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pour l’obtention du grade de
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Abstract in English: Psychology and social science face a number of challenges: the inherent complexity of the phenomena of

interest, the replication crisis, the theory crisis, and functional and structural misspecification. The confluence of these challenges

poses a serious threat to the validity and meaningfulness of research in these domains, and brings into question the direction that

researchers in these fields should take. If this direction is to be effective with respect to improvement, I believe it is important

for psychologists and social scientists to engage with the meta-research surrounding areas of possible analytical and statistical

improvements. In this thesis I present four contributions which are strongly motivated by the problems of misspecification and

complexity, an provide recommendations to researchers. The proposals include the use of more powerful, data-adaptive techniques

for function approximation (such as those tools from the domain of machine learning), as well as the use of techniques from

the domain of causality (such as causal Directed Acyclic Graphs) and information theory. I demonstrate how these techniques

can (a) help us to match the level of complexity of our modeling to the inherent complexity of the phenomenon under study, (b)

reduce ambiguity with respect to theory specification, and make our assumptions and modeling choices more transparent, (c)

reduce the complexity of a mathematical representation of a theory without impacting the validity of any downstream estimates,

(d) improve the efficiency of data collection methodologies, (e) highlight the critical nature of causality even when otherwise

powerful, exploratory machine learning techniques are used, (f) highlight the strange, unintuitive behaviour of datasets with more

than four dimensions, (g) undertake outlier detection in a way that is robust to this aforementioned strange behaviour. Whilst these

approaches do not solve the problems in a finite sense, they represent relatively low-cost stepping stones en route to a better way to

undertake research in psychology and social science. Indeed, the nature of at least some of the problems would seem to encourage

an optimistic interpretation: That there presently exists a tremendous opportunity to modernise the current approach to research,

simply by assimilating recent advances and developments from other domains such as engineering, machine learning, and statistics.

Psychology and social science are complex domains, full of rich and nuanced phenomena. They deserve to be represented using

research methodologies which are flexible enough to reflect this complexity.

Résumé en Français : La psychologie et les sciences sociales sont confrontées à un certain nombre de défis : la complexité

des phénomènes auxquels celles-ci s’intéressent, la crise de la réplication, la crise de la théorie et les erreurs de spécification

fonctionnelles et structurelles. La confluence de ces défis constitue une menace sérieuse pour la validité de la recherche et pour sa

capacité à donner du sens; cela remet de plus en question la direction que les chercheurs en psychologie et en sciences sociales

devraient suivre. Si ce cheminement de la recherche doit être efficace en ce qui concerne les améliorations dans ces domaines,

il s’agit ici de soutenir qu’il est important que les chercheurs en psychologie et en sciences sociales s’engagent dans une méta-

recherche balisant les améliorations analytiques et statistiques possibles. Cette thèse présente quatre travaux fortement motivés par

la volonté de résoudre les problèmes de complexité et d’erreur de spécification, et elle s’engagera aussi à faire des recommandations

relatives à ces questions aux chercheurs. Les propositions incluent l’utilisation de techniques pour l’approximation de fonction

plus puissantes (tels que les outils du domaine de l’apprentissage automatique), l’utilisation de techniques issues du domaine de

la causalité (tels que les graphes acycliques dirigés causaux) et enfin des idées relatives à la théorie de l’information. Il s’agira

tour à tour de démontrer comment ces techniques peuvent: A) nous aider à faire correspondre le niveau de complexité de notre

modélisation à la complexité inhérente au phénomène étudié; B) réduire l’ambiguı̈té liée à la spécification de la théorie et rendre

nos hypothèses et nos choix de modélisation plus transparents; C) réduire la complexité de la représentation mathématique d’une

théorie sans affecter la validité des estimations de cette dernière; D) améliorer l’efficacité des méthodologies de collecte de données;

E) mettre en exergue la nature critique de la causalité même lorsque de puissantes techniques exploratoires d’apprentissage

automatique sont utilisées; F) mettre en évidence le comportement étrange et non intuitif des ensembles de données de plus de

quatre dimensions; G) en cas de comportement étrange ou non, entreprendre la détection des valeurs aberrantes d’une manière qui

soit robuste. Bien que ces approches ne résolvent pas définitivement les problèmes, elles représentent des étapes peu coûteuses et

faciles à franchir pour réaliser une meilleure façon d’entreprendre des recherches. La nature de certains problèmes au moins, telle

que l’omniprésence de méthodologies de recherche et de méthodes d’analyse peu sophistiquées dans le paradigme actuel, semble

en effet encourager une interprétation optimiste : il existe actuellement de formidables opportunités de moderniser l’approche

actuelle de la recherche. La psychologie et les sciences sociales sont des domaines complexes, riches en phénomènes dynamiques.

Ceux-ci méritent d’être étudiés à l’aide de méthodologies de recherche suffisamment flexibles pour refléter toute cette complexité.



Extended Abstract

Psychology and social science face a number of challenges: the inherent complexity of the
phenomena of interest, the replication crisis, the theory crisis, and as I discuss, functional
and structural misspecification. The confluence of these challenges poses a serious threat to
the validity and meaningfulness of research in these domains, and brings into question the
direction that researchers in these fields should take. If this direction is to be positive with
respect to improvements in the domains, I believe it is extremely important for psychologists
and social scientists to engage with the meta-research surrounding areas of possible analytical
and statistical improvements. In this thesis I present four contributions which are strongly
motivated by the problems of misspecification and complexity, an provide recommendations to
researchers.

In the first contribution, I focus on three issues that deserve more attention. Namely, the use
of models with limited functional form, the use of misspecified causal models (misspecified
either due to limited functional form, or incorrect structure), and unreliable interpretations of
results. I demonstrate a number of consequences relating to these issues via simulation, and
provide recommendations for researchers to improve their research practice, such as the use
of techniques from the domains of machine learning and causality; engaging with experts in
statistics, causality, and machine learning; being more transparent about the methodological and
analytical approach; and be concise and not overambitious in the specification of their research
questions and hypotheses.

Following the recommendations made in this first contribution, I also include two example
applications of these recommendations. The first application involves the use of machine
learning techniques to explore the relationships between partner support and relational and
individuals variables. The second involves the use of causal discovery and causal inference
tools (which themselves derive from the domain at the confluence of machine learning and
causality) to explore the links between attachment styles and mental health during the COVID-
19 pandemic. The purpose of these applications is to demonstrate that the recommendations
made are not simply hypothetical, but can be readily applied.

Furthermore, and given my specific recommendation that researchers engage with techniques
from the domain of causality, I make a second methodological/statistical contribution by
exploring how causal graphs can be used to improve the efficiency of data collection process.
On the one hand, it is important that we collect data in a way that maximises the validity of what
we are measuring, which may involve the use of long scales with many items. On the other
hand, collecting a large number of items across multiple scales results in participant fatigue,
and expensive and time consuming data collection. It is therefore important that we use the
available resources optimally. I consider how the representation of a theory as a causal/structural
model can help us to streamline data collection and analysis procedures by not wasting time
collecting data for variables which are not causally critical for answering the research question.
This not only saves time and enables us to redirect resources to attend to other variables which
are more important, but also increases research transparency and the reliability of theory testing.
To demonstrate the benefits of this streamlining, I review the relevant concepts and present a
number of didactic examples, including a real-world example.



In turn, given the recommendation that researcher engage with tools from the domain of
machine learning techniques, in the third (technical) contribution I explore to what extent
machine learning techniques are sensitive to the underlying causal structure in the data. Indeed,
machine learning explainability techniques have been proposed as a means for psychologists
to ‘explain’ or interrogate a model in order to gain an understanding about a phenomenon of
interest. Researchers may be motivated to use machine learning algorithms in conjunction with
explainability techniques, as part of exploratory research, with the goal of identifying important
variables which are associated with / predictive of an outcome of interest. However, and as I
demonstrate, machine learning algorithms are highly sensitive to the underlying causal structure
in the data. The consequences of this are that predictors which are deemed by the explainability
technique to be unrelated/unimportant/unpredictive, may actually be highly associated with the
outcome. Rather than this being a limitation of explainability techniques per se, we show that
it is rather a consequence of the mathematical implications of regression, and the interaction
of these implications with the associated conditional independencies of the underlying causal
structure. I provide some alternative recommendations for psychologists wanting to explore the
data for important variables.

In the final contribution, I explore the unintuitive behaviour of datasets which attempt to accom-
modate the inherently high-dimensional complexity of psychological phenomena. In particular,
I consider what the notion of ‘normality’ implies in high-dimensional settings. Normality, in
the colloquial sense, has historically been considered an aspirational trait, synonymous with
harmony and ideality. The arithmetic average has often been used to characterize normality, and
is often used as a blunt way to characterize samples and outliers. I demonstrate that even for
datasets with as few as four dimensions, data start to exhibit a number of peculiarities which
become progressively severe as the number of dimensions increases. I show that normality can
be better characterized with ‘typicality’, an information theoretic concept relating to entropy. An
application of typicality to both synthetic and real-world data reveals that in multi-dimensional
space, to be normal (or close to the mean) is actually to be highly atypical. This motivates us to
update our working definition of an outlier, and we demonstrate typicality for outlier detection
as a viable method which is consistent with this updated definition. In contrast, whilst the
popular Mahalanobis based outlier detection method can be used to identify points far from the
mean, it fails to identify those which are too close. Typicality can be used to achieve both, and
performs well regardless of the dimensionality of the problem.

Whilst the proposals made in these four contributions do not solve the problems I identify in
a finite sense, they represent relatively low-cost stepping stones en route to a better way to
undertake research in psychology and social science. Indeed, the nature of at least some of
the problems, such as the ubiquity of unsophisticated research methodologies and analytical
methods in the current paradigm, would seem to encourage an optimistic interpretation: That
there presently exists a tremendous opportunity to innovate and modernise the current approach
to research, simply by assimilating recent advances and developments from other domains such
as engineering, machine learning, and statistics. Psychology and social science are complex
domains, full of rich and nuanced phenomena. They deserve to be represented and studied using
research methodologies which are flexible enough to reflect this complexity.
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Glossary of Terms/Concepts

Provided below is a list of working definitions for key concepts and terms used in this thesis.

