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Purpose: To report the clinical and genetic study of two families of Egyptian origin with clinical anophthalmia. To further
determine the role of the retina and anterior neural fold homeobox gene (RAX) in anophthalmia and associated cerebral
malformations.
Methods: Three patients with clinical anophthalmia and first-degree relatives from two consanguineous families of
Egyptian origin underwent full ophthalmologic, general and neurologic examination, and blood tests. Cerebral magnetic
resonance imaging (MRI) was performed in the index cases of both families. Genomic DNA was prepared from venous
leukocytes, and direct sequencing of all the exons and intron-exon junctions of RAX was performed after PCR
amplification.
Results: Clinical bilateral anophthalmia was observed in all three patients. General and neurologic examinations were
normal; obesity and delay in psychomotor development were observed in the isolated case. Orbital MRI showed a
hypoplastic orbit with present but rudimentary extraocular muscles and normal lacrimal glands. Cerebral MRI showed
agenesis of the optic nerves, optic tracts, and optic chiasma. In the index case of family A, the absence of the frontal and
sphenoidal sinuses was also noted. In the index case of family B, only the sphenoidal sinus was absent, and there was
significant cortical atrophy. The three patients carried a novel homozygous c.543+3A>G mutation (IVS2+3A>G) in
RAX. Parents were healthy heterozygous carriers. No mutations were detected in orthodenticle homeobox 2 (OTX2),
ventral anterior homeobox 1 (VAX1), or sex determining region Y-box 2 (SOX2).
Conclusions: This is the first report of a homozygous splicing RAX mutation associated with autosomal recessive bilateral
anophthalmia. To our knowledge, only two isolated cases of anophthalmia, three null and one missense case affecting
nuclear localization or the DNA-binding homeodomain, have been found to be caused by compound heterozygote RAX
mutations. A novel missense RAX mutation was identified in three patients with bilateral anophthalmia and a distinct
systemic and neurologic phenotype. The mutation potentially affects splicing of the last exon and is thought to result in
a protein that has an aberrant homeodomain and no paired-tail domain. Functional consequences of this change still need
to be characterized.

Anophthalmia (absence of the eye) is rare and the most
severe ocular dysgenesis. Often discussed together with
microphthalmia (small eye), anophthalmia and
microphthalmia have a cumulative approximate frequency of
one to two in 10,000 births [1-3]. Despite this low rate, the
severity of the disease and the role it can play in understanding
normal eye development justify thorough study of human
anophthalmia.

Several anophthalmia- or microphthalmia-causing genes
have been identified to date and include, among others, paired
box 6 (PAX6), orthodenticle homeobox 2 (OTX2), sex
determining region Y-box 2 (SOX2), visual system homeobox
2 (VSX2), ventral anterior homeobox 1 (VAX1), and retina and
anterior neural fold homeobox (RAX) [4-6]. SOX2 is to date
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the gene most frequently involved in anophthalmia and
accounts for up to 10% of cases [5,7].

RAX is a homeobox gene that plays a major role in human
and vertebrate eye development. In mice, Rax is involved in
optic vesicle formation, and loss of function is responsible for
anophthalmia and leads to brain malformation [8]. Expressed
early in retinal development, RAX is thought to determine the
fate and proliferation of retinal cells [9]. Few reports of RAX
mutations in humans have been published, and these include
anophthalmia, microphthalmia, and eye coloboma [10,11].

METHODS
Patients: This study was approved by the Ethics Committee
of the Faculty of Medicine of the University of Alexandria,
Egypt, and was conducted in accordance with the tenets of the
Declaration of Helsinki. Written informed consent was
obtained from each participant or parent. Three patients with
anophthalmia belonging to two consanguineous families and
their first-degree relatives were included in this study (Figure
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1: family A, patients IV:1 and IV:5; family B, the affected
daughter). Parents of the affected patients were first-degree
cousins in both families. In family A (Figure 1), two affected
children died in infancy because of severe dehydration caused
by diarrhea (IV:3, IV:4). The two families were from the
District of Alexandria in northwestern Egypt. All available
subjects underwent full ophthalmic, general, and neurologic
examinations at the Departments of Ophthalmology,
Pediatrics, and Neurology of the University of Alexandria,
Egypt, respectively. Special attention was paid to assessing
the presence of associated anomalies such as mental
retardation. A cerebral magnetic resonance imaging (MRI)
was performed on both index patients (patient IV:5 of family

A and the affected daughter of family B; Figure 1). Magnetic
resonance imaging (MRI) were reviewed by two different
neuroradiologists. MRI acquisition techniques included
conventional T1- and T2-weighted multisection images
(5 mm slice) on a 1.5-Tesla MR imaging system (Siemens,
Helsinki, Finland).
Molecular analysis: Microsatellite markers flanking all
known genes associated with micro/anophthalmia were
evaluated for homozygosity in families A and B. DNA from
patients was extracted from peripheral leucocytes as
previously described [12]. Direct bidirectional sequencing of
all PCR-amplified exons including the 3′- and 5′ untranslated
regions as well as the adjacent intron junctions was performed

Figure 1. Pedigrees of the two Egyptian consanguineous families with autosomal recessive anophthalmia. Squares and circles represent men
and women, respectively. Darkened symbols denote affected family members. A double line indicates consanguinity.

