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Introduction

Unlike traditional kin selection or inclusive fitness theory

(Hamilton, 1964), which emphasizes how relatedness

between individuals promotes helping behaviour, evolu-

tionary graph theory emphasizes the importance of the

spatial subdivision of populations (Santos & Pacheco,

2005; Nowak, 2006; Ohtsuki et al., 2006; Ohtsuki &

Nowak, 2006). Evolutionary graph theory models allow

the effect of space on helping to be investigated in a broad

context, while simultaneously making the models mathe-

matically tractable (Lieberman et al., 2005; Ohtsuki

et al., 2006; Ohtsuki & Nowak, 2006). Recently, a rule

has been derived (Nowak, 2006; Ohtsuki et al., 2006;

Ohtsuki & Nowak, 2006) for the evolution of helping on

graphs: ‘natural selection favours cooperation if the

benefit B of the act, divided by the cost C, exceeds the

average number k of neighbours’:

B

C
> k: ð1Þ

This rule has been derived using pair approximations

for regular isothermal graphs and tested numerically as a

lower bound for the evolution of helping on more

complicated graphs.

Does inequality 1 provides us with a new pathway to

the evolution of helping behaviours on graphs? We think

that this is not the case. Indeed, kin selection operates

whenever interactions occur among relatives, that is,

among individuals that are more likely to inherit a

strategy from a common ancestor than are individuals

sampled at random from the population (Hamilton,

1964, 1970, 1971). This may happen when interactions

take place among members of a family or when the

population is structured through limited dispersal. In

both cases, relatives remain close to each other. Because

dispersal occurs only to the nearest neighbours in

populations structured according to evolutionary graph

theory, interactions occur necessarily among relatives.

In this paper, we carry out a retrospective analysis of

the models for the evolution of helping on graphs of

Ohtsuki et al. (2006) and Ohtsuki & Nowak (2006), and
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Abstract

Evolutionary graph theory has been proposed as providing new fundamental

rules for the evolution of co-operation and altruism. But how do these results

relate to those of inclusive fitness theory? Here, we carry out a retrospective

analysis of the models for the evolution of helping on graphs of Ohtsuki et al.

[Nature (2006) 441, 502] and Ohtsuki & Nowak [Proc. R. Soc. Lond. Ser. B

Biol. Sci (2006) 273, 2249]. We show that it is possible to translate

evolutionary graph theory models into classical kin selection models without

disturbing at all the mathematics describing the net effect of selection on

helping. Model analysis further demonstrates that costly helping evolves on

graphs through limited dispersal and overlapping generations. These two

factors are well known to promote relatedness between interacting individuals

in spatially structured populations. By allowing more than one individual to

live at each node of the graph and by allowing interactions to vary with the

distance between nodes, our inclusive fitness model allows us to consider a

wider range of biological scenarios leading to the evolution of both helping

and harming behaviours on graphs.
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generalize them by applying inclusive fitness theory for

finite populations (Rousset & Billiard, 2000; Rousset,

2004, 2006). This allows us to recover the mathematical

results of evolutionary graph theory for ‘death–birth’ and

‘imitation’ life cycles as examples of inclusive fitness

theory for spatially structured populations. In a compan-

ion paper, Grafen (2007) also provides an inclusive

fitness analysis of the ‘death–birth’ and ‘birth–death’ life

cycles of evolutionary graph theory. The reason for our

retrospective analysis is to illustrate how results obtained

heuristically by pair approximations can be obtained

exactly by using inclusive fitness theory and to provide a

link between the results of evolutionary graph theory

and those of inclusive fitness theory. Further, by allow-

ing more than one individual to live at each node of the

graph and by allowing interactions to vary with the

distance between nodes, our models allow us to repre-

sent different biological scenarios leading to the evolu-

tion of both helping and harming behaviours on graphs.

Model

Life cycle

Consider a spatially structured population (or graph)

consisting of nd demes (or nodes), each of which is

occupied by a constant number N of adult individuals.

The population is therefore of total size NT ¼ ndN and we

assume that demes are linked by edges through which

neighbouring individuals interact. Further, we assume

that this population is spatially homogeneous, so that all

nodes have the same number of neighbours (i.e. the

same degree) and all interactions are symmetrical. With

these assumptions, the population structure is said to be

regular and isothermal (e.g. Lieberman et al., 2005;

Ohtsuki et al., 2006; Ohtsuki & Nowak, 2006) and

encompasses a circular lattice in one dimension and a

torus in two dimensions (e.g. Malécot, 1975; Nagylaki,

1982; Taylor, 1992b; Epperson, 1999; Gandon & Rousset,

1999; Rousset & Billiard, 2000; Irwin & Taylor, 2001;

Rousset, 2004; Rousset, 2006). ‘Distances’ on this graph

are denoted by a vector j, which is the coordinate (single

or pair) of a deme relative to the position of a focal deme,

so that j ¼ 0 ” (0, 0) stands for the deme of a focal

individual in two dimensions (i.e. focal deme).

We assume that each individual bears either a mutant

‘helping’ allele or a resident ‘defector’ allele. A focal

individual bearing the mutant helping allele confers, at a

direct cost to self, a benefit to each of its neighbours, in

the same or in a different deme of the population.

Specifically, the focal individual increments the fecundity

(or pay-off) of the whole set of neighbours in a deme at

vectorial distance j by Bj, an action decrementing its own

fecundity by Cj. An individual bearing the defector allele

takes fecundity benefits but pays no cost.

The life cycle is punctuated by the following events. (1)

Each individual in the population produces a large

number of juveniles proportional to the total of its

benefits minus its costs. (2) Each juvenile in a deme

disperses independently of the others with probability mj

to a deme at distance j (
P

jmj ¼ 1). The dispersal

distribution is assumed to be symmetric and identical

for all demes (isotropic dispersal). (3) After dispersal, one

adult individual is chosen at random from the whole

population and dies (i.e. according to the Moran scheme

of reproduction; Maruyama, 1974; Ewens, 2004; Ohtsuki

et al., 2006). One of the juveniles present at the deme

that has the vacant site is chosen at random to occupy

this site.