The Big Assumption The assumption that the complexity of any particular social or psycho-
logical phenomenon can be adequately represented using a ‘simple’ / human-interpretable
model (in the form, for example, of a Directed Acyclic Graph or set expert-specified
structural equations).

Causal Discovery The task of discovering causal links between variables in a data-driven
manner. The output is often (but not necessarily) a putative causal graph. See M. Vowels,
N. Camgoz, and Bowden (2022) for more detail.

Causal Inference The task of estimating particular causal estimands (such as the average
treatment effect). The success of the estimation (in terms of, for instance, the unbiased-
ness) depends on the identification of the estimand in terms of factors of the observed
joint distribution. See Pearl (2012), J. Peters, Janzing, and Scholkopf (2017), and Morgan
and Winship (2015) for more detail.

Cross-Validation A model fitting and evaluation process whereby the data used to estimate
model parameters (where the parameters may represent coefficients in a multiple linear
regression, or decision boundaries in a decision tree) are different from the data used to
evaluate or test the model. See K. P. Murphy (2012) for more detail.

Data Generating Process (DGP) The underlying and usually inaccessible causal process
which leads to a set of observable states in the world.

Deep Learning Deep learning is a data-driven Machine Learning method that has been applied
to numerous applications including computer vision, natural language processing, and
general predictive tasks. Deep learning techniques are usually based on types of artificial
neural networks and are a multivariate, nonlinear, statistical machine learning method,
allowing dependent variables to be related to independent variables via learned, complex,
nonlinear relationships (I. Goodfellow, Bengio, and Courville, 2016). These relationships
are learned via an automated computational process known as optimisation, such as
backpropagation, whereby a loss function is minimised in order to calculate optimal
network parameters known as weights and biases (I. Goodfellow, Bengio, and Courville,
2016; Rumelhart, Hinton, and R. J. Williams, 0323; Rumelhart, Hinton, and R. J. Williams,
1985). The weights and biases parameterise ‘layers’ in a neural network, and when the

xxi



xxii Glossary

number of layers is large (e.g., above 50), the network may be considered to be ‘deep’.
See also (Artificial) Neural Network below and I. Goodfellow, Bengio, and Courville
(2016) for more detail.

Directed Acyclic Graph (DAG) A mathematical object specified as a graph comprising a
set of vertices / nodes / variables and directed edges between these vertices. The graph
represents the factorisation of the joint distribution, and the edges may be used to represent
causal directionality in a causal-DAG. The acyclicity prohibits the existence of cycles.
See J. Peters, Janzing, and Scholkopf (2017) for more detail.

Double-Dipping A practice (intentional or otherwise) involving the reuse of data in such a
way that inflates the apparent performance or success of the model. For example, fitting
data-adaptive model to a data sample to maximise fit, and then failing to use a different
sample to evaluate the model will inflate the apparent success of the model. See also
overfitting, and Button (2019) and Kriegeskorte et al. (2009) for more detail.

(Information) Entropy A measure of uncertainty or surprise associated with a distribution.
For example, the Bernoulli distribution with a parameter of 0.5 (as in the case of a flip
from a fair coin) has maximum entropy because the outcome of the trial is maximally
uncertain with respect to the space of possible realisations (heads or tails). The entropy
would be 0, on the other hand, if the coin were maximally biased towards a probability of
1 for either heads or tails. See MacKay (2018) and Cover and Thomas (2006) for more
detail.

(Model) Explanation The task of explaining the decision process or predictions of a model.
For example, the coefficients of a multiple linear regression model provide an explanation
for why the model makes a certain prediction given a certain input. In contrast, see
interpretation.

Functional Form The functions used to describe the relationships between variables. For ex-
ample, in Y = f(X), f is the function relating the set of input variables X to the outcome
Y . In a multiple linear regression, f is a weighted linear sum: β0X0+β1X1...βKXK . In
a random forest, on the other hand, f may be highly complex and non-linear. In contrast,
see structural form.

Functional Form The functions used to describe the relationships between variables (either
the nature of the true, real-world functions, or those used to model these real-world
functions). For example, in Y = f(X), f is the function relating the set of input
variables X to the outcome Y . In a multiple linear regression, f is a weighted linear sum:
β0X0 + β1X1...βKXK . In a random forest, on the other hand, f may be highly complex
and non-linear. In contrast, see structural form.

Importances In relation to a set of predictor variables for a model, the importances tell us to
what extent each of these predictors impacts model output. The importances thereby tell
us which of the input variables is most predictive of the outcome.
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Information Theory A branch of mathematics concerned with the formalisation of the notion
of ‘information’. See seminal work by Shannon and Weaver (1949), as well as MacKay
(2018) and Cover and Thomas (2006) for more information.

(Model) Interpretation The task of using a model to interpret relationships which exist in
the real-world. For example, in a multiple linear regression model for which one of the
coefficients represents an identified causal effect, this coefficient can be interpreted in
relation to an average causal effect (it tells us how much the effect changes with respect to
a change in the variable associated with the particular coefficient). The requirements for
a model to be interpretable are significant, and include correct functional and structural
specification. See, in contrast, model explanation.

Linearity / Linear Models We use the term linearity to describe the situation whereby an
outcome Y can be represented as a linear function (i.e., a weighted linear sum) of either a
set of raw input variables X, or a set of variables which have themselves been transformed
using some linearising function. In the latter case, for instance, the variables can be
projected into a new ‘space’ whereby the outcome can still be represented as a weighted
linear sum of these projected variables. An example, of this is the use of the quadratic or
cubic functions of input variables, β1X2

1 + β2X
3
2 , such that Y is expressed as a weighted

linear sum of these polynomial functions of the raw variables X. We also include those
models with a simple link function, and the definition therefore subsumes the class of
Generalised Linear Models (which includes, for example, the logistic regression model).

Misspecification Misspecification occurs when a researcher specifies a model insufficiently
correctly either in terms of its functional or its structural form. For a discussion on what
is meant by ‘(in)sufficiency’, see Chapter 8. For further information on misspecification,
see Chapter 2.

MultiLayer Perceptron (MLP) See (Artificial) Neural Network below and I. Goodfellow,
Bengio, and Courville (2016) for more detail.

Mutual Information Mutual information is an information theoretic measure of the degree to
which information associated with one variable (or set of variables) is shared by another
variable (or set of variables). It is a more general form of correlation which is a measure
of statistical association that assumes linear forms of dependence. See Cover and Thomas
(2006) and MacKay (2018) for further detail.

(Artificial) Neural Network (NN) Neural Networks are a multivariate statistical machine
learning technique, which comprise a set of weights and biases (often millions thereof)
which are optimized to achieve a particular goal via an optimization process known as
gradient descent. An example of a commonly used goal is the minimization of the mean
squared error in a regression task. The weights and biases parameterise a set of (often
simple) functions called ‘layers’, which are stacked in a sequential fashion (although
there exist variations on the arrangement of these functions). In the case of the classic
MultiLayer Perceptron (which is a relatively small/simple neural network), there may
exist between 2 and 10 layers, although deeper networks are possible (see Deep Learning
above), and each layer comprises a set of neurons, each of which takes on a scalar value
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and which is determined by a generalised linear function of all neurons in the previous
layer. For more information, see I. Goodfellow, Bengio, and Courville (2016) for more
detail.

Overfitting When a modeling technique fails to generalise to new data drawn from the same
distribution as that with which it was trained/fit, in spite of apparently good performance
on the training data, it may be said to be ‘overfitting’ the training data. This can happen,
for instance, if the model is too complex and not sufficiently regularized, such that it
learns not only to approximate the function relating the input and output variables, but
also solves for the noise particular to the training sample. See also cross-validation and
double-dipping, as well as Yarkoni and Westfall (2017) for more detail.

Outlier An outlier is a datapoint which deviates markedly from the sample to which it sup-
posedly belongs. For a more detailed discussion, as well as alternative definitions, see
Grubbs (1969) and Leys, Delacre, et al. (2019).

Random Forest A random forest is a type of data-adaptive decision tree that trains on boot-
strapped sub-samples of the data to avoid overfitting. The tree can model highly non-linear
relationships in the data, and therefore represents a significantly more flexible model than
a linear regressor. For further details see Breiman (2001a).

SHapley Additive exPlanations (SHAP) SHAP is a unified framework for undertaking model
explanation, and derives from the seminal game theoretic work of Lloyd Shapley Shap-
ley (1953). The framework conceives of predictors as collaborating agents seeking to
maximize a common goal (i.e., the regressor performance). The approach involves system-
atically evaluating changes in model performance in response to including or restricting
the influence from different combinations of predictors. SHAP provides estimations of
the per-datapoint, per-predictor impact on model output, as well as the average predictor
impacts. These estimations are called ’explanations’ because they explain why a particular
regressor performs the way it does. The results are provided as feature importances, which
describe how important the variable is for the model outcome and how much it changes
the outcome.

Structural Form Structural form indicates whether or not certain variables or phenomena are
able to influence one another (causally), regardless of the functional form underlying
these influences. See above for Data Generating Process and, in contrast, functional form.

Structural Equation Modeling (SEM) A statistical modeling technique which represents
structural/causal relationships between variables in a set of structural equations. The
functions underlying the relationships between these variables is assumed to be linear
(see above for the definition of linearity). See Kline (2005) for further details.

Typicality An information theoretic approach to characterising whether samples are ‘normal’
or not, in a general sense (i.e., not in reference to specific, low order statistics like the
mean, for example). A sample is typical sample if it falls within a certain margin defined
by the entropy of a distribution. See Cover and Thomas (2006) for further details.



CHAPTER 1

Introduction

“To question the foundations of a discipline or a practice is not necessarily to deny

its value, but rather to stimulate a judicious and balanced appraisal of its merits.”

