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Abstract in English: Psychology and social science face a number of challenges: the inherent complexity of the phenomena of
interest, the replication crisis, the theory crisis, and functional and structural misspecification. The confluence of these challenges
poses a serious threat to the validity and meaningfulness of research in these domains, and brings into question the direction that
researchers in these fields should take. If this direction is to be effective with respect to improvement, I believe it is important
for psychologists and social scientists to engage with the meta-research surrounding areas of possible analytical and statistical
improvements. In this thesis I present four contributions which are strongly motivated by the problems of misspecification and
complexity, an provide recommendations to researchers. The proposals include the use of more powerful, data-adaptive techniques
for function approximation (such as those tools from the domain of machine learning), as well as the use of techniques from
the domain of causality (such as causal Directed Acyclic Graphs) and information theory. I demonstrate how these techniques
can (a) help us to match the level of complexity of our modeling to the inherent complexity of the phenomenon under study, (b)
reduce ambiguity with respect to theory specification, and make our assumptions and modeling choices more transparent, (c)
reduce the complexity of a mathematical representation of a theory without impacting the validity of any downstream estimates,
(d) improve the efficiency of data collection methodologies, (e) highlight the critical nature of causality even when otherwise
powerful, exploratory machine learning techniques are used, (f) highlight the strange, unintuitive behaviour of datasets with more
than four dimensions, (g) undertake outlier detection in a way that is robust to this aforementioned strange behaviour. Whilst these
approaches do not solve the problems in a finite sense, they represent relatively low-cost stepping stones en route to a better way to
undertake research in psychology and social science. Indeed, the nature of at least some of the problems would seem to encourage
an optimistic interpretation: That there presently exists a tremendous opportunity to modernise the current approach to research,
simply by assimilating recent advances and developments from other domains such as engineering, machine learning, and statistics.
Psychology and social science are complex domains, full of rich and nuanced phenomena. They deserve to be represented using
research methodologies which are flexible enough to reflect this complexity.

Résumé en Francais : La psychologie et les sciences sociales sont confrontées a un certain nombre de défis : la complexité
des phénomenes auxquels celles-ci s’intéressent, la crise de la réplication, la crise de la théorie et les erreurs de spécification
fonctionnelles et structurelles. La confluence de ces défis constitue une menace sérieuse pour la validité de la recherche et pour sa
capacité a donner du sens; cela remet de plus en question la direction que les chercheurs en psychologie et en sciences sociales
devraient suivre. Si ce cheminement de la recherche doit étre efficace en ce qui concerne les améliorations dans ces domaines,
il s’agit ici de soutenir qu’il est important que les chercheurs en psychologie et en sciences sociales s’engagent dans une méta-
recherche balisant les améliorations analytiques et statistiques possibles. Cette thése présente quatre travaux fortement motivés par
la volonté de résoudre les problemes de complexité et d’erreur de spécification, et elle s’engagera aussi a faire des recommandations
relatives a ces questions aux chercheurs. Les propositions incluent I’utilisation de techniques pour I’approximation de fonction
plus puissantes (tels que les outils du domaine de 1’apprentissage automatique), 1’utilisation de techniques issues du domaine de
la causalité (tels que les graphes acycliques dirigés causaux) et enfin des idées relatives a la théorie de I’information. Il s’agira
tour a tour de démontrer comment ces techniques peuvent: A) nous aider a faire correspondre le niveau de complexité de notre
modélisation a la complexité inhérente au phénomene étudié; B) réduire I’ambiguité liée a la spécification de la théorie et rendre
nos hypotheses et nos choix de modélisation plus transparents; C) réduire la complexité de la représentation mathématique d’une
théorie sans affecter la validité des estimations de cette dernieére; D) améliorer I’efficacité des méthodologies de collecte de données;
E) mettre en exergue la nature critique de la causalité méme lorsque de puissantes techniques exploratoires d’apprentissage
automatique sont utilisées; F) mettre en évidence le comportement étrange et non intuitif des ensembles de données de plus de
quatre dimensions; G) en cas de comportement étrange ou non, entreprendre la détection des valeurs aberrantes d’une maniere qui
soit robuste. Bien que ces approches ne résolvent pas définitivement les problemes, elles représentent des étapes peu coliteuses et
faciles a franchir pour réaliser une meilleure fagon d’entreprendre des recherches. La nature de certains problémes au moins, telle
que I’omniprésence de méthodologies de recherche et de méthodes d’analyse peu sophistiquées dans le paradigme actuel, semble
en effet encourager une interprétation optimiste : il existe actuellement de formidables opportunités de moderniser 1’approche
actuelle de la recherche. La psychologie et les sciences sociales sont des domaines complexes, riches en phénomenes dynamiques.

Ceux-ci méritent d’étre étudiés a I’aide de méthodologies de recherche suffisamment flexibles pour refléter toute cette complexité.



Extended Abstract

Psychology and social science face a number of challenges: the inherent complexity of the
phenomena of interest, the replication crisis, the theory crisis, and as I discuss, functional
and structural misspecification. The confluence of these challenges poses a serious threat to
the validity and meaningfulness of research in these domains, and brings into question the
direction that researchers in these fields should take. If this direction is to be positive with
respect to improvements in the domains, I believe it is extremely important for psychologists
and social scientists to engage with the meta-research surrounding areas of possible analytical
and statistical improvements. In this thesis I present four contributions which are strongly
motivated by the problems of misspecification and complexity, an provide recommendations to
researchers.

In the first contribution, I focus on three issues that deserve more attention. Namely, the use
of models with limited functional form, the use of misspecified causal models (misspecified
either due to limited functional form, or incorrect structure), and unreliable interpretations of
results. I demonstrate a number of consequences relating to these issues via simulation, and
provide recommendations for researchers to improve their research practice, such as the use
of techniques from the domains of machine learning and causality; engaging with experts in
statistics, causality, and machine learning; being more transparent about the methodological and
analytical approach; and be concise and not overambitious in the specification of their research
questions and hypotheses.

Following the recommendations made in this first contribution, I also include two example
applications of these recommendations. The first application involves the use of machine
learning techniques to explore the relationships between partner support and relational and
individuals variables. The second involves the use of causal discovery and causal inference
tools (which themselves derive from the domain at the confluence of machine learning and
causality) to explore the links between attachment styles and mental health during the COVID-
19 pandemic. The purpose of these applications is to demonstrate that the recommendations
made are not simply hypothetical, but can be readily applied.

Furthermore, and given my specific recommendation that researchers engage with techniques
from the domain of causality, I make a second methodological/statistical contribution by
exploring how causal graphs can be used to improve the efficiency of data collection process.
On the one hand, it is important that we collect data in a way that maximises the validity of what
we are measuring, which may involve the use of long scales with many items. On the other
hand, collecting a large number of items across multiple scales results in participant fatigue,
and expensive and time consuming data collection. It is therefore important that we use the
available resources optimally. I consider how the representation of a theory as a causal/structural
model can help us to streamline data collection and analysis procedures by not wasting time
collecting data for variables which are not causally critical for answering the research question.
This not only saves time and enables us to redirect resources to attend to other variables which
are more important, but also increases research transparency and the reliability of theory testing.
To demonstrate the benefits of this streamlining, I review the relevant concepts and present a
number of didactic examples, including a real-world example.



In turn, given the recommendation that researcher engage with tools from the domain of
machine learning techniques, in the third (technical) contribution I explore to what extent
machine learning techniques are sensitive to the underlying causal structure in the data. Indeed,
machine learning explainability techniques have been proposed as a means for psychologists
to ‘explain’ or interrogate a model in order to gain an understanding about a phenomenon of
interest. Researchers may be motivated to use machine learning algorithms in conjunction with
explainability techniques, as part of exploratory research, with the goal of identifying important
variables which are associated with / predictive of an outcome of interest. However, and as |
demonstrate, machine learning algorithms are highly sensitive to the underlying causal structure
in the data. The consequences of this are that predictors which are deemed by the explainability
technique to be unrelated/unimportant/unpredictive, may actually be highly associated with the
outcome. Rather than this being a limitation of explainability techniques per se, we show that
it is rather a consequence of the mathematical implications of regression, and the interaction
of these implications with the associated conditional independencies of the underlying causal
structure. I provide some alternative recommendations for psychologists wanting to explore the
data for important variables.

In the final contribution, I explore the unintuitive behaviour of datasets which attempt to accom-
modate the inherently high-dimensional complexity of psychological phenomena. In particular,
I consider what the notion of ‘normality’ implies in high-dimensional settings. Normality, in
the colloquial sense, has historically been considered an aspirational trait, synonymous with
harmony and ideality. The arithmetic average has often been used to characterize normality, and
is often used as a blunt way to characterize samples and outliers. I demonstrate that even for
datasets with as few as four dimensions, data start to exhibit a number of peculiarities which
become progressively severe as the number of dimensions increases. I show that normality can
be better characterized with ‘typicality’, an information theoretic concept relating to entropy. An
application of typicality to both synthetic and real-world data reveals that in multi-dimensional
space, to be normal (or close to the mean) is actually to be highly atypical. This motivates us to
update our working definition of an outlier, and we demonstrate typicality for outlier detection
as a viable method which is consistent with this updated definition. In contrast, whilst the
popular Mahalanobis based outlier detection method can be used to identify points far from the
mean, it fails to identify those which are too close. Typicality can be used to achieve both, and
performs well regardless of the dimensionality of the problem.

Whilst the proposals made in these four contributions do not solve the problems I identify in
a finite sense, they represent relatively low-cost stepping stones en route to a better way to
undertake research in psychology and social science. Indeed, the nature of at least some of
the problems, such as the ubiquity of unsophisticated research methodologies and analytical
methods in the current paradigm, would seem to encourage an optimistic interpretation: That
there presently exists a tremendous opportunity to innovate and modernise the current approach
to research, simply by assimilating recent advances and developments from other domains such
as engineering, machine learning, and statistics. Psychology and social science are complex
domains, full of rich and nuanced phenomena. They deserve to be represented and studied using
research methodologies which are flexible enough to reflect this complexity.
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Glossary of Terms/Concepts

Provided below is a list of working definitions for key concepts and terms used in this thesis.

The Big Assumption The assumption that the complexity of any particular social or psycho-
logical phenomenon can be adequately represented using a ‘simple’ / human-interpretable
model (in the form, for example, of a Directed Acyclic Graph or set expert-specified
structural equations).

Causal Discovery The task of discovering causal links between variables in a data-driven
manner. The output is often (but not necessarily) a putative causal graph. See M. Vowels,
N. Camgoz, and Bowden (2022) for more detail.

Causal Inference The task of estimating particular causal estimands (such as the average
treatment effect). The success of the estimation (in terms of, for instance, the unbiased-
ness) depends on the identification of the estimand in terms of factors of the observed
joint distribution. See Pearl (2012), J. Peters, Janzing, and Scholkopf (2017), and Morgan
and Winship (2015) for more detail.

Cross-Validation A model fitting and evaluation process whereby the data used to estimate
model parameters (where the parameters may represent coefficients in a multiple linear
regression, or decision boundaries in a decision tree) are different from the data used to
evaluate or test the model. See K. P. Murphy (2012) for more detail.

Data Generating Process (DGP) The underlying and usually inaccessible causal process
which leads to a set of observable states in the world.

Deep Learning Deep learning is a data-driven Machine Learning method that has been applied
to numerous applications including computer vision, natural language processing, and
general predictive tasks. Deep learning techniques are usually based on types of artificial
neural networks and are a multivariate, nonlinear, statistical machine learning method,
allowing dependent variables to be related to independent variables via learned, complex,
nonlinear relationships (I. Goodfellow, Bengio, and Courville, 2016). These relationships
are learned via an automated computational process known as optimisation, such as
backpropagation, whereby a loss function is minimised in order to calculate optimal
network parameters known as weights and biases (I. Goodfellow, Bengio, and Courville,
2016; Rumelhart, Hinton, and R. J. Williams, 0323; Rumelhart, Hinton, and R. J. Williams,
1985). The weights and biases parameterise ‘layers’ in a neural network, and when the

XX1
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number of layers is large (e.g., above 50), the network may be considered to be ‘deep’.
See also (Artificial) Neural Network below and 1. Goodfellow, Bengio, and Courville
(2016) for more detail.

Directed Acyclic Graph (DAG) A mathematical object specified as a graph comprising a
set of vertices / nodes / variables and directed edges between these vertices. The graph
represents the factorisation of the joint distribution, and the edges may be used to represent
causal directionality in a causal-DAG. The acyclicity prohibits the existence of cycles.
See J. Peters, Janzing, and Scholkopf (2017) for more detail.

Double-Dipping A practice (intentional or otherwise) involving the reuse of data in such a
way that inflates the apparent performance or success of the model. For example, fitting
data-adaptive model to a data sample to maximise fit, and then failing to use a different
sample to evaluate the model will inflate the apparent success of the model. See also
overfitting, and Button (2019) and Kriegeskorte et al. (2009) for more detail.

(Information) Entropy A measure of uncertainty or surprise associated with a distribution.
For example, the Bernoulli distribution with a parameter of 0.5 (as in the case of a flip
from a fair coin) has maximum entropy because the outcome of the trial is maximally
uncertain with respect to the space of possible realisations (heads or tails). The entropy
would be 0, on the other hand, if the coin were maximally biased towards a probability of
1 for either heads or tails. See MacKay (2018) and Cover and Thomas (2006) for more
detail.

(Model) Explanation The task of explaining the decision process or predictions of a model.
For example, the coefficients of a multiple linear regression model provide an explanation
for why the model makes a certain prediction given a certain input. In contrast, see
interpretation.

Functional Form The functions used to describe the relationships between variables. For ex-
ample, in Y = f(X), f is the function relating the set of input variables X to the outcome
Y. In a multiple linear regression, f is a weighted linear sum: 5y X + 81 X1...0x Xk . In
a random forest, on the other hand, f may be highly complex and non-linear. In contrast,
see structural form.

Functional Form The functions used to describe the relationships between variables (either
the nature of the true, real-world functions, or those used to model these real-world
functions). For example, in Y = f(X), f is the function relating the set of input
variables X to the outcome Y. In a multiple linear regression, f is a weighted linear sum:
BoXo + 51X1...0k X k. In a random forest, on the other hand, f may be highly complex
and non-linear. In contrast, see structural form.

Importances In relation to a set of predictor variables for a model, the importances tell us to
what extent each of these predictors impacts model output. The importances thereby tell
us which of the input variables is most predictive of the outcome.
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Information Theory A branch of mathematics concerned with the formalisation of the notion
of ‘information’. See seminal work by Shannon and Weaver (1949), as well as MacKay
(2018) and Cover and Thomas (2006) for more information.

(Model) Interpretation The task of using a model to interpret relationships which exist in
the real-world. For example, in a multiple linear regression model for which one of the
coefficients represents an identified causal effect, this coefficient can be interpreted in
relation to an average causal effect (it tells us how much the effect changes with respect to
a change in the variable associated with the particular coefficient). The requirements for
a model to be interpretable are significant, and include correct functional and structural
specification. See, in contrast, model explanation.

Linearity / Linear Models We use the term linearity to describe the situation whereby an
outcome Y can be represented as a linear function (i.e., a weighted linear sum) of either a
set of raw input variables X, or a set of variables which have themselves been transformed
using some linearising function. In the latter case, for instance, the variables can be
projected into a new ‘space’ whereby the outcome can still be represented as a weighted
linear sum of these projected variables. An example, of this is the use of the quadratic or
cubic functions of input variables, 51 X 12 + B X % , such that Y is expressed as a weighted
linear sum of these polynomial functions of the raw variables X. We also include those
models with a simple link function, and the definition therefore subsumes the class of
Generalised Linear Models (which includes, for example, the logistic regression model).

Misspecification Misspecification occurs when a researcher specifies a model insufficiently
correctly either in terms of its functional or its structural form. For a discussion on what
is meant by ‘(in)sufficiency’, see Chapter 8. For further information on misspecification,
see Chapter 2.

MultiLayer Perceptron (MLP) See (Artificial) Neural Network below and I. Goodfellow,
Bengio, and Courville (2016) for more detail.

Mutual Information Mutual information is an information theoretic measure of the degree to
which information associated with one variable (or set of variables) is shared by another
variable (or set of variables). It is a more general form of correlation which is a measure
of statistical association that assumes linear forms of dependence. See Cover and Thomas
(2006) and MacKay (2018) for further detail.

(Artificial) Neural Network (NN) Neural Networks are a multivariate statistical machine
learning technique, which comprise a set of weights and biases (often millions thereof)
which are optimized to achieve a particular goal via an optimization process known as
gradient descent. An example of a commonly used goal is the minimization of the mean
squared error in a regression task. The weights and biases parameterise a set of (often
simple) functions called ‘layers’, which are stacked in a sequential fashion (although
there exist variations on the arrangement of these functions). In the case of the classic
MultiLayer Perceptron (which is a relatively small/simple neural network), there may
exist between 2 and 10 layers, although deeper networks are possible (see Deep Learning
above), and each layer comprises a set of neurons, each of which takes on a scalar value
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and which is determined by a generalised linear function of all neurons in the previous
layer. For more information, see I. Goodfellow, Bengio, and Courville (2016) for more
detail.

Overfitting When a modeling technique fails to generalise to new data drawn from the same
distribution as that with which it was trained/fit, in spite of apparently good performance
on the training data, it may be said to be ‘overfitting’ the training data. This can happen,
for instance, if the model is too complex and not sufficiently regularized, such that it
learns not only to approximate the function relating the input and output variables, but
also solves for the noise particular to the training sample. See also cross-validation and
double-dipping, as well as Yarkoni and Westfall (2017) for more detail.

