agents, it is fully executed under f (Lemma 7) . Then, we extend this result to
any number of agents under f (Lemma 8). Once we have shown that agents who trade at the
first step of bTTC always receive their bTTC allotments under f , we can consider agents who
trade at later steps of bTTC. The full execution of second step top trading cycles can be shown
by following the same proof arguments as for first step top trading cycles; etc. The formal proof
for first step top trading cycles now follows.

Lemma 7. If a mechanism f : RN
l → X is individually rational, strategy-proof, non-bossy, and

pair-efficient, then for each R ∈ RN
l , each first step top trading cycle C(∈ C(R) with |SC | ≤ 2,

C is fully executed at f(R).

Proof. Let C ∈ C(R) be a first step top trading cycle that consists of agents SC with |SC | ≤ 2.
We show it by two steps. First, we show that C is executed.
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Claim 12. C is executed.

Proof. When |SC | = 1. In this case, agent i ∈ SC points to one of his endowed object, i.e.,
ci = otii and hence C = (i → ci → i). Since preferences are lexicographic, i.e., Ri ∈ Rl, agent i
will be strictly worse off if he receives any other type-ti objects. Thus, C must be executed by
individual rationality of f .
When |SC | = 2. Without loss of generality, assume that SC = {1, 2}. By contradiction,

assume that C is not executed. Thus, there is an agent i ∈ SC does not receive his most
preferred object ci. Without loss of generality, let i = 2.
Let R̂2 be such that agent 2 only wants to receive type-t2 object c2 and no other objects, i.e.,

R̂t2
2 : c2(= ot21 ), o

t2
2 , . . . ,

for each t ∈ T \ {t2} : R̂t
2 : o

t
2, . . . , and

π̂2 = π2 : t2, . . . .

Note that at R̂2, if 2 does not receive c2, then from individual rationality of f , he must receive
his full endowment e2 = (o12, . . . , o

m
2 ). Let

R̂ ≡ (R̂2, R−2).

By individual rationality of f , f t2
2 (R̂) ∈ {c2, ot22 }. By strategy-proofness of f , f t2

2 (R) ̸= c2
implies that f t2

2 (R̂) ̸= c2, otherwise instead of R2, agent 2 has an incentive to misreport R̂2 at
R. Thus, f t2

2 (R̂) = ot22 . Then, by individual rationality of f , f2(R̂) = e2. Thus, agent 1 cannot
receive c1(∈ e2) from agent 2 because it is assigned to agent 2.
Let R̄1 be such that be such that agent 1 only wants to receive type-t1 object c1 and no other

objects, i.e.,

R̄t1
1 : c1(= ot12 ), o

t1
1 , . . . ,

for each t ∈ T \ {t1} : R̄t
1 : o

t
1, . . . and

π̄1 = π̂1 = π1 : t1, . . . .

Note that at R̄1, if agent 1 does not receive c1, then from individual rationality of f , he must
receive his full endowment e1. Let

R̄ ≡ (R̄1, R̂2, R̂3, . . . , R̂n) = (R̄1, R̂2, R3, . . . , Rn).

By individual rationality of f , f t1
1 (R̄) ∈ {c1, ot11 }. By strategy-proofness of f , f t1

1 (R̂) ̸= c1
implies that f t1

1 (R̄) ̸= c1, otherwise instead of R̂1, agent 1 has an incentive to misreport R̄1 at
R̂. Thus, f t1

1 (R̄) = ot11 . Then, by individual rationality of f , f1(R̄) = e1, and in particular,
f t2
1 (R̄) = ot21 = c2. Moreover, by individual rationality of f , f2(R̄) = e2, and in particular,
f t1
2 (R̄) = ot12 = c1. This implies that f t1