This life cycle is very close to the seminal kin selection

model for ‘environmental homogeneity’ considered by

Taylor (1992b) and analysed under finite deme number

by Rousset (2004). The only difference is that these

authors assumed that all individuals die during stage (3)

of the life cycle (i.e. ‘Wright–Fisher’ scheme of repro-

duction; Ewens, 2004), whereas here exactly one indi-

vidual dies per unit time (i.e. ‘Moran’ scheme of

reproduction; Ewens, 2004). This difference will prove

crucial for the maintenance of co-operation at a fecun-

dity (pay-off) cost to the actor. If we further assume that

all juveniles disperse (i.e. no philopatry m0 ¼ 0) and that

dispersal occurs only to the nearest neighbours, then the

life cycle corresponds to the ‘death–birth’ protocol of

evolutionary graph theory, where one individual is

chosen at random to die and neighbours compete for

the empty site proportional to their fitness (Lieberman

et al., 2005; Ohtsuki et al., 2006; Ohtsuki & Nowak,

2006). Finally, to provide a linking model between the

‘Moran’ and the ‘Wright–Fisher’ process, we also con-

sider in the Appendix a variant of the life-cycle where

each adult individual survives independently with prob-

ability s to the next generation (i.e. ‘Cannings’ scheme of

reproduction; Ewens, 2004).

Inclusive fitness effect

Whether natural selection will favour the fixation of a

mutant allele introduced as a single copy in a population

fixed for the defector allele can be ascertained by

evaluating the inclusive fitness effect (Rousset & Billiard,

2000; Rousset, 2004, 2006), which is the sum of the

effects of the behaviour of a focal individual bearing the

mutation on the fitness of all recipients in the population,

each weighted by the relatedness of the focal individual

to the recipient (Hamilton, 1964, 1970). For a mutant

allele whose phenotypic effect on fitness deviates by a

small magnitude from that of a resident allele (weak

selection), the inclusive fitness effect is positive when

@w

@z�
þ
X

j

@w

@zj
Rj > 0; ð2Þ

where w is the expected number of recruited offspring of

the focal individual (i.e. its fitness) and the relatedness
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coefficient is given by Rj ¼ ðQj � �QÞ=ð1� �QÞ, where Qj is

the probability that a recipient (excluding the focal

individual) sampled in a deme at distance j from the focal

deme bears a copy of a homologous gene (or meme)

drawn in the focal individual, and �Q ¼
P

j Qj=nd is the

average probability of identity between pairs of homol-

ogous genes sampled in different individuals. The relat-

edness coefficient Rj measures the extent to which two

individuals sampled at distance j from each other are

more (or less) likely to have inherited the same genes (or

memes) from a recent common ancestor than two

individuals sampled at random (but without replace-

ment) from the population (see eqn 12 in the Appendix).

The derivatives of w are the effects of actors on the fitness

of the focal individual, the actors being the focal

individual itself with phenotype denoted z•, and the

other individuals in the population, where zj is the

average phenotype of individuals living in a deme at

distance j (excluding the focal individual for j ¼ 0).

Hence, )c ” ¶w/¶z• represents the effect of the behav-

iour of a focal individual on its fitness; and bj ” ¶w/¶zj

can be interpreted in the ‘inclusive fitness’ way as the

effect of the focal individual on the fitness of the whole

set of recipients (but excluding himself) living in the

deme at distance j from the focal deme (Frank, 1998;

Rousset, 2004; Grafen, 2006).

In interpreting the inclusive fitness effect, it is useful to

note that the definition of the average probability of

identity �Q implies that the average relatedness of the

focal individual to other individuals from the population

is equal to zero. Hence

1

nd

X
j

Rj ¼ 0; ð3Þ

which informs us that the total number of individuals that

are positively related to the focal individual, each

weighted by their relatedness to the focal individual, is

exactly equal to the total relatedness weighted sum of

individuals that are negatively related to him (see eqn 13

in the Appendix). Hence, provided an individual is

positively related to some individuals in the population,

it must be negatively related to some other individual(s)

(e.g. Grafen, 2007). Thus, as a consequence of the

inclusive fitness effect (eqn 2), if there exists a value of

)c under which costly helping (bj > 0) can evolve towards

positively related individuals, there must also exist

another value of )c under which costly harming (bj < 0)

can evolve towards negatively related individuals.

When populations are spatially structured, individuals

also compete with positively related individual for local

resources (Taylor, 1992a, b). The intensity of competition

for resources is affected by helping behaviours because,

by incrementing the fecundity of neighbours, an actor

increases the number of offspring competing for the same

breeding spots as its own offspring. Thus, in spatially

structured populations, genetic closeness between indi-

viduals is necessarily associated with competitive close-

ness. This association means that the fitness effects

()c and the bjs) will be a complicated function comprising

the effects on fecundity Cj and Bj, and of the dispersal

distribution (the mjs). To evaluate these effects, we need

an expression of the direct fitness function w.

Fitness function

From the life-cycle assumptions, the relative fecundity of

a focal individual is given by 1 )
P

kCkz• +
P

kBkzk,

which depends on the baseline reproductive unit, on the

cost of expressing helping and the benefits received by all

other individuals in the population expressing the help-

ing allele. A fraction mi of the offspring of the focal

individual then migrates to a deme at distance i from the

focal deme. These offspring enter with probability 1/NT in

competition for a vacant breeding spot (i.e. an adult

dies in the deme at distance i) with a fractionP
jmi�j 1 þ

P
k B0j�kzR

k

� �
of the total number of offspring

produced in the population, where B0j � Bj except that

B00 � B0 �
P

i Ci because those individuals expressing

helping also pay the cost of helping. The phenotype zR
k

denotes the average phenotype in deme k (including the

focal individual in the average for the focal deme at k ¼
0), whereby zR

k ¼ zk except that

zR
0 ¼ z�=N þ ðN � 1Þz0=N. Collecting all terms allows

us to write the direct fitness of the focal individuals as

w ¼ NT � 1

NT

þ 1

NT

X
i

mi
1�

P
kðCkz� � BkzkÞP

j mi�jð1þ
P

k B0j�kzR
kÞ
: ð4Þ

With this function, whose second term is equivalent to eqn

7.18 of Rousset (2004), we can now evaluate explicitly the

effects of actors on the fitness of the focal individuals that

are necessary to compute the gradient of selection (eqn 2).