Outlier An outlier is a datapoint which deviates markedly from the sample to which it sup-
posedly belongs. For a more detailed discussion, as well as alternative definitions, see
Grubbs (1969) and Leys, Delacre, et al. (2019).

Random Forest A random forest is a type of data-adaptive decision tree that trains on boot-
strapped sub-samples of the data to avoid overfitting. The tree can model highly non-linear
relationships in the data, and therefore represents a significantly more flexible model than
a linear regressor. For further details see Breiman (2001a).

SHapley Additive exPlanations (SHAP) SHAP is a unified framework for undertaking model
explanation, and derives from the seminal game theoretic work of Lloyd Shapley Shap-
ley (1953). The framework conceives of predictors as collaborating agents seeking to
maximize a common goal (i.e., the regressor performance). The approach involves system-
atically evaluating changes in model performance in response to including or restricting
the influence from different combinations of predictors. SHAP provides estimations of
the per-datapoint, per-predictor impact on model output, as well as the average predictor
impacts. These estimations are called ’explanations’ because they explain why a particular
regressor performs the way it does. The results are provided as feature importances, which
describe how important the variable is for the model outcome and how much it changes
the outcome.

Structural Form Structural form indicates whether or not certain variables or phenomena are
able to influence one another (causally), regardless of the functional form underlying
these influences. See above for Data Generating Process and, in contrast, functional form.

Structural Equation Modeling (SEM) A statistical modeling technique which represents
structural/causal relationships between variables in a set of structural equations. The
functions underlying the relationships between these variables is assumed to be linear
(see above for the definition of linearity). See Kline (2005) for further details.

Typicality An information theoretic approach to characterising whether samples are ‘normal’
or not, in a general sense (i.e., not in reference to specific, low order statistics like the
mean, for example). A sample is typical sample if it falls within a certain margin defined
by the entropy of a distribution. See Cover and Thomas (2006) for further details.



CHAPTER 1

Introduction

“To question the foundations of a discipline or a practice is not necessarily to deny

its value, but rather to stimulate a judicious and balanced appraisal of its merits.”

Ashcroft and ter Meulen (2004)

“In several fields of investigation, including many areas of psychological science,
perpetuated and unchallenged fallacies may comprise the majority of the

circulating evidence.”

Toannidis (2012)

Meta-researchers have increasingly drawn attention to the replicability crisis affecting psychol-
ogy and social science (Oberauer and Lewandowsky, 2019; Botella and Duran, 2019; Aarts
et al., 2015; Stevens, 2017; Marsman et al., 2017; Shrout and Rodgers, 2018; Yarkoni, 2019). In
addition, the domains have come under heavy criticism for poor theory specification (Scheel
et al., in press; Oberauer and Lewandowsky, 2019) to the extent that most research findings in
psychology have been described as “not even wrong” (Scheel, 2022). Furthermore, the compli-
cated nature of most psychological phenomena raises questions as to the feasibility of building
realistic models which can deal with the complexity of human behaviour and social interaction,

even in principle. Meehl coined the term ‘crud factor’ (Meehl, 1990; Orben and Lakens, 2020),
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which alludes to the point that null-effects are practically non-existent in social phenomena
because “everything [in social science] correlates to some extent with everything else”. This
complexity, in turn, has called into question the appropriateness of the fields’ relatively blunt
approaches to analysis (Bryan, Tipton, and Yeager, 2021; Freedman, 1985). To add to these
problems, measurement in psychology is notoriously difficult, and the associated challenges
are often not taken seriously. This leads to meta-research with titles such as “Measurement
Schmeasurement”, which is a valuable article discussing how research in psychology is often
undermined by a range of problems, including “a lack of transparency, ignorance, negligence,

or misrepresentation of the evidence.” (Flake and Fried, 2020)

Table 1.1 summarises some of the open issues. As such, psychology and social science face a
number of serious challenges: the inherent complexity of the phenomena of interest and the
statistical methods employed to model them, the replication crisis, the theory crisis, and as I
discuss below, functional and structural misspecification. The confluence of these challenges
poses a serious threat to the validity and meaningfulness of research in these domains, and brings
into question the direction that researchers in these fields should take. If this direction is to be
positive with respect to improvements in the domains, then it is important that psychologists
and social scientists engage with the meta-research surrounding areas of possible theoretical,

analytical, and statistical improvements.

In this thesis I present four contributions, as well as two application examples, which are strongly
motivated by the problems of misspecification and complexity, and provide recommendations
to researchers. The proposals include the use of modern, powerful, data-adaptive techniques for
function approximation (such as those tools from the domain of machine learning), as well as
the use of techniques from the domain of causality (such as causal Directed Acyclic Graphs)
and information theory. I demonstrate how these techniques can (a) help us to match the level
of complexity of our modeling to the inherent complexity of the phenomenon under study, (b)
reduce ambiguity with respect to theory specification, and increase the transparency of our
assumptions and modeling choices, (¢) reduce the complexity of a mathematical representation
of a theory without impacting the validity of any downstream estimates, (d) improve the

efficiency of data collection methodologies, (e) highlight the critical nature of causality even



Table 1.1: Non-exhaustive list of some challenges facing psychologists and social scientists.

A lack of understanding about and misuse of p-values
and statistical tests

Overly generous claims and warped interpretations

Issues relating to the testing of theory

Immature theories

Misunderstandings about statistical power and low
sample sizes

Measurement problems

A lack of meta-analyses

A lack of assumptions testing
Pressure to publish

Double-dipping and overfitting

A failure to consider the consequences of aggregation
and non-ergodicity

Academia and research being a strategy game with
unscientific incentives

A reluctance of journals to publish replications
Issues with the peer review process

Reporting errors

A lack of research practice standardization

The conflation of predictive and causal approaches
and interpretations

General scientific misconduct

(Cassidy et al., 2019; Gigerenzer, 2018; Gigeren-
zer, 2004; Colquhoun, 2014; Colquhoun, 2017;
Colquhoun, 2019; McShane et al., 2019)

(Yarkoni, 2019; Spellman, 2015; Scheel et al., in
press)

(Scheel, 2022; Oberauer and Lewandowsky, 2019;
Muthukrishna and Henrich, 2019a)

(Scheel et al., in press)

(Sassenberg and Ditrich, 2019; Baker et al., 2020;
Correll et al., 2020)

(Flake and Fried, 2020)

(Schmidt and Oh, 2016)

(Ernst and Albers, 2017)

(Shrout and Rodgers, 2018; DeDeo, 2020)

(Kassraian-Fard et al., 2016; Kriegeskorte et al.,
2009; Mayo, 2013; Yarkoni and Westfall, 2017)

(Fisher, Medaglia, and Jeronimus, 2018; O. Peters
and Werner, 2017)

(Gigerenzer, 2018; DeDeo, 2020)

(G. Martin and Clarke, 2017; Gernsbacher, 2019)
(Heesen and Bright, 2020)

(Nuijten et al., 2016)

(Tong, 2019)

(Grosz, Rohrer, and Thoemmes, 2020; Yarkoni and
Westfall, 2017; Shmueli, 2010)

(Stricker and Giinther, 2019)

when otherwise powerful, exploratory machine learning techniques are used, (f) highlight the

strange, unintuitive behaviour of datasets with more than four dimensions, and (g) undertake

outlier detection in a way that is robust to this aforementioned strange behaviour.

In the remaining part of this Chapter, I start by discussing the problems of misspecification,

complexity, and general modeling challenges in more detail, and provide an overview of the

structure of the thesis with a summary of each of the contributions.
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1.0.1 Functional and Structural Misspecification

The problems and challenges outlined above seem to exist to a greater or lesser extent in different
subdomains of psychology and social science, and they are somewhat unsurprising given (a)
the inherent complexity of humans as subject matter, and (b) the relatively unsophisticated
approaches to modeling and theory building in the fields in general. Indeed, whilst there exist a
multitude of powerful, highly adaptive, and general methods developed in the domain of, for
example, engineering, psychologists are reluctant to use anything other than highly constrained,
highly reductionist, linear models (Blanca, Alarcon, and Bono, 2018). This leads to a statistical
modeling culture with assumptions which are “so unrealistic... [that] everybody agrees they are

known to be false.” (M. van der Laan, 2015)

Sometimes, it is not possible to use anything other than linear models, owing to limitations in
data collection methodologies, measurement challenges, etc. For example, consider spectral
analysis, which is typically included in the syllabi of most bachelors courses in engineering, and
can be used to model and analyse a wide variety of phenomena (M. J. Vowels, L. M. Vowels,
and N. Wood, 2021)." If one wishes to use this technique in psychological applications, it is
necessary (amongst other things) to have time-series/longitudinal data collected at sufficiently
consistent and regular intervals (M. J. Vowels, K. Mark, et al., 2018; M. J. Vowels, L. M. Vowels,
and N. Wood, 2021). Unfortunately, longitudinal studies are both expensive, and subject to
participant dropout. In contrast, cross-sectional data, which are likely to be high in abundance
(leading to higher statistical power), may simply not be able to be used to answer the same
research questions. Regardless, psychologists rarely, if ever, use this approach, and it would
seem that this is more because such methods do not form part of psychologists’ syllabi, than it

is due to a justifiable choice (M. J. Vowels, L. M. Vowels, and N. Wood, 2021).

The result of a limited set of tools (linear models) with which to deal with wide variety of
(arbitrarily complex) problems leads to two types of misspecification. The first I refer to as
functional misspecification: Fitting a linear function to a non-linear phenomenon can lead to

arbitrarily biased estimates (M. J. Vowels, 2021). Frequently, and in addition to problems with

!Technically, spectral analysis is a type of linear decomposition, but it enables us to look at non-linear trajectories
over time (amongst other things). As such, I distinguish it from, say, linear regressions using only first order functions
of the variables.



functional misspecification, researchers also misunderstand the way their analyses (linear or
otherwise) interact with the Data Generating Process (DGP) which led to their observations/data.
As with functional misspecification, this problem also leads to arbitrarily biased effect sizes
which, even under optimal conditions (reliable measurement, sufficiently complex representation
of the phenomenon, linearity, etc.), bare no relation to the target quantities the methods are
intended to estimate. This I refer to as structural misspecification (M. J. Vowels, 2021). One
example of structural misspecifcation concerns popular 3-4 variable mediation models. Such
simple causal structures are very unlikely to reflect the phenomenon with a necessary degree of

complexity and, again, the results will be arbitrarily biased.

Rarely does it seem to be the case that researchers in psychology and social science take the
time to really ascertain whether the research question is even approximately answerable using
their chosen methodology. Arguably, if researchers did manage to establish an appropriate
match between their theoretical, analytical, and statistical techniques and the phenomena under
study, we would see a different state of affairs in the meta-research literature. Some authors have
even described psychometrics as a pathology of science, on the basis that (at least significant
portions of) hypotheses are accepted without serious attempts to test them, and that this problem
is never questioned or rectified (Michell, 2016). In terms of the focus of this thesis, the result
of functional and structural misspecification, is that replication issues resulting from (amongst

other things) underpowered analyses represent only the tip of the iceberg.

1.0.2 Complexity - The Big Assumption

To help establish some perspective for the complexity issue, and why it matters for research
and analysis, I designed and implemented a model for controlling a standard, workbench-

mounted, six-degree-of-freedom robotic arm.? This model is far from innovative and is based

The specific choice of this example is somewhat arbitrary. Another compelling example involves the way
engineers in transducer design use both the lumped-parameter method for adequate/rough-and-ready modeling
of the low-frequency behaviour of transducers, compared with the highly-parameterised finite-element approach
for increased precision over a wider operational bandwidth (J. Wright, 1998; Nielsen et al., 2020). Both methods
are significantly more complex than theories in psychology, but the latter is highly parameterised and not directly
interpretable (it is thus analogous to the large-language model approach to generating written text. The authors
practical experience (following nine years spent designing loudspeakers for commercial applications) is that the
choice between the lumped parameter and the finite element methods comes down to a choice between two levels of
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Figure 1.1: Simple model for controlling a robotic arm.
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Note. Simple controller for a robotic arm. Corresponding expression is presented in Equation 1.1.

on rudimentary / standard recommendations in robotics textbooks - see works, for example, by
Fu, R. Gonzalez, and C. Lee (2018) and Ellery (2018). The corresponding block/computational
diagram is shown in Figure 1.1, and the expression corresponding with the torque of the

manipulator for this model is given below (Ellery, 2018; Fu, R. Gonzalez, and C. Lee, 2018):

T = D() (éd+Kp (ed _ e) +KZ»/ (ed - 9) dt + Ky (e‘d - 0)) +C(0,0)0 + G(6)
(1.1)

Here, the control law is represented in the terms multiplied by the coefficients K, (proportional
control gain coefficient), K; (integral control gain coefficient) and K, (derivative control gain
coefficient). There exist what are referred to as ‘disturbance terms’ D(#), which is the inertia
matrix, G(6), which is the gravity matrix, and C(6, §), which is the Coriolis effect matrix.
These terms are intended to model external factors which interfere with our ability to accurately
position the arm. The 6 terms are the joint angles which are produced by the control system, in
contrast to the 6 terms which are the desired/target joint angle terms. The dots over the top of
certain terms indicate first derivative / velocity (single dot) and second derivative / acceleration

(double dot).

simulation accuracy. The former allows good and fast approximation over a limited bandwidth of the audio spectrum,
whilst the latter allows us to extend this useful bandwidth significantly, but at the cost of computational expense and
modeling detail.



The main point here is that even a visual inspection of the block diagram (Figure 1.1) and
the corresponding control law (Equation 1.1) would indicate a level of complexity which
exceeds that of most psychological models (see also: Navarro, 2021). And yet, we know that
the complexity of human psychology and behaviour exceeds that of a six-degree-of-freedom
robotic arm. Indeed, even though linguistic (as opposed to mathematical) representations
of psychological phenomena are often deep and nuanced, the contrasting simplicity of the
downstream manifestation of these theories as statistical models suggests gross levels of under-
specification. These problems with the mathematical representation of theories in psychology
(or rather, the general lack thereof) constitute a large part of the focus of articles such as those
by Scheel (2022), Scheel et al. (in press), Borsboom et al. (2021), Robinaugh, Hoekstra, et al.
(2020), Haslbeck et al. (2021), van Rooij and Blokpoel (2020), Eronen and Romeijn (2020),
and Navarro (2021), who argue in favour of the mathematical formalisation of psychological
theory. However, in my view, the proposals for 2ow to fomalise and specify otherwise verbal
theories (the latter of which are sometimes referred to as ‘proto-theories’ in the literature)
are either too non-specific to evaluate for general applicability, or have only been applied to
very few and limited examples (see Robinaugh, Haslbeck, et al., 2019 for an example of a
computational model designed to model panic disorder). Traditionally linguists took similar
kinds of approaches to modeling language as recommended in these works - by breaking down
sentences into parts of speech, parameterising grammar, phonetics, phonemics, and using basic
statistical models to predict the next word in a sequence, they were able to build top-level
mathematical representations of human language (Jelinek, 1997). However, the domain has
by-and-large, at least for written language, abandoned these hand-engineered, expert-designed
approaches in favour of those at the other end of the complexity spectrum: Highly overspecified,
‘black-box’, Large Language Models (LLMs). For example, the BERT LLLM model (Devlin
etal., 2019) comprises between 108 million and 1270 million parameters (depending on whether
the small or extra-large model is used). This paradigm shift reminds us of the infamous quote
“Every time we fire a phonetician/linguist, the performance of our system goes up” (circa. 1988)

3 The sentiment of this quote seems to have aged well: LLMs provide state-of-art performance

3The origins of the quote are not clear, but see https://quotepark.com/quotes/
1777032-fred-jelinek-every-time-i-fire—-a-linguist-the-performance-of-o/
for a non-academic discussion which references Jurafsky and J. H. Martin (2009).


https://quotepark.com/quotes/1777032-fred-jelinek-every-time-i-fire-a-linguist-the-performance-of-o/
https://quotepark.com/quotes/1777032-fred-jelinek-every-time-i-fire-a-linguist-the-performance-of-o/
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by an incredible margin and produce output which is difficult to discern from that generated by
a human, all without requiring hand-design by a team of expert linguists. Even the application
of these modern language models as part of analyses concerning imperfect/challenging datasets
indicates worthwhile increases in predictive performance margins over otherwise comprehensive,
if nonetheless traditional, expert-designed methods such as Linguistic Inquiry and Word Count

(LIWC) (Biggiogera et al., 2021; Body et al., 2022).

If we accept, firstly, that the theory required to achieve only approximate control of a simple
robotic arm is already more complex/involved than the typical specification of most psychologi-
cal theories; and secondly, that most psychological and behavioural phenomena are driven by
processes which are more complex than - or even subsume those underlying - language, which
requires at least hundreds of millions of parameters to model well, then the question raises
its head: To what extent can psychological phenomena be represented mathematically, such
that they are also useful, sufficiently complex and sufficiently accurate, in principle? Framed
in a different way: If it takes 108 million parameters to model written language well (and we
already have better models which have well over /75 Billion parameters, such as GPT-3; Brown
et al., 2022), how many parameters are needed to model human psychology and behaviour?
Even though models like BERT and GPT-3 are generative, in that their principal mode of
functioning involves the generation of new text (vis-a-vis null-hypothesis significance testing),
understanding the complexity of the model required to produce human-like text provides some

perspective on the scale of the problem as a whole.

