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ABSTRACT
Background: Cuffless blood pressure measurement technologies have attracted significant 
attention for their potential to transform cardiovascular monitoring.
Methods: This updated narrative review thoroughly examines the challenges, opportunities, and 
limitations associated with the implementation of cuffless blood pressure monitoring systems.
Results: Diverse technologies, including photoplethysmography, tonometry, and ECG analysis, 
enable cuffless blood pressure measurement and are integrated into devices like smartphones 
and smartwatches. Signal processing emerges as a critical aspect, dictating the accuracy and 
reliability of readings. Despite its potential, the integration of cuffless technologies into clinical 
practice faces obstacles, including the need to address concerns related to accuracy, calibration, 
and standardization across diverse devices and patient populations. The development of robust 
algorithms to mitigate artifacts and environmental disturbances is essential for extracting clear 
physiological signals. Based on extensive research, this review emphasizes the necessity for 
standardized protocols, validation studies, and regulatory frameworks to ensure the reliability and 
safety of cuffless blood pressure monitoring devices and their implementation in mainstream 
medical practice. Interdisciplinary collaborations between engineers, clinicians, and regulatory 
bodies are crucial to address technical, clinical, and regulatory complexities during implementation. 
In conclusion, while cuffless blood pressure monitoring holds immense potential to transform 
cardiovascular care. The resolution of existing challenges and the establishment of rigorous 
standards are imperative for its seamless incorporation into routine clinical practice.
Conclusion: The emergence of these new technologies shifts the paradigm of cardiovascular 
health management, presenting a new possibility for non-invasive continuous and dynamic 
monitoring. The concept of cuffless blood pressure measurement is viable and more finely tuned 
devices are expected to enter the market, which could redefine our understanding of blood 
pressure and hypertension.

PLAIN LANGUAGE SUMMARY
This review explores cuffless blood pressure technologies and their impact on clinical practice, 
highlighting innovative devices that offer non-invasive, continuous and non-continuous monitoring 
without a cuff. Signal processing is essential for ensuring accurate readings, as it filters out 
unwanted artifacts and environmental disturbances which could make the reading inaccurate. 
While these advancements show great potential for transforming cardiovascular care, there are 
still several challenges to overcome, including the need for standardized protocols and validation 
studies to ensure their reliability and safety in clinical settings. Collaborative efforts between 
engineers, clinicians, and regulatory bodies are needed to address the technical and regulatory 
complexities surrounding the implementation of these technologies. These cuffless blood pressure 
measurement devices have the potential to reshape how we understand and manage blood 
pressure and hypertension.
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1.  Introduction

Over a billion people worldwide have hypertension, a 
major health concern [1]. Blood pressure (BP) mea-
surement is crucial for cardiovascular disease risk 
assessment as elevated BP leads to hypertension and 
is considered the leading cause of morbidity and mor-
tality globally [2]. Undiagnosed and untreated hyper-
tension can lead to severe diseases like stroke, renal 
failure, and kidney failure [3]. Proper management 
and monitoring through lifestyle modifications, dietary 
changes, and medications can help control hyperten-
sion as well as hypotension [4]. The challenge lies in 
the fact that abnormal BP levels can often go unno-
ticed [5, 6] due to a lack of monitoring and the 
absence of significant symptoms, unlike many other 
major diseases. Regular monitoring using a reliable 
method is the best way to detect and keep track of 
these BP fluctuations. Conventional cuff-based BP 
measurement methods have been the gold standard 
for BP monitoring for decades, but have long been 
associated with several limitations, prompting research 
into cuffless methods. With advancements in sensor 
technology, signal processing techniques, and machine 
learning algorithms, researchers are striving to estab-
lish accurate relationships between biomedical signals 
and changes in BP and promising research has been 
published or is underway.

This article presents a comprehensive literature 
review encompassing various aspects of cuffless BP 
measurement, including commercially available and 
emerging technologies. The obstacles faced in the 
development and implementation of cuffless BP 
devices are outlined, including the aspect of regula-
tory and medical certification. Moreover, we examine 
the potential solutions and ongoing efforts to ensure 
the reliability and widespread adoption of cuffless BP 
devices. By summarizing the current state of the art 
and identifying future directions, this holistic review 
article aims to participate in the debate around cuff-
less BP measurement while contributing substantial 
scientific value to this rapidly evolving field.

1.1.  Selection process

The search procedure involved using Google Scholar 
and PubMed databases. The following search term 
were utilized across both databases to ensure compre-
hensive coverage of relevant studies on cuffless BP 
measurement: “(Cuffless[tiab] OR "cuff less"[tiab] OR 
"cuff-less"[tiab]) AND ("blood pressure"[tiab] OR 
"blood-pressure"[tiab] OR "BP"[tiab])”. During the ini-
tial search using the specified keywords, a substantial 

number of articles unrelated to this literature survey 
were retrieved. Three authors (BH, HH, PS) then 
selected the articles that were relevant for this review 
on cuffless noninvasive BP measurement.

2.  Cuffless blood pressure measurement

2.1.  Concepts

Different sensing technologies can capture various 
BP-related information [7, 8]. Pulse waves, can for 
instance be detected by photoplethysmography (PPG) 
[9] and tonoarteriography. Ejection recoil can be 
detected by ballistocardiography [10, 11] and seismo-
cardiography to measure BP-related information. 
Heart sounds can be detected by phonocardiography 
[12, 13] while ultrasounds may be used to detect local 
blood volume variation in relation to BP [14]. Finally, 
impedance plethysmography (IPG) [15] has been used 
to detect stroke volume and cardiac output while 
electrocardiography measures the electrical activities 
of the heart.

2.2.  Different sensing technologies

2.2.1.  Photoplethysmography
PPG has emerged as a promising non-invasive method 
for monitoring BP and cardiovascular function [16]. 
It works by shining light on tissue and collecting the 
light that is either transmitted or reflected. The light 
changes because of hemoglobin absorption in pulsatile 
arterial blood. This optical signal is detected either by 
a sensor placed on the opposite side of the tissue 
(transmitting PPG) or by a reflective sensor on the 
same side and plane as the emitting light (reflecting 
PPG) [Figure 1]. The static components, including 
muscle, fat, skin, and other tissue, account for over 
95% of the light amplitude, while the remaining 
dynamic component is influenced by heartbeat-induced 
volumetric changes in the vasculature, detectable 
through pulsatility [17]. As a result, the PPG wave-
form contains valuable information about cardiovas-
cular dynamics and shows close association with BP 
[18]. Pulse wave analysis (PWA) [19] allows extraction 
of features from PPG signals related to arterial pulsa-
tility. With the ease of acquiring PPG signals using 
photoelectric sensors, continuous cuffless BP monitor-
ing has gained significant attention in the medical 
community. Moreover, PPG signals can be readily 
integrated into wearable devices [20] like smartphones 
[21, 22] and smartwatches [23]. In recent research, 
there has been a strong interest in cuffless BP estima-
tion using PPG-based measurement techniques [24].
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2.2.2.  Electrocardiography
Electrodes use the voltage difference across the heart 
to measure the cardiac electrical activity, which initi-
ates mechanical contraction. Initially, it was suggested 
that the estimation of BP solely from the electrocar-
diogram was feasible [25], but this approach has 
recently been shown to be unreliable [26]. ECG pro-
vides valuable insights concerning the cardiac cycle.