2 (R̄)P t1
1 f t1

1 (R̄) and f t2
1 (R̄)P t2

2 f t2
2 (R̄) and hence f2(R̄)P1

f1(R̄) and f1(R̄) P2 f2(R̄), in which contradicts with pair-efficiency of f .
Overall, by the contradiction above we show that at R̄, agent 1 receives c1. Thus, by strategy-

proofness of f , he also receives c1 at R̂; otherwise he has an incentive to misreport R̄1 at R̂.
Together with individual rationality of f , it implies that agent 2 receives c2 at R̂. Therefore, by
strategy-proofness of f , agent 2 also receives c2 at R; otherwise he has an incentive to misreport
R̂1 at R.
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Next, we show that C is fully executed. There are two cases.
Case 1. |SC | = 1. In this case, agent i ∈ SC points to one of his endowed object, i.e., ci ∈ ei.
Without loss of generality, assume that SC = {1} and π1 : t1, . . .. Thus, C = (1 → ot11 → 1).
Let y ≡ f(R). By contradiction, suppose that y1 ̸= e1. Note that by Claim 12, yt11 = ot11 . Let

t ∈ T \ {ti} be such that yt1 ̸= ot1. Without loss of generality, assume that agent 1 receives agent
2’s endowment of type-t at y, i.e., yt1 = ot2.
Let R̂ ∈ RN

l be such that each agent j positions yj at the top and changes his importance

order as π1, i.e., for each agent j ∈ N , (i) π̂j = π1 : t1, . . ., and (ii) for each τ ∈ T , R̂τ
j : yτj , . . .

It is easy to see that R̂ is a monotonic transformation of R at y. Thus, by monotonicity of f ,
f(R̂) = y.
Let R̄2 be such that

π̄2 = π̂2(= π1),

R̄t1
2 : ot11 , y

t1
2 , . . . , and

For each τ ∈ T \ {t1}, R̄τ
2 = R̂τ

2 .

Let
R̄ ≡ (R̄2, R̂−2).

Note that by strategy-proofness of f , for type-t1, agent 2 either receives ot11 or yt12 ; otherwise
he has an incentive to misreport R̂2 at R̄. Moreover, C is still a first top trading cycle at R̄, i.e.,
C ∈ C(R̄). Thus, by Claim 12, C is executed and hence agent 1 receives ot11 at f(R̄). See the
figure below.

1 ot11

2ot2

R̂1

R̄2

Thus, agent 2 still receives yt12 , and hence by Fact 2,

f(R̄) = f(R̂) = y and particularly, f t1
1 (R̃) = yt11 = ot11 . (6.15)

Let R̃1 be such that agent 1 only changes his importance order as t is the most important,
i.e., π̃1 : t, . . . and R̃1 = (R̂1

1, . . . , R̂
m
1 , π̃1).

Let
R̃ ≡ (R̃1, R̄−1).

By monotonicity of f , f(R̃) = f(R̄) = y. However, at R̃, there is a first step top trading cycle
C ′ ∈ C(R̃) consisting of agents 1 and 2, i.e., C ′ = (1 → ot2(= yt1) → 2 → ot11 → 1). See the figure
below.
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1 ot11

2ot2

R̄2R̃1

By Claim 12, C ′ is executed at f(R̃). Thus, f t1
2 (R̃) = ot11 , which contradicts with the fact that

f t1
1 (R̃) = yt11 = ot11 (see (6.15)).
Case 2. |SC | = 2. Without loss of generality, assume that SC = {1, 2}. Thus, C = (1 → c1(=
ot12 ) → 2 → c2(= ot21 ) → 1). By contradiction, assume that C is not executed. Without loss of
generality, assume that agent 1 does not receive agent 2’s full endowments, i.e., f1(R) ̸= e2. Note
that by Claim 12, f t1

1 (R) = c1 = ot12 . Thus, there is a type t ∈ T \ {t1} such that f t
1(R) ̸= ot2.

Without loss of generality, assume that agent 1 receives agent i’s endowment of type-t, i.e.,
f t
1(R) = oti. Let y ≡ f(R). There are two sub-cases.
Sub-case 1. i = 1. Let R̂1 be such that

for each t ∈ T, R̂t
1 : y

t
1, . . . , and

π̂1 : t, . . .