Unfortunately, the focus of this thesis is not intended to answer these questions (for a related
perspective, see: Freedman, 1985). Nonetheless, they are worth posing in light of the Chapters
presented herein, so that the reader can bear them in mind. I pose them both in the interests of
transparency - critiquing a field for its use of overly simplistic models and then proposing by way
of solution even more approaches which are at least similar in their levels of tractability is not
ideal - but also because I consider ways to address complexity (low/practicable levels thereof) in
Chapters 5 and 7. Indeed, some of the methods I propose assume a priori that a realistic model
of the phenomenon can be and has been specified by the researcher. Whether or not the model

is correct ‘enough’ (or could ever be so, even in principle) to yield meaningful and interpretable



results is difficult to answer, and therefore the relevance of the proposed methods assumes - and
this is what I informally refer to as ‘The Big Assumption’ - that expert-specified mathematical
models of psychological phenomena can be meaningful enough and capture enough inherent

complexity to be useful for inference and/or to inform experimental design.*

In the event that one were to end up concluding that the answer to these questions is ‘no - there
is no way to represent a particular complex psychological phenomenon in a mathematically
tractable form’, what would this mean for researchers? For a start, this conclusion is unlikely
to apply to all psychological/behavioural phenomena, even if it might apply to a greater or
lesser extent to different subdomains - for a start, we have certainly made useful progress
in psychology as a whole - and also, not all questions of psychology are equally difficult
to investigate (regardless of whether they are or are not equally complex in their nature).
The negative response also does not preclude the integration of adequately complex (but
nearly uninterpretable) data-driven models from the domain of machine learning and artificial
intelligence. Indeed, the author is currently working on such projects in parallel with the
work for this thesis (M. Vowels, 2020), which involve the use of existing computer vision
techniques such as OpenFace (Baltrusaitis et al., 2018) and OpenPose (Z. Cao et al., 2018),
as well as those which are designed by my colleagues and myself (see, for example: M.
Vowels, N. Camgoz, and Bowden, 2021; M. J. Vowels, N. C. Camgoz, and Bowden, 2021).
Unfortunately, such modern and highly parameterised approaches do, in general, require access
to large amounts of very rich data. For instance, investigating couple conflict might, in the
ideal case, involve the installation of sensors (microphones and cameras) in couples’ homes, so
that 24 hour surveillance is available to capture their spontaneous interactions for subsequent
multi-modal (video and audio) analysis. This clearly poses ethical and privacy concerns, even if
one is able to afford to run the associated data collection methodology with any appreciable
number of participants. Unfortunately, the traditional/existing paradigm may not represent a

viable option either, and yield meaningless results: using self-report questionnaires to create a

“Even when we are able to design seemingly precise interventions for experiments, it is practically challenging to
disentangle the role of a particular therapist from the specifics modality being tested. Furthermore, notwithstanding
the unique interactions which occur between therapist, patient, and modality, the endeavour to understand what
it is precisely about the intervention/modality which has the desired effect is also difficult to disentangle. Indeed,
interventions in psychology have been described as ‘fat-handed’, making it extremely difficult to reason effectively,
and/or causally about underlying mechanisms (Eronen, 2020; Eronen and Bringmann, 2021).
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retrospective time-aggregate of someone’s previous conflict with their partner creates a myriad
of measurement issues, and quite possibly prevents us from answering the questions we care
about - in this example, questions which possibly concern the relationships between complex

dynamic interactions in body pose, linguistic, para- and non-verbal behaviours.

Furthermore, the level of abstraction required to yield useful output is also to be determined
as part of the modeling process. Consider, hypothetically, a research project investigating
the role of non-verbal hand, arm, body and face movements in communication. It might be
reasonable to suggest that there exist substantial individual differences and heterogeneity, such
that the manner of gesturing for one person, and/or the way a person interprets the gestures
of another, are significantly different across individuals. These individual differences might
also not be explainable with demographic, cultural, or a finite set of person-specific factors
(such as unique childhood experiences, etc.). Additionally, the number of possible gestures,
as represented by an appropriate lexicon, might be assumed to be very high, and interact in
complex ways with the verbal language one uses to communicate. If one is interested in
identifying which gestures or gesture combinations impact the outcomes of conversations,
it is necessary to dramatically constrain the conditions of experimentation and to collect an
extremely large volume of data in order to control for the enormous degree of situational and
contextual variation. Only then could one infer, for example, gesture combination 241 for
conversation topic 13, with arousal and valence category 5, for people with cultural background
type 38 and relationship type 5, has impact y in the portion ¢ = 4 to £ = 25 of an engagement.
Once one begins to take averages over different topics of conversation, people of different
backgrounds, etc., one begins to lose specificity for which roles one particular gesture plays in
different situations. Forming some ‘global’ recommendation that gesture combination 241 is
good to integrate into general communication on average then represents a somewhat blunt and
unhelpful recommendation. Indeed, such non-specific recommendations for types of interaction
might result in the opposite to their intended effect - being perceived instead as prescribed,

unnatural, forced, and/or awkward.

The logic of this example may apply more or less in reality, but the underlying message is

broadly relevant to psychological and social phenomena, and the challenge it poses might
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more generally fall under the umbrella of heterogeneity (Bryan, Tipton, and Yeager, 2021).
The difficulties associated with social phenomena and the inherent degree of heterogeneity
perhaps also renders unsurprising the move away from hard-designed/coded language models,
towards the use of highly over-specified models with billions of parameters. Without this
level of complexity, the language models are extremely limited and fail to generate realistic
text. Even though simple models are appealing for their straightforward interpretability, it is
worth acknowledging the point of view that, as humans, we are biased towards explanations of
phenomena that happen to be meaningful to us, even if no such simple explanations necessarily
exist. Indeed, if humans are considered to only be able to handle 7 + 2 cognitive entities at
any one time (Rudin, 2019; Miller, 1956), why should any phenomenon, which happens by its
very nature to involve the interaction of more than 7 &= 2 components, be assumed to be human
interpretable by default (and modeled as if it were)? If we, as humans, are unable to explain
an outcome of a highly complex but accurately predictive model in an intuitive way, does it
make the model inappropriate? Once again, the willingness to abandon the anthropocentric
constraint on the human-comprehensibility of our modeling techniques is partly what has lead

to the dramatic increase in effective language modeling.

In combination with these issues of complexity, the running of underpowered studies is noted
to be rife in psychology and social science (as alluded to at the start of this Introduction).
Accordingly, if we run an underpowered study (much less than 80%, for instance) and we find a
significant result, there is a high chance that this result is a false positive (i.e., the conditional
probability of it being a false positive given that we have a significant result is much higher that
which we would like to expect given an alpha level of 0.05). Small samples also imply less
expensive studies, and the reward (in terms of publications) possibly justifies the undertaking, at
least from a career perspective. As there is no way to know what the true effect size is ahead of
time, particularly if we are taking a global aggregate over a wide set of conditions for complex
phenomena (such as the impact of gestures on conversational outcomes), we might be tempted
to overestimate the minimum effect size of interest (Lakens, 2022) when undertaking our power
analyses. This then also leads us to underestimate the number of participants required for our
study. Any attempt we make to include moderators into traditional linear methods to deal with

heterogeneity then dooms us to being locked into underpowered regimes (moderators often
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requiring, as they do, substantially larger sample sizes to achieve the same power as the main

effect of interest).

Issues of statistical power notwithstanding, more fundamentally we must still grapple with the
meaningfulness of the resulting quantity we wish to estimate, and whether it represents too
much of an aggregate over too many conditions of variation. Even if confronting the inherent
complexity of a phenomenon has the potential to create a research impasse, I would instead
argue that it encourages us to adopt an appropriate level of skepticism and take extra care when
drawing conclusions from models which are likely to be significantly underspecified. It goes
without saying that in the scientific endeavour we ought to be careful, and to always ‘do our
best’ to design realistic and helpful models of reality. However, research in psychology and
social science in particular concerns the well-being of humans, and from an ethical standpoint, a
heavy responsibility falls on the researchers to avoid the proliferation of damaging, misleading,
or false information that might unavoidably derive from underpowered studies which use
unreasonably basic models to represent almost intractably complex phenomena. Unfortunately,
the engagement of researchers with good research practices does not regularly align with the
incentives (such as the pressure to publish) built into the academic machine (DeDeo, 2020; van

Dalen, 2021).

1.0.3 Proposed Solutions and Thesis Structure

In this Chapter I outlined three principal challenges faced by psychologists and social scientists:
Functional misspecification, structural misspecification, and complexity. These three problems

overlap somewhat, and together form a strong motivation to identify a way forward.

Chapter 2 - Misspecification

One remedy for the structural misspecification issue involves the engagement of psychologists
with causal methods, such as the causal Directed Acyclic Graph framework (Pearl, 2012) or
the potential outcomes framework (D. B. Rubin, 2005). The relative scarcity of such methods

in psychology and social science is quite an oversight, and has interesting putative historical
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causes (Pearl, 2012). As Reynolds (2021) explain: “Nonetheless, these and other undergraduate
texts give students very little information about our modern understanding of causality. These
‘traditional’ views can likely be traced to three giants in the field of statistics: Sir Francis Galton,
Karl Pearson, and Sir Ronald Fisher, with Pearson potentially having the greatest impact.”
Regardless of the historical origins of the situation, the failure of researchers to take these
approaches seriously has led to untestable theories (Scheel, 2022), a conflation of causality

and correlation, a lack of assumptions testing, and a lack of transparency (Grosz, Rohrer, and

Thoemmes, 2020; Rohrer, 2018).

On the other hand, a remedy for functional misspecification involves the engagement of psy-
chologists with machine learning and both non- and semi-parametric statistical methods. These
approaches can allow psychologists to avoid imposing unreasonable constraints to fit unknown
functional relationships between variables, without sacrificing statistical inference (via, for
example, the null-hypothesis significance testing framework). Unfortunately, at least some of
these techniques (both causal and machine learning) are non-trivial to understand, implement,
and adopt, particularly for researchers in a field which, in general, is known for its limited tech-
nical background/training (Boker and Wenger, 2007) and patchy statistical education (Cassidy
et al., 2019). This is, of course, a great shame, psychology representing, as it does, the study
of something which is of the upmost importance to us - ourselves. It is also something which
deserves the application of methods with a level of flexibility and complexity which can match
the level of complexity of the phenomenon they are intended to model. Humans are not simple
by design, and arguably deserve better representation than with straight lines and structurally

reductionist models.
In Chapter 2, I present the following work:

Vowels, M.J., 2021. Misspecification and Unreliable Interpretations in Psychology and Social
Science. Psychological Methods. DOI: 10.1037/met0000429.

In the Chapter, I demonstrate the nature of misspecification problems and discuss how they
manifest in typical psychology and social science research. I argue that most models used in
psychology and social science are limited in their functional form and misspecified in terms

of causal structure. The result is that subsequent interpretations conflate predictive and causal
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language and are also unreliable. I make four recommendations for researchers in these fields
to update and improve their research practice by (1) giving more consideration to the use of
flexible and varied predictive modeling and model explainability techniques, such as those from
the domains of machine learning and information theory; (2) to seek collaboration with experts
from the fields of statistics and machine learning; (3) to be transparent about whether they are
adopting a predictive or causal approach; and (4), to distill and simplify their research questions
and hypotheses in order to increase the chances that these questions and hypotheses can be

practically addressed and tested.

Chapters 3 and 4 - Applications of Machine Learning and Causal Analytical Methods

These two chapters provide application examples of two important recommendations made in
Chapter 2. Firstly, that researchers engage with machine learning techniques: Chapter 3 provides
an example of machine learning and machine learning explainability techniques applied to
predict perceived partner support from relational and individual variables. It is based on the

following publication:

Vowels, L.M., Vowels, M.J., Carnelley, K.B., Kumashiro, M., 2022. A machine learning
approach to predicting perceived partner support from relational and individual variables.

Social Psychological and Personality Science, DOL: 10.1177/19485506221114982.

Then, in Chapter 4, I provide a second application example for causal discovery, machine
learning, and causal inference (specifically targeted learning) all together for the task of identi-
fying causal links between attachment styles and mental health, for data collected during the

COVID-19 pandemic:

Vowels, L.M., Vowels, M.J., Carnelley, K.B., Millings, A., Miller, J.G., Under Review. Toward
a Causal Link between Attachment Styles and Mental Health during the COVID-19

Pandemic.

As such, these two chapters provide evidence that the recommendations I made can be fruitfully

applied in practice.
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Chapter 5 - Model Complexity

Further considering the ideas and recommendations presented in Chapter 2 regarding misspeci-
fication, I develop the relevance of a consideration for structure to see how we can reduce the
complexity of statistical models without biasing the effect sizes we wish to estimate. Indeed,
given the discussion above about “The Big Assumption’, any reduction in complexity is valuable
in making the resulting statistical estimation problem tractable. As such, in Chapter 5, I present
the following work, which presents techniques for reducing the complexity of a structural

model:

Vowels, M.J., 2023. Prespecification of Structure for the Optimization of Data Collection and

Analysis. Collabra: Psychology.

In the Chapter, I argue that graphical representations of our theories provide us with an op-
portunity to encode our domain knowledge about a particular phenomenon of interest, and
make our assumptions more explicit. I introduce unfamiliar readers to the rules of Directed
Acyclic Graphs, and explain how to use these rules to understand the consequent statistical
structure in the data. Furthermore, I show that, by using these rules (in particular, the concept of
conditional independencies), we can significantly shrink the required causal structural model
without affecting the validity of the associated estimates, thereby reducing the required sample
size and enabling us to redirect resources and funds towards the collection of variables which

are critical to answering the questions we care about.

Chapter 6 - Outrunning Causality

Whilst I make recommendations for the use of machine learning in Chapter 2, in Chapter 6
I also demonstrate how these machine learning models are far from immune to the structural
misspecification issue, and that the structural and functional considerations are tied together.
With the increased uptake and application of new methods from the domain of machine learning,
it is not uncommon to also see such models being misunderstood and misused. As such, in

Chapter 6, I demonstrate that even if researchers wish to use machine learning to explore their
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data, predictive methods strongly interact with the underlying structure in such a way that the

exploration can nonetheless yield misleading results:

Vowels, M.J., Under Review. Trying to Outrun Causality with Machine Learning: Limitations

of Model Explainability Techniques for Exploratory Research.

In the Chapter, I question the utility of measures of predictive importance and explainability
techniques to psychologists wishing to explore the data to guide their research. Indeed, how
useful is it for the development of a theory to know that variable X is useful for predicting
variable Y in arbitrary algorithm f, if the estimation of usefulness is specifically tied to the
algorithm and the choice of the other predictors? I conclude that one cannot ‘outrun causality
in machine learning’, and that despite of the powerful function approximation capabilities of
machine learning algorithms, they cannot be used to reliably explore the data even for relevant

predictive variables, let alone causal variables.

Chapter 7 - The Typical Human

Above, I discussed what I refer to as The Big Assumption - whether a psychological phenomenon
can, in principal, be represented by a tractable, researcher-specified mathematical model (such
that the model is also useful and sufficiently accurate). On a less philosophical level, I try to
understand how traditional statistical methods behave as we start to accommodate the complexity
of psychological phenomena, and demonstrate that even datasets with 4 Gaussian variables
start exhibiting unintuitive behaviours which we should be aware of. Chapter 7 presents the

following work:

Vowels, M.J., Under Review, Typical Yet Unlikely: Using Information Theoretic Approaches

to Identify Outliers which Lie Close to the Mean.

Whilst this work differs from the others in that it does not directly consider issues of struc-
ture or functional form, it takes a complementary perspective in terms of the implications of
high-dimensionality and complexity. I discuss how various manifestations of the arithmetic
mean (which, as I discuss, may itself represent an overly simplistic model) have been used

both productively and unproductively as a blunt way to characterize samples and populations.
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Through an exploration of multi-dimensional space, I show that the mean, far from representing
normality, actually represents abnormality, in so far as encountering a datapoint close to the
mean in datasets comprising more than a handful of dimensions becomes incredibly unlikely,

even with a large number of datapoints.

The approach I propose to ameliorate the associated problems are also inspired by information
theory, which is a domain I recommended researchers to engage in in Chapter 2. In contrast
with the arithmetic average, the information theoretic quantity known as ‘typicality’ provides
a way to establish normality (or rather, whether a datapoint is typical or atypical), which is
particularly useful in high-dimensional regimes. Given that researchers in psychology and
social science frequently deal with multivariate datasets, and that the peculiarities associated
with multi-dimensional spaces start occurring in relatively low dimensions (as few as four), it
is important that researchers have some awareness of the concepts presented in this paper. To
conclude, I finish with a demonstration for how the typical measure can be adapted to outlier
detection, and provide an evaluation to verify its performance in comparison with a popular

alternative.

Chapter 8 - Conclusion

In Chapter 8 we provide a discussion of possible avenues for future work, discuss some of the
limitations of the proposals made, particularly in relation to The Big Assumption, provide a
discussion about how the field can adapt and make positive changes, and finish with a summary

conclusion.

1.0.4 Summary

This thesis provides an exploration of various important problems and challenges facing re-
searchers in psychology and social science. In the last three years I have had the opportunity to
apply some of the proposals made in this thesis to ‘real-world’ psychological applications (in
addition to the two included in Chapters 3 and 4) - in the Declaration Section, I provide a list of

such additional works (five accepted for publication, three under review at the time of writing).
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The statistical, causal, and machine learning approaches I discuss in this work have been adapted
to a wide variety of problems relating to obesity, COVID, and mental health, partner support,
sexual desire, and others. These projects help motivate and justify the real-world applicability

of the proposals made herein.