2.2.3.  Ballistocardiography
The term "ballistocardiography" derives from the 
words "ballistic" (referring to the movement of an 
object which acts like a projectile) and "cardio" 
(related to the heart). Ballistocardiography (BCG) is a 
non-invasive technique used to measure the mechan-
ical movements of the human body in response to the 
ejection of blood from the heart during each heart-
beat. It has long been established that the body exhib-
its subtle movements with each heartbeat [27], 
representing the response to the ejection of blood by 
the heart into the arteries. Diverse instruments have 
been created to detect and record these movements 
from various parts of the body. The recorded ballisto-
cardiogram provides information about the timing 
and strength of each heartbeat, as well as certain 
aspects of cardiac function [28]. This method can be 
used for a lot of different kinds of sensing, but it can 
also produce motion artifacts [29], which need to be 

carefully thought through when the signals are ana-
lyzed and interpreted.

2.2.4.  Electrical bioimpedance
Electric bioimpedance (EBI) is a technique used to 
measure the electrical properties of biological tissues. 
It relies on the fact that different tissues in the body 
conduct electricity differently [30]. This method is 
non-invasive and can provide valuable information 
about various physiological parameters, including BP 
[31]. It offers greater penetration depth than PPG, is 
simpler than ultrasound [32] but does not yield as 
high-quality waveforms. When it comes to measuring 
BP, the electric bioimpedance method typically 
involves a specific variant known as “bioimpedance 
plethysmography” or “impedance cardiography (ICG)”. 
The underlying principle is that changes in blood vol-
ume within the arteries cause changes in electrical 
impedance, which can be detected by electrodes 
placed on the skin [33]. Usually, a set of four elec-
trodes is placed on the thorax, injecting harmless 
electrical current and measuring the resulting voltage. 
The resulting electrical impedance can be derived, 
which varies mainly due to highly conductive pulsa-
tile blood. By continuously monitoring these changes, 
the ICG signal can be processed and used to derive 
hemodynamic parameters, including systolic and dia-
stolic BP [34]. ICG has been demonstrated to be a 

Figure 1.  Working principle of reflecting and transmitting photoplethysmography.
(a) phototoplethysmogram generation and waveform features with variation in light attenuation by tissue (b) reflecting mode (c) transmitting mode.
Modified with authorization from Tamura et  al [196], Zhao et  al [48], Xu et  al [197].
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valuable tool for continuous and non-invasive moni-
toring in specific clinical situations [35], such as 
during exercise. This technique can be applied to dif-
ferent regions of the body [36]. Bioimpedance-based 
systems overcome the limitations of optical systems as 
the modality depends on the distribution of a very 
minimal, non-invasive, high-frequency alternating 
current underneath the skin, and the recordings of 
the voltage signal based on the volumetric distribu-
tion of different tissue types with their unique electri-
cal characteristics. These systems have been shown to 
effectively capture arterial blood flow when bioimped-
ance electrodes are in contact with the skin and 
aligned with an underlying artery [37].

2.2.5.  Seismocardiography
Seismocardiography (SCG) involves recording and 
analyzing the chest wall vibrations created by the con-
traction of the heart to gain insights into cardiovascu-
lar function, while using accelerometers or motion 
sensors [38]. This technique may estimate BP 
non-invasively since the heart’s pumping action gener-
ates characteristic waveforms that can be correlated 
with BP changes during the cardiac cycle. By analyz-
ing the SCG waveforms, researchers and clinicians 
may identify specific patterns related to changes in 
BP. These patterns may be associated with systolic 
and diastolic BP [39]. The morphology of the seismo-
cardiogram exhibits identifiable reference points, 
enabling the detection of significant events like the 
opening of the aortic valve [40].

Ongoing research is currently being carried out 
[41], as more studies are needed to validate and 
improve the accuracy and reliability of SCG for mea-
suring BP. Sensor positioning and motion artifacts 
have been identified to be complicating factors [42].

2.2.6.  Pressure sensors
Tonoarteriography (TAG), or applanation tonometry 
involves the application of a pressure sensor on the 
skin superficially to a peripheral artery to record a 
pressure waveform tracing [43]. The tonometry sensor 
exerts pressure on a specific artery, causing flattening 
(or applanation) of the artery’s wall. This relieves the 
circumferential tension of the blood vessel, hence the 
only component of force detected is the component 
due to intra-arterial pressure. TAG sensors can con-
vert pressure inputs into electrical outputs [44]. By 
analyzing the obtained waveform tracing, the sensor 
calculates the pulse pressure and offers an estimate of 
the BP [45]. Applanation tonometry has the advan-
tage that it can use a unique, single site sensor that 

can be easily applied to soft surfaces, such as human 
skin [46, 47]. Various pressure-sensing mechanisms 
have been explored [48].

The recent development of flexible pressure sensors 
has paved the way for improved cardiovascular mon-
itoring using this principle [49]. The newly improved 
sensors can capture more detailed features of pulse 
waveforms [50]. These new wearable sensors are 
light-weight, conformable to the skin, biocompatible, 
stable, low-cost, and low-power, making them suitable 
for a variety of applications [50]. Studies on cuffless 
BP estimation using flexible pressure sensors have 
demonstrated promising results [51, 52].

2.2.7.  Ultrasound
Ultrasounds offer a means to assess the absolute 
blood volume, cross-sectional area, and blood velocity 
waveforms within an artery by employing M-mode 
and Doppler principles [53]. A notable advantage over 
PPG is its ability to penetrate deep arteries for better 
visualization. Nonetheless, there are limitations to 
consider, including the substantial size of ultrasound 
generators required for this approach, making it chal-
lenging to integrate with a dynamic sensor.

3.  Signal analysis

The technologies mentioned above [Figure 2] allow 
the capture of various signals, which are subsequently 
employed to estimate BP using diverse principles con-
stituting a dynamic field of research in which techno-
logical advancements are rapidly evolving.

Similar improvements exist in signal analysis, and 
the most frequently used signal analysis procedures 
include PWA, Pulse Arrival Time (PAT), Pulse Transit 
Time (PTT), Pre Ejection Period (PEP), Pulse Wave 
Velocity (PVW) or a combination of those [Figure 3]. 
Electrocardiography and PPG [54] are already being 
combined for biomedical signal analysis [55]. A fur-
ther layer of analysis incorporates deep learning tech-
niques or advanced machine learning methods and is 
showing promising performance in various medical 
fields, including BP estimation [56, 57].