Ashcroft and ter Meulen (2004)

“In several fields of investigation, including many areas of psychological science,

perpetuated and unchallenged fallacies may comprise the majority of the

circulating evidence.”

Ioannidis (2012)

Meta-researchers have increasingly drawn attention to the replicability crisis affecting psychol-

ogy and social science (Oberauer and Lewandowsky, 2019; Botella and Duran, 2019; Aarts

et al., 2015; Stevens, 2017; Marsman et al., 2017; Shrout and Rodgers, 2018; Yarkoni, 2019). In

addition, the domains have come under heavy criticism for poor theory specification (Scheel

et al., in press; Oberauer and Lewandowsky, 2019) to the extent that most research findings in

psychology have been described as “not even wrong” (Scheel, 2022). Furthermore, the compli-

cated nature of most psychological phenomena raises questions as to the feasibility of building

realistic models which can deal with the complexity of human behaviour and social interaction,

even in principle. Meehl coined the term ‘crud factor’ (Meehl, 1990; Orben and Lakens, 2020),

1
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which alludes to the point that null-effects are practically non-existent in social phenomena

because “everything [in social science] correlates to some extent with everything else”. This

complexity, in turn, has called into question the appropriateness of the fields’ relatively blunt

approaches to analysis (Bryan, Tipton, and Yeager, 2021; Freedman, 1985). To add to these

problems, measurement in psychology is notoriously difficult, and the associated challenges

are often not taken seriously. This leads to meta-research with titles such as “Measurement

Schmeasurement”, which is a valuable article discussing how research in psychology is often

undermined by a range of problems, including “a lack of transparency, ignorance, negligence,

or misrepresentation of the evidence.” (Flake and Fried, 2020)

Table 1.1 summarises some of the open issues. As such, psychology and social science face a

number of serious challenges: the inherent complexity of the phenomena of interest and the

statistical methods employed to model them, the replication crisis, the theory crisis, and as I

discuss below, functional and structural misspecification. The confluence of these challenges

poses a serious threat to the validity and meaningfulness of research in these domains, and brings

into question the direction that researchers in these fields should take. If this direction is to be

positive with respect to improvements in the domains, then it is important that psychologists

and social scientists engage with the meta-research surrounding areas of possible theoretical,

analytical, and statistical improvements.

In this thesis I present four contributions, as well as two application examples, which are strongly

motivated by the problems of misspecification and complexity, and provide recommendations

to researchers. The proposals include the use of modern, powerful, data-adaptive techniques for

function approximation (such as those tools from the domain of machine learning), as well as

the use of techniques from the domain of causality (such as causal Directed Acyclic Graphs)

and information theory. I demonstrate how these techniques can (a) help us to match the level

of complexity of our modeling to the inherent complexity of the phenomenon under study, (b)

reduce ambiguity with respect to theory specification, and increase the transparency of our

assumptions and modeling choices, (c) reduce the complexity of a mathematical representation

of a theory without impacting the validity of any downstream estimates, (d) improve the

efficiency of data collection methodologies, (e) highlight the critical nature of causality even
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Table 1.1: Non-exhaustive list of some challenges facing psychologists and social scientists.

A lack of understanding about and misuse of p-values
and statistical tests

(Cassidy et al., 2019; Gigerenzer, 2018; Gigeren-
zer, 2004; Colquhoun, 2014; Colquhoun, 2017;
Colquhoun, 2019; McShane et al., 2019)

Overly generous claims and warped interpretations (Yarkoni, 2019; Spellman, 2015; Scheel et al., in
press)

Issues relating to the testing of theory (Scheel, 2022; Oberauer and Lewandowsky, 2019;
Muthukrishna and Henrich, 2019a)

Immature theories (Scheel et al., in press)

Misunderstandings about statistical power and low
sample sizes

(Sassenberg and Ditrich, 2019; Baker et al., 2020;
Correll et al., 2020)

Measurement problems (Flake and Fried, 2020)

A lack of meta-analyses (Schmidt and Oh, 2016)

A lack of assumptions testing (Ernst and Albers, 2017)

Pressure to publish (Shrout and Rodgers, 2018; DeDeo, 2020)

Double-dipping and overfitting (Kassraian-Fard et al., 2016; Kriegeskorte et al.,
2009; Mayo, 2013; Yarkoni and Westfall, 2017)

A failure to consider the consequences of aggregation
and non-ergodicity

(Fisher, Medaglia, and Jeronimus, 2018; O. Peters
and Werner, 2017)

Academia and research being a strategy game with
unscientific incentives

(Gigerenzer, 2018; DeDeo, 2020)

A reluctance of journals to publish replications (G. Martin and Clarke, 2017; Gernsbacher, 2019)

Issues with the peer review process (Heesen and Bright, 2020)

Reporting errors (Nuijten et al., 2016)

A lack of research practice standardization (Tong, 2019)

The conflation of predictive and causal approaches
and interpretations

(Grosz, Rohrer, and Thoemmes, 2020; Yarkoni and
Westfall, 2017; Shmueli, 2010)

General scientific misconduct (Stricker and Günther, 2019)

when otherwise powerful, exploratory machine learning techniques are used, (f) highlight the

strange, unintuitive behaviour of datasets with more than four dimensions, and (g) undertake

outlier detection in a way that is robust to this aforementioned strange behaviour.

In the remaining part of this Chapter, I start by discussing the problems of misspecification,

complexity, and general modeling challenges in more detail, and provide an overview of the

structure of the thesis with a summary of each of the contributions.
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1.0.1 Functional and Structural Misspecification

The problems and challenges outlined above seem to exist to a greater or lesser extent in different

subdomains of psychology and social science, and they are somewhat unsurprising given (a)

the inherent complexity of humans as subject matter, and (b) the relatively unsophisticated

approaches to modeling and theory building in the fields in general. Indeed, whilst there exist a

multitude of powerful, highly adaptive, and general methods developed in the domain of, for

example, engineering, psychologists are reluctant to use anything other than highly constrained,

highly reductionist, linear models (Blanca, Alarcon, and Bono, 2018). This leads to a statistical

modeling culture with assumptions which are “so unrealistic... [that] everybody agrees they are

known to be false.” (M. van der Laan, 2015)

Sometimes, it is not possible to use anything other than linear models, owing to limitations in

data collection methodologies, measurement challenges, etc. For example, consider spectral

analysis, which is typically included in the syllabi of most bachelors courses in engineering, and

can be used to model and analyse a wide variety of phenomena (M. J. Vowels, L. M. Vowels,

and N. Wood, 2021).1 If one wishes to use this technique in psychological applications, it is

necessary (amongst other things) to have time-series/longitudinal data collected at sufficiently

consistent and regular intervals (M. J. Vowels, K. Mark, et al., 2018; M. J. Vowels, L. M. Vowels,

and N. Wood, 2021). Unfortunately, longitudinal studies are both expensive, and subject to

participant dropout. In contrast, cross-sectional data, which are likely to be high in abundance

(leading to higher statistical power), may simply not be able to be used to answer the same

research questions. Regardless, psychologists rarely, if ever, use this approach, and it would

seem that this is more because such methods do not form part of psychologists’ syllabi, than it

is due to a justifiable choice (M. J. Vowels, L. M. Vowels, and N. Wood, 2021).

The result of a limited set of tools (linear models) with which to deal with wide variety of

(arbitrarily complex) problems leads to two types of misspecification. The first I refer to as

functional misspecification: Fitting a linear function to a non-linear phenomenon can lead to

arbitrarily biased estimates (M. J. Vowels, 2021). Frequently, and in addition to problems with
1Technically, spectral analysis is a type of linear decomposition, but it enables us to look at non-linear trajectories

over time (amongst other things). As such, I distinguish it from, say, linear regressions using only first order functions
of the variables.
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functional misspecification, researchers also misunderstand the way their analyses (linear or

otherwise) interact with the Data Generating Process (DGP) which led to their observations/data.

As with functional misspecification, this problem also leads to arbitrarily biased effect sizes

which, even under optimal conditions (reliable measurement, sufficiently complex representation

of the phenomenon, linearity, etc.), bare no relation to the target quantities the methods are

intended to estimate. This I refer to as structural misspecification (M. J. Vowels, 2021). One

example of structural misspecifcation concerns popular 3-4 variable mediation models. Such

simple causal structures are very unlikely to reflect the phenomenon with a necessary degree of

complexity and, again, the results will be arbitrarily biased.

Rarely does it seem to be the case that researchers in psychology and social science take the

time to really ascertain whether the research question is even approximately answerable using

their chosen methodology. Arguably, if researchers did manage to establish an appropriate

match between their theoretical, analytical, and statistical techniques and the phenomena under

study, we would see a different state of affairs in the meta-research literature. Some authors have

even described psychometrics as a pathology of science, on the basis that (at least significant

portions of) hypotheses are accepted without serious attempts to test them, and that this problem

is never questioned or rectified (Michell, 2016). In terms of the focus of this thesis, the result

of functional and structural misspecification, is that replication issues resulting from (amongst

other things) underpowered analyses represent only the tip of the iceberg.

1.0.2 Complexity - The Big Assumption

To help establish some perspective for the complexity issue, and why it matters for research

and analysis, I designed and implemented a model for controlling a standard, workbench-

mounted, six-degree-of-freedom robotic arm.2 This model is far from innovative and is based

2The specific choice of this example is somewhat arbitrary. Another compelling example involves the way
engineers in transducer design use both the lumped-parameter method for adequate/rough-and-ready modeling
of the low-frequency behaviour of transducers, compared with the highly-parameterised finite-element approach
for increased precision over a wider operational bandwidth (J. Wright, 1998; Nielsen et al., 2020). Both methods
are significantly more complex than theories in psychology, but the latter is highly parameterised and not directly
interpretable (it is thus analogous to the large-language model approach to generating written text. The authors
practical experience (following nine years spent designing loudspeakers for commercial applications) is that the
choice between the lumped parameter and the finite element methods comes down to a choice between two levels of
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Figure 1.1: Simple model for controlling a robotic arm.

