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Abstract

Multilevel selection and the evolution of cooperation are fun-
damental to the formation of higher-level organisation and the
evolution of biocomplexity, but such notions are controver-
sial and poorly understood in natural populations. The theo-
retic principles of group selection are well developed in ide-
alised models where a population is neatly divided into mul-
tiple semi-isolated sub-populations. But since such models
can be explained by individual selection given the localised
frequency-dependent effects involved, some argue that the
group selection concepts offered are, even in the idealised
case, redundant and that in natural conditions where groups
are not well-defined that a group selection framework is en-
tirely inapplicable. This does not necessarily mean, however,
that a natural population is not subject to some interesting lo-
calised frequency-dependent effects – but how could we for-
mally quantify this under realistic conditions? Here we fo-
cus on the presence of a Simpson’s Paradox where, although
the local proportion of cooperators decreases at all locations,
the global proportion of cooperators increases. We illustrate
this principle in a simple individual-based model of bacte-
rial biofilm growth and discuss various complicating factors
in moving from theory to practice of measuring group selec-
tion.

Group selection in theory and practice
Some argue that the theoretic principles of group selection
are well developed and crucial for understanding evolution
in natural populations (Wilson and Wilson, 2007; Okasha,
2006). Indeed, many artificial life models seeking to ex-
plain the evolution of cooperationmake either explicit or im-
plicit reference to group-level selection (e.g., Scogings and
Hawick 2008; Goldsby et al. 2009; Wu and Banzhaf 2009).
The group selection position, however, suffers from at least
two serious problems. The first is whether the phenomena
involved, though undisputed, formally require group selec-
tion concepts. The second is whether the idealised condi-
tions they assume are applicable in natural populations. We
briefly overview the standard model of multilevel selection
and discuss these limitations. Our aim is to devise a practi-
cal theoretical approach to assess whether something inter-
esting is happening in a natural population with respect to
the scale of selection. As a practical exemplar, we have in

mind the possibility of group selection occurring within nat-
ural bacterial biofilms. Biofilms are formed when bacteria
attach to a surface and develop into dense aggregations, and
they are in fact the most common mode of bacterial growth
(compared to well-mixed planktonic populations). Bacteria
living in biofilms are known to engage in many cooperative
interactions, including the sharing of various ‘public goods’
such as extra-cellular enzymes. Biofilms also exhibit col-
lective properties, such as anti-biotic resistance, that are sig-
nificantly different from those of free-living bacteria (Ghan-
noum and O’Toole, 2004). Accordingly, they have potential
to serve as an ideal model empirical system for studying the
transition to multicellularity (Penn et al., 2008). However to
do so, we need to be able to connect idealised models of mul-
tilevel selection (for example, where groups are discrete and
non-overlapping)with real-world biological systems (where
the “groups” may simply be local neighbourhoods with no
discrete boundary). In this paper, we discuss the theoretic
and practical issues involved in studying multilevel selec-
tion in biofilms and other natural populations. We illustrate
our discussion with a simple individual-based model of bac-
terial growth, in which growth rate depends upon the local
concentration of a ‘public good’ that is costly to produce.
As such, this system might be expected to fit standard theory
on the evolution of cooperation. However in our individual-
based model, as in many real-world cases, the groups are not
discrete and so it is not immediately obvious how, if at all, a
multilevel selection framework can be useful. How, for ex-
ample, can we measure the relative strengths of within- and
between-group selection if the groups do not have discrete
boundaries?

Despite this practical difficulty, theoretical and philosoph-
ical work suggests that multiple scales of selection should
still be present in such systems (Wilson, 1980; Sober and
Wilson, 1998; Nowak and May, 1992). Here, we illustrate
the use of Simpson’s Paradox (Simpson, 1951; Sober and
Wilson, 1998) as a quantifiable indicator of a group-level
selection effect. Crucially, we illustrate that this need not
rely on a priori knowledge of the exact group structure, or
even on the presence of discrete group boundaries. A Simp-



son’s paradox occurs when, although the proportion of co-
operators decreases in every locality, the global proportion
of cooperators nevertheless increases. This can be measured
in situ and does not require comparison with a well-mixed
population, nor that we know the exact evolutionary game
(fitness function) that individuals are engaged in. Then, by
measuring the magnitude of the discrepancy between local
and global proportions of cooperators over a range of lo-
cal scales, we can identify the effective selective scale in a
natural population. We also illustrate several further compli-
cating factors that arise in moving from idealised theoretic
models to more realistic biological scenarios.