TABLE 1. PRIMERS USED FOR DIRECT SEQUENCING OF RAX.

Exon Forward primer (5′-3′) Reverse primer (5′-3′) Size of PCR
product

1 GCCTCTCCTCTCCGTCTCC GGGCGCCCGAACGGCCTC 380 bp
2 GGAGTGCATCTGACCCTCC TGGCTGCAATTTGGGCCTCG 351 bp
3a GAGCTGAACCGGCTCAGG GGATCCCAAGACGTTCCCC 602 bp
3b AAGTTCCCGCTGGACGAG CAGAGTCGAAACAAAACAAGCA 597 bp
3c GGAGACCCCCAGATAACCAT CGGAGATCTGCTTGGTGAAC 567 bp
3d CAGCGGCAGCTGATATTTTC GGCATCCAGGTTCTGCTG 554 bp
3e CTAGGGCGAGGAAGGAATCT TTAGACCCGCAGAGAAAGGA 557 bp
3f TAATCATCGTCCCCATTTCC ACTTGGAGCCCATGAAGTTG 453 bp

          Exon 3 was split in 6 overlapping DNA fragments. bp: base pairs
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with the ABI Dye Terminator (Applied Biosystems, Zug,
Switzerland), version 1, and electrophoresed on a 3130XL
ABI Genetic Analyzer (Applied Biosystems). Primers were
obtained with the help of the Primer3 program and are listed
in Table 1. Sequences were compared to the reference
sequence NM_000280.3 using Chromas version 2.23
(Technelysium, Tewantin, Australia). The adenine of the
ATG translation start site was set to one. The heterozygous
mutation identified with direct double-strand sequencing was
further validated with denaturing high-performance liquid
chromatography (DHPLC) on a WAVE system (TEAA;
Transgenomics, Crewe, England) with the temperature set to
64.6 °C and the start buffer B to 58%. The same DHPLC
approach was used to check for the presence of the sequence
variant in the DNA of 80 ethnically matched and 96 European
control individuals. The role of the variant in splicing was
evaluated with in silico analysis using the SplicePort
computer program [13], and DNA sequences of various
species encompassing the variant were aligned using options
available through Ensembl.

RESULTS
Clinical findings: Clinical bilateral anophthalmia was
observed in all three affected children of the two families. In
family A, both affected children, patients IV:1 and IV:5, had
complete absence of eyes, large eyebrows, and a low insertion
on the superior eyelid (Figure 2). They had a high arched
palate and were normal in height, weight, and head
circumference. Both presented normal psychomotor
development; general and neurologic examinations were
normal for all family members.

As in family A, the affected daughter of family B had
large, flaring eyebrows and a low insertion on the superior
eyelid (Figure 2). This patient had global development delay,
obesity (weight: +7 standard deviation [SD] for age and sex,
height: 90th percentile), abnormal head circumference (7th
percentile), and a high arched palate.
Magnetic resonance imaging findings: In patient IV:5 (Figure
3A,C) of family A and the affected daughter (Figure 3B,D) of

family B, orbital MRI showed a hypoplastic orbit with present
but rudimentary extraocular muscles and a normal lacrimal
gland. A cerebral MRI showed agenesis of the optic nerves,
optic tracts, and optic chiasma, and a normal pituitary gland.
In patient IV:5 (family A), the absence of frontal and
sphenoidal sinuses was also noted. In the affected daughter
(family B), only the sphenoidal sinus was absent, and
significant corticosubcortical atrophy, predominantly in the
frontotemporal lobes, was observed with ex vacuo dilation of
the ventricles.
Molecular findings: Molecular analysis with markers
D18S1127 and D18S1147, two markers flanking RAX,
showed a homozygous haplotype in the affected individuals
of family A suggesting that RAX could be involved in the
disease. Sequencing of all the exons and 3′ and 5′ UTR
identified  a  c.543+3A>G  mutation  (IVS2+3A>G)   in   the
splice donor of the second intron of RAX (Figure 4A). All three
affected individuals from both families were homozygous for
the mutation while their healthy parents were heterozygous
(Figure 4B). The mutation was absent in the healthy sibling
(IV:2) in family A (Figure 5). The mutation was not detected
in 80 ethnically matched healthy individuals (50 Algerians
and 30 Egyptians) and in 96 European controls, and has not
been previously reported. No other mutations were detected
in OTX2, VAX1, or SOX2.