Note. Simple controller for a robotic arm. Corresponding expression is presented in Equation 1.1.

on rudimentary / standard recommendations in robotics textbooks - see works, for example, by

Fu, R. Gonzalez, and C. Lee (2018) and Ellery (2018). The corresponding block/computational

diagram is shown in Figure 1.1, and the expression corresponding with the torque of the

manipulator for this model is given below (Ellery, 2018; Fu, R. Gonzalez, and C. Lee, 2018):

τ = D(θ)

(
θ̈d +Kp

(
θd − θ

)
+Ki

∫ (
θd − θ

)
dt+Kd

(
θ̇d − θ̇

))
+ C(θ, θ̇)θ̇ +G(θ)

(1.1)

Here, the control law is represented in the terms multiplied by the coefficients Kp (proportional

control gain coefficient), Ki (integral control gain coefficient) and Kd (derivative control gain

coefficient). There exist what are referred to as ‘disturbance terms’ D(θ), which is the inertia

matrix, G(θ), which is the gravity matrix, and C(θ, θ̇), which is the Coriolis effect matrix.

These terms are intended to model external factors which interfere with our ability to accurately

position the arm. The θ terms are the joint angles which are produced by the control system, in

contrast to the θd terms which are the desired/target joint angle terms. The dots over the top of

certain terms indicate first derivative / velocity (single dot) and second derivative / acceleration

(double dot).

simulation accuracy. The former allows good and fast approximation over a limited bandwidth of the audio spectrum,
whilst the latter allows us to extend this useful bandwidth significantly, but at the cost of computational expense and
modeling detail.
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The main point here is that even a visual inspection of the block diagram (Figure 1.1) and

the corresponding control law (Equation 1.1) would indicate a level of complexity which

exceeds that of most psychological models (see also: Navarro, 2021). And yet, we know that

the complexity of human psychology and behaviour exceeds that of a six-degree-of-freedom

robotic arm. Indeed, even though linguistic (as opposed to mathematical) representations

of psychological phenomena are often deep and nuanced, the contrasting simplicity of the

downstream manifestation of these theories as statistical models suggests gross levels of under-

specification. These problems with the mathematical representation of theories in psychology

(or rather, the general lack thereof) constitute a large part of the focus of articles such as those

by Scheel (2022), Scheel et al. (in press), Borsboom et al. (2021), Robinaugh, Hoekstra, et al.

(2020), Haslbeck et al. (2021), van Rooij and Blokpoel (2020), Eronen and Romeijn (2020),

and Navarro (2021), who argue in favour of the mathematical formalisation of psychological

theory. However, in my view, the proposals for how to fomalise and specify otherwise verbal

theories (the latter of which are sometimes referred to as ‘proto-theories’ in the literature)

are either too non-specific to evaluate for general applicability, or have only been applied to

very few and limited examples (see Robinaugh, Haslbeck, et al., 2019 for an example of a

computational model designed to model panic disorder). Traditionally linguists took similar

kinds of approaches to modeling language as recommended in these works - by breaking down

sentences into parts of speech, parameterising grammar, phonetics, phonemics, and using basic

statistical models to predict the next word in a sequence, they were able to build top-level

mathematical representations of human language (Jelinek, 1997). However, the domain has

by-and-large, at least for written language, abandoned these hand-engineered, expert-designed

approaches in favour of those at the other end of the complexity spectrum: Highly overspecified,

‘black-box’, Large Language Models (LLMs). For example, the BERT LLM model (Devlin

et al., 2019) comprises between 108 million and 1270 million parameters (depending on whether

the small or extra-large model is used). This paradigm shift reminds us of the infamous quote

“Every time we fire a phonetician/linguist, the performance of our system goes up” (circa. 1988)

.3 The sentiment of this quote seems to have aged well: LLMs provide state-of-art performance

3The origins of the quote are not clear, but see https://quotepark.com/quotes/
1777032-fred-jelinek-every-time-i-fire-a-linguist-the-performance-of-o/
for a non-academic discussion which references Jurafsky and J. H. Martin (2009).

https://quotepark.com/quotes/1777032-fred-jelinek-every-time-i-fire-a-linguist-the-performance-of-o/
https://quotepark.com/quotes/1777032-fred-jelinek-every-time-i-fire-a-linguist-the-performance-of-o/


8 Chapter 1. Introduction

by an incredible margin and produce output which is difficult to discern from that generated by

a human, all without requiring hand-design by a team of expert linguists. Even the application

of these modern language models as part of analyses concerning imperfect/challenging datasets

indicates worthwhile increases in predictive performance margins over otherwise comprehensive,

if nonetheless traditional, expert-designed methods such as Linguistic Inquiry and Word Count

(LIWC) (Biggiogera et al., 2021; Body et al., 2022).

If we accept, firstly, that the theory required to achieve only approximate control of a simple

robotic arm is already more complex/involved than the typical specification of most psychologi-

cal theories; and secondly, that most psychological and behavioural phenomena are driven by

processes which are more complex than - or even subsume those underlying - language, which

requires at least hundreds of millions of parameters to model well, then the question raises

its head: To what extent can psychological phenomena be represented mathematically, such

that they are also useful, sufficiently complex and sufficiently accurate, in principle? Framed

in a different way: If it takes 108 million parameters to model written language well (and we

already have better models which have well over 175 Billion parameters, such as GPT-3; Brown

et al., 2022), how many parameters are needed to model human psychology and behaviour?

Even though models like BERT and GPT-3 are generative, in that their principal mode of

functioning involves the generation of new text (vis-à-vis null-hypothesis significance testing),

understanding the complexity of the model required to produce human-like text provides some

perspective on the scale of the problem as a whole.

Unfortunately, the focus of this thesis is not intended to answer these questions (for a related

perspective, see: Freedman, 1985). Nonetheless, they are worth posing in light of the Chapters

presented herein, so that the reader can bear them in mind. I pose them both in the interests of

transparency - critiquing a field for its use of overly simplistic models and then proposing by way

of solution even more approaches which are at least similar in their levels of tractability is not

ideal - but also because I consider ways to address complexity (low/practicable levels thereof) in

Chapters 5 and 7. Indeed, some of the methods I propose assume a priori that a realistic model

of the phenomenon can be and has been specified by the researcher. Whether or not the model

is correct ‘enough’ (or could ever be so, even in principle) to yield meaningful and interpretable
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results is difficult to answer, and therefore the relevance of the proposed methods assumes - and

this is what I informally refer to as ‘The Big Assumption’ - that expert-specified mathematical

models of psychological phenomena can be meaningful enough and capture enough inherent

complexity to be useful for inference and/or to inform experimental design.4

In the event that one were to end up concluding that the answer to these questions is ‘no - there

is no way to represent a particular complex psychological phenomenon in a mathematically

tractable form’, what would this mean for researchers? For a start, this conclusion is unlikely

to apply to all psychological/behavioural phenomena, even if it might apply to a greater or

lesser extent to different subdomains - for a start, we have certainly made useful progress

in psychology as a whole - and also, not all questions of psychology are equally difficult

to investigate (regardless of whether they are or are not equally complex in their nature).

The negative response also does not preclude the integration of adequately complex (but

nearly uninterpretable) data-driven models from the domain of machine learning and artificial

intelligence. Indeed, the author is currently working on such projects in parallel with the

work for this thesis (M. Vowels, 2020), which involve the use of existing computer vision

techniques such as OpenFace (Baltrusaitis et al., 2018) and OpenPose (Z. Cao et al., 2018),

as well as those which are designed by my colleagues and myself (see, for example: M.

Vowels, N. Camgoz, and Bowden, 2021; M. J. Vowels, N. C. Camgoz, and Bowden, 2021).

Unfortunately, such modern and highly parameterised approaches do, in general, require access

to large amounts of very rich data. For instance, investigating couple conflict might, in the

ideal case, involve the installation of sensors (microphones and cameras) in couples’ homes, so

that 24 hour surveillance is available to capture their spontaneous interactions for subsequent

multi-modal (video and audio) analysis. This clearly poses ethical and privacy concerns, even if

one is able to afford to run the associated data collection methodology with any appreciable

number of participants. Unfortunately, the traditional/existing paradigm may not represent a

viable option either, and yield meaningless results: using self-report questionnaires to create a

4Even when we are able to design seemingly precise interventions for experiments, it is practically challenging to
disentangle the role of a particular therapist from the specifics modality being tested. Furthermore, notwithstanding
the unique interactions which occur between therapist, patient, and modality, the endeavour to understand what
it is precisely about the intervention/modality which has the desired effect is also difficult to disentangle. Indeed,
interventions in psychology have been described as ‘fat-handed’, making it extremely difficult to reason effectively,
and/or causally about underlying mechanisms (Eronen, 2020; Eronen and Bringmann, 2021).
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retrospective time-aggregate of someone’s previous conflict with their partner creates a myriad

of measurement issues, and quite possibly prevents us from answering the questions we care

about - in this example, questions which possibly concern the relationships between complex

dynamic interactions in body pose, linguistic, para- and non-verbal behaviours.

Furthermore, the level of abstraction required to yield useful output is also to be determined

as part of the modeling process. Consider, hypothetically, a research project investigating

the role of non-verbal hand, arm, body and face movements in communication. It might be

reasonable to suggest that there exist substantial individual differences and heterogeneity, such

that the manner of gesturing for one person, and/or the way a person interprets the gestures

of another, are significantly different across individuals. These individual differences might

also not be explainable with demographic, cultural, or a finite set of person-specific factors

(such as unique childhood experiences, etc.). Additionally, the number of possible gestures,

as represented by an appropriate lexicon, might be assumed to be very high, and interact in

complex ways with the verbal language one uses to communicate. If one is interested in

identifying which gestures or gesture combinations impact the outcomes of conversations,

it is necessary to dramatically constrain the conditions of experimentation and to collect an

extremely large volume of data in order to control for the enormous degree of situational and

contextual variation. Only then could one infer, for example, gesture combination 241 for

conversation topic 13, with arousal and valence category 5, for people with cultural background

type 38 and relationship type 5, has impact y in the portion t = 4 to t = 25 of an engagement.