Finally, whilst the four technical works presented in this thesis are not intended to provide
finite solutions to the problems described above (particularly in light of the deeper question
concerning The Big Assumption), they are strongly motivated by them. Furthermore, in spite of
this introduction’s otherwise gloomy tone, I am positive that if researchers acknowledge the
problems, research methodology and analysis in psychology and social science can begin to
move in a positive direction. Indeed, the nature of at least some of the problems (for example,
the limited use of non-linear and causal models) would seem to encourage an optimistic
interpretation of the situation: That there presently exists a tremendous opportunity to innovate
and modernise the current approach to research, simply by assimilating recent advances and

developments in other domains such as engineering, machine learning, and statistics.



CHAPTER 2

Misspecification and Unreliable Interpretations in Psychology and

Social Science

[The] lack of truth in current practice, supported by statements such as “All models
are wrong but some are useful,” allows a user to make arbitrary choices even
though these choices result in different answers to the same estimation problem. In
fact, this lack of truth in current practice presents a fundamental drive behind the
epidemic of false positives and lack of power to detect true positives our field is

suffering from.”

M. J. van der Laan and Starmans (2014)

Notwithstanding minor edits, this chapter is equivalent to the following publication:

Vowels, M.J., 2021. Misspecification and Unreliable Interpretations in Psychology and Social
Science. Psychological Methods. DOI: 10.1037/met0000429.

Abstract: Numerous causes have been attributed to the replication crisis in psychology and
the social sciences, many of which concern problematic analytic and statistical practices. In
this work we focus on three issues that we believe deserve more attention. Namely, the use

of models with limited functional form, the use of misspecified causal models (misspecified

19
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either due to limited functional form, or incorrect structure), and unreliable interpretations
of results. We demonstrate a number of consequences relating to these issues via simulation,
and provide recommendations for researchers to improve their research practice. While the
issues raised in this work have been identified previously, we believe it is extremely important
to encourage psychologists and social scientists to engage with the debate surround areas of

possible analytical and statistical improvements.

2.1 Introduction

Meta-researchers have increasingly drawn attention to the replicability crisis affecting psychol-
ogy and social science (Oberauer and Lewandowsky, 2019; Botella and Duran, 2019; Aarts et al.,
2015; Stevens, 2017; Marsman et al., 2017; Shrout and Rodgers, 2018; Yarkoni, 2019). A key
element of the crisis relates to common and fundamentally problematic analytic and statistical
practices, some of which we believe deserve more attention. In our view, these problematic
practices have the potential to seriously affect the reliability and interpretation of research and

therefore to hinder scientific progress.

These problematic practices relate to observational research and modeling in psychology and
social science, and may be broadly categorized as issues with (1) the use of statistical/predictive
models with limited functional form; (2) the misspecification of causal models; and (3) unreliable
and interpretations of predictive or causal models. All of these issues affect a researcher’s ability
to accurately model some aspect of the joint distribution of the data, for the purpose of predicting
an outcome, estimating a causal effect, and drawing scientific conclusions. The first issue relates
to the ubiquitous use of linear models, and a failure to consider more powerful, possibly data-
adaptive techniques for both predictive and causal modeling. The second relates to the use of
misspecified implicit (e.g. multiple linear regression) or explicit (e.g., structural equation) causal
models which do not sufficiently reflect the true structure in the data. The final issue relates both
to how predictive models are often (mis)interpreted as causal models, and vice versa, and also
to how these interpretations are likely to be unreliable given the models’ underlying limitations

and assumptions.
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We address the three issues in turn through both didactic illustration and simulation, and make
a number of recommendations for improving research practice. While these issues relating
to research practice have been previously discussed, we believe it is extremely important to
continue to encourage and stimulate consideration and engagement with the debate surrounding
areas of possible analytical improvement. Furthermore, in spite of researchers having already
made important recommendations for improving practice (e.g., Lakens, Hilgard, and Staaks,
2016; Scheel et al., in press; Gigerenzer, 2018; Jostmann, Lakens, and Schubert, 2016; Lakens
and Evers, 2014; Orben and Lakens, 2020) we see relatively little change in the research

communities of psychology and social science (Claesen et al., 2019; Scheel et al., in press).

For convenience, we have included some key definitions of relevant terminology, which is
followed by a review of the literature. The paper is then split into four main parts. In Part 1, we
describe how the typical models used in psychology are limited by their functional form and
discuss the implications of this issue and possible ways to address it. Part 2 is concerned with
misspecification in causal modeling, and how the typical models used in psychology and social
science do not adequately reflect the true structure of the data. We discuss how this impacts
interpretability, how a consideration for causal structure is essential when designing a model,
and identify some challenges associated with undertaking causal modeling. Part 3 introduces
the notion of explainability as an alternative to interpretation, as a means of deriving insight
from predictive models. We discuss interpretation, considering the relevant points on limited
functional form and misspecification covered in Parts 1 and 2, and discuss how interpretations
in psychology and social science tend to be a conflation of causal and predictive interpretations.
Finally, Part 4 brings together the principal points discussed in previous parts, and sets out four

recommendations for improving practice.

2.1.1 Definitions/Explanations

In this section we define and explain, for the purposes of this paper, six terms: ‘approach’,
‘model’, ‘predictive’, ‘causal’, ‘functional form’, and ‘misspecification’, and summarize these
definitions in Table 2.1. The term ‘approach’ relates to the broad intention of the researcher

when investigating a phenomenon of interest, and informs research methodology, data collection
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procedure, analysis (including the model), interpretation, etc. In this paper we consider both
predictive and causal approaches. The term ‘model’ relates to the mathematical relationship
between variables associated with a phenomenon (i.e., variables in the joint distribution), as
reflected in the algorithm or technique used for analysis. The type of model may be predictive
or causal, or a hybrid of the two, although the type of model will generally be strongly informed

by the approach.

‘Predictive’ approaches have been described as “the study of the association between variables
or the identification of the variables which contribute to the prediction of another variable”
(Blanca, Alarcon, and Bono, 2018). Prediction may help us to answer questions such as ‘when?’,
‘which?’, and ‘how much?’. In contrast to a causal approach (defined below), prediction enables
us to identify an association between two or more variables and to thereby estimate or classify
an outcome or category, but it won’t necessarily tell us what if the predicted phenomenon does
or does not occur, why the predicted phenomenon may occur (or not), or how to intervene. As
such, prediction is unlikely to generate understanding as it does not directly inform us about the
underlying causal mechanisms. Prediction involves the specification, fitting, or learning of a

function to enable one to forecast or predict outcomes for new datapoints.

Table 2.1: Basic working definitions.

Approach Relating closely to the hypothesis/research question, it describes the broad
intention behind research methodology, analysis, and interpretation.
Model Part of the approach, it is the mathematical relationship between variables, as

reflected in the algorithm or technique used for analysis. It may be predictive
or causal, or a hybrid.

Predictive The “study of the association between variables or the identification of the
variables which contribute to the prediction of another variable” (Blanca, Alar-
con, and Bono, 2018). The word “association” here alludes to the fact that the
associations or relationships between variables are not necessarily causal. As
such, prediction may help us to answer questions such as ‘when?’, ‘which?’,
and ‘how much?’.

Causal The study of cause-effect relationships between variables, which facilitates
understanding and answers questions such as such as ‘why?’, ‘how?’, and ‘what
if?” (Pearl, 2009)

Functional Form The nature of the mathematical function describing the relationship between
variables.
Misspecification When a model does not sufficiently reflect the causal structure of the data, or is

not flexible enough to estimate the underlying functions relating the variables,
it is structurally and/or functionally misspecified, respectively.
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‘Causal’ approaches help us to answer causal questions such as ‘why?’, ‘how?’, and ‘what if?’
(Pearl, 2009). Causal questions may be answered using causal modeling techniques (such as
structural equation modeling), for observational as well as randomized and experimental data
(Pearl, 2009). Causal modeling techniques generally entail a specification of what is known
as the data generating process. On the basis that one of the principal aims of psychology and
social science, as well as science more generally, is to develop understanding (Gelman, 2014;
Pearl, 2009; M. J. van der Laan and S. Rose, 2011; Grosz, Rohrer, and Thoemmes, 2020), the

causal approach provides the means for researchers to achieve this aim.!

It is possible to combine considerations for causal structure deriving from domain knowledge
into predictive models, and thereby construct a hybrid model, without making a predictive
approach a causal approach. This additional domain specific information is also known as
inductive bias (K. P. Murphy, 2012). For instance, a language model might be designed to
account for the ordering of words in a sentence, in addition to the words themselves, on the
basis that we know a priori that this ordering can affect the meaning (Rabiner and Schafer,
1978). However, it is important to note that such a model would still be predictive in spite of
the integration of such structural inductive bias. Indeed, given the complexity of language it
would be practically impossible to pre-specify a full and ‘correct’ causal graph. Nonetheless,
the more that predictive models incorporate domain knowledge or causal inductive bias, the
more chance they have of reflecting the real-world and subsequently of being interpreted to
yield causal understanding. However, unless the causal effect(s) of interest are identifiable
(see Part 2), the model will fulfil a predictive role more than a causal role. This is because
structural misspecification (i.e., a model structure that does not account for all real-world causal
relationships) is not problematic for prediction in the same way as it is problematic for causal
inference. As such, unless a specific causal effect is identifiable, and the model is designed to
yield such causal information, we would classify hybrid models as forming part of a predictive,

rather than causal, approach.

We use the term ‘functional form’ to describe the mathematical relationship between variables

'Both predictive and causal models may be parametric, semi-parametric, or non-parametric, Bayesian, or
frequentist, and may or may not incorporate significance testing (Shmueli, 2010; Bishop, 2006; K. P. Murphy, 2012;
M. J. van der Laan and S. Rose, 2011; J. Peters, Janzing, and Scholkopf, 2017; Pearl, 2009).
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in a model. For instance, a linear regression has a linear functional form, whereas a neural
network (I. Goodfellow, Bengio, and Courville, 2016) has a highly flexible, non-linear, data-
adaptive functional form. For any data generating process, there may exist an optimal functional
form with which to model it, and identifying this functional form is one of the goals of
predictive modeling. If the functional form of the model is insufficient, then the model is biased.
Conversely, if the functional form of the model is overly flexible, care must be taken to avoid
excessively high variance and to avoid ‘overfitting’. Finally, the term misspecification describes
the scenario in which the true causal structure, and/or the functional form of the relationships
between variables in the data generating process, are not sufficiently reflected in the model. The
issue of misspecification due to incorrect structure may therefore be compounded by issues of

limited functional form.

2.1.2 Background

Over the last ten years, meta-researchers have drawn increasing attention to a purported crisis in
the human sciences (particularly psychology) known as the replication crisis. The crisis has
been discussed at length by many different meta-researchers (e.g., Oberauer and Lewandowsky,
2019; Botella and Duran, 2019; Aarts et al., 2015; Stevens, 2017; Marsman et al., 2017; Shrout
and Rodgers, 2018; Yarkoni, 2019) who argue that research in the human sciences fails to
replicate. For example, only six out of 53 landmark cancer studies were found to replicate
(Begley and Ellis, 2012), and between one third and one half of 100 psychology studies in

top-ranking journals could be replicated (Aarts et al., 2015; Marsman et al., 2017).

One of the positive outcomes of the widespread awareness of the replicability crisis is the
fact that attention has been drawn to many questionable, suboptimal, or problematic aspects
associated with the research procedure in general. Indeed, it is only by recognition of these
issues, and engagement in relevant constructive debate, that research practice can be improved.
A wide range of contributing factors to this crisis have been highlighted and discussed, and
include: A lack of understanding about and misuse of p-values and statistical tests (Cassidy et al.,
2019; Gigerenzer, 2018; Gigerenzer, 2004; Colquhoun, 2014; Colquhoun, 2017; Colquhoun,

2019; McShane et al., 2019); overly generous claims and warped interpretations (Yarkoni, 2019;
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Spellman, 2015; Scheel et al., in press); issues relating to the testing of theory (Oberauer and
Lewandowsky, 2019; Muthukrishna and Henrich, 2019a); immature theories (Scheel et al., in
press); misunderstandings about statistical power and low sample sizes (Sassenberg and Ditrich,
2019; Baker et al., 2020; Correll et al., 2020); measurement problems (Flake and Fried, 2020);
a lack of meta-analyses (Schmidt and Oh, 2016); a lack of assumptions testing (Ernst and
Albers, 2017); pressure to publish (Shrout and Rodgers, 2018); double-dipping and overfitting
(Kassraian-Fard et al., 2016; Kriegeskorte et al., 2009; Mayo, 2013; Yarkoni and Westfall, 2017);
a failure to consider the consequences of aggregation and non-ergodicity (Fisher, Medaglia, and
Jeronimus, 2018; O. Peters and Werner, 2017); academia and research being a strategy game
with unscientific incentives (Gigerenzer, 2018; DeDeo, 2020); a reluctance of journals to publish
replications (G. Martin and Clarke, 2017; Gernsbacher, 2019); issues with the peer review
process (Heesen and Bright, 2020); reporting errors (Nuijten et al., 2016); a lack of research
practice standardization (Tong, 2019); the conflation of predictive and causal approaches and
interpretations (Grosz, Rohrer, and Thoemmes, 2020; Yarkoni and Westfall, 2017; Shmueli,

2010); and general scientific misconduct (Stricker and Giinther, 2019).

More specifically, meta-researchers have highlighted how psychologists and social scientists
tend to mix causal and predictive language (Grosz, Rohrer, and Thoemmes, 2020). For instance,
Grosz, Rohrer, and Thoemmes (2020) explain how “some parts of the articles read as if the
entire endeavor were noncausal; yet other parts make sense only in the context of trying to
answer a causal research question”. A typical example of this can be found in recent work
looking at the associations between residential green space and child behavior and intelligence
(Bijnens et al., 2020). In a summary bullet point, the researchers stated that their results “indicate
that residential green space is especially beneficial for intellectual and behavioral development”,
which is a causal interpretation denoting that the green space itself affects development. This
was immediately followed by a consecutive bullet point, which stated that “low residential
green space in urban children is associated with a “shift” towards a higher incidence of low
1Q...”,2 which is a predictive, or associational interpretation. This conflation of causal and
predictive terminology is confusing and misleading to readers because it either suggests that the

research was causal (when it wasn’t), or that, regardless of the type of approach, the results have

talics our own.
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causal implications (which they don’t necessarily). Indeed, in a popular daily newspaper review
of the article, the headline reads: “Growing up near green space makes city children more
intelligent and better-behaved” (Rudgard, 2020), which is unambiguously causal and clearly has
the potential to greatly concern parents not living in areas near green space.> Ambiguous claims
and pseudo-causal interpretations therefore have the potential to be amplified by the media, who

apprise the public of scientific progress, resulting in misunderstandings and confusion.

Similarly, meta-researchers have drawn attention to how it is common for psychology and social
science researchers to use associational/predictive techniques to test otherwise causal hypotheses
(Shmueli, 2010; Yarkoni and Westfall, 2017; C. Glymour, 1998; M. Hernan, 2018a; Grosz,
Rohrer, and Thoemmes, 2020). Shmueli (2010) explains how “the type of statistical models
used for testing causal hypotheses in the social sciences are almost always association-based
[i.e., predictive] models.” One can only surmise the possible causes behind this tendency for
conflation, but it may relate to the controversial history of causal inference in observational
social science and psychology. The conflation may stem from the conflict between recognizing
the importance of asking causal questions, without wanting to be seen to be actually using causal
methods with observational data. Indeed, the literature on causality in psychology and social
science has been described as “one of the oddest literatures in all of academia” (Dowd, 2011),
and researchers in these fields are notoriously reluctant to adopt appropriate modeling techniques
(Grosz, Rohrer, and Thoemmes, 2020; M. Hernan, 2018a). Others have mocked the reluctance
to undertake causal inference in psychology and the social sciences by referring to causality
as “the C-word” (M. Hernan, 2018a; M. Hernan, 2018b), and others refer to its use as “taboo”
(Grosz, Rohrer, and Thoemmes, 2020). Indeed, Grosz, Rohrer, and Thoemmes (2020) explain
how causal modeling is only undertaken “implicitly, opaquely, and without an articulation of
the underlying assumptions”. The result has been a tendency to use predictive language such
as ‘associations’, ‘links, ‘correlations’, ‘relationships’, and to avoid causal language such as
‘causes’, ‘impacts’, ‘effects’ despite designing their models and experiments on the basis of
deeply considered theories about the causal structure of the phenomenon of interest (Shmueli,

2010).