The third base of the donor site is conserved in various
mammals as well as in chickens (Gallus gallus) and fugu fish
(Takifugu rubripes). The donor site, however, is no longer
conserved in zebrafish and more distantly related species such
as Caenorhabditis elegans (Table 2) [13]. In silico analysis of
the splice potential donor site of the wild-type sequence of the
second intron using the computer program SplicePort gave a
score threshold of 1.64346 with a predicted sensitivity of
88.8%, a score usually associated with good splicing potential.
This score was reduced to 0.39398 when the IVS2+3A>G
variant was evaluated, a score much lower but not indicative
of a nonfunctional donor. Haplotype analysis was also
performed in family B. The alleles for both microsatellites
were different from family A. Based on the analysis of the

Figure 2. Facial features of the anophthalmic patients. A: Family A: Patient IV:1 at 16 years of age. Note the complete absence of eyes and
the large eyebrows with low insertion on the superior eyelid. The patient presented normal psychomotor development. She had a high arched
palate and was normal in height, weight, and head circumference. B: Family B: the affected daughter at 7 months of age. As in family A, note
the large eyebrows with low insertion on the superior eyelid. Global delay in development, obesity (weight: 7 SD above mean for age and
sex, height: 90th percentile), abnormal head circumference (7th percentile), and a high arched palate were observed in this patient. On the
genetic level, both patients carried an IVS2 + 3A>G homozygous RAX mutation.
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Figure 3. Cerebral and orbital MRI images. A: Family A, Patient IV:5. B: Family B, affected daughter. Orbital hypoplasia. Coronal images,
T2-weighted. Agenesis of the eye globes. Rudimentary extraocular muscles. Present and normal lacrimal glands. C: Axial image. T1-weighted.
Family A, patient IV:5. Absent frontal sinus. D: Axial image. T2-weighted. Family B, affected daughter. Corticosubcortical atrophy,
predominantly in the frontotemporal lobes, with ex vacuo dilation of the ventricles.
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three individuals available, it seems that a recombination
occurred between D18S1127 and D18S1147 in the affected
child. No single nucleotide polymorphisms (SNPs) were
identified in any of the sequences performed in the three
affected individuals.

DISCUSSION
This is the first report of human bilateral anophthalmia caused
by a homozygous mutation of RAX. The identified c.
543+3A>G (IVS2+3A>G) splice mutation has not been
reported before. Cosegregation analysis in family A
confirmed the previously suggested recessive inheritance of
RAX mutations in human anophthalmia [10,11]. The mutation
affects splicing of the last exon as shown by the strong
reduction in splicing potential as determined by SplicePort in
silico analysis. This could potentially generate a truncated
protein. RAX mutations are rare, and it seems unlikely that two
unrelated families would share a similar mutation unless they
share a common DNA haplotype. To identify this DNA
segment, we performed a haplotype analysis in family B using
the same microsatellites flanking RAX. This analysis showed
that the three affected individuals do not share the DNA
segment defined by the microsatellites used. A smaller

common region cannot be excluded and, based on the low
frequency of the reported RAX mutations, seems likely.
Interestingly, no SNPs were observed in the sequences of the
three exons and exon-flanking intronic regions.

Only four reports of RAX mutations in ocular dysgenesis
are present in the literature (see Table 3).Voronina et al. [10]
reported a child with unilateral partial anophthalmia (presence
of remnants of the globe) due to a compound heterozygous
RAX mutation, one missense and one nonsense.
Microphthalmia and sclerocornea with persistent fetal
vasculature and retinal detachment were present in the other
eye. The mother was a healthy carrier of one mutation, and
autosomal recessive inheritance was thus suggested. The child
was autistic, but no cerebral malformations were observed on
the MRI. The second report describes a child with complete
bilateral anophthalmia (no remnants of the globe) and normal
development and cerebral MRI except for the absence of optic
nerves and hypoplastic chiasma. Again, compound
heterozygosity was reported but with two nonsense mutations.
The parents of the child were not tested for RAX mutations.