By monotonicity of f , f(R̂1, R−1) = f(R) = y. Then, we are back to Case 1.
Sub-case 2. i ̸= 1. Without loss of generality, assume that i = 3. Thus, yt22 = ot21 , y

t1
1 = ot12 , and

yt1 = ot3. We will obtain a contradiction to complete the proof of this sub-case. Let R̂3 be such
that

Rt2
3 : ot21 , y

t2
3 , . . .

for each t ∈ T \ {t2}, R̂t
3 : y

t
3, . . . , and

π̂3 : t2, . . .

Let
R̂ ≡ (R̂3, R−3).

Note that C is still a first step top trading cycle at R̂, i.e., C ∈ C(R̂). Thus, by Claim 12, C
is executed. See the figure below.

ot21

1 ot12

23

ot3
R̂1(= R1)

R̂2(= R2)

R̂3
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Hence, agent 3 cannot receive ot21 (= c2). Thus, by strategy-proofness of f , he still receives y3,
i.e., f3(R̂) = y3. Therefore, by non-bossiness of f , f(R̂) = y.
Let R̄1 be such that

for each t ∈ T, R̄t
1 : y

t
1, . . . , and

π̄1 : t, . . .

Let
R̄ ≡ (R̄1, R̂−1).

Then, since R̄1 is a monotonic transformation of R̂1 at y, f(R̄) = y. In particular,

f t1
2 (R̄) = ot21 (= c2). (6.16)

Note that at R̄, there is a first step top trading cycle C ′ = (1 → yt1(= ot3) → 3 → ot21 → 1)
that involves two agents. Thus, by Claim 12, C ′ is executed. See the figure below.

ot21

1 ot12

23

ot3

R̄2(= R2)R̄3(= R̂3)

R̄1

It implies that f t2
3 (R̄) = ot21 , which contradicts with f(R̄) = y = f(R̂) and (6.16).

Lemma 8. If a mechanism f : RN
l → X is individually rational, strategy-proof, non-bossy,

and pair-efficient, then for each R ∈ RN
l , each first step top trading cycle C(∈ C(R)) is fully

executed under f at R.

Proof. Let C ∈ C(R) be a first step top trading cycle that consists of agents SC ⊆ N . We prove
this lemma by induction on |SC |.
Induction Basis. |SC | ≤ 2. This is done by Lemma 7.

Induction hypothesis. Let K ∈ {3, . . . , n}. Suppose that C is fully executed when |SC | < K.
Induction step. Let |SC | = K. Without loss of generality, assume that SC = {1, . . . , K} and
C = (1 → c1 → 2 → c2 → . . . → K → cK → 1).
Similar to Lemma 7, we first show that C is executed.

Claim 13. C is executed.

Proof. By contradiction, assume that C is not executed. Thus, there is an agent i ∈ SC who
does not receive ci, i.e., f

ti
i (R) ̸= ci. Without loss of generality, let i = 2.

Let R̂2 be such that agent 2 only wants to receive type-t2 object c2 and no other objects, i.e.,

R̂t2
2 : c2(= ot23 ), o

t2
2 , . . . ,

for each t ∈ T \ {t2} : R̂t
2 : o

t
2, . . . , and

π̂2 = π2 : t2, . . . .
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Note that at R̂2, if agent 2 does not receive c2, then from individual rationality of f , he must
receive his full endowment e2.
Let R̂ ≡ (R̂2, R−2). We proceed in two steps.

Step 1. We show that agent 2 receives c2 under f at R̂, i.e., f t2
2 (R̂) = c2.

By individual rationality of f , f t2
2 (R̂) ∈ {c2, ot22 }. By strategy-proofness of f , f t2

2 (R) ̸= c2
implies that f t2

2 (R̂) ̸= c2, otherwise instead of R2, agent 2 has an incentive to misreport R̂2 at
R. Thus, f t2

2 (R̂) = ot22 . Then, by individual rationality of f , f2(R̂) = e2. Thus, agent 1 cannot
receive c1(∈ e2) from agent 2 because it is assigned to agent 2.
Let y ≡ f(R̂). Overall, we find that

y2 = e2 and yt11 ̸= c1(= ot12 ). (6.17)

Let R̄1 be such that

R̄t1
1 : c1(= ot12 ), o

t1
3 , o

t1
1 , . . . ,

for each t ∈ T \ {t1} : R̄t
1 := R̂t

1(= Rt
1) and

π̄1 = π̂1 = π1 : t1, . . .