3For other examples see Grosz, Rohrer, and Thoemmes (2020), and for additional discussion see Shmueli (2010)
and Yarkoni and Westfall (2017).
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In addition to a general reluctance to adopt clearly articulated causal approaches, one might also
argue that the various manifestations of conflation indicate a lack of understanding about the
differences between predictive and causal modeling (Yarkoni and Westfall, 2017; Shmueli, 2010;
Grosz, Rohrer, and Thoemmes, 2020). Indeed, in the example above concerning residential
green space, the conflation of predictive and causal language is more likely to be due to a
possible lack of understanding about the distinction and limitations of predictive and causal
approaches, rather than a taboo around causality. After all, it seems that such a taboo would
result in an absence of causal language altogether, rather than a conflation. There is a relatively
well established modeling technique known as Structural Equation Modeling (SEM) (Kline,
2005; Blanca, Alarcon, and Bono, 2018). The point to note about the use of SEM in psychology
and social science is that, while SEM is a technique which explicitly encodes causal structure,
the way the technique is often presented and interpreted, obfuscates its causal nature (Grosz,
Rohrer, and Thoemmes, 2020). This leads to an awkward conflation of causal modeling with
predictive interpretations, resulting in ambiguity and a lack of clarity regarding intentions and
assumptions. It may be that researchers are unaware that their SEMs are explicitly causal and
fail to sufficiently understand how the results from the analysis are underpinned by a number of

restrictive (and often untestable) assumptions.

There is also evidence of a possible lack of understanding relating to the use of predictive models
in psychology and social science. Yarkoni and Westfall (2017) provide a number of examples
of where researchers seem to have clearly identified that they are adopting a predictive approach
but use suboptimal and misguided predictive modeling practice. A wide range of powerful
predictive modeling techniques exist, including neural networks (I. Goodfellow, Bengio, and
Courville, 2016), random forests (Breiman, 2001a), gradient boosting machines (T. Chen and
Guestrin, 2016) etc., many of which derive from developments in machine learning. In spite of
the abundance of available options, researchers in psychology and social science most often
employ simple linear models when undertaking predictive /associational research (Yarkoni
and Westfall, 2017; Blanca, Alarcon, and Bono, 2018). The assumption of linear functional
form is often restrictive and has been previously noted to be problematic (M. J. van der Laan
and S. Rose, 2011; Asuero, Sayago, and A. Gonzalez, 2006; Onwuegbuzie and Daniel, 1999;
Achen, 1977; King, 1986; Meehl, 1990; Taleb, 2019) and frequently ignored (Ernst and Albers,
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2017). Furthermore, some researchers seem to be unaware of certain basic principles relating
to predictive (as well as causal) research, such as those relating to overfitting (Yarkoni and
Westfall, 2017; Bishop, 2006; Heyman and Slep, 2001) and ‘double-dipping’ (Kassraian-Fard
et al., 2016; Kriegeskorte et al., 2009; Mayo, 2013). Overfitting and double-dipping refer to
modeling (mis)practices which increase the fit of a model to the specific data sample being
used, and which negatively impact the validity and generalizability of results. Indeed, any
modeling decision that affects the parameters of the model based on information from the same
data sample with which the model is validated results in overfitting, biased effect sizes, and the
inflation of p-values and other performance metrics (Bishop, 2006; Yarkoni and Westfall, 2017;
Heyman and Slep, 2001). Regardless of whether a researcher is undertaking a predictive or
causal approach, overfitting inflates the apparent success of the mapping function at the expense
of generalizability to new samples, and has been argued to be a major contributor to the current

replicability crisis (Shrout and Rodgers, 2018; Gelman and Loken, 2013).

Given the prior commentary, it can be seen that we are not the first to draw attention to
problematic analyses and a potential lack of analytical understanding in the fields of psychology
and social science (Claesen et al., 2019; Scheel et al., in press). Indeed, a recent article
titled ‘Declines in religiosity predict increases in violent crime - but not among countries with
relatively high average 1Q’ was retracted from the Journal of Psychological Science on the basis
of methodological weaknesses and political sensitivity. The Editor in Chief at the time, Steve
Lindsay apologized on multiple grounds, and stated that “In terms of science, Clark et al. may not
be worse than some other articles published in Psych Science during my editorship...” (Lindsay,
2020). This may suggest that methodological weakness, as described in terms of “blurred
distinctions between psychological constructs versus measures and speculations/extrapolations
far removed from the data” is somewhat par for the course in the “young science” (Lindsay,

2020) of psychology.
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2.2 Part 1: Limited Functional Form - Modeling Relationships

Between Variables

In this part we address certain issues that may arise when using modeling techniques that have
limited functional form. The term functional form relates to the mathematical form used to
represent the relationship between variables. When we refer to the functional form of a model
as being limited we mean that the model does not have the flexibility to sufficiently reflect the
complexity of the relationship between variables, possibly resulting in poor predictive ability
and biased results. Identifying or deriving an adequately flexible functional form with which
to model the relationship between variables, in circumstances where causal relationships are
not of concern, is somewhat synonymous with the task of prediction. As such, the majority of
this section will be written with consideration of its relevance to predictive modeling, where
the goal is to learn a function that optimally maps predictor variables to outcome variables.
However, a consideration for functional form is just as important for causal modeling, for which
we are tasked with modeling both the functional relationships between variables as well as the
causal structure of the data generating process. For purposes of prediction alone, it suffices to
be solely concerned with finding the optimal mapping function to achieve some desired level of
predictive performance. We expect models that reflect the structure of reality to also be good
predictors, but this is not necessarily the case the other way around; good predictive functions

do not necessarily reflect the structure of reality.

We begin by introducing some of the technical formalism behind predictive modeling, and
briefly list some of its wide ranging applications. Following this, we discuss the limitations of
undertaking prediction using the two most common and basic methods used in psychology and
social science: Correlation and linear regression models. We demonstrate how these methods,
in the basic form adopted in psychology and social science, are fundamentally limited in their
ability to account for non-linearities present in the data. This motivates a need for more flexible,
powerful, potentially data-adaptive predictive methods. Previous research has highlighted that
the use of such techniques is rare in psychology and social science, where it is much more

usual to use models with restrictive linear functional form (Yarkoni and Westfall, 2017; Blanca,
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Alarcon, and Bono, 2018). Linear functions may be useful to consider for their computational
efficiency and for their tendency to naturally under-fit the data, thereby improving generalization
particularly when the quantity of data is limited. However, these factors are not sufficient to
fully explain the rarity of non-linear, powerful, and/or data adaptive techniques in psychology
and social science, and we posit that a possible lack of awareness of these alternative methods is

more likely.

2.2.1 Applications and Basic Formalism

The topic of identifying the optimal functional form with which to represent the relationship
between variables is vast and well covered by many authors, particularly those in the field of
machine learning in the context of prediction (Bishop, 2006; Duda, Hart, and Stork, 2001;
K. P. Murphy, 2012). Prediction has been described as “the study of the association between
variables or the identification of the variables which contribute to the prediction of another
variable” (Blanca, Alarcon, and Bono, 2018) and therefore relates closely to the more general
task of identifying the optimal function that maps between sets of variables. The applications
for predictive models are wide ranging, and include personalized medicine (Rahbar et al., 2020),
data science competitions (Tauchert, Buxmann, and Lambinus, 2020), time series forecasting
(Makridakis, Spiliotis, and Assimakopoulos, 2020), facial and object recognition (Krizhevsky,
Sutskever, and Hinton, 2012; Jonsson et al., 2000), and many others. Such techniques are

therefore extremely valuable and influential in shaping our modern world.

The basic formalism for predictive modeling is as follows: Researchers may be confronted with
a dataset comprising samples from a population (x;,y;) € X x ). * In words, we have a set
of samples of predictors or random variables®, which take on values in the set X and which

are related to some outcome variables® which take on values in the set ). If the outcome is

“We adopt the following notation: upper-case bold symbols (e.g, X) indicate matrices, lower-case bold symbols
(e.g, x) represent vectors, and lower-case symbols (e.g, x) indicate scalars. In general, we will use vector or
matrix notation, rather than scalars, to increase generality. Subscripts {7, k} (e.g, x;) indicate datapoint ¢ =
{0,1,...(N — 1)} for variable or feature k = {0, 1, ...(K — 1)}, where NV is the number of datapoints (i.e., sample
size), and K is the total number of variables or features.

SThese are sometimes called ‘independent variables’, but due to the fact that they are usually non-independent,
we avoid this potentially unhelpful terminology.

These are sometimes called ‘dependent variables’, but due to the fact that many dependencies exist we also
avoid this terminology.
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binary or categorical, the task of prediction becomes equivalent to one of classification. The
goal of prediction usually involves finding a mapping function f : X — ). We will use the
terms predictive function and predictive model to refer to the mapping function used to make

predictions.

2.2.2 The Common Assumption of Linear Functional Form

Variations on simple measures of correlation and linear models (including linear SEMs) were
found to be the most frequently used modeling techniques in psychology research in recent

years (Blanca, Alarcon, and Bono, 2018; Bolger, Zee, et al., 2019).7

The principal assumption associated with these models is that the true relationships between the
variables are sufficiently represented as linear. Such models therefore have a limited functional
form that can only represent linear relationships. In other words, they describe relationships
between predictor and outcome variables that can be summarized in terms of a weighted sum. Of
course, in reality the true relationship between variables may be highly complex and nonlinear.
Indeed, assuming our dataset is sampled from a ‘true’ population distribution, there exists a
‘true’ functional form describing the functional relationships between the variables. Figure 2.1
illustrates how traditional methods (including linear regression) have the most limited capacity
(owing to strong restrictions on the functional form) to model complex real-world phenomena
(Coyle et al., 2020; M. J. van der Laan and S. Rose, 2018; M. J. van der Laan and Starmans,
2014).

A discussion about the limitations of linear predictive/causal models and correlation is not new
(M. J. van der Laan and S. Rose, 2011; Asuero, Sayago, and A. Gonzalez, 2006; Onwuegbuzie
and Daniel, 1999; Achen, 1977; King, 1986; Meehl, 1990; Taleb, 2019). However, in spite
of this prior commentary there is evidence that researchers in psychology and social science
may still be reluctant to adjust their methodological practice accordingly (e.g.,Ernst and Albers,

2017, Yarkoni and Westfall, 2017).

"It might be argued that any arbitrary function can be represented as some linear sum of features, and that
therefore all models are fundamentally linear. However, using such a broadly encompassing definition term ‘linear
model’ makes discussion pedantic. As such, we use the term to describe the typical linear regression model where
the outcome is modeled as a linear sum of raw variables or low-order functions of these variables (such as exponents:

xl, x2; and interactions: Xj X2 etc.).
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Figure 2.1: Approximating Realistic Data Distributions
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Note. Traditional techniques such as linear regression may be severely limited in their capacity to
model highly complex, non-linear data. Machine Learning methods may help to expand the coverage of
realistic data distributions, but the true distribution may still lie outside. Combining flexible function
approximation techniques from machine learning, with an incorporation of domain knowledge and model
structure, can help us get as close as possible to modelling the true data distribution (M. J. van der Laan
and S. Rose, 2011).

Correlation

Correlation is generally used to measure the association or statistical dependence between
variables (i.e., to identify variables which may be good predictors). It ranges between [—1, 1]
and can be used as a basic predictive model. For example, when one variable is high, a
correlated variable is also likely to be high. However, as one of the most common ways to
measure dependence, there are two important aspects relating to correlation to bear in mind,

particularly when interpreting or drawing conclusions about measures of correlation.

In the bivariate case, the coefficients from a standardized linear regression correspond with the
correlation between the predictor variables and the outcome. Figure 2.2 shows a number of
bivariate distributions along with their correlation coefficient. The first thing to note from the
upper six plots is that correlation itself is a non-linear metric for dependence. Lower values
of the Pearson Correlation Coefficient (PCC) are associated with a disproportionately lower
dependence than higher values (and this is also reflected visually in the plots). The second thing
to note from the lower four plots is that the PCC catastrophically fails to capture non-linear

dependence.

The first issue is important for researchers to understand when drawing conclusions about

relative levels of correlation. For example, the difference between PC'C = 0.1 and PCC = 0.2
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Figure 2.2: Pearson Correlation and Shannon Mutual Information.
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Note. Simulations demonstrating the relationships between the Pearson measure of correlation, and
the Mutual Information metric for measuring statistical dependence. The upper six plots depict linear
bivariate relationships, whereas the lower four plots are non-linear.



34 Chapter 2. Misspecification in Psychology and Social Science

is less dramatic than, say the difference between PC'C = 0.8 and PCC = 0.9, in spite of
the former describing a much higher proportionate increase. The second issue relates to an
assumption of linearity: If the relationship between the two variables is linear, then correlation
provides a measure of linear dependence; if the relationship is non-linear, then correlation may
provide meaningless measures of dependence. In cases where the relationship is non-linear,
researchers will need to either linearize the relationship (e.g., by creating a new variable that
accounts for this non-linearity), or consider using an alternative measure of dependence. One
such alternative to correlation is Shannon Mutual Information (M.1.), which gives us a measure
for how much information one variable contains about another (Cover and Thomas, 2006;
Kraskov, Stogbauer, and Grassberger, 2004; G. V. Steeg and Galstyan, 2012; G. Steeg and
Galstyan, 2013; Gao, G. Steeg, and Galstyan, 2015; Kinney and Atwal, 2014). The estimates
for MLI. are also shown in Figure 2.2, and it can be seen that M.I. not only handles non-linear
relationships between variables, but also increases linearly with the degree of dependence of the
variables. Note that MLL. ranges between [0, H] where H is the entropy of either distribution
when the two distributions are identical (i.e., I(x,y) = H(x) = H(y) when x = y).8 M.L
cannot be negative, and as such it is not able to indicate the ‘direction’ of the association in the
way that correlation can. However, this is an acceptable limitation given that many non-linear
relationships are non-monotonic (i.e. they are not always either increasing or decreasing) and in

these cases a notion of positive or negative direction is unhelpful.

Linear Models/Regression

Linear regression is another very common modeling technique used for both predictive and

causal modeling. In the case of a typical linear multiple regression in psychology or social

science (which constitute a relatively small sub-class in the class of Generalized Linear Models),

the predictive mapping function f consists of a weighted sum of basis functions of the features

or variables X. These basis functions are usually exponents of the variables/features (e.g.,
0 41

x% x!',x2...). In most cases, the input features constitute the raw (or, at most, normalized

and/or transformed) data collected from Likert scales, demographics, or coded observations.

8Readers are pointed to Cover and Thomas (2006) for an introduction to information theoretic concepts such as
entropy and mutual information.
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Sometimes, combinations of features are included which represent interactions (e.g. X;r X X;z/)
for k # k'. The regression function is usually fit using a predictive heuristic such as Ordinary
Least Squares (OLS). OLS finds the solution to the regression such that the values of the function
parameters minimize the average squared difference between predictions and observations
6= argming va (9 — yi)*. Here, §; = x7'6, and 6 represents a vector of dimension K of
weighting coefficients/parameters estimated from the sample. These parameters derive from a
family of possible parameters 6 € ©, which in turn define a space of possible linear functions
J5 € F. OLS therefore identifies the parameters € that minimize the mean squared error. The
total predictive function may be represented as: f3(X) =y = X 6. Various link functions may
be used to adapt the function to other outcome distributions (e.g., the logistic link for Bernoulli

distributed outcomes).

There is one principal assumption for linear regression which is important for achieving both
successful causal and predictive modeling. Namely, that the outcome can be well approximated
using a weighted linear sum of the input variables. Indeed, the linearity imposes a strong
functional constraint that restricts the function’s flexibility and is, therefore, an assumption
about functional form (M. J. van der Laan and S. Rose, 2011). Linear methods are unlikely to
match the functional form of realistic data distributions, and to get closer to the true functional

form, researchers should consider using more flexible predictive methods.

2.2.3 Improving on the Functional Form of Linear Models

In order to improve the predictive or associational performance of a predictive function, re-
searchers may need to explore either feature engineering approaches, or other functional
approximation techniques such as those commonly used in machine learning. Introducing hier-
archical structure within linear functions can improve the fit (Yarkoni, 2019; Gelman and Hill,
2007; Bolger, Zee, et al., 2019), but even hierarchical linear models are constrained according

to linear functional associations.

Feature engineering involves the substitution of raw input variables with functions of these
variables called features. Depending on the functional form used to derive these features, the

features themselves may then be linearly related to the outcome, facilitating better overall
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functional approximation. For instance, researchers may include more exotic basis functions
such (e.g., sinusoidal functions; M. J. Vowels, K. Mark, et al., 2018, or kernels; Scholkopf,
2019), or simply combine features to form new ones (e.g., interaction features which are
composed by multiplying two variables together). Feature engineering may thereby help to
account for the non-linearities of the data in the features themselves, but in doing so, each
feature may need to be carefully chosen or designed. For example, in Figure 2.2, the plot in the
fourth row on the right has a simple basis function which is x?. While the raw values of x could
not be used to model the outcome as part of a linear sum, the squared values could be used to
essentially linearize the predictor in question. However, in real-world applications (i.e., research
scenarios with real data) we will not know the functional form a priori and it may be difficult to
ascertain. For instance, the function may not be an exact quadratic function x2, but some other,
arbitrarily complex function. The feature engineering process may or may not be guided by
knowledge about the domain of interest. For example, in the case of a time series with known
seasonal variation (e.g., financial data exhibiting fluctuation due to the business cycle) the use of
sinusoidal basis functions may be well justified and aid prediction and generalization (Hamilton,

1994; M. J. Vowels, K. Mark, et al., 2018).