The idealised model of multilevel selection and
its limitations

The idealised model of multilevel selection involves a pop-
ulation of individuals that is divided into discrete (equal-
sized) sub-populations or demes (Wilson, 1980; Sober and
Wilson, 1998), Fig. 1.

t=1 t=2

Figure 1: Growth of cooperators (green) & selfish individ-
uals (red) living in groups. Individuals in each group (only
two are depicted) are drawn randomly from a global popu-
lation (left) such that the proportions of types (cooperators
and defectors) varies slightly between groups. Groups with
more cooperators growmore than groups with fewer cooper-
ators and therefore contribute more individuals (specifically
cooperators) to the global cell-count. Hence, the global pro-
portion of cooperators increases (right).

Note this model assumes that localised fitness interactions
are contained within neatly circumscribed groups. To sus-
tain cooperation at high levels the population must be sub-
ject to multiple episodes of ‘aggregation and dispersal’, al-
ternating between phases with a single ‘migrant pool’ (the
global population or a representative sample thereof), and
phases with multiple localised interaction groups. Without
a group mixing stage, selfish behaviour would eventually go
to fixation within each group founded by one or more self-
ish individuals (assuming Prisoner’s Dilemma cooperative
interactions; Powers et al. (2008); Powers (2010)).

Is this really group selection? It has been widely argued
that this classic model shows nothing more than individual

selection given localised frequency-dependent effects (May-
nard Smith, 1976; Nunney, 1985; Sterelny, 1996; Grafen,
1984), and hence does not involve group selection at all.
That is, rather than saying groups with more cooperative in-
dividuals are fitter than groups with fewer cooperative indi-
viduals, we could equally say that individuals in groups with
more cooperators are fitter than individuals in groups with
fewer cooperators. In fact, our position is that if we could
not explain the outcome of such models in terms of (context
dependent) individual selection the result would be ‘mysti-
cal’ - that is, we would not have an evolutionary explanation
at all. The behaviour of such models is fully explainable, as
it must be, in terms of modified selective pressures on in-
dividuals given the group-living assumed. Nonetheless, it
is at least interesting to note that the increase in levels of
cooperation are consistent with the differential productivity
of groups, i.e., more cooperative groups are fitter in terms
of the genetic contribution they make to future generations,
as well as consistent with the differential productivity of in-
dividuals, i.e. individuals in more cooperative groups are
fitter in terms of the genetic contribution they make to future
generations (Dugatkin and Reeve, 1994; Kerr and Godfrey-
Smith, 2002). Indeed, this has to be the case because in this
(very common) kind of multilevel selection model, group fit-
ness is by definition the mean individual fitness of the group
members (Damuth and Heisler, 1988; Okasha, 2006). How-
ever, even this pluralist position seems to be on shaky ground
when the groups are not neatly defined. For example, how
can we empirically measure group phenotypes (e.g., level of
cooperation within the group) if we cannot identify discrete
groups? In this case, a group based account will lose ac-
curacy whereas the individual selection perspective remains
undeniably precise (Godfrey-Smith, 2006).

Is the standard model relevant to natural popula-
tions? The standard model describes neatly partitioned
sub-populations where the benefits of cooperative acts are
distributed equally to members within each group, but not
with members of other groups (Wilson, 1980; Godfrey-
Smith, 2006). Such idealised conditions are likely to be rare
in natural populations. Of course, the effect does not im-
mediately vanish when groups are less neat. But in such
cases, localised frequency-dependent selection seems a per-
fectly adequate explanation (Maynard Smith, 1976), and
there seems to be little value in arguing for a ‘group se-
lection’ account. Moreover, even if we wanted to retain
a group selection framework, it is not clear how we could
measure and quantify the differential productivity of groups
in realistic scenarios where groups are somewhat ill defined
(Godfrey-Smith, 2006).
These considerations should not lead one to conclude,