Our study confirms the autosomal recessive inheritance
of some cases of human anophthalmia, and it seems from the
few available cases that two null alleles are necessary to

Figure 4. Electropherograms of RAX mutations. Asterisks denotes mutated bases. A: Electropherogram of patient IV:1 (family A) showing a
homozygous c. 543+3A>G RAX mutation. B: Electropherogram of patient IV:1’s father (family A) showing the heterozygous mutation.
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induce such a severe phenotype as anophthalmia. This is
suggested by the presence of a healthy mother and a maternal
grandmother in the first report [10] and confirmed by the
presence of the four parents of this report who were all
heterozygous carriers with normal eye globes. Our report is at
odds with a recent report by Gonzales-Rodriguez et al. [14] in
which two patients affected with unilateral anophthalmia and
unilateral microphthalmia, respectively, as well as cerebral
malformations, were reported to carry a single heterozygous
RAX mutation. Neither mutation was found in 400 normal
controls suggesting their pathogenicity although the missense
mutation carried by the patient with microphthalmia was
found to be non-deleterious by the algorithm used by the
authors to predict functional impact. The authors concluded

that a single RAX allele mutation could cause the presented
phenotype. Nevertheless, since we did not perform
segregation or functional analysis in this study, the possibility
that the second allele carries an undiscovered mutation cannot
be ruled out. The fact that the patients reported by Gonzalez-
Rodriguez et al. [14] had a severe phenotype, which includes
cerebral malformations, while we report healthy carriers of
potentially truncating mutations might support our
hypothesis. Moreover, a recent publication on heterozygous
RAX mutation associated with ocular dysgenesis described a
child with ocular coloboma only and no other associated
malformations [15], suggesting again the mild or normal
ocular phenotype that heterozygous RAX mutation carriers

Figure 5. Chromatogram obtained on a Wave DHPLC system. Upperlane: PCR product of RAX exon 2 in a normal individual (family A:IV:
2) showing one single peak, indicative of a unique product. Lowerlane: PCR product of the same region in an heterozygous individual (family
A, father of IV:1). Three peaks corresponding to various heterodimers are visible. These heterodimers are obtained from different arrangements
between wild-type and mutated DNA strands. y-axis: intensity, x-axis: retention time. The difference in the shape of the curves between normal
and heterozygous individuals allows for an easy estimate of the frequency of the mutation in normal individuals.

TABLE 2. ALIGNMENTS OF VARIOUS EXON 2–INTRON 2 SEQUENCES.

Species Ensembl ID Exon/Intron boundary
H. sapiens ENSG00000134438 R V Q
  cgc gtc cag gtaaagcgc
P. troglodytes ENSPTRG00000010058 ..G ... ... .........
B. Taurus ENSBTAG00000022826 ..A ... ... ........t
O. cuniculus ENSOCUG00000010455 ... ..G ... ....g....
F. catus ENSFCAG00000006503 ..G ... ... .........
R. norvegicus ENSRNOG00000016944 ..G ... ... ....gctct
M. musculus ENSMUSG00000024518 ..G ... ... ....gtaag
G. gallus ENSGALG00000013431 ... ..G ... ...gg.atg
T. rubripes ENSTRUG00000010917 ..A ..G ... ...tgtgcg
O. latipes ENSORLG00000006024 ... ..G ... ..g.gtgct
X. tropicalis ENSXETG00000021154 A.G ..G ... ..g.gt.at
D. rerio ENSDARG00000071684 ..A ..G ... ..gtgtatt
C. elegans ZK265.4 ..A ..T ... ..g.ga.at

        Identical bases at the exon 2 – intron 2 boundary are replaced with a dot. The RVQ amino acids are conserved in all the described
        species. The “a” in bold in H. sapiens intron corresponds to the (IVS2+3A>G) mutation.
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can harbor. As a matter of fact, mice heterozygous for the
Rax gene mutation develop normal eyes as well [8].

Although few reports are available, the type of RAX
mutation might be determinant for the ocular phenotype. The
presence of RAX nonsense mutations is associated with
anophthalmia in the reports of Voronina et al. [10], Lequeux
et al. [11], and Gonzalez-Rodrigues et al. [14] and this present
study. Microphthalmia [14] and coloboma [15] are associated
with RAX missense mutations. Further studies including
functional analyses are required to corroborate this
hypothesis.

This is the first report of severe cerebral malformation
observed on cerebral MRI associated with homozygous RAX
mutations in humans. In addition to the absence of optic
nerves, chiasm and optic tracts, which was also reported,
albeit in a milder form, by Lequeux et al. [11], patient IV:5 of
family A presented a significant corticosubcortical atrophy
with ex vacuo dilation of the ventricles. Rax has been shown
to play a major role in brain development in different animal
models including mice [8,16]. This observation is thus not
surprising and may represent another expression of the
severity of the phenotype. Because no cerebral malformation
was observed in the case studied by Voronina et al. [10], these
authors attributed a smaller role to RAX in the development of
the ventral forebrain than to the morphogenesis of the eye. Our
report challenges this conclusion; the type of mutation may
instead be incriminated by the presence of cerebral
malformations. Further observations, however, are necessary
to draw any firm conclusions.
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