Note that R̄1 and R̂1 only differ in type-t1 marginal preferences. Let

R̄ ≡ (R̄1, R̂2, R̂3, . . . , R̂n).

To obtain the contradiction, we want to show that at R̄, agent 1 receives c1 and agent 2
receives c2, i.e., f

t1
1 (R̄) = c1 = ot12 and f t2

2 (R̄) = c2 = ot23 .

By individual rationality of f , f t1
1 (R̄) ∈ {ot12 , ot13 , ot11 }. By strategy-proofness of f , f t1

1 (R̂) ̸= ot12
implies that f t1

1 (R̄) ̸= ot12 , otherwise instead of R̂1, agent 1 has an incentive to misreport R̄1 at
R̂.
Thus, f t1

1 (R̄) ∈ {ot13 , ot11 }. Next, we show that f1(R̄) = e3 and hence f t2
1 (R̄) = ot23 = c2.

Let R̃1 be such that

R̃t1
1 : ot13 , o

t1
1 , . . . ,

for each t ∈ T \ {t1} : R̃t
1 := R̄t

1(= Rt
1) and

π̃1 = π̄1 = π̂1 = π1 : t1, . . .

Since f t1
1 (R̄) ̸= c1, R̃1 is a monotonic transformation of R̄1 at f(R̄). Thus,

f(R̄) = f(R̃1, R̄−1). (6.18)

Note that at (R̃1, R̄−1), there is a first step top trading cycle C ′ = (1 → ot13 → 3 → c3 →
. . . → K → cK → 1). Since C ′ ∈ C(R̃1, R̄−1) and |SC′| = K − 1, by the Induction hypothesis, C ′

is fully executed. Thus, f1(R̃1, R̄−1) = e3, and in particular, f t2
1 (R̃1, R̄−1) = ot23 = c2. Together

with (6.18), we conclude that f t2
1 (R̄) = ot23 = c2 and f1(R̄) = e3. Therefore, f t2

2 (R̄) ̸= ot13 = c2.
Hence, by individual rationality of f , f2(R̄) = e2, and in particular, f t1

2 (R̄) = ot12 = c1.
This implies that c1 = f t1

2 (R̄) P̄ t1
1 f t1

1 (R̄) and c2 = f t2
1 (R̄) P̄ t2

2 f t2
2 (R̄). Hence, f2(R̄) P̄1 f1(R̄)

and f1(R̄) P̄2 f2(R̄), in which contradicts with pair-efficiency of f .
Overall, by contradiction we show that at R̄, agent 1 receives c1. Together with individual

rationality of f , it implies that agent 2 receives c2 at R̄. Subsequently, by strategy-proofness
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of f , agent 1 also receives c1 at R̂; otherwise he has an incentive to misreport R̄1 at R̂. Again,
together with individual rationality of f , it implies that agent 2 receives c2 at R̂.
Step 2. We show that agent 2 receives c2 under f at R, i.e., f t2

2 (R) = c2.
Note that c2 is agent 2’s most preferred type-t2 object at R2. By strategy-proofness of f ,

f2(R)R2 f2(R̂). Hence, f t2
2 (R)Rt2

2 f t2
2 (R̂), which implies that f t2

2 (R) = c2.

Next, we show that C is fully executed at f(R). Let x ≡ bTTC(R), y ≡ f(R). Note that if
C is fully executed, then for each i ∈ SC , yi = fi(R) = xi.
By contradiction, suppose that there is an agent i ∈ SC such that yi ̸= xi. Without loss of

generality, let i = 1. By Claim 13, C is executed under f at R. In particular,

yt11 = ot12 = xt1
1 and ytKK = otK1 = xtK

K . (6.19)

Since y1 ̸= x1(= e2), there is a type t ∈ T \ {t1} and an agent j ̸= 2 such that yt1 = otj. There
are two cases.