Besides generalized linear models with feature engineering, there exist many alternative and
much more powerful function approximation techniques, such as those common in machine
learning. These techniques are able to learn functional relationships from the data themselves
and can be used instead of, or in combination with, feature engineering. For instance, random
forests (Breiman, 2001a) comprise a group of decision trees that are capable of learning highly
non-linear relationships and interactions between variables, without these interactions needing
to be pre-specified. The mapping learned by the forest adapts to the data in order to minimize a
performance objective (e.g., mean squared error). One of the advantages of random forests is that
they employ bootstrapping and thereby mitigate problems with learned functions overfitting the
data. Neural networks are an alternative approach to function approximation which are also data-
adaptive and are highly parameterized (sometimes with billions of parameters) (I. Goodfellow,
Bengio, and Courville, 2016). They learn by iteratively updating their parameters according
to an error signal until some criterion for convergence is met. An example of predictions from

a simple neural network compared with those of a linear regressor on a bivariate problem is
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Figure 2.3: Neural network versus linear regression function predictions.
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Note. Demonstrates how linear functional forms cannot capture the non-linear relationships. In contrast,
non-linear, data-adaptive techniques such as neural networks, can.

shown in Figure 2.3. It can be seen the neural network has fit the data almost perfectly, whilst

the linear regression approximates the mean slope of the line, ignoring the cycling fluctuation.

2.2.4 Opverfitting and Double-Dipping

As described previously overfitting and double-dipping refer to the consequences of various
modeling practices which increase the fit of a model to a specific data sample, but which
negatively impact the validity and generalizability of results. An awareness of overfitting
becomes increasingly crucial when attempting to model non-linear functional relationships
between variables. These topics have been extensively covered elsewhere, particularly in the
machine learning literature (where overfitting is sometimes associated with what is known as
the bias-variance trade-off) (Belkin et al., 2019; Bishop, 2006; R. R. Murphy, 2000; Yarkoni
and Westfall, 2017; Mayo, 2013). Prior research has highlighted how modeling practices that
result in overfitting are common in psychology and social science, as well as a number of other
fields, and have been noted for their possible contribution to the replicability crisis (Shrout and
Rodgers, 2018; Gelman and Loken, 2013; Yarkoni and Westfall, 2017). Even the common
forward and backward method for variable inclusion constitutes data-driven overfitting practices

which have the potential to significantly impact model generalizability and interpretability, and
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yet these practices are routinely included as part of standard statistical education and practice
in psychology (e.g., see Field, 2009). We mention such (mis)practice again here because,
when using powerful function approximation techniques, a consideration for overfitting is
even more important. There are numerous techniques for mitigating issues with overfitting,
including regularization, cross-validation, train-test splits etc. and it is important that researchers
in psychology and social science familiarize themselves with these fundamental concepts,

especially when accounting for complex, non-linear associations between variables.

2.2.5 Summary

In Part 1, we presented how models with limited functional form may be unable to represent
the complex relationships between variables. The typical analyses used in psychology and
social science include simple measures of correlation, and various manifestations of linear
regression. While such modeling techniques are limited in their predictive capacity, there
are many algorithms used in the field of machine learning which can learn an appropriately
flexible functional form from the data themselves. When using more powerful techniques,
it is especially important to validate models on an out-of-sample test set (e.g., by using a
cross-validation method, or train/test splitting) in order to avoid overfitting. However, it is
worth noting that overfitting (and the related problem of double-dipping) is also possible with
simple linear models, and prior meta-research suggests that researchers may be unaware of these
issues. Finally, the rarity of modeling techniques with powerful, data-adaptive functional form
represents a possible missed opportunity in psychology and social science, and we encourage
researchers to consider the functional form of their models, and familiarize themselves with the
associated pitfalls and limitations (e.g., overfitting), in order that they can get closer to modeling

the true relationships underpinning the phenomenon under study.

2.3 Part 2: Causal Model Misspecification

As described in the Introduction, prior research has highlighted a reluctance to adopt explicit

causal approaches (Grosz, Rohrer, and Thoemmes, 2020; M. Hernan, 2018a). Causal techniques
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provide the means to answer fundamental questions that help us to develop an understanding of
the world (Pearl, 2009; M. J. van der Laan and S. Rose, 2011). To the best of our knowledge,
we are not aware of a well-established theory in psychology or social science which does not
incorporate at least some level of consideration for cause and effect, and, if there is one, we would
question its utility in so far as it can help us understand the world. Models which sufficiently
align with the structure of reality may facilitate causal inference, even with observational (as
opposed to experimental) data (C. Glymour, 2001; Pearl, 2009; Pearl, M. Glymour, and Jewell,
2016; Grosz, Rohrer, and Thoemmes, 2020) and have wide ranging applications including
advertisement (Bottou et al., 2013), policy making (Kreif and DiazOrdaz, 2019), the evaluation
of evidence within legal frameworks (Pearl, 2009; Siegerink et al., 2016), and the development
of medical treatments (Petersen et al., 2017; M. J. van der Laan and S. Rose, 2011). There are a

number of challenges associated with adopting a causal approach.

Misspecification represents one of the principal challenges associated with causal inference, and
arises when the true causal structure and/or the functional form of the relationships between
variables in the data generating process are not sufficiently reflected in a causal model. Misspec-
ification results in biased effect size estimates which are not meaningfully interpretable. In this
Part, we primarily focus on misspecification stemming from problems associated with structure
and to do so, we consider misspecfication in restricted linear settings. As we will show, even
in this restricted setting, it is extremely important that the model sufficiently accounts for the
true structure of the data in order that the resulting model is interpretable. We stress that this
section is not intended as a technical guide to undertaking causal inference in general (for more
information on causal inference see e.g., Pearl, 2009; Petersen et al., 2017; Pearl, M. Glymour,
and Jewell, 2016; C. Glymour, 2001; Angrist and Krueger, 2001; D. B. Rubin, 2005; Gelman
and Hill, 2007).

2.3.1 Recovering Causal Effects

Given the frequency with which psychologists and social scientists adopt linear regression
methods to test causal theories (Shmueli, 2010; Blanca, Alarcon, and Bono, 2018), it is

extremely important that researchers understand the structural bias associated with the use of
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Figure 2.4: Simple Directed Acyclic Graphs

—
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Note. Example causal Directed Acyclic Graphs (c-DAGs). Example (a) depicts the case where all
‘predictor’ or causal variables are exogenous (i.e., they have no causal parents and are independent
of each other). This corresponds with the causal structure of a simple multiple regression, where the
dependent outcome y is a linear sum of the x variables. The empirical causal effect of each variable is
equivalent to the multiple regression coefficient estimates. Example (b) is adapted from J. Peters, Janzing,
and Scholkopf, 2017. Example (c) depicts a graph with an unobserved confounding variable z.

such models. In this section, we demonstrate how typical linear regression models used in
psychology and social science impose a strong implicit causal/structural form which is unlikely
to reflect the true causal structure of the data, even when the functional form is linear, and are
therefore misspecified. We show that, through a consideration of the causal structure of the
phenomenon under study, one can nonetheless use linear regression to recover causal effects

under a number of restrictive assumptions.

Multiple Regression Without Misspecification

In this section we demonstrate the strong, implicit structural form associated with multiple
regression. We begin by demonstrating that multiple linear regression (in its basic form) is not
misspecified with respect to the true data generating process when all predictors are exogenous

(see structure in Figure 2.4(a)). In such a scenario, the resulting model is interpretable.

If the true data generating process could be described as a weighted sum of a set of input vari-
ables, then our goal of prediction within the Ordinary Least Squares multiple linear regression
framework (as described in the previous section) would also be adequate for causal modeling,
causal parameter estimation, or causal inference. Such a model might be depicted graphically as

in Figure 2.4(a). In this scenario, there would exist parameters 8* (also known as effect sizes)
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which represent the true causal parameters, and our OLS-derived parameters would represent

empirical/sample estimations thereof.

The graphs in Figure 2.4 are known as causal Directed Acyclic Graphs (c-DAGs), and they
represents a generalization of the graphical representation often used in Structural Equation
Modelling (SEM) (Pearl, 2009; Koller and Friedman, 2009; Rohrer, 2018). The arrows indicate
causal directional relationships between variables, parameterized by 6, and the grey nodes
indicate observed variables. The acyclicity pertains to the restriction that there can be no closed
loops (i.e., feedback) in the graph. Graph terminology (e.g., ‘parent’, ‘ancestor’, ‘descendant’,
‘child’) is useful in describing the top-level relationships between variables. For example, a node
with an incoming arrow is a child of its parent variable, and further upstream or downstream

variables are ancestors or descendants respectively.

In general, the arrows in a c-DAG indicate causal dependencies, and there is no implied
functional form that prescribes how the variables are combined at a node (i.e., there could
be highly non-linear, adaptive functions with interactions). Furthermore, the nodes represent
variables which may or may not be univariate or parametric. In other words, a node labelled x
does not restrict the dimensionality or (non-)parameterization of x itself. For instance, a node
x could comprise multiple predictors which do not conform to a parameterized distribution.
Hence, c-DAGs encode the fundamental essence of the causal structure, without imposing
potentially irrelevant restrictions. We have included some extra information in the c-DAG of
Figure 2.4(a) for the sake of demonstration. This particular c-DAG represents the intercept
parameter of a multiple linear regression as a vector of ones multiplied by the parameter 6.

The structural equations for this graph may be represented in Equation 2.1:

Xkp=0 :— 1
xi = Ug(0,1) fork =1, ..., (K —1) @.1)
K-1
Orxi + Uy(0,1) fork =0, ..., (K — 1)
k=0

Let us assume that Uy, and U, are N-dimensional vectors of identically and independently
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distributed (i.i.d.) normally distributed random noise. The “:=’ symbol (endearingly referred
to as the walrus operator in the Python programming world) denotes assignment rather than
equality. This distinction is useful in reflecting the structural/causal direction of the arrows in
the c-DAG. For example, the outcome y is a function of its inputs, and the equation should
not be rearranged to imply that the inputs are a function of the outcome (the arrows point in
one direction). These equations encode the fact that all the input variables are exogenous (i.e.
completely independent of each other and determined only by i.i.d. noise) and that the outcome
is a weighted linear combination of these variables. In this setting we might understandably
refer to the input variables as the independent variables, and the outcome as the dependent
variable. As mentioned, these equations correspond with a simple multiple linear regression and
can be solved to find € using OLS. We demonstrate this by undertaking a simulation for K = 4
with 05 = 3.3, 07 = 0.1, 05 = 0.3 and 63 = 0.5. We set N = 5000 so that we do not have to
be concerned about the stochastic variability associated with small samples, and the results are

shown in Table 2.2.

import statsmodels.api as sm
import numpy as np
N = 5000 # N = sample size

# simulate data

x1 = np.random.randn (N, 1)
x2 = np.random.randn (N, 1)
x3 = np.random.randn (N, 1)
X = np.concatenate ((x1, x2, x3), 1) # combine predictors into array

y = 3.3 + 0.1xx1 + 0.3xx2 + 0.5xx3 + 0.3 % np.random.randn (N, 1)

X = sm.add_constant (X, prepend=True) # add intercept term as x0

mod sm.OLS (y, X) # initialize multiple regression model

res mod.fit () # fit the regression model

From this demonstration it can be seen that the OLS regression successfully recovered 6 close to
6. In this case, the data generating process directly matched the model we used to estimate the

parameters and was therefore not misspecified. When there is no misspecification, the estimated
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Table 2.2: Estimated parameters for DAG in Figure 2.4(a).

b 01 b by
y 331 011 031 0.50

parameters may be interpreted as causal parameters that tell us about the phenomenon (in this
case, a simple, simulated phenomenon). Indeed, the parameters here can be interpreted as ‘one
unit increase in x; yields a #; increase in y’, as is common practice in psychology and social

science.

The interpretability of the model was only possible because the structure of the data matched the
structure of a multiple linear regression, equivalent to Figure 2.4(a), where all ‘predictors’ are
exogenous. However, this is an unrealistic scenario, and in most real-world cases, the predictors
will not be exogenous. In the next section we demonstrate what happens when we apply the

multiple regression model to scenarios when the causal structure is more realistic.

Multiple Regression - Misspecified for Realistic Structure

In the previous section we showed how a simple multiple regression can be used to recover
meaningful, causal parameter estimates, so long as the true causal structure of the data cor-
responds with the implicit causal structure implied by the multiple regression. However, the
implicit causal structure of a linear regression is extremely restrictive and, when modeling
real-world data, it is likely to be misspecified. In this section we demonstrate what happens

when such misspecification occurs.

Let us see what happens when we follow the same procedure to try to estimate some parameters
for another simple data generating process which follows the example in Figure 2.4(b). We
assume the following data generating structural equations (adapted from J. Peters, Janzing, and

Scholkopf, 2017):
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x4 :=Uy, X9:=08U;y, xp:=x4—2%x2+0.2Up, x7:=—2x0+ 0.5Ujy,
X3 := X2+ 0.1U3, x5:=3x9+ 0.8U5, xg:=x1+ 0.5Ug, (2.2)

y :i=2x3—x1 +0.2U,, x7:=0.5y+0.1U7

For these equations we have simplified the notation to make things clearer: Uy ~ N(0, 1). The
structural process is still linear and the additive noise is Gaussian, so we do not yet need to
worry about utilizing flexible function approximation techniques (such as those discussed in

Part 1).

It is worth studying these equations to understand their implications. Note that, for instance,
x3 is only determined by X2, as well as its own exogeneous noise Ug. This means that, if we
perform surgery on these equations by, for example, setting x3 to a different value or distribution,
we have cut off its dependence to its parent. Such graph surgery enables us to explore a range of
causal queries such as interventions and counterfactuals, and is formalized by Pearl’s do-calculus

(Pearl, 2009).

Given the simple linear form in Equation 2.2 for Figure 2.4(b), it is possible to traverse the paths
in the c-DAG and to combine the effects multiplicatively. Such a process should be familiar to
those who have studied path diagrams and SEM (Kline, 2005). For instance, the effect of xy on
y is the multiplication of the effect of xq — x; with the effect of x; — y. Together, we have
the mediated path: xg — x; — y. According to Equation 2.2 and Figure 2.4, the effect of xg
on y therefore corresponds with —2 x —1 = 2. In this case, x; is mediating the effect of xg
on y. Readers may already be aware of the issues relating to the inclusion of mediators in a
regression analysis (see e.g., Cinelli, Forney, and Pearl, 2022; Rohrer, 2018; Pearl, 2009), and
this is trivially demonstrated by comparing the regressions of y onto xg whilst (a) adjusting for
x1 and (b) and not adjusting for x;. Here, adjusting for a variable is equivalent to controlling
for it, but the adjustment terminology is more appropriate for structural scenarios (Pearl, 2009).

First let us simulate the data as follows:

N = 5000
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x4 = np.random.randn (N, 1)
x2 = 0.8 % np.random.randn (N, 1)
x3 = x2 + 0.1 » np.random.randn (N, 1)

x0 = x4 - 2%xx2 + 0.2 x np.random.randn (N, 1)
x5 = 3xx0 + 0.8 % np.random.randn (N, 1)
x1 = =2xx0 + 0.5 » np.random.randn (N, 1)

X6

x1 + 0.5 % np.random.randn (N, 1)
y = 2%x3 - x1 + 0.2 % np.random.randn (N, 1)

x7 = 0.5y + 0.1 « np.random.randn (N, 1)

These Python variables reflect those in Equation 2.2 above. The bivariate correlations and

p-values for each of these variables are shown in Table 2.3.

Table 2.3: Bivariate Pearson correlations and p-values for the DAG in Figure 2.4(b).

7”(]7) X0 X1 X2 X3 X4 X5 X6 X7

y 92(.00) -.92(.00) -.58(.00) -.56(.00) .76(.00) .91(.00) -.93(.00) 1.00(.00)

The results in Table 2.3 demonstrate a strong and statistically significant bivariate correlation
between each predictor and the outcome. Now, when using only xg as a sole predictor in a
simple linear regression model, we estimate the effect of xy on y to be 6y = 1.28, where the”
notation indicates it is an empirical estimate. Recall that the true effect of x¢ on y is 2. In spite
of the large sample size, the output estimate is highly biased and does not seem to correspond
with any of the parameters in the original simulation. Indeed, regardless of how large the sample
size is, this coefficient estimate will converge to a value that is far from the true estimand. This
is because the structure of the data generating process was not considered: We simply applied
a linear regression to the data without accounting for the fact that the implicit structure of a
linear regression does not match the structure in the data. In this situation, the regression might
still have some limited utility as a purely predictive function, but its parameters should not be
interpreted as anything relevant to the causal structure of the phenomenon of interest because it

is misspecified.

When confronted with the dilemma of multiple observed variables, typical practice in psychology
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and social science might involve using the forward or backward method for variable inclusion
(Field, 2009). Besides the problems associated with such practice and overfitting (as described
in Part 1 above), such practice is likely to result in misspecification. Another approach might
be to simply include all variables in the model. Indeed, all the x; variables are highly and
statistically significantly correlated with the outcome y, so if we were not already aware of
the implicit causal structure of linear regression, this might seem like a sensible thing to do.
When we include all variables in the model, this results in § = —0.01. Recall again that the true
effect of xp on y is 2. The estimate of —0.01 is highly biased. This is because including all
the variables in the model imposes the structure shown in Figure 2.4(a), where all variables are

€xogenous.

Including x( and the mediating variable x; confirms that including mediating variables is
problematic: The regression including both x¢ and x; yields 0 = —.94. As expected, the
effect of xy on the outcome is highly biased, and of the opposite sign (i.e., negative rather
than positive) to the true causal effect. It should now be clear that the use of what might be
called naive multiple regression cannot yield meaningfully interpretable parameters unless the
model corresponds with Figure 2.4(a), and this is highly unlikely. Indeed, it is arguable as to
whether the interpretation of this parameter (and even its direction) is of any scientific value at
all. Utilizing hierarchical or Bayesian approaches will not help so long as the structure of the

model is misspecified.