3.1.  Pulse wave analysis

PWA has been used to assess cardiovascular health 
and determine various parameters related to the arte-
rial pulse waveform [19]. The arterial pulse wave 
shows how the arteries expand and contract in a 
rhythmic way because of changes in blood pressure 
that happen during the cardiac cycle. Today, PWA can 
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be non-invasive and performed using sensors that 
captures various components such as light or pressure 
[58]. The measured arterial pulse is recorded as a 
waveform that represents the changes in pressure over 
time. The pulse waveform consists of a series of peaks 
and troughs, each corresponding to distinct phases of 
the cardiac cycle [59]. Existing signal processing tech-
niques can enhance the quality of data and remove 
artifacts, helping for a more reliable analysis. After 
processing the pulse waveform, various features are 
extracted to characterize the arterial pulse [60]. 
Common features include the pulse rate, the pulse 
amplitude, or different elements to assess its velocity 
[61]. The extracted features can then be inter-
preted [62].

3.2.  Pulse arrival time

PAT is defined by the time taken for the arterial pulse 
pressure wave to travel from the heart to a peripheral 
artery [63]. Typically, this is calculated as the time 
difference between the R-wave peak on an 

electrocardiogram and the onset of the upstroke at a 
peripheral site, usually the fingertip or the earlobe. 
Several non-invasive devices and techniques can be 
used to detect the arrival of the peripheral pulse wave 
[64], the most common being PPG. As a result, deter-
mining PAT requires two sensors: one proximal to 
detect the initiation (usually an ECG sensor) and one 
distal (usually a PPG sensor) [65].

PAT is a way to measure blood pressure because 
the stiffness of the arterial walls is directly linked to 
the speed at which the pulse wave travels [66], which 
in turn is linked to blood pressure [67]. Stiffer arter-
ies lead to faster pulse wave propagation, while more 
compliant arteries result in slower propagation [68].

3.3.  Pulse transit time

PTT measures the time it takes for the arterial pulse 
wave to travel between two distinct points in the cir-
culatory system (usually between two arterial sites) 
[69]. PTT-based BP measurement requires at least 
two sensors for simultaneous collection: commonly a 

Figure 2. R elationship of pulse arrival time (PAT), pre-ejection period (PEP), and pulse transit time (PTT) on electrocardiogram 
(ECG), impedance cardiograph (ICG), and photoplethysmography (PPG) at proximal and distal measurement sites.
Modified from Hu et  al [78].
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photoplethysmogram is associated with a phonocar-
diogram, seismocardiogram, or a signal recorded by 
another PPG sensor [70]. Like PAT, it is based on the 
principle that the speed of the pulse wave is related 
to the stiffness of the arterial walls [71]. The differ-
ence between PAT and PTT is illustrated on Figure 3.

PTT shows promise as a continuous BP monitoring 
method [69, 72], and numerous models have been 
created [72, 73]. Its potential lies in the small size of 
the sensors used to capture the required signals, 
allowing for seamless integration into various modern 
wearable devices [50]. This makes PTT a convenient 
and accessible option for continuous BP measurement 
[68]. However, a significant drawback of using PTT- 
based BP estimation is the frequent need for calibra-
tion [69, 74–76]. To address this, other approaches 
have been explored, including the extraction of exclu-
sive features from pulse waveforms or the combina-
tion of both PTT and pulse waveform features to 
create a more robust and accurate model [77].

3.4.  Pre-ejection period

PEP refers to the time required to convert the electrical 
signal of the R wave into a mechanical pumping force. 
In simpler terms, it is the duration from the electrical 
signal of the R wave to lead to the opening of the aor-
tic valve [78]. It is typically assessed using impedance 
cardiography or seismocardiography. PEP accounts for 
approximately 20% of the PTT [79]. With the previ-
ously defined PAT and PTT, we can understand that 
the PAT is always longer than the PTT because PAT 
includes both the PEP and PTT components [80].

3.5.  Pulse wave velocity

The relationship between PWV and BP relies on arte-
rial stiffness. When the heart contracts, it generates a 
pressure wave that travels through the arterial system 
and causes the arteries to expand and contract. When 
the arteries are more rigid and less elastic (for exam-
ple due to higher BP), the pulse wave travels faster 
compared to when the arteries are more compliant 
and flexible [81], thus PWV increases, as described by 
the Moens-Korteweg equation [82]. By measuring the 
pulse wave velocity, devices can indirectly assess arte-
rial stiffness, thus estimating BP.

PWV can be estimated from the PTT or from the 
PAT, or a combination of signals. PTT is inversely 
related to blood pressure [83, 84]. This can be easily 
understood with the equation for PWV, which is a 
ratio of distance over time, obtained from PTT by 
dividing the distance between the proximal and distal 
sites over the PTT. The proximal and distal sites are 
commonly the upper arm and finger but have also 
included other body parts such as the carotid artery, 
the femoral artery, or toes [85]. Modern physiological 
cuffless BP estimations predominantly rely on PWV 
surrogates [86, 87].

The collected data can be used in comparison with 
calibration or a collection of data (dataset). These are 
two primary approaches to cuffless beat-to-beat BP 
estimation. Physiological-based models rely on the 
understanding of the cardiovascular system, often 
incorporating a combination of different parameters. 
Deep learning techniques utilize advanced machine 
learning methods, showing promising performance in 
various medical fields, including BP estimation [56, 57].

4.  What devices can be used to collect the 
signals needed for cuffless blood pressure 
measurement?

Cuffless BP measurement products are already avail-
able in the market [88]. Smartwatches and 

Figure 3. D etermination of PAT and PTT in various modalities 
that combine photoplethysmography with biosignals for blood 
pressure estimation.
ICG: impedance cardiography, SCG: seismocardiography, ECG: electrocardi-
ography, IPG: impedance plethysmography, PPG: photoplethysmography, 
BCG: ballistocardiography, PAT: pulse arrival time, PTT: pulse transit time.
Modified from Welykholowa et  al [198].
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smartphones are being repurposed as cuffless BP 
monitoring tools [89–91], and are already possessed 
by most people, coming from different social classes. 
Some of these products are already available in the 
market [88]. Studies have underscored the widespread 
acceptance of these devices within the general popu-
lation [92]. The optimistic potential of these innova-
tive cuffless BP measurement methods has attracted 
attention from both researchers and the general pub-
lic, despite the fact that there is currently limited 
comprehension of their limitations and the challenges 
involved in assessing their accuracy [93]. The cur-
rently most promising options for cuffless BP mea-
surements are the smartphone and the smartwatch/
wristband although our review also briefly mentions 
other types of devices that could be used to gather 
signals. While the technique of the signal acquisition 
can be classified according to the device, a distinction 
could similarly be done between access to continuous 
versus discontinuous or intermittent blood pressure 
measurement.