Once one begins to take averages over different topics of conversation, people of different

backgrounds, etc., one begins to lose specificity for which roles one particular gesture plays in

different situations. Forming some ‘global’ recommendation that gesture combination 241 is

good to integrate into general communication on average then represents a somewhat blunt and

unhelpful recommendation. Indeed, such non-specific recommendations for types of interaction

might result in the opposite to their intended effect - being perceived instead as prescribed,

unnatural, forced, and/or awkward.

The logic of this example may apply more or less in reality, but the underlying message is

broadly relevant to psychological and social phenomena, and the challenge it poses might
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more generally fall under the umbrella of heterogeneity (Bryan, Tipton, and Yeager, 2021).

The difficulties associated with social phenomena and the inherent degree of heterogeneity

perhaps also renders unsurprising the move away from hard-designed/coded language models,

towards the use of highly over-specified models with billions of parameters. Without this

level of complexity, the language models are extremely limited and fail to generate realistic

text. Even though simple models are appealing for their straightforward interpretability, it is

worth acknowledging the point of view that, as humans, we are biased towards explanations of

phenomena that happen to be meaningful to us, even if no such simple explanations necessarily

exist. Indeed, if humans are considered to only be able to handle 7 ± 2 cognitive entities at

any one time (Rudin, 2019; Miller, 1956), why should any phenomenon, which happens by its

very nature to involve the interaction of more than 7± 2 components, be assumed to be human

interpretable by default (and modeled as if it were)? If we, as humans, are unable to explain

an outcome of a highly complex but accurately predictive model in an intuitive way, does it

make the model inappropriate? Once again, the willingness to abandon the anthropocentric

constraint on the human-comprehensibility of our modeling techniques is partly what has lead

to the dramatic increase in effective language modeling.

In combination with these issues of complexity, the running of underpowered studies is noted

to be rife in psychology and social science (as alluded to at the start of this Introduction).

Accordingly, if we run an underpowered study (much less than 80%, for instance) and we find a

significant result, there is a high chance that this result is a false positive (i.e., the conditional

probability of it being a false positive given that we have a significant result is much higher that

which we would like to expect given an alpha level of 0.05). Small samples also imply less

expensive studies, and the reward (in terms of publications) possibly justifies the undertaking, at

least from a career perspective. As there is no way to know what the true effect size is ahead of

time, particularly if we are taking a global aggregate over a wide set of conditions for complex

phenomena (such as the impact of gestures on conversational outcomes), we might be tempted

to overestimate the minimum effect size of interest (Lakens, 2022) when undertaking our power

analyses. This then also leads us to underestimate the number of participants required for our

study. Any attempt we make to include moderators into traditional linear methods to deal with

heterogeneity then dooms us to being locked into underpowered regimes (moderators often
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requiring, as they do, substantially larger sample sizes to achieve the same power as the main

effect of interest).

Issues of statistical power notwithstanding, more fundamentally we must still grapple with the

meaningfulness of the resulting quantity we wish to estimate, and whether it represents too

much of an aggregate over too many conditions of variation. Even if confronting the inherent

complexity of a phenomenon has the potential to create a research impasse, I would instead

argue that it encourages us to adopt an appropriate level of skepticism and take extra care when

drawing conclusions from models which are likely to be significantly underspecified. It goes

without saying that in the scientific endeavour we ought to be careful, and to always ‘do our

best’ to design realistic and helpful models of reality. However, research in psychology and

social science in particular concerns the well-being of humans, and from an ethical standpoint, a

heavy responsibility falls on the researchers to avoid the proliferation of damaging, misleading,

or false information that might unavoidably derive from underpowered studies which use

unreasonably basic models to represent almost intractably complex phenomena. Unfortunately,

the engagement of researchers with good research practices does not regularly align with the

incentives (such as the pressure to publish) built into the academic machine (DeDeo, 2020; van

Dalen, 2021).

1.0.3 Proposed Solutions and Thesis Structure

In this Chapter I outlined three principal challenges faced by psychologists and social scientists:

Functional misspecification, structural misspecification, and complexity. These three problems

overlap somewhat, and together form a strong motivation to identify a way forward.

Chapter 2 - Misspecification

One remedy for the structural misspecification issue involves the engagement of psychologists

with causal methods, such as the causal Directed Acyclic Graph framework (Pearl, 2012) or

the potential outcomes framework (D. B. Rubin, 2005). The relative scarcity of such methods

in psychology and social science is quite an oversight, and has interesting putative historical
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causes (Pearl, 2012). As Reynolds (2021) explain: “Nonetheless, these and other undergraduate

texts give students very little information about our modern understanding of causality. These

‘traditional’ views can likely be traced to three giants in the field of statistics: Sir Francis Galton,

Karl Pearson, and Sir Ronald Fisher, with Pearson potentially having the greatest impact.”

Regardless of the historical origins of the situation, the failure of researchers to take these

approaches seriously has led to untestable theories (Scheel, 2022), a conflation of causality

and correlation, a lack of assumptions testing, and a lack of transparency (Grosz, Rohrer, and

Thoemmes, 2020; Rohrer, 2018).

On the other hand, a remedy for functional misspecification involves the engagement of psy-

chologists with machine learning and both non- and semi-parametric statistical methods. These

approaches can allow psychologists to avoid imposing unreasonable constraints to fit unknown

functional relationships between variables, without sacrificing statistical inference (via, for

example, the null-hypothesis significance testing framework). Unfortunately, at least some of

these techniques (both causal and machine learning) are non-trivial to understand, implement,

and adopt, particularly for researchers in a field which, in general, is known for its limited tech-

nical background/training (Boker and Wenger, 2007) and patchy statistical education (Cassidy

et al., 2019). This is, of course, a great shame, psychology representing, as it does, the study

of something which is of the upmost importance to us - ourselves. It is also something which

deserves the application of methods with a level of flexibility and complexity which can match

the level of complexity of the phenomenon they are intended to model. Humans are not simple

by design, and arguably deserve better representation than with straight lines and structurally

reductionist models.

In Chapter 2, I present the following work:

Vowels, M.J., 2021. Misspecification and Unreliable Interpretations in Psychology and Social

Science. Psychological Methods. DOI: 10.1037/met0000429.

In the Chapter, I demonstrate the nature of misspecification problems and discuss how they

manifest in typical psychology and social science research. I argue that most models used in

psychology and social science are limited in their functional form and misspecified in terms

of causal structure. The result is that subsequent interpretations conflate predictive and causal
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language and are also unreliable. I make four recommendations for researchers in these fields

to update and improve their research practice by (1) giving more consideration to the use of

flexible and varied predictive modeling and model explainability techniques, such as those from

the domains of machine learning and information theory; (2) to seek collaboration with experts

from the fields of statistics and machine learning; (3) to be transparent about whether they are

adopting a predictive or causal approach; and (4), to distill and simplify their research questions

and hypotheses in order to increase the chances that these questions and hypotheses can be

practically addressed and tested.

Chapters 3 and 4 - Applications of Machine Learning and Causal Analytical Methods

These two chapters provide application examples of two important recommendations made in

Chapter 2. Firstly, that researchers engage with machine learning techniques: Chapter 3 provides

an example of machine learning and machine learning explainability techniques applied to

predict perceived partner support from relational and individual variables. It is based on the

following publication:

Vowels, L.M., Vowels, M.J., Carnelley, K.B., Kumashiro, M., 2022. A machine learning

approach to predicting perceived partner support from relational and individual variables.

Social Psychological and Personality Science, DOI: 10.1177/19485506221114982.

Then, in Chapter 4, I provide a second application example for causal discovery, machine

learning, and causal inference (specifically targeted learning) all together for the task of identi-

fying causal links between attachment styles and mental health, for data collected during the

COVID-19 pandemic:

Vowels, L.M., Vowels, M.J., Carnelley, K.B., Millings, A., Miller, J.G., Under Review. Toward

a Causal Link between Attachment Styles and Mental Health during the COVID-19

Pandemic.

As such, these two chapters provide evidence that the recommendations I made can be fruitfully

applied in practice.



15

Chapter 5 - Model Complexity

Further considering the ideas and recommendations presented in Chapter 2 regarding misspeci-

fication, I develop the relevance of a consideration for structure to see how we can reduce the

complexity of statistical models without biasing the effect sizes we wish to estimate. Indeed,

given the discussion above about ‘The Big Assumption’, any reduction in complexity is valuable

in making the resulting statistical estimation problem tractable. As such, in Chapter 5, I present

the following work, which presents techniques for reducing the complexity of a structural

model:

Vowels, M.J., 2023. Prespecification of Structure for the Optimization of Data Collection and

Analysis. Collabra: Psychology.

In the Chapter, I argue that graphical representations of our theories provide us with an op-

portunity to encode our domain knowledge about a particular phenomenon of interest, and

make our assumptions more explicit. I introduce unfamiliar readers to the rules of Directed

Acyclic Graphs, and explain how to use these rules to understand the consequent statistical

structure in the data. Furthermore, I show that, by using these rules (in particular, the concept of

conditional independencies), we can significantly shrink the required causal structural model

without affecting the validity of the associated estimates, thereby reducing the required sample

size and enabling us to redirect resources and funds towards the collection of variables which

are critical to answering the questions we care about.

Chapter 6 - Outrunning Causality

Whilst I make recommendations for the use of machine learning in Chapter 2, in Chapter 6

I also demonstrate how these machine learning models are far from immune to the structural

misspecification issue, and that the structural and functional considerations are tied together.