Case 1: j ∈ SC . Let R̂1 such that agent 1 positions y1 at the top and moves t to the most
important, i.e., (i) π̂1 : t, . . .; and (ii) for each τ ∈ T , R̂τ

1 : yτ1 , . . .. Since R̂1 is a monotonic
transformation of R1 at y, we have

f(R̂1, R−1) = f(R) = y and particularly, f t1
1 (R̂1, R−1) = ot12 . (6.20)

Note that there is a first step top trading cycle C ′ ≡ (1 → otj → j → o
tj
j+1 → j+1 → · · · → K →

otK1 → 1) at (R̂1, R−1). i.e., C
′ ∈ C(R̂1, R−1). Since j ̸= 2, C ′ contains less than K agents. Thus,

by the induction hypothesis, C ′ is fully executed at f(R̂1, R−1). Therefore, f1(R̂1, R−1) = ej and

hence f t1
1 (R̂1, R−1) = ot1j , which contradicts with the fact that f t1

1 (R̂1, R−1) = ot12 (see (6.20)).

Case 2: j ̸∈ SC . Let R̂j be such that

R̂tK
j : otK1 , ytKj , . . .

for each τ ∈ T\{tK}, R̂τ
j : yτj , . . . , and

π̂j : tK , . . .

Let
R̂ ≡ (R̂j, R−j).

Note that C is still a first step top trading cycle at R̂, and hence, by Claim 13, C is executed.
In particular, with (6.19), we have

f tK
K (R̂) = ytKK = otK1 . (6.21)

So, agent j does not receive otK1 at f(R̂). So, by strategy-proofness of f , fj(R̂) = yj; otherwise

he has an incentive to misreport Rj at R̂. So, by non-bossiness of f , f(R̂) = y.
Let R̄1 be such that agent 1 positions y1 at the top and moves t to the most important, i.e.,

for each τ ∈ T, R̄τ
1 : yτ1 , . . . and

π̄1 : t, . . .
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Let
R̄ ≡ (R̄1, R̂−1).

Since R̄1 is a monotonic transformation of R̂1(= R1) at y, we have

f(R̄) = y and particularly, f tK
K (R̄) = otK1 . (6.22)

Note that C ′ ≡ (1 → yt1(= otj) → j → otK1 → 1) is a first step top trading cycle at R̄, i.e.,
C ′ ∈ C(R̄). See the figure below.

1 otK1

jotj

R̄j(= R̂j)R̄1

Thus, by Claim 13, cycle C ′ is executed at f(R̄). Therefore, f tK
j (R̄) = otK1 . Since j ̸∈ SC , this

contradicts with the fact that f tK
K (R̂) = otK1 (see (6.22)).

By Lemma 8, we have shown that agents who trade at step 1 of the bTTC algorithm always
receive their bTTC allotments under f . Next, we can consider agents who trade at step 2 of the
bTTC algorithm by following the same proof arguments as for first step trading cycles, and so
on. Thus, the proof of Theorem 13 is completed.

Proof of Theorems 8 and 9

To complete the proof, next, we extend Theorem 13 from lexicographic preferences to separable
preferences.

Let f : RN
s → X be individually rational, strategy-proof, non-bossy, and bundle endowments-

swapping proof. Note that by Lemma 3, f is monotonic.
Let S ⊆ N and R ∈ RN

s be such that only agents in S do no have lexicographic preferences,
i.e., RS ̸∈ RS

l and R−S ∈ R−S
l . We show that f(R) = bTTC(R) by induction on |S|.

We first consider S = {i}, i.e., |S| = 1 as the induction basis.
Let x ≡ f(R) and y ≡ bTTC(R).
Let R̂i ∈ Rl be such that for each t ∈ T , R̂t

i : x
t
i, . . .

By monotonicity of f , f(R̂i, R−i) = x. Note that (R̂i, R−i) ∈ RN
l . Thus, by Theorem 13, f

coincides with bTTC, i.e., bTTC(R̂i, R−i) = f(R̂i, R−i) = x.
Let R̄i ∈ Rl be such that (a) π̄i = π̂i; and (b) for each t ∈ T , R̂t

i : y
t
i , . . .