Results

Effects of actor on the fitness of recipients

Substituting the direct fitness function (eqn 4) into the

inclusive fitness effect (eqn 2), evaluating the partial

derivatives at the phenotypic value of the defector allele,

which does not express the helping behaviour (z• ¼ z0 ¼
� � �¼ zj ¼� � �¼ 0), we find that the effect of the focal

individual on its fitness is given by

�c ¼ 1

NT

X
j

�Cj �
1

N
B0jPj

� �
; ð5Þ

where the term inside the parentheses consists of two

components. First, on the direct fecundity cost Cj for the

focal individual when helping individuals in a deme at

distance j from the focal deme. Second, on the indirect

cost stemming from the increase in competition faced by

the focal individual’s own offspring. This increased

competition depends on the increment B0j in fecundity
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of individuals in deme j times the probability Pj ¼P
imimi)j that an offspring of the focal individual com-

petes against an offspring produced in deme j.

The effect of the focal individual on the fitness of other

individuals in its deme is given by

b0 ¼
1

NT

B0 �
N � 1

N

X
j

B0jPj

 !
; ð6Þ

which also consists of two components, the direct fecun-

dity benefit B0 conferred by the focal individual to its

deme mates and the indirect costs resulting from the focal

individual helping individuals on all nodes of the graph

and thereby augmenting the intensity of competition

faced by the offspring of his deme mates. This indirect cost

depends on the increment B0j in the fecundity of individ-

uals in deme j times the probability Pj that an offspring of a

focal individual’s deme mate competes against an off-

spring produced in deme j. Finally, the effect of the focal

individual on the fitness of recipients living in a deme at

distance k from the focal deme is given by

bk ¼
1

NT

Bk �
X

j

B0j�kPj

 !
: ð7Þ

This fitness effect depends on the direct fecundity

benefit Bk the focal individual confers to individuals living

in deme k and on the indirect costs resulting from the focal

individual helping individuals on all nodes of the graph

and thereby augmenting the intensity of competition

faced by the offspring of individuals residing in deme k.

This competition cost depends on the increment B0j�k of

the fecundity of individuals residing in a deme at distance j

from deme k (hence at j ) k from the focal deme) times

the probability Pj that offspring of individuals residing at j

steps apart enter in competition with each other.

We have now established a relationship between the

parameters of evolutionary graph theory and the models

of inclusive fitness in spatially subdivided populations.

Equations 5–7 illustrate that the fitness costs and benefits

()c and the bjs, i.e. the parameters of inclusive fitness

theory) of the behaviours depend on the phenotypic

effects (the Cjs and the Bjs, i.e. the parameters of

evolutionary graph theory) as well as on the dispersal

distribution (the mis), which itself determines the extent

to which relatives compete with each other. This illus-

trates the notion that one cannot simply construct a model

and assume that Hamilton’s rule applies to parameters one

has arbitrarily labelled ‘R’, ‘b’ and ‘c’ (Rousset, 2004;

Grafen, 2006). Rather one must carefully consider all life-

history parameters to evaluate how behavioural effects

translate into fitness costs and benefits.

Inclusive fitness effect

Using the fitness costs and benefits computed in the

previous section, and the stationary probabilities of

identity we evaluate in the Appendix the inclusive

fitness effect. We find that the inclusive fitness effect

for the Moran process (eqn 33 of Appendix A3) is positive

when

X
j

Bj

N
mj �

2

nd

� �
� Cj 1þm0

N
� 2

ndN

� �� �
> 0; ð8Þ

which, when satisfied, means that the probability of

fixation of the mutant helping allele is greater than the

probability of fixation of a neutral allele (Rousset &

Billiard, 2000; Rousset, 2004; Lessard, 2005; Rousset,

2006). Hence, when this inequality holds true, natural

selection favours the helping allele.

We now consider eqn 8 under two different types of

spatial structures. The first is when the migration rate is

the same to all demes and is equal to the probability that

an individual remains philopatric (mj ¼ 1/nd for all j) (i.e.

the population behaves as a single panmictic unit). In this

case all coefficients of relatedness appearing in the

inclusive fitness effect are equal to zero (Rj ¼ 0) because

two individuals sampled at two arbitrary locations in the

population have exactly the same probability of bearing

the genes (or memes) inherited from the same recent

common ancestor. In this case, the condition of invasion

of the helping allele is given directly by the effect of the

focal individual on its fitness, which, from inequality 8,

becomes X
j

�Cj �
ðBj � CjÞ

ndN

� �
> 0: ð9Þ

As by definition Cj > 0 and Bj > 0, the helping mutant

allele is counter-selected. The second situation is when

dispersal is localized (i.e. there is a spatial structure and

isolation by distance, mj „ 1/nd for some j at least). In

this case, neighbours on the lattice are more likely to

have inherited the same genes from a recent common

ancestor than two individuals sampled at random from

the population and are positively related. The inclusive

fitness effect (inequality 8) informs us that an actor

should help the whole set of individuals that are at

distance j from its deme, whenever the migration rate to

that deme exceeds twice the inverse of the number of

demes in the population (mj ) 2/nd > 0). Otherwise, the

actors should harm (Bj < 0) the recipients at a fecundity

cost to self.

Recovering results from evolutionary graph theory

We now turn to the results derived in evolutionary graph

theory. From the inclusive fitness effect (inequality 8),

we can now obtain the results of Ohtsuki et al. (2006)

and Ohtsuki & Nowak (2006) by following their assump-

tions that there is only one individual per node (i.e. N ¼
1 and B0 ¼ 0) and interactions occur only between the

nearest neighbours, of which there are k. Further, for

each nearest neighbour, a focal individual pays a direct
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cost C and provides a benefit B (i.e. Bj ¼ B and Cj ¼ C for

the k nearest neighbour nodes and Bj ¼ 0 and Cj ¼ 0 for

all other nodes). Finally, the migration rates are deter-

mined by ‘death–birth’ to the nearest neighbours (i.e.

m0 ¼ 0, mj ¼ 1/k for the k nearest neighbour nodes and

mj ¼ 0 for all other nodes). Substituting these parameters

into eqn 8 shows that the trait spreads when

B 1� 2k

nd

� �
> kC 1� 2

nd

� �
: ð10Þ

For large numbers of demes or nodes (nd fi ¥), we

recover from this inequality the rule B/C > k of Ohtsuki

et al. (2006). For a finite number of nodes and when k ¼
2, we recover the rule B/C > 2 ) 4/(nd ) 4) of Ohtsuki &

Nowak (2006) for cycles on graphs of size nd. Grafen

(2007, Table 1) presents the fitness costs and benefits

()c and the bjs) corresponding to this model.