Addressing Misspecification Using Causal Inference Techniques

We have seen that using naive multiple regression is inadequate when trying to estimate a
causal effect from data with a non-trivial structure, even when the underlying functional form
of the relationships is linear. Whether or not the structure is of relatively low complexity, the
resulting coefficient estimates can be wildly biased. This illustrates that, regardless of whether
the functional form matches the true functional form of the data (and in the simulations above,
it did), it is impossible to recover meaningful effect size estimations with a misspecified model.
In order to recover an unbiased estimate of the true effect, we need to understand techniques

from the field of causal inference.
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Structural Equation Modelling (SEM) was reported to be one of the most common methods
used in psychology and social science (Blanca, Alarcon, and Bono, 2018), and enables unbiased
estimation of the parameters, so long as the structure of the SEM model matches or at least
subsumes the structure of the data generating process, and so long as a number of restrictive
assumptions are met (J. Peters, Janzing, and Scholkopf, 2017). These assumptions apply to
causal inference in general. The subsumption point relates to the fact that researchers, when
faced with uncertainty about the structure of the data generating process, should choose to
expand their model class rather than restrict it. In other words, researchers should, in general,
choose to include an extra arrow in their SEM rather than remove one. The choice to expand
the model allows for the possibility of an effect in the data, whereas a removal of a causal link
enforces an absence of dependency and thereby represents a strong model restriction that needs

to be well justified before its imposition.

In practice, we rarely have access to the true model when we create an SEM (D ‘Amour, 2019; Y.
Wang and Blei, 2019; Tenenbaum and Griffiths, 2002). Indeed, as the SEM grows in complexity
and/or its causal constraints, the chance of it becoming misspecified increases. If certain
assumptions are made, and we reduce our goal to the estimation of a specific and restricted set
of effects (e.g., just the effect of xy on y), it may be sufficient to leverage domain knowledge
and causal inference techniques to acquire a reliable estimate without having to correctly specify
the full graph. Such techniques have been extensively covered elsewhere (J. Peters, Janzing,
and Scholkopf, 2017; Pearl, 2009; Imbens and D. Rubin, 2015; Pearl, M. Glymour, and Jewell,
2016; Angrist and Krueger, 2001) and include the use of instrumental variables, propensity
score matching, and regression discontinuity designs (Blossfeld, 2009), but we briefly cover

one particular technique known as backdoor adjustment below (Pearl, 2009).

Backdoor adjustment involves identifying what are known as backdoor paths. An example
of a backdoor path between x( and y in Figure 2.4(b) is xg < X3 — X3 — y. X2 and x3
are therefore part of what is known as the backdoor adjustment set; a set of variables which,
if adjusted for, block the backdoor path. We can adjust for all the backdoor variables, or the
minimal set sufficient to block the path (in our case, either x5 or x3 will do). Including x( and

x3 yields 6 = 2.00.
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Figure 2.5: Example Directed Acyclic Graph for Time Series

Note. c-DAG for a time series setting, highlighting the complexity associated with identifying a particular
causal effect, especially when there may be unobserved confounding (J. Peters, Janzing, and Scholkopf,

2017).

We have now recovered an unbiased estimate of the effect of xg on y (which was approximately
equal to two), and we only needed to regress y onto two variables, despite our world knowledge
dictating that at least eight were involved in the data generating processes as a whole (indeed,
all variables in this simulation are highly and significantly correlated with the outcome). If we
are also interested in the mediation through x; then we can undertake separate regressions to
break the problem down. The estimated parameters are then meaningfully interpretable insofar
as the correspond with the parameters in the true data generating process. In other words, if

0 = 2, then every unit increase in Xg results in two units increase in y.

Does Time Help?

Researchers may believe that the inductive bias imposed with the directionality of time is helpful
in identifying the causal effect and correctly specifying a causal model. Indeed, the fact that
time cannot flow backwards constrains the possible directions of our arrows in our c-DAG, and
therefore reduces the complexity of a time series model. However, in spite of the fact that a
time series model may be the only way to answer a certain causal question, such time series
problems may be far more complex than cross-sectional models, owing to the introduction of

the additional time dimension. Therefore, certain causal questions may only be answerable
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by considering time, but the causal effect of interest may be considerably harder to identify
as a result. Figure 2.5 depicts a simple scenario with two variables, x and y, and a hidden
confounder z. Each variable influences its own future as well as the future of the other variable.
In the presence of the unobserved confounder the causal effect between x and y (however this
might be defined) is unidentifiable. The complexity of this graph could grow further still if we
include causal arrows between x and y (and potentially z) for the same time point (i.e., x and
time one influences y at time one), or if we add any additional (un)observed variables. In spite
of the restriction that the arrows cannot flow backwards, this structure therefore has the potential
to be immensely troublesome from the point of view of identifiability. Indeed, the use of causal
inference with time series phenomena is a very current and ongoing research topic in the fields
of causal inference and machine learning (J. Peters, Janzing, and Scholkopf, 2017; Krishnan,
Shalit, and Sontag, 2017; Lohmann et al., 2012). Interested readers are pointed to an accessible

introduction of the topic, and its use in psychology, by Gische, West, and Voelkle (2020).

2.3.2 Challenges, Assumptions, and Limitations of Causal Modeling

It is worth emphasizing that, with only naive multiple linear regression models, we were unable
to acquire a meaningful effect size estimate for non-trivial data generating process. This is
because multiple linear regression imposes its own implicit structural/causal form which is
likely to be misspecified when used in real-world applications. Indeed, we used a relatively
simplistic synthetic simulation to demonstrate that multiple linear regression yields meaningless
estimates, but in real-world applications the graph may actually be significantly more complex
which makes it extremely challenging to correctly specify the structure of the c-DAG, and
therefore to use techniques such as backdoor adjustment. This is because, without a sufficient
understanding of the causal structure, we would be unable to identify the necessary backdoor

adjustment variables.

More generally, it is extremely difficult to obtain reliable effect size estimates from observational
data concerning complex real-world social phenomena using these techniques. Indeed, the
infamous ‘crud’ factor, which describes the fact that “everything [in social science] correlates

to some extent with everything else” makes causal inference in social science and psychology
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particularly challenging (Meehl, 1990; Orben and Lakens, 2020).° One challenge is finding
suitable backdoor adjustment variables, identifying other causal variables such as colliders,
mediators, instrumental variables, proxy variables etc. so that the causal effect of interest is
actually identifiable using the observed data (for techniques, see e.g., Cinelli, Forney, and
Pearl, 2022; D. B. Rubin, 2005; Imbens and D. Rubin, 2015; Angrist and Krueger, 2001; Pearl,
2009; Y. Wang and Blei, 2019; D‘Amour, 2019). Another challenge relates to the fact that
social scientists are often concerned with the study of complex social systems with dynamic
interdependencies. Such systems may not exhibit readily identifibale cause and effect pairs

(Blossfeld, 2009).

In the same way that we chose to identify a single causal effect using the backdoor adjustment
method, it may be beneficial for researchers to attempt to simplify their causal research questions.
For example, in contrast with the typical use of SEM in psychology and social science (where
the researcher attempts to derive multiple effect estimates simultaneously), targeted learning
adopts the philosophy by ‘targeting’ a specific causal effect of interest, and orienting the analysis
around its estimation using machine learning to reduce misspecification (M. J. van der Laan
and S. Rose, 2011). The ‘no free lunch theorem’ familiar to machine learners applies here:
causal inference yields the most information, but it is not easy (Wolpert and Macready, 1997).
Attempting to undertake inference across multivariate, complex, linear SEM graphs is therefore
extremely ambitious in light of its limited functional form and likely misspecification, and is
highly unlikely to yield meaningful estimates. That said, exploratory work can still be highly
valuable (Shrout and Rodgers, 2018). Part of the development process for SEMs (or, more
generally, the underlying theory about the phenomenon) could involve causal directionality tests
and validation via causal discovery techniques from machine learning (J. Peters, Janzing, and
Scholkopf, 2017; Scholkopf, 2019). Such techniques, at least in restricted circumstances, may
be able to test the directionality of the causal effects (Goudet et al., 2019; J. M. Mooij et al.,
2010), identify backdoor adjustment set variables (Gultchin et al., 2020), estimate the magnitude
of causal effects using flexible function approximation techniques (Yoon, J. Jordan, and van der

Schaar, 2018; Shi, Blei, and Veitch, 2019), or infer hidden confounders from proxy variables

The crud factor also results in an abundance of meaningless statistical significance, owing to the fact that
null-effects are practically non-existent in social phenomena (Meehl, 1990).
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using variational inference (Louizos, Shalit, et al., 2017; M. J. Vowels, N. Camgoz, and Bowden,
2021). We recommend both Targeted Learning (M. J. van der Laan and S. Rose, 2011) as
well as deep latent variable neural network models (Louizos, Shalit, et al., 2017; M. J. Vowels,
N. Camgoz, and Bowden, 2021) as possible approaches to the significant problem of causal
effect size estimation, although many others exist (Gultchin et al., 2020; Shalit, Johansson, and

Sontag, 2017; Shi, Blei, and Veitch, 2019; W. Zhang, L. Liu, and J. Li, 2021; Yao et al., 2018).

Even once a researcher believes that they have accounted for these difficulties and have simplified
their research question or hypothesis, their consequent estimations then rest on the assumption
known as ignorability; that there are no further latent/unobserved factors that must be somehow
accounted for. Figure 2.4(c) depicts the presence of an unobserved confounder z. Particularly
in cases where researchers are dealing with observational (as opposed to experimental) data,
the assumption of ignorability may be strong, untestable, and unrealistic. Other assumptions
may also be relevant, depending on the causal question being asked, such as the stable unit
treatment value assumption and the positivity assumption for estimating treatment effects. It
is important researchers familiarize themselves with all relevant assumptions and limitations
before undertaking causal inference, and make them explicit in their work (e.g., when they use

SEM) (Grosz, Rohrer, and Thoemmes, 2020).

Finally, the simulations here assumed linear and additive structural equations of the form:
x1 := Hpxg + U;. However, and as discussed earlier, c-DAGs are general and do not restrict
the functional forms relating the variables. Indeed, in real-world scenarios the assumption
of linearity may impair the capacity of the model to estimate unbiased coefficients, in much
the same way as it limited predictive models (Coyle et al., 2020; M. J. van der Laan and S.
Rose, 2011; M. J. van der Laan and Starmans, 2014; M. J. van der Laan and S. Rose, 2018).
The difficulties of effect estimation are therefore compounded by the difficulties associated
with identifying an appropriate functional form for the dependencies between variables (i.e.,
identifying what Blossfeld, 2009, calls “effect shapes™). Unless the structure of the model and
its functional form sufficiently match those of the true data generating process, and we have an

identifiable causal effect, the model may be misspecified and uninterpretable.
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Causal Modeling in Practice

The three most common methods used in psychology are ANOVA, multiple linear regression
(including hierarchical linear regression), and Structural Equation Modeling (SEM) (Blanca,
Alarcon, and Bono, 2018). The first two are forms of linear model which encode strong
implicit structural biases about the nature of the causal generating process (i.e., they encode
the assumptions of exogenous independent input variables). The third method encodes explicit
inductive bias relating to the causal generating process (Grosz, Rohrer, and Thoemmes, 2020).
All three methods, tending to be linear, restrict the functional form associating the variables.
The linearity and structural biases (whether implicit or explicit) yield misspecified models
which are unlikely to match the true data generating process and pivot on untestable and
unrealistic assumptions (such as strong ignorability). Misspecfication and the strong ignorability
assumption are not of great concern if the goal is prediction: We may not care whether a
mapping function reflects the data generating process, only that it provides good predictive

performance.'?

Furthermore, all three methods are frequently fit, evaluated, and manipulated according to
predictive strategies (e.g., variable inclusion processes, structural changes) and the structure
in the graph is not properly tested or validated (Scheel et al., in press; Kline, 2005; Ropovik,
2015). This is problematic for three reasons: First, linear models are not optimal for modeling
complex real-world dependencies between variables; second, these models are rarely (if ever)
tested on an out-of-sample dataset, meaning that any inference performed using these models
is likely to have limited generalizability; third, the structure (and therefore, the practitioner’s
theory) is almost invariably accepted as valid a priori (Ropovik, 2015), despite misspecification

being highly likely (M. J. van der Laan and S. Rose, 2011; VanderWeele, 2020).

Summary, and a Note on RCTs

It is important that researchers recognize the significant difficulties associated with estimating

meaningful causal effects with observational data. We described how difficult it is to obtain

"However, predictive models may generalize better if they are robust to shifts in these unobserved confounders
(Suter, Miladinovic, and Scholkopf, 2019).
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reliable causal effect size estimates, and we have also demonstrated how a failure to consider the
causal structure may yield biased, meaningless effect sizes, regardless of whether the researcher
adopts a predictive or causal approach. We provided one example of a causal inference technique
known as backdoor adjustment, as a way to identify the causal effect of interest. Doing so
enabled us to simplify the analytical problem from one of estimating all path coefficients in a
complex graph, to one of estimating a specific effect by identifying variables from an adjustment
set. In practice, identifying these backdoor variables represents a significant challenge, because
it requires sufficient causal knowledge. In addition to these difficulties, causal inference rests on
a number of strong assumptions, perhaps the strongest of all being that of ignorability: That
there are no unobserved confounders. Finally, researchers must also consider the functional
form used to represent the causal dependencies between the variables. As such, problems with
identifiability, ignorability, misspecification due to incorrect structure, and misspecification due

to limited functional form have the potential to compound each other.

Given the complexity associated with avoiding misspecification, on top of considering functional
form, readers may come to the conclusion that causal inference should be reserved for Random-
ized Controlled Trial (RCT) and experimental contexts. Actually, we do not think the situation
is this clear-cut. The common view is that RCTs represent the “gold standard” of research.
However, a growing literature highlights the limitations of RCTs, and how observational studies
may, at least in certain circumstances, represent a promising alternative, particularly in terms
of lower cost, reduced ethical implications, and larger sample size (Frieden, 2017; Deaton
and Cartwright, 2018; Bothwell, Greene, and Podolsky, 2016; Jones and Podolsky, 2015).
Furthermore, in a social science context, randomized experiments may be practically infeasible
and potentially unethical (Blossfeld, 2009). To clarify, we do not wish to engage in a debate
about the merits and pitfalls associated with undertaking causal inference on experimental
versus observational data, but we do note that the perception of RCTs as representing a gold

standard is potentially limiting and scientifically unhelpful.
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2.4 Part 3: Unreliable Interpretations

In this part, we introduce explainability and interpretability, and describe how misspecified
models with limited functional form may be neither explainable, nor interpretable. When the
complexity of a model is increased to mitigate the issue of limited functional form it may
be explainable in spite of possible misspecification due to incorrect structure. We discuss a
range of problems relating to conflated and unreliable interpretations in psychology and social
science. In our view, the conflation arises not just as a result of the alleged taboo against
causal inference (Grosz, Rohrer, and Thoemmes, 2020), but also due to an apparent lack of
understanding concerning the limitations associated with the interpretability of misspecified

models with limited functional form and/or incorrect causal structure.

2.4.1 Explainability and Interpretability

Scrutinizing the parameters of a model in a predictive sense is referred to as explaining, in that
we are explaining the behavior of the model, rather than inferpreting the model’s parameters in
relation to some external real-world causal phenomenon (Rudin, 2019). We therefore distinguish
interpretability from explainability. In this paper we use the term interpretation to describe the
process of using a model to understand something about the structure in the data or phenomenon,
and is therefore of particular relevance to causal approaches. As we will show, linear models
are not immune to problems affecting interpretability both for reasons of limited functional
form as well as misspecification (see Parts 1 and 2). Explainability, on the other hand, refers to
the capacity to explain why a model makes a certain prediction or classification, based on its
functional form or algorithmic rules (Rudin, 2019), and is therefore a term particularly relevant
to predictive approaches. As the complexity of a model’s functional form increases, it becomes

increasingly difficult to either interpret or explain a model (Rudin, 2019).

2.4.2 The (Un)Interpretability of Linear Models

Linear models are deceptively simple to explain because their model coefficients seem to provide

a direct means to understand why the model made a certain prediction. It is common to either
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explain or interpret the parameters of a linear model as follows: For a one unit increase in xy,
the model produces a 0, increase in the outcome, assuming all other variables are fixed. If the
model is not misspecified (i.e., it has adequate functional form and causal structure), then this
parameter may be interpreted in a causal sense as well as in a predictive/explainable sense. In
other words, the parameter not only tells us something about how the model’s output changes
with respect to a change in its input, but also something about the external phenomenon being
modeled. However, if the model is misspecified due to incorrect structure, then the parameter
may only be used to explain the behavior of the model, and will not correspond meaningfully

with some external causal quantity.