Methods based on the Penaz principle [94], like the 
Nexfin [95] or Finapres [96], are often mistaken for 
cuffless devices. These approaches use a finger cuff 
with a photo-plethysmogram light source and detector 
to measure finger artery dimensions under different 
external pressures. Subsequently, they calculate contin-
uous, beat-to-beat fluctuations in arterial pressure. 
These devices are primarily utilized in clinical envi-
ronments and are not intended for use at home. 
Therefore, we will not include them in our review.

4.1.  Smartphones

Smartphones are a good option for cuffless BP mon-
itoring due to several reasons [97]. They are widely 
available and accessible to a large portion of the pop-
ulation, making it easier to integrate BP monitoring 
into daily routines. Smartphones are compact and 
portable, allowing users to carry them wherever they 
go. This portability enables cuffless BP monitoring in 
various settings such as at home, work, or while trav-
eling. Smartphones come equipped with accelerome-
ters, gyroscopes, and cameras, that can be utilized for 
cuffless BP monitoring. Moreover, smartphones can 
connect to external medical devices via Bluetooth, 
making it possible to integrate additional compatible 
cuffless BP devices [98]. The apps often have 
user-friendly interfaces, making it easier for individu-
als to track and manage their BP readings over time. 
Individuals can conveniently store and analyze BP 
data. This information can be shared with healthcare 

professionals. Utilizing smartphones for BP monitor-
ing can be more economical compared to purchasing 
specialized medical devices [99], as the additional cost 
may be minimal since many people already own 
smartphones. The phone camera, which is a visible 
light detector, can be used to measure a PPG wave-
form [17]. As demonstrated on Figure 4, this can be 
done by placing one’s fingertip on the camera with 
the adjacent flash serving as the light source [22], or 
even without contact by recording video of a skin 
region, usually from the face [100]. The measurement 
process related to the smartphone prevents continu-
ous cuffless blood pressure monitoring while allowing 
“everywhere, at all times” measure without any addi-
tional hardware. Ultra-low cost and universal smart-
phone attachments [101] that enable smartphones to 
measure BP have been recently introduced, ever so 
increasing accessibility to BP measurement. Several 
mobile apps that can measure BP have been devel-
oped, showing promising results [102]. Remote pho-
toplethysmography (rPPG) can be used to extract the 
PPG signal by using a camera to capture the periodic 
signal of skin color caused by the cardiac cycle [103, 
104]. Recent smartphones have additional sensors to 
acquire different biomedical signals such as SCG [105, 
106], ECG [107], and BCG [108]. An option is to 
involve the combination of PPG with smartphone-case-
based single-channel ECG [109].

4.2.  Smartwatches and wristbands

Smartwatches and fitness bands are becoming increas-
ingly popular. They are worn on the wrist, making 
them convenient and easy to use as they take mea-
surements seamlessly throughout the day without 
interrupting the user’s activities. Regarding cuffless BP 
monitoring, they would allow for continuous, even 
nocturnal measurements. They offer excellent lifestyle 

Figure 4.  Fingertip on the smartphone’s camera adjacent to 
light source.
Fluctuations of light passing through the fingertip are captured by the 
camera and reflect blood flow variations.
Reproduced with authorization from Degott et  al [183].



8 B. HENRY ET AL.

integration, as they are already part of many people’s 
everyday wearables, making them more likely to be 
used consistently. Modern smartwatches and fitness 
bands often come equipped with advanced sensors, 
such as PPG sensors and accelerometers, and can 
sense BCG [110] and SCG [111] waveforms. Some 
smartwatches also include electrodes for on-demand 
measurement of the ECG waveform, as the Apple 
Watch does [112]. ECG and PPG signals can be 

collected at the wrist simultaneously, which theoreti-
cally allows users to monitor their BP. Some wrist-
bands also use tonometry [113]. A wrist bracelet 
using both PPG and seismography has been devel-
oped [114]. With this innovation, measuring BP 
involves placing the bracelet on the sternum for a 
brief period of time to capture chest vibrations [115], 
which leads to the calculation of PTT, from which BP 
is estimated. In addition to BP monitoring, these 
devices often offer various health and fitness tracking 
features, such as heart rate monitoring, pulse oxime-
try, sleep tracking, and physical activity monitoring 
[116]. This comprehensive approach to health moni-
toring provides users with a holistic view of their 
overall well-being and has led to them being one of 
the most popular and promising wearables for the 
development of continuous cuffless BP monitor-
ing [117].

4.3.  Other devices

Smart rings are convenient to wear and impose min-
imal burdens. They are particularly well-suited for 
continuous physiological monitoring as well as noc-
turnal use and can be custom sized to maintain opti-
mal contact between the sensors and the skin 
throughout wear. Finger ringer sensors work on the 
transmission principle and produce clean and stable 
PPG waveforms [118]. Smart rings using bioimped-
ance [119] or PPG [120] have been presented. Chest 
patches [121, 122] can be used for continuous 

Figure 6.  Natural transition period from standard cuff to cuff-
less blood pressure measurements. Reproduced with authori-
zation from Sola et  al [195].

Figure 5.  Principle of remote photoplethysmography (rPPG).
The digital camera captures the specular and diffuse reflection from ambient light. The specular reflection contains surface information that does not relate 
to physiological signals, while the diffuse reflection is modulated by blood flow. The rPPG signal can be obtained from further signal processing.
Modified from Cheng et  al [199].
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measurement of the ECG, SCG, or PPG waveforms. 
Pocket-size electrode pads [98, 123] have been devel-
oped for on-demand measurement of the ECG wave-
form. BCG waveforms have been recorded by bed 
force sensors [124], or by a modified weighing scale 
[15, 125]. Smart clothes capable of acquiring ECG 
waveforms have been developed [126]. Prototypes 
containing additional PPG sensors and accelerometers 
are being studied [127]. A headband that derives PPT 
by collecting the ECG signal of the head and the PPG 
signal of the brow bone has been presented [128]. 
Other devices have been presented, such as glasses or 
even toilet seats [129]. Termed "hearables", in-ear 
devices have been introduced as a potential substitute 
for traditional wearables, offering the capability to 
record various physiological parameters such as ECG 
and PPG. In-ear PPG, and its utilization for cuffless 
BP measurement are currently in the developmental 
phase [59].