Substituting m0 ¼ 1/(k + 1) and mj ¼ 1/(k + 1) for the k

nearest neighbour nodes gives ‘imitation’ instead of

‘death–birth’ updating and we recover the appropriate

rule B/C > 4 ) 18/(nd ) 6) of Ohtsuki et al. (2006) for k ¼
2 and the rule B/C > k + 2 of Ohtsuki & Nowak (2006) for

large nd. These derivations of the results of evolutionary

graph theory illustrate that the ‘beautiful similarity’ that

Ohtsuki et al. (2006) note between the rule B/C > k and

Hamilton’s rule arises from a very specific parameteriza-

tion of eqn 8, which is a specific application of inclusive

fitness theory for structured population.

Discussion

In this paper, we carried out a retrospective analysis of

the models for the evolution of helping on graphs of

Ohtsuki et al. (2006) and Ohtsuki & Nowak (2006). Using

inclusive fitness theory (Hamilton, 1964), we recovered

exactly the results of Ohtsuki et al. (2006) and Ohtsuki &

Nowak (2006) for both ‘death–birth’ and ‘imitation’ life

cycles as a specific application of kin selection theory for

structured populations of finite size (e.g. Rousset &

Billiard, 2000; Rousset, 2004, 2006). Grafen’s (2007)

analysis demonstrates that inclusive fitness theory allows

us to recover the results of Ohtsuki et al. (2006) and

Ohtsuki & Nowak (2006) for both ‘death–birth’ and

‘birth–death’ life cycles. In other words, both Grafen’s

and our analysis show that evolutionary graph theory

falls squarely into inclusive fitness theory.

Our inclusive fitness analysis allows us to disentangle

the factors necessary to promote the evolution of helping

at a fecundity cost to the actor in populations structured

according to evolutionary graph theory. The first neces-

sary factor with ‘death–birth’ and ‘imitation’ life cycles is

limited migration between actor and recipient, which

results in spatial population subdivision. Individuals are

then likely to interact with relatives so that kin-selected

benefits enter into the equation. However, genetic close-

ness also results in competition between relatives (Quel-

ler, 1992; Taylor, 1992a, b; Gandon & Rousset, 1999).

Indeed, had we assumed for the last stage of the life cycle a

Wright–Fisher scheme of reproduction (i.e. all adults die

per unit time) instead of the Moran scheme of reproduc-

tion (i.e. one individual dies per unit time), kin compe-

tition would exactly cancel out the kin-selected fecundity

benefits of helping (see Taylor, 1992a, b and eqn 25 in

Appendix A3). It is, however, crucial to mention that this

does not mean that ‘altruism’ cannot be selected for under

the Wright–Fisher scheme of reproduction. Indeed, if

altruism is defined from the effects on fitness (as Hamilton

did) rather than from the effects on fecundity (as so many

subsequent authors assumed), then altruism can be

selected for under the Wright–Fisher scheme of reproduc-

tion (i.e. S > 0 in eqn 36), while resulting in a fitness cost

(c > 0) for the focal individual (Rousset, 2004).

The second factor promoting the evolution of helping in

populations structured according to evolutionary graph

theory is overlapping generations. The assumption of

evolutionary graph theory that there is only one adult

individual dying and a single juvenile migrating per unit

time (Moran process) markedly increases the relatedness

between actors and recipients because offspring are then

likely to interact directly with their parents (Taylor &

Irwin, 2000; Irwin & Taylor, 2001). In Appendix A3 we

derive the inclusive fitness effect under the assumption

that each adult survives from one generation to the next

with probability s (i.e. ‘Cannings’ scheme of reproduction

Ewens, 2004), which represents a linking model between

the Moran and the Wright–Fisher process. The analysis of

this model reveals that the intensity of selection on

helping increases with increased survival probability s (see

eqns 44 and 54). For instance, from eqn 44 and using eqn

50 we find that if interactions occur only with the two

nearest neighbours in a one-dimensional habitat of

infinite size (nd fi ¥), the condition of invasion of

helping is given by the B=C > 1 þ 1=
ffiffi
s
p

rule. When the

life history converges to the Moran process (s fi 1), we

recover the B/C > 2 rule of evolutionary graph theory. By

contrast, when the life history converges to the Wright–

Fisher process (s fi 0), the inequality can never be

satisfied and helping at a fecundity cost to the actor cannot

evolve (Taylor, 1992a, b). The result that overlapping

generations increases the selective pressure on helping has

repeatedly been observed in computer simulations or

models of the evolution of helping on lattices (e.g. Nowak

et al., 1994; Nakamaru et al., 1997; Koella, 2000; Irwin &

Taylor, 2001; Hauert, 2002; Hauert & Doebeli, 2004), with

helping being more likely to be favoured under ‘asyn-

chronous’ than under ‘synchronous’ updating. Our anal-

ysis shows that the results of these simulations also fall

under the scope inclusive fitness theory.

The rule presented in this paper (inequality 8) extends

previous results in two ways for isothermal regular

graphs. The first is to allow more than one individual

to live and interact at each node of the graph. By

increasing N we can describe ‘small world’ effects (Watts

& Strogatz, 1998), where individuals have strong local
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interactions within a node and weaker links to other

nodes. Equation 8 shows that increasing within node

interactions results in a more stringent condition for the

evolution of helping because relatedness is a decreasing

function of the number of individuals within demes

(nodes). The second extension is to allow interactions to

vary with the distance between nodes. This allows us to

encompass a much wider range of biological situations

conducive to the evolution of helping and harming

behaviours. Here, we see that a failure of offspring to

disperse from their natal deme (i.e. increasing m0) can

lead to a decrease in co-operation because kin competi-

tion is increased. This effect is exemplified by a reduced

tendency to co-operate under the ‘imitation’ life cycle

when compared with the ‘death–birth’ life cycle (Ohtsuki

et al., 2006; Ohtsuki & Nowak, 2006).