By monotonicity of bTTC, bTTC(R̄i, R−i) = y. Note that (R̄i, R−i) ∈ RN
l . Thus, again by

Theorem 13, f(R̄i, R−i) = bTTC(R̄i, R−i) = y.
By strategy-proofness of bTTC, yi = bTTCi(R)Ri bTTCi(R̂i, R−i) = xi; by strategy-proofness

of f , xi = fi(R) Ri fi(R̄i, R−i) = yi. Thus, xi = yi. Subsequently, by non-bossiness of bTTC,
x = bTTC(R̂i, R−i) = bTTC(R̄i, R−i) = y.
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We can apply repeatedly the same argument to obtain that for |S| ∈ {2, . . . , n}, and for each
profile R ∈ RN

s where exactly |S| agents have non-lexicographic preferences, f(R) = bTTC(R).
Thus, for each R ∈ RN

s , f(R) = bTTC(R). Thus, the proof of Theorem 9 is completed.

Theorem 8 can be proven in exactly the same way above and hence we omit it.

Example for footnote 2 in Chapter 3

The following efficiency property is an adaptation of Pápai (2007)’s restricted efficiency.2

Let y ∈ X and Y ≡ {y, e}. f : RN → Y is Y -restricted efficient if for each R ∈ RN , there
does not exist x ∈ Y such that x Pareto dominates f(R) at R.
This is a weak efficiency property since it rules out the extremely inefficient no-trade mech-

anism. Also, it is easy to see that cTTC and bTTC do not satisfy this efficiency property.
However, due to its restriction (feasibility of only two allocations), this property is uninter-
esting. Next, we show that this property is compatible with individual rationality and group
strategy-proofness.
Let f : RN → Y be such that for each R ∈ RN , if for each i ∈ N , y Ri e, then f(R) = y,

otherwise f(R) = e. This mechanism resembles a form of unanimous voting, i.e., it always selects
the status quo allocation (e) unless all agents unanimously prefer y to e. By the definition of f ,
it is easy to see it is individually rational, group strategy-proof, and Y -restricted efficient.

D.3. Independence of the properties in Chapter 3

We provide several examples to establish the logical independence of the properties in our char-
acterizations.

Theorems 6 and 7

The following examples establish the logical independence of the properties in Theorem 6. We
label examples by the property that is not satisfied.

Example 12 (Coordinatewise efficiency).
As in Example 7, the no-trade mechanism that always assigns the endowment allocation to each
market is individually rational, group strategy-proof (and hence strategy-proof and non-bossy),
but not coordinatewisely efficient. ⋄

Example 13 (Individual rationality).
As in Example 8, serial dictatorship mechanisms satisfy Pareto efficiency (and hence coordinate-
wise efficiency and pairwise efficiency), group strategy-proofness (and hence strategy-proofness
and non-bossiness); but violate individual rationality. ⋄

Example 14 (Strategy-proofness).
As in Example 9, Multiple-Serial-IR mechanisms are individually rational and Pareto efficient
(and hence coordinatewisely efficient), but not strategy-proof. ⋄

The three examples above are well-defined for strict preferences and establish the logical
independence of the properties in Theorems 7.

2In Pápai (2007), restricted efficiency is defined originally as follows. Let X ′ ⊊ X and f : RN → X ′. f is
restricted efficient if for each R ∈ RN , there does not exist x ∈ X ′ such that x Pareto dominates f(R) at R.
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Theorems 8, 9, and 13

The following examples establish the logical independence of the properties in Theorem 13.