5.  What are the challenges of cuffless blood 
pressure measurement?

In the realm of biomedical engineering, the focus lies 
in the development of a cuffless innovation that can 
precisely reflect arterial BP. Numerous efforts are 
being made to improve cuffless BP measuring devices, 
and as previously mentioned, some are already avail-
able on the market, claiming to offer accurate mea-
surements. However, it is crucial to acknowledge that 
this aspect is just one of several factors that demand 
attention. The ongoing development of cuffless BP 
measurement faces a range of challenges [130–132] 
including calibration, signal analysis, data collection, 
control data, standardization and validation of proto-
cols, and deployment issues. Specific critical compo-
nents of cuffless BP monitoring involve accuracy 
during resting conditions, but also during dynamic 
changes, and long-term stability [133]. The impor-
tance of assessing the capability of wearable devices to 
monitor fluctuations in BP is currently emphasized, 
rather than solely verifying their accuracy during 
periods of rest or calibration [88, 134]. These devices 
pose unique accuracy issues that require different val-
idation approaches compared to conventional cuff 
devices. Presently, there is a lack of universally 
accepted protocols for validating these devices, lead-
ing to uncertainties regarding their suitability for clin-
ical use. Addressing these challenges and establishing 
standardized validation protocols are essential steps 
towards ensuring the reliability and clinical efficacy of 
cuffless BP measurement devices.

5.1.  Calibration challenges

In cuffless BP technologies, calibration means getting 
variables that are connected to BP and then mapping 
or adjusting these variables to mmHg units. The term 
"calibration" might not be entirely appropriate since it 
implies adjustment to an absolute measurement stan-
dard. Instead, "initialization" has been proposed [78] 
as it might be more suitable for the process performed 
by these devices. There are two categories of cuffless 
BP technologies: those requiring individual user cuff 
calibration and those that do not [135]. The ones 
requiring user calibration need the user to take a 
self-measurement of their BP using a traditional vali-
dated upper-arm cuff device. This BP measurement is 
then entered into the cuffless BP monitor before its 
use. Cuff-calibrated cuffless devices then monitor BP 
changes based on the previous cuff BP measurement. 
This calibration process is typically repeated periodi-
cally. As a result, calibration may involve certain steps 
that users need to follow. Knowing that, ensuring user 
compliance and consistency in the calibration process 
is of greatest importance. Entering demographic infor-
mation [136] such as age, sex, and body size cali-
brates other cuffless devices. However, these methods 
are less reliable compared to individual user cuff cal-
ibration [137].

The problem of calibration is related to the accu-
racy and reliability of the measurements. Calibration 
is essential to establish a relationship between indi-
rect physiological signals and actual BP, to ensure 
accurate readings. However, achieving high accuracy 
in BP measurement from these indirect signals can 
be difficult. Different individuals may have unique 
physiological characteristics, making it challenging to 
develop a one-size-fits-all calibration method. Blood 
pressure can fluctuate throughout the day based on 
factors such as physical activity, stress, and posture 
changes, while calibration is typically performed at 
rest. The accuracy of cuffless BP measurements in 
different body positions and during physical activity 
remains unclear. External factors such as temperature 
and humidity, can affect the performance of cuffless 
BP devices, requiring appropriate calibration to 
account for these variables. Therefore, calibration 
requires a reliable reference standard to compare the 
indirect signals obtained from the cuffless device to 
the actual BP. The lack of a universally accepted ref-
erence standard complicates this process. Different 
models of oscillometric devices used for calibration 
may provide non-identical readings, leading to varia-
tions in subsequent cuffless BP estimations. Moreover, 
most cuffless BP devices are currently sold without 
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calibrators, relying on external monitors for calibra-
tion. The extent of measurement error from the 
oscillometric cuff device incorporated into the cuff-
less BP device during the calibration remains unclear 
since most automated oscillometric cuff devices esti-
mate BP using proprietary algorithms.

PPG-based systems may experience calibration 
drift over time [91], leading to a gradual loss of accu-
racy. This phenomenon is called calibration drift. 
Ensuring long-term stability and periodic recalibra-
tion is essential to maintaining accuracy. Another 
issue is that calibration tends to eliminate bias in the 
measurements needed to accurately represent a vali-
dated device, including its inherent measurement 
errors [78]. This phenomenon leads to a situation 
where subsequent measurements tend to cluster 
around the calibrated value. As a result, the mean of 
these beat-to-beat cuffless measurements may gravi-
tate towards the calibrated value, making it less mean-
ingful as a representation of the actual mean BP 
beyond the device’s inherent bias. This creates a false 
sense of precision through repetition driving down 
variability. Beat-to-beat measurements might seem 
more precise than they actually are due to the repeated 
baseline value with a large number of measurements. 
Without a way to determine a patient’s typical physi-
ological variability, it becomes challenging to distin-
guish whether the reported precision in the 
measurements corresponds to the true fluctuations in 
BP reflecting actual physiological changes.

Developing robust calibration methods that address 
these challenges is crucial for advancing cuffless BP 
monitoring technologies and ensuring their wide-
spread adoption in clinical and everyday settings. 
Cuffless technologies that do not require any calibra-
tion from the individual user are also being devel-
oped [137, 138]. However, these devices are not free 
of challenges in achieving accurate BP measurements 
[135] and their evidence is currently lacking.

5.1.1.  Motion artifacts
The continuous tracking of BP implies measurements 
are often taken while individuals are in motion, during 
daily activities or exercise. Movement introduces arti-
facts into the measurements, making it challenging to 
separate the true BP signal from noise [68, 127]. 
PWA-based systems rely on detecting changes in blood 
volume and these sensors are sensitive to motion arti-
facts. Movement of the body or the measuring device 
can distort the PPG signal, leading to no or inaccurate 
BP readings [139]. Continuous monitoring systems 
require more sophisticated approaches to ensure 

accurate and reliable measurements in dynamic and 
real-time conditions. Implementing motion correction 
algorithms is necessary to mitigate this issue [140]. 
ECG signals are also well known to be sensitive to 
motion artifacts [78, 141]. Intermittent BP measuring 
devices have the advantage of being less susceptible to 
motion artifacts due to their ability to limit such 
occurrences when the individual remains still during 
the measuring process.

5.1.2.  Environmental factors, other disturbances
Ambient light, temperature, and other environmental 
conditions also interfere with PPG signals [139]. 
Proper shielding and signal processing techniques are 
required to reduce the impact of these factors. Due to 
the low penetration of light [142] signal quality is 
also highly sensitive to body characteristics such as 
varying skin tones [143], body mass index [144], and 
skin-temperature [145]. Factors affecting cuffless BP 
measurement accuracy are multiple (e.g., dynamic 
exercise, mental stress, Valsalva maneuver, drugs, 
lower body negative/positive pressure, positional 
changes) and must be accounted for [146, 147].