however, that there is nothing of consequence presented in
the idealised models (Okasha, 2006) nor that nothing inter-
esting can happen in natural populations. But it is a bit tricky



to say what it is exactly, and more tricky to know how to
measure it in a natural population. Certainly, if we were
to assess the level of cooperation in a natural population,
and then (assuming this were practically possible) assess it
again in an artificially well-mixed version of the same ex-
periment, we might see a difference in the two levels. This
would at least tell us that localised frequency-dependent ef-
fects were significant in this system. But frankly, it does
not sound all that interesting – it is rather obvious that se-
lective pressures will be different in well-mixed populations
if locally dispersed resources or public goods are involved.
Simply examining the global frequency of cooperation tells
us nothing about the mechanism behind its evolution, e.g., is
cooperation a simple mutualism or is it individually-costly?
Moreover, although a comparison of well-mixed versus

spatial or viscous populations is possible in synthetic sim-
ulations, the practicalities of say, mechanically mixing a
biofilm or adding surfactants to break-up the extra-cellular
matrix that holds cells together would not merely alter spa-
tial relationships, but potentially affect many important en-
vironmental factors that could confound the result. We are
left, therefore, with a significant gap between the theoretic
idealisations of group selection and methodology that would
be useful in practical situations (West et al., 2008).
An alternative is to look for a Simpson’s paradox in situ.

A Simpson’s paradox clearly emphasises the crucial me-
chanics of multilevel selection (Sober and Wilson, 1998),
see below, and it can be measured in situ so that it does not
require disruption of the natural population structure.

Group selection and Simpson’s paradox
Simpson’s paradox is a statistical phenomenon that arises
when correlations or trends within sub-groups of a data set
fail to represent the overall correlation when all the data is
assessed together (Simpson, 1951; Sober andWilson, 1998).
Table 1 shows a very simple hypothetical example based on
a group selection scenario. It shows the numbers of cooper-
ators and selfish individuals in two groups, A and B, at two
time points, t = 1 and t = 2. Note that both groups show a
decrease in the proportion of cooperators in this time inter-
val, yet overall, from the same data, there is nonetheless an
increase in the total proportion of cooperators.
It may be useful to clarify that at a given point in time,

the average within-group proportion of cooperators can be
different from the global proportion of cooperators. This is
simply because the average within-group proportionweights
all groups equally, whereas the global proportion is im-
plicitly the same summation but with each group contri-
bution ‘weighted’ in proportion to its size. In the exam-
ple, at t = 1 the groups are equal sized and the average
within-group proportion and the global proportion are there-
fore the same. But in the second time point, the groups
are different sizes and the average within-group proportion
((31% + 62%)/2 = 46.5%) is not equal to the global pro-

portion (51%).
In this example then, the growth trend paradox (i.e., co-

operation decreases within groups but increases globally) is
caused by the fact that one group grows much more than the
other. Specifically, the B group, with twice the initial pro-
portion of cooperators, is assumed to grow at about twice
the rate as the A group in this example. So, although self-
ish individuals always grow faster than the cooperators in
any given environment, some cooperators grow faster than
some selfish individuals (specifically, when cooperators are
in an environment of many other cooperators). Accordingly,
because highly cooperative groups grow more, cooperators
can increase in total proportion even though they decrease in
proportion within each group.