It is useful to recognize that understanding the condi-

tions promoting the emergence and stability of co-oper-

ation cannot be achieved without understanding the life

cycle of the social system under investigation (Ratnieks,

2006). The results described in this paper are based on the

assumptions of a one-locus weak selection model, haploid

inheritance, stable population size (i.e. constant demo-

graphy and environment), overlapping generations but

no aging, homogeneous dispersal and homogeneous

interactions occurring only between members of the same

generation. With these life-cycle assumptions, we were

able to use inclusive fitness theory to derive results

analytically and to generalize the rule for co-operation

proposed by evolutionary graph theorists (Ohtsuki et al.,

2006; Ohtsuki & Nowak, 2006). However, despite its

generality in the context of the ‘death–birth’ and ‘imita-

tion’ life cycles arising in evolutionary graph theory under

weak selection, our eqn 8 or even our extension of it (eqn

54) are no more general rules for the evolution of

co-operation in structured populations than any of the

many rules resulting from considering different life-cycle

assumptions (e.g. Eshel, 1972; Aoki, 1982; Taylor, 1992b;

van Baalen & Rand, 1998; Frank, 1998; Irwin & Taylor,

2001; Reuter & Keller, 2001; Le Galliard et al., 2003; Roze

& Rousset, 2004; Lehmann, 2006; Lehmann et al., 2006).

What these rich variety of theoretical studies reveal is that

there is no simple mathematical formula for the evolution

of co-operative behaviour but that the inclusive fitness

framework provides a powerful toolset to disentangle the

factors promoting co-operation in spatially structured

populations, a problem that will undoubtedly continue to

stretch the minds of biologists, sociologists and mathema-

ticians for years to come.
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Appendix A1: Inclusive fitness effect

Direct fitness method

To derive the explicit expression of the inclusive fitness

effect for the life cycle described in the main text, we use

the direct fitness method (Taylor & Frank, 1996; Frank,

1998) for finite populations (e.g. Rousset & Billiard,

2000; Rousset, 2004, 2006). In this framework, the

inclusive fitness effect of a mutant allele with small

phenotypic deviation relative to a resident allele (weak

selection) can be evaluated as

S ¼ @w

@z�
þ
X

j

@w

@zj
Qj; ð11Þ

where Qj denotes the stationary probability that a

recipient sampled in a deme at distance j from the focal

deme bears a copy of a homologous gene (or meme for

cultural evolution) drawn in the focal individual. Since S

represents the first-order phenotypic effect of a mutant

gene lineage on its fitness, it is sufficient to evaluate the

stationary probabilities of genetic identity under a

neutral model only (Rousset, 2003, 2004).

The functional form of eqn 11 is convenient for

mathematical simplification (see below) but S can

equivalently be expressed in terms of ‘relatedness coef-

ficients’ Rj measuring the extent to which two interacting

individuals sampled at distance j are more likely to share

genes (or memes) identical by descent than two individ-

uals sampled at random in the population. Noting that

the effects of actors on fitness sum up to zero:

¶w/¶z• +
P

j¶w/¶zj ¼ 0 (Rousset & Billiard, 2000; Rous-

set, 2004), we subtract ð@w=@z� þ
P

j @w=@zjÞ�Q from the

right-hand side of eqn 11 and divide the whole expres-

sion by 1� �Q, where �Q ¼
P

j Qj=nd is the average

probability of identity between pairs of homologous

genes sampled in different individuals.

After simplification, we obtain

S / @w

@z�
þ
X

j

@w

@zj
Rj; ð12Þ

where Rj ¼ ðQj � �QÞ=ð1� �QÞ measures the extent to

which the gene lineages of two individuals sampled at

distance j coalesce in a more recent past than the gene

lineages of two individuals sampled at random from the

population. Note that the definition of �Q implies that the

average relatedness is equal to zero

1

nd

X
j

Rj ¼ 0: ð13Þ

Fitness function

To evaluate explicitly the measure of selection S, it

remains to establish the fitness function w and the
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stationary probabilities of identity (the Qjs). In so doing

and to relate our formalization directly to previous kin

selection models for spatially structured populations, we

make one additional assumption for stage (3) of our life

cycle described in the main text. Instead of exactly one

adult individual dying per unit time, we assume that

each adult individual survives with probability s to the

next generation. This allows us to compare the classical

kin selection models for the evolution of helping in

spatially subdivided populations (e.g. Taylor, 1992a, b;

Taylor & Irwin, 2000; Irwin & Taylor, 2001; Rousset,

2004; Lehmann & Keller, 2006) with those of evolution-

ary graph theory for the ‘death–birth’ and ‘imitation’

processes (Ohtsuki et al., 2006; Ohtsuki & Nowak, 2006).

With this assumption, the direct fitness function w of a

focal individual is written as

w ¼ sþ ð1� sÞ
X

i

mi

1�
P
k

ðCkz� � BkzkÞ

P
j

mi�j 1þ
P
k

B0j�kzR
k

� � ð14Þ

and the subscripts are read on a periodic lattice, e.g. for a

circle we have

m�i ¼ mnd�i and mndþi ¼ mi:

When s ¼ 1 ) 1/NT, this equation is equivalent to the

fitness function presented in the main text and when

s ¼ 0 it is equivalent to the fitness function of Rousset

(2004, eqn 7.18).

Substituting eqn 14 into eqn 11, evaluating the partial

derivatives at the phenotypic value of the defector allele,

which does not express any helping behaviour (z• ¼ z0 ¼
� � �¼ zj ¼� � �¼ 0) and rearranging, we finally obtain

S¼ð1�sÞ �
X

k

Ckþ
X

k

BkQk�
X

k

X
i

X
j

B0j�kmimi�jQ
R
k

" #
;

ð15Þ
where

QR
k ¼ Qk except that QR

0 ¼
1

N
þ N � 1

N

� �
Q0: ð16Þ

The inclusive fitness effect S is equal, up to the constant

of proportionality 1 ) s, to the inclusive fitness effect for

spatially subdivided populations established by Taylor

(1992b, eqn 3) and Rousset (2004, eqn 7.19), and it

consists of three terms. The first term is the fecundity

cost for a focal individual expressing the helping allele.

The second term is the fecundity benefit received by the

focal individual from all other individuals in the

population bearing the helping allele. Finally, the third

term is the increase in competition faced by the focal

individual’s offspring and resulting from him and all

other actors in the population expressing the mutant

behaviour.

By calculating the corresponding probabilities of identity,

eqn 15 allows us to evaluate the selective pressure on the

mutant allele under three different demographic regimes:

(1) exactly only individual in the population dies per

generation, i.e. s ¼ 1 ) 1/NT (Moran process, e.g. Ewens,

2004) as assumed by Ohtsuki et al. (2006) and Ohtsuki &

Nowak (2006); (2) all individuals of the population die in

each generation, i.e. s ¼ 0 (Wright–Fisher process, e.g.