5.1.3.  Positioning issues
Proper placement of the PPG sensor is critical for 
accurate readings. If the sensor is not in the correct 
position or does not have good contact with the skin, 
it can introduce noise and artifacts into the signal, 
leading to unreliable measurements. Regarding pres-
sure sensors, obtaining a high-quality pulse waveform 
requires the sensors to be positioned directly on the 
radial artery, which can be sometimes challenging. 
The assumption of easy accessibility of the radial 
artery may not be valid for patients with characteris-
tics such as obesity, large wrist circumference, or 
peripheral artery disease, as they may have poor 
peripheral perfusion or significant vessel calcification. 
When employing PWV, the placement of the distal 
sensor plays a crucial role due to the hydrostatic 
effects of gravity on BP. If the user elevates the sensor 
above the heart level, it leads to an underestimation 
of BP. Conversely, lowering the sensor below the heart 
level results in an overestimation of BP.

5.2.  Limits of cuffless blood pressure concepts

Concerns have been raised about the validity of the 
concepts of cuffless BP measurements. PWV, as an 
indicator of arterial stiffness, can provide valuable 
information about the arterial system. However, it may 
not be the best method to determine BP for several 



Blood Pressure 11

reasons. As PWV represents the speed of propagation 
of blood ejected by the heart along vessel walls, it 
describes a mechanical occurrence with clear connec-
tions to vessel stiffness. Smooth muscle contraction of 
distal vessels or increase stroke volume can increase 
PPG amplitude and thereby PWV [148]. Recent study 
by Microsoft Research of several techniques advises 
caution when using these devices given their accuracy 
[149]. Regrettably, determining PWV from an ECG 
signal faces a significant constraint: ECG records the 
heart’s electrical processes and cannot detect the pre-
cise mechanical onset of blood ejection from the heart 
(which is essential for calculating PWV). This tempo-
ral delay (which is the PEP) has been shown to vary 
[79] with stress, physical activity, age, emotion, pos-
ture, vasoactive drugs, and hydration status. It also 
decreases with increased distance from heart and 
increases with slower heart rates [62]. Consequently, 
PWV-related applications are susceptible to substantial 
measurement uncertainty when PEP is either disre-
garded or estimated. Additionally, PWV values can 
vary significantly among individuals due to differences 
in arterial properties, such as vessel wall thickness and 
elasticity [150]. Stiffness also arise chronically from 
aging and atherosclerosis and acutely from exercise 
and other sympathetic activity [151]. These variations 
can make it challenging to establish a universal and 
accurate cuffless BP estimation method based solely 
on PWV. Cuffless BP estimation using PWV has other 
limitations such as using the Moens-Korteweg equa-
tions [152], where assumptions must be made about 
the arterial wall elasticity, pre-ejection period, and 
blood viscosity [153]. Despite these limitations, 
researchers are trying to find the optimal relationship 
between PWV and BP levels [154, 155].

5.3.  Over-reliance on heart rate for BP estimation

In contrast to oscillometric devices, which calculate 
systolic and diastolic BP by measuring mean arterial 
pressure [156] some cuffless devices use heart rate as 
a parameter for estimating changes in BP. However, 
the reliance on HR for estimation poses challenges, 
particularly when individuals are taking medications 
such as beta-blockers, which can dissociate heart rate 
from BP and potentially compromise the accuracy of 
cuffless BP estimation. This issue is noteworthy as 
around 10% of adults in the U.S. are on beta-blockers 
[157]. Additionally, this consideration is relevant in 
situations where HR and BP may not be tightly cor-
related, like during sleep or when there are irregular 
HR patterns (e.g., atrial fibrillation), which is com-
mon among adults with hypertension [158].

5.4.  Machine learning and data collection

Leveraging demographic data and machine learning 
techniques offer promises. Parameters such as age, 
sex, body height, weight, in conjunction with actual 
cuffless measurements, enable accurate BP value pre-
dictions [135]. However, the calibration process using 
demographic data presents several challenges, includ-
ing the absence of a general guideline for database 
creation and the lack of standardized protocols for 
data collection. Variations in data collection protocols 
across different experiments have been noted [24, 
131]. This lack of standardization hinders the devel-
opment of consistent and reliable models. To ensure 
the applicability of BP measurement models across 
various age groups and demographics, it is crucial to 
establish meticulous and standardized data collection 
procedures. The integration of deep learning and arti-
ficial intelligence represents an exciting opportunity 
for enhancing cuffless BP monitoring accuracy, but it 
necessitates extensive datasets.

Regarding devices which are calibrated without a 
cuff, differences of BP among individuals is still a 
current challenge, as deep learning models trained on 
large-scale datasets cannot fully learn them. The accu-
racy of the model can be improved through individ-
ual calibration [120]. The idea is to adjust the BP 
estimation model [159] which may enhance the accu-
racy of BP estimation. Nonetheless, the mapping rela-
tion between the input signal and the estimation of 
BP still relies on the performance of the model.

Currently, the existing datasets may be insufficient 
to fully leverage the capabilities of deep learning algo-
rithms. To get the most out of these advanced tech-
niques for cuffless BP calibration, a lot of work needs 
to go into collecting bigger and more varied datasets.

5.5.  Accuracy of control data

Validation of innovative BP devices is essential to 
ensuring their accuracy and reliability. Traditionally, 
intra-arterial BP monitoring has served as the gold 
standard in BP validation research, offering continuous 
measurements. However, for cuffless BP monitors, val-
idating against invasive BP has proven challenging and 
ethically complex for many independent research 
groups [78]. A smartphone app was compared to an 
invasive BP reference using arterial catheter and 
demonstrated high concordance and accuracy [21]. It is 
however unlikely that beat-to-beat changes in arterial 
pressure can be captured reliably with other standard 
measurement methods. Relying on intra-arterial lines 
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as a reference could lead manufacturers to recruit hos-
pitalized patients who already have such lines in  
place. Unfortunately, this approach may limit the  
generalizability of results to non-hospitalized, healthy 
populations. Continuous intra-arterial monitoring is 
impractical for measuring BP during physical activities, 
as it requires a stationary arm. Both auscultatory and 
oscillometric devices are only validated for use when 
the individual is at rest. Therefore, finding alternative, 
non-invasive, yet accurate reference standards for cuff-
less BP validation remains a significant challenge.

For calibration-free devices, the participant cohort 
must exhibit a wide BP range [135]. However, identi-
fying such a cohort can be difficult and costly. This 
might be a barrier especially for independent scien-
tific teams.

5.6.  Validation process

The rapid development of cuffless BP monitoring has 
led to a proliferation of novel technologies that report-
edly measure continuous and intermittent BP. 
However, the development of regulations for these 
devices has not kept up with the pace of innovation. 
While some traditional validation methods have been 
applied to assess measurement accuracy, their suitabil-
ity for cuffless devices remains uncertain [135, 160]. 
Several accuracy issues have emerged. As cuffless 
devices do not directly measure BP in mmHg, but 
instead estimate BP using physiologically derived vari-
ables, they differ from cuff-based devices that directly 
measure BP in mmHg. Tracking of BP changes is a 
challenge in the validation of cuffless devices requir-
ing user cuff calibration.