Using Simpson’s paradox to indicate group
selection

Simpson’s paradox as a basis for group selection is well un-
derstood. However, it is generally not used as a direct indica-
tor of group selection. Instead, the norm is simply to assess
the global level of cooperation and see if it increases. But
in practical experiments this is insufficient to conclude that
group selection is responsible for such an increase. When
the exact form of the evolutionary game that individuals are
engaged in is unknown, due to numerous modes of interac-
tion and multiple ‘public goods’ for example, or competi-
tion for multiple resources, it can be difficult to genuinely
ascertain whether the ‘cooperator’ is really cooperating and
whether the ‘selfish’ type is really selfish. That is, should we
be surprised that the global level of cooperation increases,
or is it a simple case of mutualism? The obvious control is
to compare with a well-mixed population or to increase the
diffusion rate in a spatial model, but aside from the prac-
tical difficulties of this in natural populations (even bacte-
rial ones), this cannot maintain the ‘all other things being
equal’ condition necessary to determine that only the local-
isation of interactions is producing the difference in results.
Instead, by looking for a divergence between the average
within-group and global proportions of types, we can both
verify that the types are behaving as expected (that in any
given environment the selfish individuals have the advan-
tage) and identify a group selection effect if there is one.
Thus Simpson’s Paradox provides an in situ measurement
of group selection in the sense that we do not need to dis-
rupt groups to provide a control, and can therefore assess
the effect that groups are having merely by observing how
the frequencies of types change in the natural population.
To measure Simpson’s Paradox in scenarios that have

poorly defined groups requires an additional small step. For
this we propose the following practical methodology for a
spatially distributed population. Rather than attempt to de-
fine boundaries around one group and distinguish it from
another, we can simply divide the physical space into equal-
sized local regions and measure both the average local pro-



t = 1 t = 2
Coop Selfish %Coop Coop Selfish %Coop

A 2 4 33% 4 9 31%
B 4 2 66% 16 10 62%
Total 6 6 50% 20 19 51%

Table 1: Numbers of cooperative and selfish individuals in two hypothetical groups, illustrating Simpson’s paradox. Bold
highlighting indicates the time point where the proportion of cooperators is highest. Note that within both group A and group
B the proportion of cooperators decreases over this period, but overall, the proportion of cooperators increases.

portion of cooperators within all regions, and the global pro-
portion of cooperators. If the selfish individuals are indeed
selfish individuals then the average local proportion of coop-
erators must be always declining. But if, at the same time,
the global proportion of cooperators is increasing then there
is significant group selection activity.
Note that if every region exhibited approximately the

same amount of total cell growth, then a paradox could not
occur; but if some local regions are growing much faster
than others (because local frequency-dependent fitness ef-
fects are sufficiently strong) a Simpson’s Paradox may be
observed. In principle, it does not matter whether the space
is divided into contiguous tiles (as we employ below), or
whether regions are selected at randomwith random centres.
But it does matter that regions are not selected in any manner
that is biased by cell density, for that would amount to taking
a weighted average. Taking a weighted average would nec-
essarily make the local average the same as the global, and
so would result in the local group dynamics disappearing
from the analysis. This is the “averaging fallacy” described
by Sober and Wilson (1998), which causes the appearance
of group selection to vanish. For example, measuring the
proportion of cooperators in the vicinity of each and every
cell or within its radius of influence will bias measurements
of local proportions in such a manner that dense areas con-
tribute more to the average in exact proportion to how dense
they are – in this case, the average local proportion cannot
be different from the global proportion.
In the remainder of this paper we develop a simple

individual-based model of bacterial growth, such as would
apply to a locally-dispersing ‘public good’, to illustrate the
use of this methodology and as a basis for discussion of sev-
eral additional complicating factors that are important in its
application. Of particular interest is the possibility of mea-
suring the local proportions at several different spatial scales
to determine the effective scale of selection.

An individual-based model
Bacterial Biofilms
In developing the following model we have bacterial
biofilms in mind. Social evolution in bacterial systems is
currently receiving considerable attention both as a model
system of social evolution and because of the practical im-

plications of biofilms (Crespi, 2001; Griffin et al., 2004; Bur-
molle et al., 2006). Biofilms show a physical structure espe-
cially suited for localised fitness interactions via the forma-
tion of semi-isolated micro-colony structures (Hall-Stoodley
et al., 2004). However, the following model is general – not
dependent on any of the particulars that pertain to specific
bacterial strains or types of fitness interaction. The vital as-
sumptions are that there are two types of individual, that the
presence of one of these types (but not the other) is benefi-
cial to other individuals within a certain spatial radius, and
that this type bears a cost for providing this benefit. For ex-
ample, one type may be a wild-type strain of Pseudomonas
Aurigenosa, that releases into the environment an enzyme
useful for binding iron (Griffin et al., 2004). This enzyme
can be understood as a ‘public good’ because it can be used
by others within the diffusion radius of the molecule. The
other type may be a selfish mutant strain that does not pro-
duce the public good and is therefore not burdened by its
production, but can, like any other individual, benefit from
the public good produced by cooperators.