Ewens, 2004) as assumed by Taylor (1992a, b) and

Rousset (2004); and (3) the intermediate regime where

each individual has a probability s of surviving from one

generation to the next (Cannings process, e.g. Ewens,

2004) as assumed in Taylor & Irwin (2000), Irwin &

Taylor (2001) and Lehmann & Keller (2006). In the latter

case, the inclusive fitness effect S is the expectation over

the realizations of the demographic states of the popu-

lation resulting from the number of adults surviving in

each deme being a random variable. In Appendix A2, we

present the recurrence equations for the probabilities of

identity for these three demographic regimes.

Appendix A2: Genetic structure of the
population

Overlapping generations: Moran process

From the assumptions that only one individual dies per

unit time, we find by applying standard methods (e.g.

Maruyama, 1970; Malécot, 1975; Nagylaki, 1976, 1983;

Epperson, 1999; Gandon & Rousset, 1999; Epperson,

2003; Rousset, 2004) that the probabilities Qk that two

individuals sampled at distance k bear the same genes

satisfy the recursions:

Qkðt þ 1Þ ¼ sAQkðtÞ þ ð1� sAÞð1� lÞ
X

i

miQ
R
k�iðtÞ ð17Þ

and

QR
k�iðtÞ ¼ Qk�iðtÞ except that QR

0 ðtÞ ¼
1

N
þ N � 1

N

� �
Q0ðtÞ;

ð18Þ
where l is the mutation rate and the subscripts are read

on a periodic lattice, e.g. for a circle we have

m�i ¼ mnd�i and mndþi ¼ mi:

The recursions for the probabilities of identity depend on

the probability sA ¼ 1 ) 2/NT that two adult individuals

sampled at random from the same or from two different

demes have survived from one generation to the next

(NT ” ndN is the total population size). With comple-

mentary probability 1 ) sA, one samples an adult indi-

vidual that has survived and the only new individual of

the population. The latter descends from the former with

probability 1/N, whenever the new individual originates

from the same deme as the parent. In terms of and

evolutionary graph theory (Lieberman et al., 2005;

Ohtsuki et al., 2006; Ohtsuki & Nowak, 2006), ml

represents the probability that an individual on a given

vertex places its offspring in a vertex at distance l (i.e. the
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mls are the elements of the adjacency matrix of the

graph, which is circulant here). At steady state, we have

from eqs 17 and 18:

Qk ¼ ð1� lÞ
X

i

miQ
R
k�i ð19Þ

and QR
k�i is given by eqn 16.

The recursions for the probabilities of identity allow us

also to establish a useful formula, which will be helpful in

forthcoming calculations. Writing the recursions in

matrix form and applying population genetic methods

(Rousset, 2004, chapter 3), yields an expression that

relates the diversity in a deme (1 ) Q0) to total popula-

tion size NT (e.g. Maruyama, 1974; Nagylaki, 1982) by

the equality

lim
l!0

l
1� Q0

¼ 1

NT

: ð20Þ

This expression is obtained as follows. Write the

recursions for the probabilities of identity (eqn 19) in

matrix form as

Q ¼ ð1� lÞFðQþ cÞ; ð21Þ
where Q is a vector collecting the Qks, F is a circulant

matrix collecting the mis and c ” ((1 ) Q0)/N, 0, 0,…).

Let 0 and 1 be the column zero and unit vectors,

differentiate eqn 21 with respect to l at l ¼ 0, use

Q|l¼0 ¼ 1, c|l¼0 ¼ 0 and F1¼1 to obtain

dQ

dl
¼ �1þ F

dQ

dl
þ F

dc

dl
; ð22Þ

where dc/dl ¼ ()(dQ0/dl)/N, 0, 0,…). Premultiplying

eqn 22 by the row unit vector 1T, using 1T1 ¼ nd and

1T(I ) F) ¼ 0 because 1TF ¼ 1T, we have

dQ0

dl
¼ �ndN: ð23Þ

We can now recover eqn 20 by using the definition of the

derivative at l ¼ 0

dQ0

dl
¼ lim

l!0

Q0 � 1

l
: ð24Þ

Nonoverlapping generations: Wright–Fisher process

The recursions for the probabilities of identity for the

Wright–Fisher scheme of reproduction are very well

known (e.g. Malécot, 1975; Nagylaki, 1976, 1982;

Epperson, 1999; Gandon & Rousset, 1999; Rousset &

Billiard, 2000; Rousset, 2004), and they satisfy at steady

state the equations

Qk ¼ ð1� lÞ2
X

i

X
j

mimi�jQ
R
k�j; ð25Þ

where as before QR
k�j is given by eqn 16. The equilibrium

diversity in a deme for this model is then given by

Rousset (2004, eqn 3.68) and can be expressed as

lim
l!0

lð2� lÞ
1� Q0

¼ 1

NT

: ð26Þ

Overlapping generations: Cannings process

When each individual has a per generation probability s

of survival, we find that the probabilities of identity

satisfy at equilibrium the equations

Qk ¼s2Qk þ 2sð1� sÞð1� lÞ
X

i

miQ
R
k�i

þ ð1� sÞ2ð1� lÞ2
X

i

X
j

mimi�jQ
R
k�j;

ð27Þ

where as before QR
i is given by eqn 16. Using the same

methods as for the Moran and Wright–Fisher processes,

we obtain for the diversity in a deme for this life-history

setting

lim
l!0

lð2� lÞ
ð1� Q0Þ

¼ ð1þ sÞ
NT

: ð28Þ

Comparing life-history regimes

Comparing eqns 19, 25 and 27 and assuming that

s ‡ 1 ) 1/NT inform us that the demographic regime

eroding less the probabilities of identity through migra-

tion is given by the Moran process (eqn 19). Hence, for a

given dispersal distribution resulting in isolation by

distance, this is the demographic regime causing the

highest relatedness R0 between locally interacting indi-

viduals. This result can also be noted by comparing the

steady-state diversity within a deme (compare eqns 20,

26 and 28), which is the lowest under the Moran process

(eqn 20).

Appendix A3: Explicit inclusive fitness
effect

We now have the two ingredients, fitness effects and

probabilities of identity, that allow us to evaluate the

inclusive fitness effect explicitly.