The clinical validation of cuffless BP devices is dif-
ferent and more complex than that for cuff devices 
and developing a universal standard for validating 
such devices is a difficult task. The need for uniform 
standards to validate these devices properly has been 
stressed [161, 162]. Standards for cuffless wearable BP 
devices have first been published by the Institute of 
Electrical and Electronics Engineers (IEEE) in 2014 
[163], with amendment in 2019 [164]. These stan-
dards use as a reference the manual auscultatory BP 
measurement method, which might be suitable for the 
validation of intermittent but not for continuous cuf-
fless BP monitors. Standards like ANSI/AAMI/ISO 
81060-1 (2007) and ANSI/AAMI/ISO 81060-2 (2018) 
are intended for nonautomated and intermittent auto-
mated BP devices, respectively, but only concerns 
cuff-based devices. To address this gap, ANSI/AAMI/
ISO standard 81060-3 has been developed and pub-
lished in late 2022, aiming to provide guidance on 

accuracy testing for continuous automated non-invasive 
sphygmomanometers used for the measurement of the 
blood pressure [165].

Unlike wearable fitness devices, cuffless BP moni-
tors are categorized as medical devices, requiring 
approval from country-specific regulatory bodies [166, 
167] before being accessible to patients and healthcare 
providers. Confusion has arisen concerning the FDA’s 
approval process for BP devices [168] as the FDA 
clearance for these devices to be sold in the market 
does not certify their accuracy [91]. There is no spe-
cific requirement for the device to prove its accuracy 
using a specific validation protocol. Manufacturers of 
noninvasive BP devices are only required to demon-
strate that their device is as safe and effective as sim-
ilar devices already on the market (known as the 
substantial equivalence principle). This differentiation 
between FDA clearance and formal device validation 
holds great significance because cuffless BP devices 
with FDA clearance can enter the market without 
ensuring accuracy, potentially resulting in incorrect 
diagnosis and inadequate management of hypertension.

The best validation process should include both 
static and dynamic activity states, as well as people 
from a range of backgrounds, such as pregnant 
women, people with different skin tones, wrist sizes, 
common arrhythmias, and beta-blocker users [78].

5.7.  Design and deployment issues

Designing and deploying cuffless BP measurement 
devices come with its own set of challenges. The goal 
is to enable patients to measure their BP frequently 
(or even continuously) and conveniently. To achieve 
this, a small and portable device is necessary to avoid 
interfering with daily activities. While most research 
focuses on building and evaluating models, few have 
developed practical systems for real-life use. Signal 
acquisition in research is often done in controlled 
environments, which differs from real-life situations. 
Deploying the model in real-world applications will 
bring new challenges, such as battery life, power con-
sumption, user comfort and compliance. Researchers 
should anticipate deployment challenges while design-
ing the model to address these issues effectively.

5.8.  Gaining trust

For the effective integration of wearable devices to 
enhance health and well-being, establishing trust 
among various stakeholders, policy makers, and device 
users, is paramount. Strategies to foster this trust 
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encompass substantiating applications with robust 
empirical foundations and implementing proper mea-
sures for the responsible management of personal 
data. A central concern today revolves around the 
acceptance and incorporation of emerging technolo-
gies within the practices of physicians [169]. Clinicians 
have relied on traditional sphygmomanometers for 
years. Changing this fundamental method necessitates 
that healthcare providers get a deep understanding of 
the data generated by newer technologies and how to 
integrate this data effectively into their overall clinical 
judgments. Ideally, patients should use these new 
devices collaboratively with their healthcare providers 
in a shared decision-making process. A challenge lies 
in effectively integrating this new information into 
patient management. Are medical professionals pre-
pared to modify their daily routines to include the 
evaluation and discussion of patient-recorded data 
from personal devices? Questions also arise regarding 
the appropriate recording and storage of data, as well 
as how physicians can handle the influx of data from 
numerous patients simultaneously. This issue is part 
of the broader landscape of digital health and mobile 
health advancements.

6.  Propositions and recommendations for the 
future for cuffless BP to be used in the 
clinical practice

6.1.  Improvement of the concepts and 
technologies

6.1.1.  Eliminating motion artifacts
Eliminating motion artifacts in PPG signals is a 
major difficulty in developing continuous BP detec-
tion equipment in the future. Many studies have 
shown that it is difficult to extract effective PPG 
signals in the state of walking or running, and even 
if PPG signals are extracted, it is difficult to extract 
feature points. A more robust detection algorithm 
should be developed to identify the feature points 
of PPG signals [170]. It is very important to develop 
a motion artifact correction algorithm for PPG sig-
nal extraction [68]. There are many analog filters 
and digital signal processing methods for eliminat-
ing motion artifacts from distorted PPG signals, 
but they can only eliminate motion artifacts to a 
limited extent [140, 171–173]. Other challenges 
regarding PPG concern pre-processing, multiwave-
length plethysmography, signal processing with 
improved fiducial points detection, modeling for 
regression and classification, as well as optimizing 
sensor design [174].

6.1.2.  Improving the algorithms
Establishing the mapping relation between input sig-
nals and BP estimation remains crucial. Many studies 
have confirmed that the PPG signal and its derivative 
data contain rich physiological information which is 
often unused [175]. With more information extracted 
from the signals and its derivative, a more accurate 
BP can be estimated by statistical learning and pre-
dictive analysis [176]. Combining more data is another 
way to enhance the stability and accuracy of BP cal-
culation models [177]. Leveraging various physiologi-
cal parameters and BP estimation could potentially 
lead to the establishment of a multi-parameter BP 
regression model [178]. In sum, deeper analysis from 
the acquired physiological signals, especially PPG, 
holds promise for future advancements in accurate BP 
estimation. Artificial intelligence is regarded as a 
promising tool.

Taking out the electrical and isovolumetric periods 
of PEP from the equation (which is only based on 
vessel stiffness) makes sense from a mathematical, 
physiological, and conceptual point of view for 
PWV-based systems. As a result, the direct measure-
ment of PEP offers a promising avenue for improve-
ments around PWV-driven systems for BP estimation. 
This could be improved using continuous impedance 
cardiography and may guide the development of bet-
ter devices in the future.

6.2.  Improvement of technologies

Optimizing the design of PPG sensors is also a way 
to reduce the influence of motion artifacts [141, 179]. 
Ongoing research is being made around pressure sen-
sors [50] as further research is essential to explore the 
feasibility of using such tools for BP measurement. 
Currently, optical pulse monitoring systems are more 
prevalent.