Model definition
The state of the model at any point in time is defined by
a population of individuals each of which has a type (co-
operate/selfish), an age, a location in continuous 2D space
and a ‘reproductive potential’. Reproductive potential can
be thought of as the resources the individual has accumu-
lated over time. There is no explicit modelling of the public
good, diffusion constants, extra-cellular matrix, or such like
- and in the default model, cells do not move. At every point
in time, the fitness potential of each cell is incremented by
a fitness benefit, W . This is a function of both the individ-
ual’s own type, and of the number of cooperators in the local
vicinity. Specifically, the fitness benefit of an individual is:

W = m+ Pb− c, (1)

where m = 1.5 is a constant representing the intrin-
sic growth rate, P is the proportion of cooperators within
a given radius, r1 = 15, of the individual (including it-
self), b = 4 is a constant representing the fitness benefit
received from cooperators, and c = 0 for selfish individuals
and c = 1.8 for cooperators is the cost of being a coopera-
tor (i.e., the cost of producing the public good). This fitness



function is standard in evolutionarymodels of altruism (Wil-
son, 1980), and amounts to an n-player public goods game /
Prisoner’s Dilemma (Fletcher and Zwick, 2007).
The model proceeds by updating each individual, in each

time step, according to Algorithm 1.

Algorithm 1 Individual update algorithm.
1. The age is incremented by 1.

2. If the age is 5 the cell dies.

3. Otherwise, the fitness benefit is calculated (as above) and
added to the individual’s current reproductive potential.

4. Whilst the reproductive potential > 4,

(a) Reproduce, placing descendant cell in a new location
according to a placement algorithm (see text). An off-
spring is an exact genetic clone of its parent.

(b) Decrement reproductive potential by 4.

The model is initialised with equal numbers of cooper-
ators and selfish individuals distributed uniformly at ran-
dom. Each initial cell (and new cell from reproduction) is
initialised with reproductive potential=0, and age=0. The
placement algorithm may take account of competition for
space (and possibly fail to produce an offspring if space does
not allow) but by default it simply places an individual in a
random location within a radius, r2 = 5. Thus, an offspring
is placed close to its parent.
Measuring the global proportion of cooperators is triv-

ial. To measure the average local proportion of coopera-
tors, the space is divided into contiguous square regions of
size, r3 = 15 (note that the area of each square local region,
(r3)2 = 225, in which local proportions are measured, is
the same order of magnitude as the circular area over which
a cooperator may affect other individuals, π(r1)2 = 707.
See Fig. 5.).
In an advanced version of the model, cells are motile and

move toward cooperators. This represents attraction towards
concentration of the public good, for example. At each time
step, a vector is calculated which is a distance-discounted
sum of vectors to all other local regions, weighted by the
number of cooperators in that region. The regions used are
the same as those used for calculating the average local pro-
portion of types. Each cell then moves a random distance d
in the direction of this vector; d is uniformly distributed in
the range 0 to 15r4, where r4 is a constant controlling the
amount of movement.

Model illustrations
We initialised each simulation with 150 cooperators and 150
selfish individuals, distributed randomly across a square grid
of size 250 ∗ 250. Each simulation was repeated 50 times,

and the mean of both the average local and global propor-
tions of cooperators recorded.
Figure 2 shows that although the initial distribution of

bacterial cells is random, the cells grow into spatial clus-
ters due to non-motility and the fact that offspring are placed
close to their parents (as perModel definition).

Figure 2: Illustration of biofilm growth in the model. Green
cells are cooperators, red are selfish cheats.