With the increased uptake and application of new methods from the domain of machine learning,

it is not uncommon to also see such models being misunderstood and misused. As such, in

Chapter 6, I demonstrate that even if researchers wish to use machine learning to explore their



16 Chapter 1. Introduction

data, predictive methods strongly interact with the underlying structure in such a way that the

exploration can nonetheless yield misleading results:

Vowels, M.J., Under Review. Trying to Outrun Causality with Machine Learning: Limitations

of Model Explainability Techniques for Exploratory Research.

In the Chapter, I question the utility of measures of predictive importance and explainability

techniques to psychologists wishing to explore the data to guide their research. Indeed, how

useful is it for the development of a theory to know that variable X is useful for predicting

variable Y in arbitrary algorithm f , if the estimation of usefulness is specifically tied to the

algorithm and the choice of the other predictors? I conclude that one cannot ‘outrun causality

in machine learning’, and that despite of the powerful function approximation capabilities of

machine learning algorithms, they cannot be used to reliably explore the data even for relevant

predictive variables, let alone causal variables.

Chapter 7 - The Typical Human

Above, I discussed what I refer to as The Big Assumption - whether a psychological phenomenon

can, in principal, be represented by a tractable, researcher-specified mathematical model (such

that the model is also useful and sufficiently accurate). On a less philosophical level, I try to

understand how traditional statistical methods behave as we start to accommodate the complexity

of psychological phenomena, and demonstrate that even datasets with 4 Gaussian variables

start exhibiting unintuitive behaviours which we should be aware of. Chapter 7 presents the

following work:

Vowels, M.J., Under Review, Typical Yet Unlikely: Using Information Theoretic Approaches

to Identify Outliers which Lie Close to the Mean.

Whilst this work differs from the others in that it does not directly consider issues of struc-

ture or functional form, it takes a complementary perspective in terms of the implications of

high-dimensionality and complexity. I discuss how various manifestations of the arithmetic

mean (which, as I discuss, may itself represent an overly simplistic model) have been used

both productively and unproductively as a blunt way to characterize samples and populations.
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Through an exploration of multi-dimensional space, I show that the mean, far from representing

normality, actually represents abnormality, in so far as encountering a datapoint close to the

mean in datasets comprising more than a handful of dimensions becomes incredibly unlikely,

even with a large number of datapoints.

The approach I propose to ameliorate the associated problems are also inspired by information

theory, which is a domain I recommended researchers to engage in in Chapter 2. In contrast

with the arithmetic average, the information theoretic quantity known as ‘typicality’ provides

a way to establish normality (or rather, whether a datapoint is typical or atypical), which is

particularly useful in high-dimensional regimes. Given that researchers in psychology and

social science frequently deal with multivariate datasets, and that the peculiarities associated

with multi-dimensional spaces start occurring in relatively low dimensions (as few as four), it

is important that researchers have some awareness of the concepts presented in this paper. To

conclude, I finish with a demonstration for how the typical measure can be adapted to outlier

detection, and provide an evaluation to verify its performance in comparison with a popular

alternative.

Chapter 8 - Conclusion

In Chapter 8 we provide a discussion of possible avenues for future work, discuss some of the

limitations of the proposals made, particularly in relation to The Big Assumption, provide a

discussion about how the field can adapt and make positive changes, and finish with a summary

conclusion.

1.0.4 Summary

This thesis provides an exploration of various important problems and challenges facing re-

searchers in psychology and social science. In the last three years I have had the opportunity to

apply some of the proposals made in this thesis to ‘real-world’ psychological applications (in

addition to the two included in Chapters 3 and 4) - in the Declaration Section, I provide a list of

such additional works (five accepted for publication, three under review at the time of writing).
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The statistical, causal, and machine learning approaches I discuss in this work have been adapted

to a wide variety of problems relating to obesity, COVID, and mental health, partner support,

sexual desire, and others. These projects help motivate and justify the real-world applicability

of the proposals made herein.

Finally, whilst the four technical works presented in this thesis are not intended to provide

finite solutions to the problems described above (particularly in light of the deeper question

concerning The Big Assumption), they are strongly motivated by them. Furthermore, in spite of

this introduction’s otherwise gloomy tone, I am positive that if researchers acknowledge the

problems, research methodology and analysis in psychology and social science can begin to

move in a positive direction. Indeed, the nature of at least some of the problems (for example,

the limited use of non-linear and causal models) would seem to encourage an optimistic

interpretation of the situation: That there presently exists a tremendous opportunity to innovate

and modernise the current approach to research, simply by assimilating recent advances and

developments in other domains such as engineering, machine learning, and statistics.



CHAPTER 2

Misspecification and Unreliable Interpretations in Psychology and

Social Science

[The] lack of truth in current practice, supported by statements such as “All models

are wrong but some are useful,” allows a user to make arbitrary choices even

though these choices result in different answers to the same estimation problem. In

fact, this lack of truth in current practice presents a fundamental drive behind the

epidemic of false positives and lack of power to detect true positives our field is

suffering from.”

M. J. van der Laan and Starmans (2014)

Notwithstanding minor edits, this chapter is equivalent to the following publication:

Vowels, M.J., 2021. Misspecification and Unreliable Interpretations in Psychology and Social

Science. Psychological Methods. DOI: 10.1037/met0000429.

Abstract: Numerous causes have been attributed to the replication crisis in psychology and

the social sciences, many of which concern problematic analytic and statistical practices. In

this work we focus on three issues that we believe deserve more attention. Namely, the use

of models with limited functional form, the use of misspecified causal models (misspecified

19
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either due to limited functional form, or incorrect structure), and unreliable interpretations

of results. We demonstrate a number of consequences relating to these issues via simulation,

and provide recommendations for researchers to improve their research practice. While the

issues raised in this work have been identified previously, we believe it is extremely important

to encourage psychologists and social scientists to engage with the debate surround areas of

possible analytical and statistical improvements.

2.1 Introduction

Meta-researchers have increasingly drawn attention to the replicability crisis affecting psychol-

ogy and social science (Oberauer and Lewandowsky, 2019; Botella and Duran, 2019; Aarts et al.,

2015; Stevens, 2017; Marsman et al., 2017; Shrout and Rodgers, 2018; Yarkoni, 2019). A key

element of the crisis relates to common and fundamentally problematic analytic and statistical

practices, some of which we believe deserve more attention. In our view, these problematic

practices have the potential to seriously affect the reliability and interpretation of research and

therefore to hinder scientific progress.

These problematic practices relate to observational research and modeling in psychology and

social science, and may be broadly categorized as issues with (1) the use of statistical/predictive

models with limited functional form; (2) the misspecification of causal models; and (3) unreliable

and interpretations of predictive or causal models. All of these issues affect a researcher’s ability

to accurately model some aspect of the joint distribution of the data, for the purpose of predicting

an outcome, estimating a causal effect, and drawing scientific conclusions. The first issue relates

to the ubiquitous use of linear models, and a failure to consider more powerful, possibly data-

adaptive techniques for both predictive and causal modeling. The second relates to the use of

misspecified implicit (e.g. multiple linear regression) or explicit (e.g., structural equation) causal

models which do not sufficiently reflect the true structure in the data. The final issue relates both

to how predictive models are often (mis)interpreted as causal models, and vice versa, and also

to how these interpretations are likely to be unreliable given the models’ underlying limitations

and assumptions.
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We address the three issues in turn through both didactic illustration and simulation, and make

a number of recommendations for improving research practice. While these issues relating

to research practice have been previously discussed, we believe it is extremely important to

continue to encourage and stimulate consideration and engagement with the debate surrounding

areas of possible analytical improvement. Furthermore, in spite of researchers having already

made important recommendations for improving practice (e.g., Lakens, Hilgard, and Staaks,

2016; Scheel et al., in press; Gigerenzer, 2018; Jostmann, Lakens, and Schubert, 2016; Lakens

and Evers, 2014; Orben and Lakens, 2020) we see relatively little change in the research

communities of psychology and social science (Claesen et al., 2019; Scheel et al., in press).

For convenience, we have included some key definitions of relevant terminology, which is

followed by a review of the literature. The paper is then split into four main parts. In Part 1, we

describe how the typical models used in psychology are limited by their functional form and

discuss the implications of this issue and possible ways to address it. Part 2 is concerned with

misspecification in causal modeling, and how the typical models used in psychology and social

science do not adequately reflect the true structure of the data. We discuss how this impacts

interpretability, how a consideration for causal structure is essential when designing a model,

and identify some challenges associated with undertaking causal modeling. Part 3 introduces

the notion of explainability as an alternative to interpretation, as a means of deriving insight

from predictive models. We discuss interpretation, considering the relevant points on limited

functional form and misspecification covered in Parts 1 and 2, and discuss how interpretations

in psychology and social science tend to be a conflation of causal and predictive interpretations.

Finally, Part 4 brings together the principal points discussed in previous parts, and sets out four

recommendations for improving practice.

2.1.1 Definitions/Explanations

In this section we define and explain, for the purposes of this paper, six terms: ‘approach’,

‘model’, ‘predictive’, ‘causal’, ‘functional form’, and ‘misspecification’, and summarize these

definitions in Table 2.1. The term ‘approach’ relates to the broad intention of the researcher

when investigating a phenomenon of interest, and informs research methodology, data collection
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procedure, analysis (including the model), interpretation, etc. In this paper we consider both

predictive and causal approaches. The term ‘model’ relates to the mathematical relationship

between variables associated with a phenomenon (i.e., variables in the joint distribution), as

reflected in the algorithm or technique used for analysis. The type of model may be predictive

or causal, or a hybrid of the two, although the type of model will generally be strongly informed

by the approach.

‘Predictive’ approaches have been described as “the study of the association between variables

or the identification of the variables which contribute to the prediction of another variable”

(Blanca, Alarcon, and Bono, 2018). Prediction may help us to answer questions such as ‘when?’,

‘which?’, and ‘how much?’. In contrast to a causal approach (defined below), prediction enables

us to identify an association between two or more variables and to thereby estimate or classify

an outcome or category, but it won’t necessarily tell us what if the predicted phenomenon does

or does not occur, why the predicted phenomenon may occur (or not), or how to intervene. As

such, prediction is unlikely to generate understanding as it does not directly inform us about the

underlying causal mechanisms. Prediction involves the specification, fitting, or learning of a

function to enable one to forecast or predict outcomes for new datapoints.