Overlapping generations: Moran process

Because both dispersal and interaction between individ-

uals are spatially homogeneous and isotropic, the third

term of the inclusive fitness effect (eqn 15) is given by

X
k

X
i

X
j

B0j�kmimi�jQ
R
k ¼

X
k

X
i

X
j

B0kmimi�jQ
R
j�k;

ð29Þ
where the right-hand side of this equality will now be

simplified by using eqn 19 twice. This isothermal prop-

erty of the graphs greatly reduces the number of terms
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we need to consider in the derivation of S. Specifically,

we use eqn 19 once under the form

Qi�k ¼ ð1 � lÞ
P

j mi�jQ
R
j�k and once under the form

Qk ¼ (1 ) l)
P

imiQi)k + (1 ) l)mk(1 ) Q0)/N, which

allows us to obtainX
k

X
i

X
j

B0kmimi�jQ
R
j�k¼

1

1�l

X
k

X
i

B0kmiQi�k

¼ 1

1�l

X
k

B0k
Qk

1�l
�mkð1�Q0Þ

N

� �

¼�
X

k

Ck
Q0

ð1�lÞ2
�m0ð1�Q0Þ
ð1�lÞN

 !

þ
X

k

Bk
Qk

ð1�lÞ2
�mkð1�Q0Þ
ð1�lÞN

 !
;

ð30Þ
where the last line is obtained by using B0k �Bk except

that B00 �B0�
P

i Ci. Inserting the last equality into the

inclusive fitness effect and setting s ¼ 1 ) 1/NT, we find

that it can be written as

S ¼ 1

NT

X
k

�Ck
1� Q0

ð1� lÞ2
� lþ ð1� lÞl
ð1� lÞ2

þm0ð1� Q0Þ
ð1� lÞN

 !"

þBk
mkð1� Q0Þ
ð1� lÞN � Qkðlþ ð1� lÞlÞ

ð1� lÞ2

 !#
:

ð31Þ
Dividing the inclusive fitness effect by 1 ) Q0, using

the formula for the stationary diversity within a deme for

the Moran process (eqn 20) and taking the low mutation

limit ( lim l fi 0S/(1 ) Q0)), which results in Qk fi 1,

shows that the inclusive fitness effect is proportional to

S /
X

k

�Ck 1þm0

N
� 2

NT

� �
þ Bk

mk

N
� 2

NT

� �� �
; ð32Þ

which, when mk ¼ 1/nd for all k (i.e. unstructured

population), reduces to eqn 9. Hence, the mutant is

selected for whenX
k

�Ck 1þm0

N
� 2

NT

� �
þ Bk

mk

N
� 2

NT

� �� �
> 0: ð33Þ

Nonoverlapping generations: Wright–Fisher process

The inclusive fitness effect when each individual of the

population dies in each generation has been analysed by

Taylor (1992b) and Rousset (2004, p. 124). Inserting eqn

25 into the right-hand side of eqn 29, we have

X
k

X
i

X
j

B0kmimi�jQ
R
j�k ¼

1

ð1� lÞ2
X

k

B0kQk: ð34Þ

Inserting this equation into eqn 15 and setting s ¼ 0, we

then have

S ¼
X

k

�Ck 1� Q0

ð1� lÞ2

 !
þ BkQk � Bk

Qk

ð1� lÞ2

" #

¼ 1

ð1� lÞ2
X

k

½�Ckð1� Q0 � lð2� lÞÞ � BkQklð2� lÞ�:

ð35Þ
Dividing the inclusive fitness effect by 1 ) Q0, using

the formula for the stationary diversity within a deme

(eqn 26) and taking the low mutation limit ( lim l fi 0S/

(1 ) Q0)), reveals that the inclusive fitness effect is

proportional to

S /
X

k

�Ck 1� 1

NT

� �
� 1

NT

Bk

� �
; ð36Þ

which is always a net cost (e.g. Rousset, 2004, eqn 7.21)

independent of the structure of the population! When

migration is random (mk ¼ 1/nd for all k), eqn 32

becomes equivalent to eqn 36. Hence, the direction of

selection on the mutant for weak selection is the same in

panmictic populations, whether there is overlapping

generations or not.

Overlapping generations: Cannings process

The inclusive fitness effect when each adult individual has

a probability s of surviving per generation has been studied

previously under more stringent life-cycle assumptions,

that is, for the infinite island model of dispersal by Taylor &

Irwin (2000), for the stepping-stone model of dispersal and

interactions by Irwin & Taylor (2001) and for an arbitrarily

dispersal distribution but with only local interactions by

Lehmann & Keller (2006). Inserting eqn 27 into the right-

hand side of eqn 29, we have

X
k

X
i

X
j

B0kmimi�jQ
R
j�k ¼

X
k

B0k
ð1� s2ÞQk

ð1� lÞ2ð1� sÞ2

"

� 2sð1� sÞ
ð1� lÞð1� sÞ2

X
i

miQ
R
k�i

#
:

ð37Þ
Wenow expand the double sum appearing in the second

term of the right-hand side as

X
k

B0k
X

i

miQ
R
k�i¼

X
k

B0k
X

i

miQk�iþ
m�kð1�Q0Þ

N

" #

¼
X

k

B0k
X

i

miðQk�i�Q0ÞþQ0

"

þm�k1�Q0Þ
N

�

¼
X

k

B0k Q0þ
mkð1�Q0Þ

N
�Ykð1�Q0Þ

� �
;