From standard social evolution theory, we would not ex-
pect cooperation to increase or be stable in the absence of lo-
calised interactions (Wilson, 1980). Thus, in such cases we
should not see a Simpson’s Paradox, since without localised
interactions there should be no difference in the growth-rates
of different localities, ceteris paribus. We verified that this
was the case in our model by making the radius of social
interactions, r1, equal to the size of the whole grid. Thus,
each individual would experience the global proportion of
cooperation for the purposes of determining their fitness.
This corresponds to complete mixing of the public good,
but not of the individuals themselves. Thus, we still mea-
sured the local proportion of cooperation across squares of
size r3 = 15. As Figure 3a shows, the global frequency of
cooperation steadily declines in this case, and there is no ob-
servation of a Simpson’s Paradox. This is because although
there are still spatial groups in the system, membership of
these groups does not affect fitness when the public good is
global, and hence they are meaningless to evolution. This
serves as an illustration of the fact that the groups we can
readily observe in a system (e.g., the clusters in our model)
may not be the same scale as the groups that matter for the
evolution of cooperation (in the case of well-mixed public
goods, the ‘group’ is the whole population).
On the other hand, in Figure 3b we set the radius of

the public good to r1 = 15. This represents localised in-
teractions, and so we might expect cooperation to evolve.
Moreover, we set the window size over which we measure
local proportions of cooperators to be of this same scale
(r3 = 15). In this case cooperation evolves, and we observe
a difference between average local and global proportions
of cooperation, and hence a Simpson’s Paradox. It should



be noted that Simpson’s Paradox is present even when the
global proportion of cooperators is falling, so long as the
average local proportion of cooperators is falling at a faster
rate (e.g., generations 1-6 in Figure 3b). In this case there is
a non-zero between-group component of selection, but this
is weaker than within-group selection.
Figure 3b also illustrates that the paradox cannot be sus-

tained indefinitely. This is because selfish individuals are fit-
ter than cooperators sharing the same public good (same P
value but c = 0 in Equation 1). Thus, they must necessarily
increase in frequency within each locality. As this happens,
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Figure 3: A) When the average of interaction, r1 covers
the entire space, cooperation does not evolve and Simpson’s
Paradox is not observed. B) When r1 = 15 cooperation
evolves, and there is a difference between local and global
proportions. C) Multiple aggregation and dispersal cycles
with r = 15.

the differential growth of different localities decreases, and
hence the paradox reduces. In Figure 3b, the paradox peaks
at 14 generations, after which the global frequency of coop-
eration starts to fall back down. This seemingly inevitable
decrease in cooperation as the generations go by need not
occur, however, if individuals are periodically mixed and re-
distributed in space (Sober and Wilson, 1998). Essentially
this is because such a redistribution of individuals reestab-
lishes variance in the proportion of cooperators (and hence
in the amount of the public good) between groups, and so
once again allows for differential group productivity to have
an effect and create a paradox. This is illustrated in Fig-
ure 3c, where dispersal from clusters and global mixing oc-
curs every 14 generations. These dispersal events explain the
see-saw shape of the average local curve: at each dispersal
event, the average local proportion is returned to the global
proportion of cooperators. Dispersal is known to occur in
natural biofilms (Ghannoum and O’Toole, 2004) (although
simultaneous and complete mixing is a simplifying assump-
tion of our model), and the single-celled bottleneck in the
development of multicellular organisms provides a similar
redistribution of genetic variance (Maynard Smith and Sza-
thmáry, 1995; Michod, 1999). Thus, some degree of dis-
persal is likely to be important in maintaining cooperation
in natural populations (West et al., 2002), and may actually
be an evolutionary adaptation at least partly for this purpose
(Maynard Smith and Szathmáry, 1995; Michod, 1999).
Figure 4 shows the effect of cell motility on the obser-

vation of Simpson’s Paradox. Again, from standard theory
we would expect increasing motility to reduce global levels
of cooperation. We see that increasing motility decreases
Simpson’s Paradox. This is because it increases the hetero-
geneity of localities, making their P values more similar and
hence the differential in group productivity lower.
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Figure 4: Effect of increasing cell motility on the observa-
tion of Simpson’s Paradox. Error bars show standard devia-
tion.