Example 15 (Pairwise efficiency).
Same as Example 7, the no-trade mechanism is individually rational, strategy-proof, and non-
bossy, but not pairwise efficient. ⋄

Example 16 (Individual rationality).
Same as Example 8, serial dictatorship mechanisms are group strategy-proof (hence strategy-
proof and non-bossy), and Pareto efficient (hence pairwise efficient), but not individually ratio-
nal. ⋄

Example 17 (Strategy-proofness).
Same as Example 9, multiple-Serial-IR mechanisms satisfy individual rationality, Pareto effi-
ciency (and hence pairwise efficiency), and non-bossiness, but violate strategy-proofness. ⋄

Example 18 (Non-bossiness).
Note that when there are only two agents, non-bossiness is trivially satisfied. Thus, we need at
least three agents. So, consider markets with three agents and two types, i.e., N = {1, 2, 3} and
T = {1, 2}.
Let R̂ ⊊ RN

l be a set of markets such that for each R ∈ R̂, R1|e is such that for some agent
i ∈ {2, 3}, agent 1 positions agent i’s full endowment at the top, i.e., for each t ∈ T , Rt

1 : o
t
i, . . ..

Let y ∈ X be such that (i) y1 = ei, (ii) yi = (e11, e
2
j) and yj = (e1j , e

2
1), where {i, j} = {2, 3}.

Let f be such that

f(R) =

{
y, (R) ∈ R̂ and y Pareto dominates bTTC(R),

bTTC(R), otherwise.

Note that for R ∈ R̂, if f1(R) ̸= ei, then there is an agent k ∈ {2, 3} (possibly k = i) who
receives ei and prefers ei to yk, i.e., fk(R) = bTTCk(R) = ei Pk yk.
It is easy to see that f inherits individually rational and pairwise efficiency from bTTC. By

the definition of f , one can verify that f is bossy. We show that f is strategy-proof.

We first show that agent 1 has no incentive to misreport. For R ̸∈ R̂, agent 1 positions his
full endowment at the top. Thus, f1(R) = bTTC1(R) = o1. Clearly, for any misreport R′

1 ̸= R1,
e1 R1 f1(R

′
1, R2, R3).

For R ∈ R̂, by the definition of f , oi is agent 1’s most preferred allotment among {e1, e2, e3},
and f1(R) ∈ {e1, ei}. If f1(R) = ei then clearly f1(R) = ei R1 bTTC1(R).
If f1(R) = e1(= bTTC1(R)) then there is an agent k ∈ {2, 3} such that bTTCk(R) Pk yk

and fk(R) = bTTCk(R) ∈ {e2, e3}. Let R′
1 ̸= R1 be a misreporting. By the definition of

bTTC, bTTC(R′
1, R−1) = bTTC(R). Thus, bTTCk(R

′
1, R−1) Pk yk and hence, f(R′

1, R−1) =
bTTC(R′

1, R−1), which implies that f1(R
′
1, R−1) = e1. Therefore, if (R) ∈ R̂, then f1(R) R1

bTTC1(R).
Next, we show that agents 2 and 3 have no incentive to misreport.
For R ̸∈ R̂, f2(R) = bTTC2(R) and f3(R) = bTTC3(R). Since bTTC is strategy-proof, agents

2 and 3 have no incentive to misreport.
For R ∈ R̂, there are two cases.
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Case 1. f(R) = bTTC(R). By the definition of f , there is an agent k ∈ {2, 3} such that
bTTCk(R) Pk yk. Let R′

k ̸= Rk be a misreporting. Then, fk(R
′
k, R−k) ∈ {bTTCk(R

′
k, R−k), yk}.

Since bTTC is strategy-proof, bTTCk(R)Rk bTTCk(R
′
k, R−k), and hence bTTCk(R) = fk(R)Rk

fk(R
′
k, R−k).

Case 2. f(R) = y. By the definition of f , y2 R2 bTTC2(R) and y3 R3 bTTC3(R). Let k ∈
{2, 3} and R′

k ̸= Rk be a misreporting. Since bTTC is strategy-proof, yk Rk bTTCk(R) Rk

bTTCk(R
′
k, R−k). By the definition of f , fk(R

′
k, R−k) ∈ {bTTCk(R

′
k, R−k), yk}. Thus, fk(R) =

yk Rk fk(R
′
k, R−k). ⋄

The examples above are well-defined on the domain of separable preference (strict preference)
profiles and establish the logical independence of the properties in Theorem 9 (Theorem 8).
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