Table 2.1: Basic working definitions.

Approach Relating closely to the hypothesis/research question, it describes the broad
intention behind research methodology, analysis, and interpretation.

Model Part of the approach, it is the mathematical relationship between variables, as
reflected in the algorithm or technique used for analysis. It may be predictive
or causal, or a hybrid.

Predictive The “study of the association between variables or the identification of the
variables which contribute to the prediction of another variable” (Blanca, Alar-
con, and Bono, 2018). The word “association” here alludes to the fact that the
associations or relationships between variables are not necessarily causal. As
such, prediction may help us to answer questions such as ‘when?’, ‘which?’,
and ‘how much?’.

Causal The study of cause-effect relationships between variables, which facilitates
understanding and answers questions such as such as ‘why?’, ‘how?’, and ‘what
if?’ (Pearl, 2009)

Functional Form The nature of the mathematical function describing the relationship between
variables.

Misspecification When a model does not sufficiently reflect the causal structure of the data, or is
not flexible enough to estimate the underlying functions relating the variables,
it is structurally and/or functionally misspecified, respectively.
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‘Causal’ approaches help us to answer causal questions such as ‘why?’, ‘how?’, and ‘what if?’

(Pearl, 2009). Causal questions may be answered using causal modeling techniques (such as

structural equation modeling), for observational as well as randomized and experimental data

(Pearl, 2009). Causal modeling techniques generally entail a specification of what is known

as the data generating process. On the basis that one of the principal aims of psychology and

social science, as well as science more generally, is to develop understanding (Gelman, 2014;

Pearl, 2009; M. J. van der Laan and S. Rose, 2011; Grosz, Rohrer, and Thoemmes, 2020), the

causal approach provides the means for researchers to achieve this aim.1

It is possible to combine considerations for causal structure deriving from domain knowledge

into predictive models, and thereby construct a hybrid model, without making a predictive

approach a causal approach. This additional domain specific information is also known as

inductive bias (K. P. Murphy, 2012). For instance, a language model might be designed to

account for the ordering of words in a sentence, in addition to the words themselves, on the

basis that we know a priori that this ordering can affect the meaning (Rabiner and Schafer,

1978). However, it is important to note that such a model would still be predictive in spite of

the integration of such structural inductive bias. Indeed, given the complexity of language it

would be practically impossible to pre-specify a full and ‘correct’ causal graph. Nonetheless,

the more that predictive models incorporate domain knowledge or causal inductive bias, the

more chance they have of reflecting the real-world and subsequently of being interpreted to

yield causal understanding. However, unless the causal effect(s) of interest are identifiable

(see Part 2), the model will fulfil a predictive role more than a causal role. This is because

structural misspecification (i.e., a model structure that does not account for all real-world causal

relationships) is not problematic for prediction in the same way as it is problematic for causal

inference. As such, unless a specific causal effect is identifiable, and the model is designed to

yield such causal information, we would classify hybrid models as forming part of a predictive,

rather than causal, approach.

We use the term ‘functional form’ to describe the mathematical relationship between variables

1Both predictive and causal models may be parametric, semi-parametric, or non-parametric, Bayesian, or
frequentist, and may or may not incorporate significance testing (Shmueli, 2010; Bishop, 2006; K. P. Murphy, 2012;
M. J. van der Laan and S. Rose, 2011; J. Peters, Janzing, and Scholkopf, 2017; Pearl, 2009).
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in a model. For instance, a linear regression has a linear functional form, whereas a neural

network (I. Goodfellow, Bengio, and Courville, 2016) has a highly flexible, non-linear, data-

adaptive functional form. For any data generating process, there may exist an optimal functional

form with which to model it, and identifying this functional form is one of the goals of

predictive modeling. If the functional form of the model is insufficient, then the model is biased.

Conversely, if the functional form of the model is overly flexible, care must be taken to avoid

excessively high variance and to avoid ‘overfitting’. Finally, the term misspecification describes

the scenario in which the true causal structure, and/or the functional form of the relationships

between variables in the data generating process, are not sufficiently reflected in the model. The

issue of misspecification due to incorrect structure may therefore be compounded by issues of

limited functional form.

2.1.2 Background

Over the last ten years, meta-researchers have drawn increasing attention to a purported crisis in

the human sciences (particularly psychology) known as the replication crisis. The crisis has

been discussed at length by many different meta-researchers (e.g., Oberauer and Lewandowsky,

2019; Botella and Duran, 2019; Aarts et al., 2015; Stevens, 2017; Marsman et al., 2017; Shrout

and Rodgers, 2018; Yarkoni, 2019) who argue that research in the human sciences fails to

replicate. For example, only six out of 53 landmark cancer studies were found to replicate

(Begley and Ellis, 2012), and between one third and one half of 100 psychology studies in

top-ranking journals could be replicated (Aarts et al., 2015; Marsman et al., 2017).

One of the positive outcomes of the widespread awareness of the replicability crisis is the

fact that attention has been drawn to many questionable, suboptimal, or problematic aspects

associated with the research procedure in general. Indeed, it is only by recognition of these

issues, and engagement in relevant constructive debate, that research practice can be improved.

A wide range of contributing factors to this crisis have been highlighted and discussed, and

include: A lack of understanding about and misuse of p-values and statistical tests (Cassidy et al.,

2019; Gigerenzer, 2018; Gigerenzer, 2004; Colquhoun, 2014; Colquhoun, 2017; Colquhoun,

2019; McShane et al., 2019); overly generous claims and warped interpretations (Yarkoni, 2019;
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Spellman, 2015; Scheel et al., in press); issues relating to the testing of theory (Oberauer and

Lewandowsky, 2019; Muthukrishna and Henrich, 2019a); immature theories (Scheel et al., in

press); misunderstandings about statistical power and low sample sizes (Sassenberg and Ditrich,

2019; Baker et al., 2020; Correll et al., 2020); measurement problems (Flake and Fried, 2020);

a lack of meta-analyses (Schmidt and Oh, 2016); a lack of assumptions testing (Ernst and

Albers, 2017); pressure to publish (Shrout and Rodgers, 2018); double-dipping and overfitting

(Kassraian-Fard et al., 2016; Kriegeskorte et al., 2009; Mayo, 2013; Yarkoni and Westfall, 2017);

a failure to consider the consequences of aggregation and non-ergodicity (Fisher, Medaglia, and

Jeronimus, 2018; O. Peters and Werner, 2017); academia and research being a strategy game

with unscientific incentives (Gigerenzer, 2018; DeDeo, 2020); a reluctance of journals to publish

replications (G. Martin and Clarke, 2017; Gernsbacher, 2019); issues with the peer review

process (Heesen and Bright, 2020); reporting errors (Nuijten et al., 2016); a lack of research

practice standardization (Tong, 2019); the conflation of predictive and causal approaches and

interpretations (Grosz, Rohrer, and Thoemmes, 2020; Yarkoni and Westfall, 2017; Shmueli,

2010); and general scientific misconduct (Stricker and Günther, 2019).

More specifically, meta-researchers have highlighted how psychologists and social scientists

tend to mix causal and predictive language (Grosz, Rohrer, and Thoemmes, 2020). For instance,

Grosz, Rohrer, and Thoemmes (2020) explain how “some parts of the articles read as if the

entire endeavor were noncausal; yet other parts make sense only in the context of trying to

answer a causal research question”. A typical example of this can be found in recent work

looking at the associations between residential green space and child behavior and intelligence

(Bijnens et al., 2020). In a summary bullet point, the researchers stated that their results “indicate

that residential green space is especially beneficial for intellectual and behavioral development”,

which is a causal interpretation denoting that the green space itself affects development. This

was immediately followed by a consecutive bullet point, which stated that “low residential

green space in urban children is associated with a “shift” towards a higher incidence of low

IQ...”,2 which is a predictive, or associational interpretation. This conflation of causal and

predictive terminology is confusing and misleading to readers because it either suggests that the

research was causal (when it wasn’t), or that, regardless of the type of approach, the results have

2Italics our own.
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causal implications (which they don’t necessarily). Indeed, in a popular daily newspaper review

of the article, the headline reads: “Growing up near green space makes city children more

intelligent and better-behaved” (Rudgard, 2020), which is unambiguously causal and clearly has

the potential to greatly concern parents not living in areas near green space.3 Ambiguous claims

and pseudo-causal interpretations therefore have the potential to be amplified by the media, who

apprise the public of scientific progress, resulting in misunderstandings and confusion.

Similarly, meta-researchers have drawn attention to how it is common for psychology and social

science researchers to use associational/predictive techniques to test otherwise causal hypotheses

(Shmueli, 2010; Yarkoni and Westfall, 2017; C. Glymour, 1998; M. Hernan, 2018a; Grosz,

Rohrer, and Thoemmes, 2020). Shmueli (2010) explains how “the type of statistical models

used for testing causal hypotheses in the social sciences are almost always association-based

[i.e., predictive] models.” One can only surmise the possible causes behind this tendency for

conflation, but it may relate to the controversial history of causal inference in observational

social science and psychology. The conflation may stem from the conflict between recognizing

the importance of asking causal questions, without wanting to be seen to be actually using causal

methods with observational data. Indeed, the literature on causality in psychology and social

science has been described as “one of the oddest literatures in all of academia” (Dowd, 2011),

and researchers in these fields are notoriously reluctant to adopt appropriate modeling techniques

(Grosz, Rohrer, and Thoemmes, 2020; M. Hernan, 2018a). Others have mocked the reluctance

to undertake causal inference in psychology and the social sciences by referring to causality

as “the C-word” (M. Hernan, 2018a; M. Hernan, 2018b), and others refer to its use as “taboo”

(Grosz, Rohrer, and Thoemmes, 2020). Indeed, Grosz, Rohrer, and Thoemmes (2020) explain

how causal modeling is only undertaken “implicitly, opaquely, and without an articulation of

the underlying assumptions”. The result has been a tendency to use predictive language such

as ‘associations’, ‘links, ‘correlations’, ‘relationships’, and to avoid causal language such as

‘causes’, ‘impacts’, ‘effects’ despite designing their models and experiments on the basis of

deeply considered theories about the causal structure of the phenomenon of interest (Shmueli,

2010).