ð38Þ
because m)k ¼ mk and
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Yk �
X

i

mi
ðQ0 � Qk�iÞ
ð1� Q0Þ

; ð39Þ

which is a measure of average diversity. Substituting

the last three equations into the inclusive fitness effect

(eqn 15), dividing it by (1 ) Q0) and rearranging we

obtain

S

1� Q0
¼ ð1� sÞ

X
k

�Ck
1

c
þ 2sðm0=N � Y0Þ

ð1� sÞ ffiffifficp
��

� 1� c
cð1� Q0Þ

� 2sð1� ffiffiffi
c
p ÞQ0

ð1� sÞcð1� Q0Þ

�

þBk
2s

ð1� sÞ
ðQ0 � QkÞ
ð1� Q0Þ

þ 2sðmk=N � YkÞ
ð1� sÞ ffiffifficp

�

�ð1þ sÞð1� cÞQk

ð1� sÞcð1� Q0Þ
� 2s½1� ð1= ffiffiffi

c
p Þ�Q0

ð1� sÞð1� Q0Þ

��
; ð40Þ

where c ” (1 ) l)2. Taking the low mutation limit

( lim l fi 0S/(1 ) Q0)) and using the stationary diversity

within a deme for the Cannings process (eqn 28), we

have

lim
l!0

1� c
cð1� Q0Þ

þ 2sð1� ffiffiffi
c
p ÞQ0

ð1� sÞcð1� Q0Þ

� �
¼ ð1þ sÞ
ð1� sÞNT

ð41Þ

and

lim
l!0

ð1þ sÞð1� cÞQk

ð1� sÞcð1� Q0Þ
þ 2s½1� ð1= ffiffiffi

c
p Þ�Q0

ð1� sÞð1� Q0Þ

� �
¼ ð1þ sÞ
ð1� sÞNT

:

ð42Þ
With these formulae in hand, the inclusive fitness effect

finally becomes

S /
X

k

�Ck 1þ 2s

ð1� sÞX0 �
ð1þ sÞ
ð1� sÞNT

� ��

þBk
2s

ð1� sÞXk �
ð1þ sÞ
ð1� sÞNT

� ��
;

ð43Þ

where

Xk �
mk

N
þ
X

i

mi
ðQk�i � QkÞ
ð1� Q0Þ

; ð44Þ

which will depend on the shape of the dispersal distri-

bution and must be evaluated in the low mutation limit

(when l fi 0). Hence, the inclusive fitness effect does

not reduce to a simple form without further assumption

on the life cycle.

We will now express the Xks in terms of the dispersal

distribution to subsequently obtain a low migration

approximation of the inclusive fitness effect (Nagylaki,

1982; Rousset, 2004). To that aim we use classical results

on Fourier analysis and follow similar developments

as presented in Rousset (2004, chapter 3). Call

w(z) ”
P

imi eıiÆz the characteristic function (the Fourier

transform) of the dispersal distribution, where ı �
ffiffiffiffiffiffiffi
�1
p

,

and let Q(z) ”
P

iQi eıiÆz be the Fourier transform of the

Qis. Fourier transforming eqn 27 and rearranging, we

find that

QðzÞ ¼ s2QðzÞ þ 2sð1� sÞð1� lÞwðzÞ QðzÞ þ ð1� Q0Þ
N

� �

þ ð1� sÞ2ð1� lÞ2wðzÞ2 QðzÞ þ ð1� Q0Þ
N

� �
;

ð45Þ
which, once solved for the characteristic function Q(z),

yields

QðzÞ ¼ ð1� Q0Þ
N

FðzÞ; ð46Þ

where

FðzÞ ¼ ð1� lÞwðzÞð2sþ ð1� sÞð1� lÞwðzÞÞ
1þ sð1� 2ð1� lÞwðzÞÞ � ð1� sÞð1� lÞ2wðzÞ2

;

ð47Þ
which, when s fi 0, makes direct contact with the

standard formulae (e.g. Malécot, 1975; Nagylaki, 1976;

Epperson, 1999; Rousset, 2004). From these equations

we can unleash the stationary Qk as

Qk ¼
ð1� Q0Þ

N
LkðFÞ; ð48Þ

where Lk(F ) ” (1/nd)
P

jF (z(j))e)ıkÆz(j) is the inverse

Fourier transform of F at distance k.

Noting that mk ¼ Lk(w) and using the stationary Qk, we

can write

Xk¼
1

N
LkðwÞþ

X
i

mi½Lk�iðFÞ�LkðFÞ�
 !

¼ 1

N
LkðwÞþ

1

nd

X
i

X
j

miFðzðjÞÞ
 

� e�ıðk�iÞ�zðjÞ�e�ık�zðjÞ
h i�

¼ 1

N
LkðwÞþ

1

nd

X
i

X
j

miFðzðjÞÞe�ık�zðjÞ eıi�zðjÞ�1
h i !

¼ 1

N
LkðwÞþ

1

nd

X
j

FðzðjÞÞ½wðzðjÞÞ�1�e�ık�zðjÞ
 !

¼ 1

N
LkðwþFw�FÞ:

ð49Þ
Substituting eqn 47 into the last equation and taking the

low mutation limit ( lim l fi 0Xk), we obtain after

simplification

lim
l!0

Xk ¼
1

N
Lk

ð1� sÞw
1þ sþ ð1� sÞw

� �
: ð50Þ

Now that the Xks are expressed in terms of the

characteristic function of the dispersal distribution, we

can establish a low migration approximation for these

functions. To that aim, we write m0 ¼ (1 ) m) and mi ¼
mgi, and approximate the Xks by letting the migration

rate m go to zero (Rousset, 2004, chapter 3). From these

definitions, the characteristic function of dispersal can be
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expressed as w ¼ 1 ) m(1 )
P

i „ 0gi eıiÆz). Inserting this

expression into [(1 ) s)w/(1 + s + (1 ) s)w)] and by

Taylor expansion at m ¼ 0, we get

ð1� sÞw
1þ sþ ð1� sÞw ¼

ð1� sÞ2

4
þ ð1� s2Þw

4
þ Oðm2Þ: ð51Þ

By inverse Fourier transforming this expression and

noting that the inverse transform of a constant a is

Lk(a) ¼ 0 except that L0(a) ¼ a, we finally obtain

Xk �
ð1� s2Þmk

4N
ð52Þ

except that

X0 �
ð1� sÞ2

4N
þ ð1� s2Þð1�mÞ

4N
: ð53Þ

These approximations are valid irrespective of the shape

of the dispersal distribution, whenever the dispersal rate

m is small.

With these approximations, the inclusive fitness finally

becomes

S / �C0 þ ðB0 � C0Þ
sð2�mð1þ sÞÞ

2N
� ð1þ sÞ
ð1� sÞNT

� �

þ
X
k 6¼0

�Ck 1þ sð2�mð1þ sÞÞ
2N

� ð1þ sÞ
ð1� sÞNT

� ��

þBk
sð1þ sÞmk

2N
� ð1þ sÞ
ð1� sÞNT

� ��
: ð54Þ

Letting nd fi ¥ in this equation and then s fi 1 allow

us to recover eqn 32 for nd fi ¥.
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