Figure 5 shows how the peak observation of a Simpson’s
Paradox changes depending on the scale at which local pro-
portions of cooperators are measured. Observation of the
paradox will peak when this scale corresponds to the actual
scale of social interactions in the system, e.g., to the radius



in which the public good is shared. The peak in Figure 5
is where the measured locality size corresponds, approxi-
mately, to r1, the actual scale of interaction. Measuring
Simpson’s Paradox using different local scales could thus
be used to determine the actual scale of social interactions
in a real-world system, where this may well not be known a
priori.
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Figure 5: Effect of the magnitude of the locality size mea-
sured on the observation of Simpson’s Paradox (difference
between local average and global proportion of cooperators).
The observed paradox is strongest when the measured local-
ity size corresponds to the actual scale of social interaction;
measurements were taken after the number of generations
that yielded the peak difference between global and local
frequencies, for each window size. Error bars show stan-
dard deviation. The length of the error bars increases with
the window size because a larger window size corresponds
to fewer localities and hence fewer samples to average over.

Discussion
We have presented a methodology for measuring the effect
of group-level selection in natural populations. Real-world
populations may often not be formed of clearly observable
groups with discrete boundaries, which makes the applica-
tion of standard multilevel selection theory non-trivial. In
particular, theoretical techniques for measuring the strength
of group selection, such as the Price Equation or contextual
analysis, rely on being able to measure properties of dis-
crete groups (Godfrey-Smith, 2006). Thus, their application
to systems such as bacterial biofilms remains problematic.
Here, we have suggested observation of Simpson’s Para-

dox as a way to quantify the effect of group-level selec-
tion in a natural population. It is now widely appreciated
that Simpson’s Paradox, the difference between average lo-
cal and global frequencies of cooperation, will be present
whenever individually-costly cooperative behaviours evolve
(Sober and Wilson, 1998). Moreover, its presence indicates
multiple scales of selection in a system (Sober and Wilson,
1998). However, discussions of Simpson’s Paradox have so
far remained in the theoretical domain. In particular, illus-
trations of it have, to our knowledge, only been conducted
in models with discrete group boundaries. By contrast, we

have shown that Simpson’s Paradox can be readily mea-
sured in populations where individuals are continuously dis-
tributed throughout space. Thus, the exact group structure
does not have to be known a priori for this technique to be
applied. We have illustrated the measurement of Simpson’s
Paradox in such a case with an individual-based model of
public goods production in bacterial biofilms.
Significantly, measurement of Simpson’s Paradox can be

used to determine the effective group structure in a natural
population. Specifically, the difference between average lo-
cal and global proportions of cooperationwill peak when the
size of localities measured is of the same scale as that over
which the public good is shared. That is, when the measure-
ment window size matches the scale of fitness-affecting so-
cial interactions. Wilson (1980) terms the scale over which
social interactions occur “trait groups”. He stresses that the
groups which matter to natural selection are subsets of in-
dividuals in which fitness-affecting interactions occur, and
that these subsets may not correspond to the apparent groups
that are most readily observable in a population. For ex-
ample, although discrete clusters may be observable in a
biofilm, these may not correspond to the radius over which
a public good diffuses. Varying the window size over which
the change in local proportions of cooperators is measured,
and looking for the peak difference with the global propor-
tion, can identify the effective trait groups in the population.
Searching for the trait groups in this way can be done by im-
age analysis at the end of the experiment – the experiment
does not have to be re-run in order to measure Simpson’s
Paradox on different scales. Regarding biofilms, one may
also measure local proportions using regions that specifi-
cally enclose micro-colonies to see if micro-colony struc-
ture is a stronger selective unit than arbitrary local regions.
That is, our methodology can be used to determine whether
the micro-colonies correspond to trait groups, or whether the
trait groups are in fact smaller or larger.
In future work, it would be interesting to investigate

whether the Price Equation can be meaningfully applied to
the appropriate window size. In particular, our methodol-
ogy identifies non-arbitrary groups. Thus, once we have
identified the effective trait group size, we could calculate
the covariance between group character (local proportion of
cooperators), and group productivity. Likewise, we could
calculate the covariance between individual character (co-
operator or not) and individual fitness (number of cell di-
visions). Our methodology also fits within a kin selection
framework (Hamilton, 1964), as used by Griffin et al. (2004)
to study bacterial social evolution, for example. Finding the
trait groups corresponds to finding the scale at which genetic
relatedness should be measured in a natural population.
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