6.3.  Improvement of protocols

Future protocols must address the concern of body 
posture and how changes in arm elevation relative to 
the heart may affect BP measurement accuracy. In 
February 2023, Hu et  al. [78] also provided recom-
mendations for an ideal validation process for these 
devices. In June 2023, the European Society of 
Hypertension working group on BP monitoring and 
cardiovascular variability published recommendations 
[180] for the validation procedures for intermittent 
cuffless BP devices in order to bring standardization 
for the validation of these devices. They highlighted 
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that the validation of cuffless BP devices is a complex 
process and needs to be tailored based on their 
intended functions and calibration. The suggested val-
idation procedures include six tests to evaluate differ-
ent aspects of intermittent cuffless devices: static test 
(assesses absolute BP accuracy), device position test 
(checks the robustness of the device against hydro-
static pressure effects), treatment test (evaluates the 
accuracy of BP when it decreases), awake/asleep test 
(determines the accuracy of BP measurements when 
it changes), exercise test (which assesses the accuracy 
of BP increase measurements) and recalibration test: 
(evaluates the stability of cuff calibration over time).

Moreover, the focus of validation should be on val-
idating the change in BP, rather than the absolute BP 
measurement itself. A validated device, distinct from 
the calibration device, should be used as a reference 
device for validation. Validation should include both 
static and dynamic activity states. The validation pro-
cess should be conducted with a heterogeneous sam-
ple of BP, wrist sizes, and skin tones. For wrist devices, 
a range of wrist sizes corresponding to the band size 
range should be included. Performance across a range 
of skin tones is especially crucial for PPG-based 
devices. Devices should also demonstrate accurate and 
precise heart rate measurement across a range of 
heart rates and heart rhythms. Patients with common 
arrhythmias (e.g., atrial fibrillation) and those on 
beta-blockers should be represented, possibly using a 
dedicated protocol. By following a comprehensive val-
idation process, cuffless BP devices can be better 
assessed for accuracy and reliability, ensuring their 
suitability for clinical use.

6.4.  Design and function

In 2023, a meeting put together by a working group 
of the European Society of Hypertension (ESH) came 
up with suggestions for how different blood pressure 
measuring devices used in clinical practice should 
look and work [181]. Although not focused on cuff-
less devices, these guidelines are intended to support 
manufacturers in developing effective devices and 
assist healthcare professionals in making informed 
choices for the accurate detection and management 
of hypertension. It is crucial to make collaboration 
tools available to the patients. Wearable devices 
should be compact, highly integrated, portable and 
have long-term endurance. While analyzing various 
measurement sites for PPG waveforms, the finger site 
was found to produce the best analyzable waveforms 
[182]. As technical advancement continues, this could 
become am essential factor in distinguishing between 

types of devices. The smartwatch is one promising 
solution, because it is small, portable, comfortable, 
and convenient to users and can extract PPG and 
ECG signals from the wrist. Smartphones also 
emerges as an excellent option for intermittent cuff-
less BP monitoring [97]. They generally have more 
powerful processors and memory, which can be 
advantageous for processing complex algorithms. 
Smartphones often have more connectivity options 
allowing for easy transmission of data to healthcare 
providers or cloud storage. Another interesting aspect 
is that they get rid of artifact movements, however 
sacrificing continuous BP estimation. Recently, BP 
measurement using a PPG-based smartphone fulfilled 
ISO standards [17, 21, 183].

It is worth noting that the development of cuffless 
devices for measuring BP have diverse clinical goals. 
For instance, smartphone-based devices like the 
OptiBP mobile app [124] were initially created to 
raise awareness about hypertension and improve its 
diagnosis, especially in low-income regions where 
access to healthcare remains limited. On the other 
side, bracelets or rings are rather designed for BP 
monitoring over extended periods of time [184].

6.5.  Breaking the paradigm

It might seem like the lack of standardized accuracy 
validation is stopping cuffless BP monitors from being 
used in clinical settings, but the fact that they can 
give patients continuous, long-term BP data in every-
day settings has the potential to change how hyper-
tension is managed. Experts recognize that BP is a 
dynamic, continuous hemodynamic variable. This 
paradigm shift could prioritize continual BP monitor-
ing over infrequent, highly accurate single-point read-
ings. For decades, hypertension research and clinical 
practice have -due to technological limitations- relied 
on BP readings taken at a single point in time. 
Continuous cuffless devices offer the advantage of 
providing an objective assessment of the dynamic 
nature of BP. This allows for the measurement and 
targeting of novel concepts like BP time in the target 
range [144, 185–187], BP variability [180], nocturnal 
hypertension [188, 189], and BP phenotype [190, 191].

In recent times, significant technological advance-
ments have given rise to the possibility of cuffless 
blood pressure measurement, offering a transformative 
approach to cardiovascular monitoring. Innovations 
such as miniaturization, wireless communication, and 
computing have been integrated into cardiovascular 
sensing devices, reducing their bulkiness and enhanc-
ing convenience [192] of BP monitoring. The 
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convergence of machine learning techniques [50] with 
devices capable of detecting pulse waveforms or cap-
turing pulse waveform features has catalyzed the 
development of these devices [193] which hold great 
promises [56, 194].

Every time a new monitoring method is introduced 
in clinical practice, the initial reaction of medical 
experts is to compare it to existing standards of care 
[195]. Blood pressure monitoring is in the midst of a 
transition, moving from traditional cuff monitors to 
more modern cuffless alternatives. During this transi-
tion, it’s important to note that the established meth-
ods and guidelines for BP monitoring should still be 
followed in clinical practice until cuffless BP devices 
are properly validated and their clinical outcomes 
assessed.

7.  Conclusion. Is cuffless technology ready for 
mainstream adoption?

The approach of cuffless blood pressure is feasi-
ble, as all the necessary components are readily 
available. However, despite the theoretical poten-
tial, as of now, none of the techniques have yet 
materialized into a reliable, accurate, and robust 
device capable of replacing the conventional BP 
measurement methods. Smartphone-based devices 
show promise for seamless tracking of BP changes. 
Continuous monitoring requires the development 
of wearable devices. With the expansion of data-
sets, model development, standardization and 
technology optimization, more sophisticated and 
finely tuned devices are expected to enter the 
market. Nevertheless, numerous challenges must 
be addressed. While innovators are slowly build-
ing confidence with these newer devices, their 
incorporation into guidelines and the establish-
ment of a new standard of care will take time, 
although it is already happening. Despite the 
obstacles, the progress of cuffless systems for BP 
measurement should be viewed as a genuine 
opportunity to enhance our ability to take care of 
hypertensive patients. The cuffless paradigm has 
the potential to completely transform hypertension 
management and might contribute to a significant 
reduction in the detrimental impact of both high 
and low BP.

To summarize, the future of cuffless and continu-
ous beat-to-beat BP measurement appears promising 
and displays a strong potential to approach the com-
plexity of the human physiological system. Only time 
will reveal the success of these developments, so let’s 
give them a chance!
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