Perhaps surprisingly, if the model is misspecified both in terms of its functional form and its
structure, then the model may be neither interpretable nor explainable. In this scenario, complex
cancellation effects may render the coefficients of linear models meaningless (Lundberg, G.
Erion, et al., 2020; Breiman, 2001b; Haufe et al., 2014). Just because a predictive model (e.g.,
multiple linear regression) indicates that variable x; has statistically significant association with
an outcome, does not imply that it is meaningful to interpret this coefficient either in terms of a
specific quantified value, or in terms of an ordinal level of variable importance. The problems
are caused both by the function’s inability to account for non-linear relationships and by the
mismatch of the function’s implicit structural (i.e., causal) form with the true form of the data.
We demonstrated the latter issue in Part 2. For the former, we generate a synthetic example,
closely following that of Lundberg, G. Erion, et al. (2020).!! Essentially, the relationship
between the outcome and two particular features in a semi-synthetic dataset is modified to

include an increasing amount of non-linearity following the relationships in Equation 2.3.

y = o((1 — )(0.388x; — 0.325) + ¢(1.714x3 — 1) 4 1.265x5 + 0.0233) (2.3)

Here, o is the logistic link function, g is the degree of non-linearity, which is varied between
zero (describing a linear relationship) and one (describing a model with a quadratic relationship),

y is the outcome, and x; and x5 are the two predictor variables. The choice of the factors (e.g.,

"Full code for the original example can be found here: https://github.com/suinleelab/
treeexplainer-study/.
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0.388) and intercepts (e.g., —0.325) are arbitrary, and derive from the classic NHANES I dataset
(Launer, 1994; Fang and Alderman, 2000) from which the predictors and outcome are drawn.
The relationship between the predictors and the outcome as q is increased from zero to one is
shown in the lowest plot of Figure 2.6. Two models were fit to these synthetic data: a linear
logistic regressor, and a machine learning algorithm known as XGBoost (T. Chen and Guestrin,
2016). The upper plot in Figure 2.6 shows how the logistic regressor’s error increases as the
non-linearity increases. In contrast, the XGBoost model’s prediction error remains low. Notably,
when ¢ is close to zero (i.e., the percent non-linearity is low), the linear model outperforms
the XGBoost model, and has the potential to directly match the data generating process. The
middle plot shows how the contribution of irrelevant features to the outcome changes as the
non-linearity increases. For the XGBoost model, any irrelevant features are ignored regardless
of the degree of non-linearity, and their weights remain at zero (which is in line with the true
model). On the other hand, the linear model assigns weight (i.e., the coefficients of the model
change) to irrelevant features as the non-linearity increases. This is highly problematic for
explainability and interpretability - it results in irrelevant features being indicated to be of

predictive importance even when they are not.

2.4.3 The (Un)Interpretability of Models with Complex Functional Form - Camels

in the Countryside

In Part 1 we suggested that researchers explore machine learning methods which facilitate
the modeling of complex, non-linear relationships between variables. These techniques are
applicable to predictive as well as causal approaches. In spite of their flexible functional
form, powerful predictive approaches are explainable but not necessarily interpretable. We
now describe a famous example which highlights how using powerful function approximation
circumvents limitations in functional form does not yield interpretable models. This is one of the
principal limitations of purely predictive approaches and closely relates to misspecification (see
Part 2). The example involves the classification of images of cows and camels, where images of
cows frequently feature countryside backgrounds and images of camels tend to feature sandy or

desert regions (Arjovsky et al., 2020). A predictive function will not respect the orthogonality
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Figure 2.6: The Uninterpretability of Linear Models in the Presence of Non-Linearity
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and semantics of the animal or background, and the background provides a convenient cue,
albeit one which is irrelevant and confounding, with which to classify the animal. Hence, a cow
in a desert may be wrongly classified as a camel, and a camel with a countryside background
may be wrongly classified as a cow. This issue may never become problematic in practice, so
long as the function is not exposed to a new distribution of images, where the joint distribution
of backgrounds and animals changes. This highlights how predictive models, owing to their
misspecification, are sensitive to what is known as covariate or distributional shift. Given a
change in the number of photographs of cows in desert regions, or camels in the countryside,

the performance of the classifier may suffer considerably.

This example concerning issues relating to classification of high-dimensional image data may
appear somewhat unrelated to the typical data that psychologists are concerned with, but actually
the problem of confounding is just as important in the low-dimensional setting (Cinelli, Forney,
and Pearl, 2022; Rohrer, 2018). Indeed, predictive models are usually fit by minimizing
an error criterion (e.g., mean squared error or binary cross entropy), and there is therefore
nothing to restrict these models from leveraging any or all statistical correlations present in
the data. The use of predictive model explainability techniques (discussed in more detail
below) can be used to help identify whether the model might be leveraging factors which have
the potential to be confounding, and can provide considerable insight. Unfortunately, if the
confounders are latent/unobserved, then it may be very difficult to identify and avoid such

problems. Consequentially, predictive models are rarely interpretable.

2.4.4 Limited Functional Form and Misspecification Results in Conflated and

Unreliable Interpretations

The examples above highlighted that when the functional form of a model is limited in its ca-
pacity to model the relationships between variables, the model coefficients become meaningless
and the model is unexplainable. A further problem arises when the model is misspecified for
structural reasons. The issues associated with limited functional form and causal misspecifica-
tion therefore compound to yield model coefficients that are (doubly) uninterpretable. Treating

them otherwise would be to interpret these coefficients as being causally meaningful, and this is
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an example of conflated and unreliable interpretation. If the functional form of the model were
correct (i.e., both the model as well as the relationships between variables were linear), then a
linear model would be explainable, but not interpretable. This is because the outcome predicted
by the model would indeed be changing according to a 5; change in the input variable xy, but
owing to misspecification, this 3; would still not correspond with any causal quantity. As such,
it is only when linear models are neither misspecified due to limited functional form (compared

with the true relationship in the data) nor structurally misspecified, that they are interpretable.

2.4.5 Explainability Techniques

The ability to interrogate and explain our predictive models is important, particularly given that
the deployment of such models for automated decision making processes have the potential
to seriously impact individuals’ lives (Hardt, Price, and Srebro, 2016; Kilbertus et al., 2017;
Locatello et al., 2019; Y. T. Cao and Daume III, 2019; H. Liu et al., 2019; Howard and Borenstein,
2018; A. Rose, 2010; Louizos, Swersky, et al., 2017; Moyer et al., 2018; Buolamwini and
Gebru, 2018). Indeed, the European Union has recently decreed that the use of machine learning
algorithms (which includes the use of predictive functions) be undertaken in such a way that
any individual affected by an automated decision has the right to an explanation regarding that
decision (Aas, Jullum, and Loland, 2019; European Union, 2016). In the previous section we
described the camels in the countryside problem, whereby powerful predictive models with
flexible functional form do not respect causal structure in the data. However, complex models
(often called black box models) are more difficult to explain than linear models, and we therefore

need explainability techniques to do the explaining for us.

Model explainability is a burgeoning area of machine learning, in which commendable strides
have been made in recent years (e.g., Alaa and van der Schaar, 2019; Wachter, Mittelstadt,
and Russell, 2018; Lundberg, G. Erion, et al., 2020). The techniques facilitate a form of
meta-modeling, whereby a simpler, human-interpretable and thereby explainable model is used
to represent the more complex, underlying model (Rudin, 2019). One popular explainability
technique derives from a game theoretic approach to quantifying the contribution of multiple

players in a collaborative game; namely, Shapley values (Shapley, 1953). Recently, Shapley
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values have been adapted to yield meaningful explanations of models that correspond well
with human intuition (Lundberg and S.-I. Lee, 2017; Lundberg, G.G. Erion, and S.-1. Lee,
2017; Lundberg, G. Erion, et al., 2020; Sundararajan and Najmi, 2020; H. Chen et al., 2020).
Indeed, these methods were used with XGBoost in the experiments demonstrating the problems
with linear model interpretability above (Figure 2.6). The family of Shapley methods provide
breakdowns which indicate how much each input variable or feature contributes to a model’s
prediction for any individual datapoint. Such individualized prediction and explainability is
particularly important for (e.g.) individualized treatment assignments, and thereby mitigates
concerns regarding the use of aggregation in psychology and social science (Bolger, Zee, et al.,
2019; Fisher, Medaglia, and Jeronimus, 2018). The methods can be used equally for complex
functions (such as neural networks) as well as for simple linear functions. By combining
powerful function approximation with explainability techniques, we may be able to achieve
accurate forecasts and outcome predictions, while maintaining the capacity to understand what

our model is actually doing when it makes a prediction.

From a research standpoint, explainability techniques allow researchers to understand, in a
purely associational sense, which variables and interactions between variables are important
when making a prediction.!? For example, if one identifies that a variable, previously considered
to be important, contributes negligible predictive value then one might investigate whether this
variable does or does not fit into a particular theoretical framework. We would therefore argue
that researchers should consider a combination of predictive methods with explainability tools
as a useful means to contribute new knowledge, particularly during the early and/or exploratory
stages of investigation. It is, however, worth emphasizing that just because a predictive model
finds a particular feature (ir-)relevant to making a prediction, does not mean that this association
is meaningful outside of the function/model (as with camels in the countryside). Furthermore,
an explainability technique represents a form of model in its own right, and the process of
modeling a model brings its own difficulties (see e.g., Rudin, 2019; Kumar et al., 2020). Indeed,
if the explanation model is good at explaining the data in a simple, human-readable form, then

the explanation model provides evidence that a simpler, more explainable model was possible to

12We avoid the term ‘correlational” on the basis of our earlier discussion - correlations do not describe dependence
well when the functional form is non-linear.
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begin with. These difficulties notwithstanding, the explainability techniques provide a valuable

means to leverage predictive model for exploratory research.

2.4.6 Summary

In Part 3, we have described how either limited functional form, or model misspecification,
or both, result in uninterpretable models. In such cases, any attempt to interpret the models
in spite of these limitations results in conflation and unreliability. The interpretations are
conflated because a misspecified model cannot be interpreted causally, and they are unreliable
because predictive models can only be explained. This distinction is important because, if a
misspecification has occurred (perhaps because we intentionally adopted a predictive/non-causal
approach), one can restrict the purview of scientific conclusions to the specific mathematics of
the algorithm used for prediction. In other words, powerful function approximation techniques
may be able to accurately predict outcomes and have the flexibility to match the functional form
of the true data distribution, but they do not necessarily respect or reflect the causal structure
in the data generating process. Does this mean that predictive techniques cannot generate
understanding? Not entirely. There are many scenarios, particularly during the exploratory
stages of a research project, for which researchers may not yet have a strong, empirically
supported inductive bias or theory about the data generating process. Rather than testing specific
theoretical hypotheses during these early stages, it may be pertinent to ask more general research
questions. The goal may then be to amass varied evidence (e.g., by using predictive models)
to gradually uncover a basis for the development of an increasingly refined theory (Gelman,
2014; Shrout and Rodgers, 2018; Oberauer and Lewandowsky, 2019; Tong, 2019). Of course,
researchers should be transparent about whether this is their goal, and carefully consider how
they interpret predictive models. Model explainability techniques may be useful in building up
an intuition about ‘what is important’ in the phenomenon of interest. However, these techniques
are not without their own limitations, and we urge researchers to engage broadly with experts in
the practice of these techniques to ensure that (a) their approaches are optimal for their research,
and (b) that their interpretations (or explanations) are tempered according to the limitations of

their models.
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2.5 Part 4: Discussion and Recommendations

2.5.1 Modeling in Practice

Flexible predictive modeling approaches appear to be used rarely in psychology and social
science, indicating a missed opportunity in these fields.!? Predictive modeling may be extremely
useful, particularly as part of the research exploration stage (Yarkoni and Westfall, 2017). When
combined with model explainability techniques (such as those deriving from Shapley values),
predictive methods provide a powerful way to interrogate associations present in the data. So
long as practitioners recognize the limitations and are transparent about their approach and any
associated assumptions, conclusions can still be drawn from predictive models, provided that

they are not presented as causal conclusions.

We would argue that, in general, undertaking meaningful causal inference is extremely challeng-
ing, and significantly more so than fitting predictive functions to data. Indeed, the former should
subsume the latter as part of a causal pipeline for (a) mitigating issues with limited functional
form by using (e.g.) data-adaptive function approximation to model the functional relationships
between variables, and (b) mitigating issues with model misspecification by carefully consid-
ering causal relationships between variables. As described earlier, researchers have noted the
ambiguity in the use of implicit causal (rather than predictive) language even in studies which
otherwise appear to be predictive (Grosz, Rohrer, and Thoemmes, 2020; M. Hernan, 2018a).
It has been suggested that this reluctance to be explicitly causal stems from a strange history
of discouragement for its use in observational studies (Grosz, Rohrer, and Thoemmes, 2020;

Dowd, 2011).

In terms of understanding, our view is that, in general, researchers in psychology and social
science lack some competence in the practice of prediction and causal inference. If researchers
were more competent at prediction, they would avoid interpreting linear model parameters using
implicit causal language (Grosz, Rohrer, and Thoemmes, 2020), avoid using naive linear models

to test causal hypotheses derived from causal theories, and instead be using varied and flexible

For an example of researchers in psychology using machine learning techniques see Joel, Eastwick, Allison,
et al. (2020).
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function approximation techniques, model explainability tools, and train/test data splitting and/or
cross-validation techniques (Yarkoni and Westfall, 2017). On the other hand, if researchers
were more competent in causal inference, they would be less ambitious about specifying
and interpreting large (causal) SEM graphs, more restrained when it comes to interpreting
the coefficients of misspecified models, more transparent about assumptions when defining
explanatory models (Grosz, Rohrer, and Thoemmes, 2020), use more explicitly causal language
and terminology (Grosz, Rohrer, and Thoemmes, 2020), more clearly distill and identify the
specifics of their causal questions or hypotheses, and be less likely to worsen the bias and
generalizability of their inferences by adopting ad hoc, data driven variable model manipulation
techniques during the analysis stage. Finally, if researchers had a clearer understanding about the
differences between predictive and causal approaches, then we would also see more delineation
between the two. Typical practice therefore involves a combination of unreliable interpretations

regarding models with limited functional form and causal misspecification.

2.5.2 Recommendations

1. We recommend that psychologists and social scientists give more consideration to predictive

approaches, particularly during the exploratory stages of a research project.

The inherent complexity and non-linearity of the typical phenomena of interest to psychologists
and social scientists may make the goal of causal inference arbitrarily complex (Meehl, 1990).
This may partly explain why researchers in psychology and social science are generally discour-
aged from drawing causal conclusions from observational data, despite them doing so implicitly
anyway (Grosz, Rohrer, and Thoemmes, 2020; Dowd, 2011). Indeed, the use of SEM could be
taken as evidence of an explicit intention to undertake causal research, as the very structure of
the model is an imposition of the researcher’s view on the data generating process. The use of
an explicit causal graph with opaque predictive interpretations represents a further example of
the conflation of predictive and causal approaches. In cases where the models themselves are
misspecified both in terms of linear functional form and untestable structural assumptions, the

interpretation of such models becomes unreliable.

When researchers wish to model the relationships between variables, either as part of a causal
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model, or for purposes of prediction, then it may be extremely advantageous for them to
consider techniques common in machine learning, particularly in combination with model
explainability techniques. Indeed, Yarkoni and Westfall (2017) have previously made a similar
recommendation. Powerful function approximation techniques including feature engineering or
data-adaptive techniques such as neural networks or random forests, can be used to leverage as
many associations present in the data sample as possible. In the case of predictive modeling, a
consideration for the causal structure of the data is possible but not necessary. Incorporating
causal inductive bias may aid in generalization, but it is not strictly necessary to achieve good
predictive performance. Unfortunately, the use of techniques with potentially data-adaptive,
flexible functional form is extremely rare in psychology and social science, where the use of
models with restrictive linear functional form is ubiquitous (Yarkoni and Westfall, 2017; Blanca,

Alarcon, and Bono, 2018).

2. We recommend that psychologists and social scientists seek collaboration with statisticians
and machine learning engineers/researchers, whose principal focus is to understand, practice,
and develop function approximation and causal inference techniques. Given that there exist
entire fields dedicated to the study of relevant modeling approaches (e.g., statistics, machine
learning, causal inference), independently of the empirical human sciences, it is perhaps
unrealistic to expect an expert in, say, psychology or social science, to have equal expertise
in the practice of predictive and explanatory modeling, particularly when the mathematical
knowledge required to understand these techniques is both significant and rare in these fields
(Boker and Wenger, 2007). Furthermore, new methods are continually developed and updated
in the fields of statistics and machine learning. As well as encouraging researchers to make
themselves more familiar with the topics of predictive and causal modeling, we also recommend
they seek collaboration with experts in the practice of their chosen analytical approach. Note
that this recommendation has been made by researchers previously in various contexts (e.g.,

(Lakens, Hilgard, and Staaks, 2016)).

3. We recommend researchers be transparent about whether they are adopting a predictive
or causal approach and to qualify their interpretations. We have discussed how unreliable

interpretations may stem from issues of limited functional form and causal misspecification, and
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how these issues may be common in the fields of psychology and social science. We encourage
researchers to ask themselves what an interpretation of an effect size or parameter derived using
a naive (i.e., misspecified) model actually means: Is it actually an explanation for how much
the output of the model changes with respect to a change in the input; or is it being interpreted
causally (e.g., this childhood intervention increased well-being by #-amount)? In either case,
researchers need to be transparent and clearly articulate whether they are adopting a predictive
or causal approach. Each approach is associated with assumptions and limitations which need
to be clearly stated in order to contextualize any explanations or interpretations which are made.
Predictive model explainability tools have their own limitations and may actually contradict the
results from undertaking causal inference: While the inclusion of a mediator in a regression can
completely block a causal path reducing the estimated effect to zero, a strong effect might be
indicated by an explanation of a predictive model. Similarly to Grosz, Rohrer, and Thoemmes
(2020), we therefore recommend that researchers clearly state their approach as well as its
associated assumptions and limitations, and moderate their explanations, interpretations, and

conclusions accordingly.

4. We recommend that researchers distill their research questions and hypotheses. It may be
pertinent for researc