3For other examples see Grosz, Rohrer, and Thoemmes (2020), and for additional discussion see Shmueli (2010)
and Yarkoni and Westfall (2017).
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In addition to a general reluctance to adopt clearly articulated causal approaches, one might also

argue that the various manifestations of conflation indicate a lack of understanding about the

differences between predictive and causal modeling (Yarkoni and Westfall, 2017; Shmueli, 2010;

Grosz, Rohrer, and Thoemmes, 2020). Indeed, in the example above concerning residential

green space, the conflation of predictive and causal language is more likely to be due to a

possible lack of understanding about the distinction and limitations of predictive and causal

approaches, rather than a taboo around causality. After all, it seems that such a taboo would

result in an absence of causal language altogether, rather than a conflation. There is a relatively

well established modeling technique known as Structural Equation Modeling (SEM) (Kline,

2005; Blanca, Alarcon, and Bono, 2018). The point to note about the use of SEM in psychology

and social science is that, while SEM is a technique which explicitly encodes causal structure,

the way the technique is often presented and interpreted, obfuscates its causal nature (Grosz,

Rohrer, and Thoemmes, 2020). This leads to an awkward conflation of causal modeling with

predictive interpretations, resulting in ambiguity and a lack of clarity regarding intentions and

assumptions. It may be that researchers are unaware that their SEMs are explicitly causal and

fail to sufficiently understand how the results from the analysis are underpinned by a number of

restrictive (and often untestable) assumptions.

There is also evidence of a possible lack of understanding relating to the use of predictive models

in psychology and social science. Yarkoni and Westfall (2017) provide a number of examples

of where researchers seem to have clearly identified that they are adopting a predictive approach

but use suboptimal and misguided predictive modeling practice. A wide range of powerful

predictive modeling techniques exist, including neural networks (I. Goodfellow, Bengio, and

Courville, 2016), random forests (Breiman, 2001a), gradient boosting machines (T. Chen and

Guestrin, 2016) etc., many of which derive from developments in machine learning. In spite of

the abundance of available options, researchers in psychology and social science most often

employ simple linear models when undertaking predictive /associational research (Yarkoni

and Westfall, 2017; Blanca, Alarcon, and Bono, 2018). The assumption of linear functional

form is often restrictive and has been previously noted to be problematic (M. J. van der Laan

and S. Rose, 2011; Asuero, Sayago, and A. Gonzalez, 2006; Onwuegbuzie and Daniel, 1999;

Achen, 1977; King, 1986; Meehl, 1990; Taleb, 2019) and frequently ignored (Ernst and Albers,



28 Chapter 2. Misspecification in Psychology and Social Science

2017). Furthermore, some researchers seem to be unaware of certain basic principles relating

to predictive (as well as causal) research, such as those relating to overfitting (Yarkoni and

Westfall, 2017; Bishop, 2006; Heyman and Slep, 2001) and ‘double-dipping’ (Kassraian-Fard

et al., 2016; Kriegeskorte et al., 2009; Mayo, 2013). Overfitting and double-dipping refer to

modeling (mis)practices which increase the fit of a model to the specific data sample being

used, and which negatively impact the validity and generalizability of results. Indeed, any

modeling decision that affects the parameters of the model based on information from the same

data sample with which the model is validated results in overfitting, biased effect sizes, and the

inflation of p-values and other performance metrics (Bishop, 2006; Yarkoni and Westfall, 2017;

Heyman and Slep, 2001). Regardless of whether a researcher is undertaking a predictive or

causal approach, overfitting inflates the apparent success of the mapping function at the expense

of generalizability to new samples, and has been argued to be a major contributor to the current

replicability crisis (Shrout and Rodgers, 2018; Gelman and Loken, 2013).

Given the prior commentary, it can be seen that we are not the first to draw attention to

problematic analyses and a potential lack of analytical understanding in the fields of psychology

and social science (Claesen et al., 2019; Scheel et al., in press). Indeed, a recent article

titled ‘Declines in religiosity predict increases in violent crime - but not among countries with

relatively high average IQ’ was retracted from the Journal of Psychological Science on the basis

of methodological weaknesses and political sensitivity. The Editor in Chief at the time, Steve

Lindsay apologized on multiple grounds, and stated that “In terms of science, Clark et al. may not

be worse than some other articles published in Psych Science during my editorship...” (Lindsay,

2020). This may suggest that methodological weakness, as described in terms of “blurred

distinctions between psychological constructs versus measures and speculations/extrapolations

far removed from the data” is somewhat par for the course in the “young science” (Lindsay,

2020) of psychology.
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2.2 Part 1: Limited Functional Form - Modeling Relationships

Between Variables

In this part we address certain issues that may arise when using modeling techniques that have

limited functional form. The term functional form relates to the mathematical form used to

represent the relationship between variables. When we refer to the functional form of a model

as being limited we mean that the model does not have the flexibility to sufficiently reflect the

complexity of the relationship between variables, possibly resulting in poor predictive ability

and biased results. Identifying or deriving an adequately flexible functional form with which

to model the relationship between variables, in circumstances where causal relationships are

not of concern, is somewhat synonymous with the task of prediction. As such, the majority of

this section will be written with consideration of its relevance to predictive modeling, where

the goal is to learn a function that optimally maps predictor variables to outcome variables.

However, a consideration for functional form is just as important for causal modeling, for which

we are tasked with modeling both the functional relationships between variables as well as the

causal structure of the data generating process. For purposes of prediction alone, it suffices to

be solely concerned with finding the optimal mapping function to achieve some desired level of

predictive performance. We expect models that reflect the structure of reality to also be good

predictors, but this is not necessarily the case the other way around; good predictive functions

do not necessarily reflect the structure of reality.

We begin by introducing some of the technical formalism behind predictive modeling, and

briefly list some of its wide ranging applications. Following this, we discuss the limitations of

undertaking prediction using the two most common and basic methods used in psychology and

social science: Correlation and linear regression models. We demonstrate how these methods,

in the basic form adopted in psychology and social science, are fundamentally limited in their

ability to account for non-linearities present in the data. This motivates a need for more flexible,

powerful, potentially data-adaptive predictive methods. Previous research has highlighted that

the use of such techniques is rare in psychology and social science, where it is much more

usual to use models with restrictive linear functional form (Yarkoni and Westfall, 2017; Blanca,
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Alarcon, and Bono, 2018). Linear functions may be useful to consider for their computational

efficiency and for their tendency to naturally under-fit the data, thereby improving generalization

particularly when the quantity of data is limited. However, these factors are not sufficient to

fully explain the rarity of non-linear, powerful, and/or data adaptive techniques in psychology

and social science, and we posit that a possible lack of awareness of these alternative methods is

more likely.

2.2.1 Applications and Basic Formalism

The topic of identifying the optimal functional form with which to represent the relationship

between variables is vast and well covered by many authors, particularly those in the field of

machine learning in the context of prediction (Bishop, 2006; Duda, Hart, and Stork, 2001;

K. P. Murphy, 2012). Prediction has been described as “the study of the association between

variables or the identification of the variables which contribute to the prediction of another

variable” (Blanca, Alarcon, and Bono, 2018) and therefore relates closely to the more general

task of identifying the optimal function that maps between sets of variables. The applications

for predictive models are wide ranging, and include personalized medicine (Rahbar et al., 2020),

data science competitions (Tauchert, Buxmann, and Lambinus, 2020), time series forecasting

(Makridakis, Spiliotis, and Assimakopoulos, 2020), facial and object recognition (Krizhevsky,

Sutskever, and Hinton, 2012; Jonsson et al., 2000), and many others. Such techniques are

therefore extremely valuable and influential in shaping our modern world.

The basic formalism for predictive modeling is as follows: Researchers may be confronted with

a dataset comprising samples from a population (xi,yi) ∈ X × Y . 4 In words, we have a set

of samples of predictors or random variables5, which take on values in the set X and which

are related to some outcome variables6 which take on values in the set Y . If the outcome is
4We adopt the following notation: upper-case bold symbols (e.g, X) indicate matrices, lower-case bold symbols

(e.g, x) represent vectors, and lower-case symbols (e.g, x) indicate scalars. In general, we will use vector or
matrix notation, rather than scalars, to increase generality. Subscripts {i, k} (e.g, xik) indicate datapoint i =
{0, 1, ...(N − 1)} for variable or feature k = {0, 1, ...(K − 1)}, where N is the number of datapoints (i.e., sample
size), and K is the total number of variables or features.

5These are sometimes called ‘independent variables’, but due to the fact that they are usually non-independent,
we avoid this potentially unhelpful terminology.

6These are sometimes called ‘dependent variables’, but due to the fact that many dependencies exist we also
avoid this terminology.
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binary or categorical, the task of prediction becomes equivalent to one of classification. The

goal of prediction usually involves finding a mapping function f : X → Y . We will use the

terms predictive function and predictive model to refer to the mapping function used to make

predictions.

2.2.2 The Common Assumption of Linear Functional Form

Variations on simple measures of correlation and linear models (including linear SEMs) were

found to be the most frequently used modeling techniques in psychology research in recent

years (Blanca, Alarcon, and Bono, 2018; Bolger, Zee, et al., 2019).7

The principal assumption associated with these models is that the true relationships between the

variables are sufficiently represented as linear. Such models therefore have a limited functional

form that can only represent linear relationships. In other words, they describe relationships

between predictor and outcome variables that can be summarized in terms of a weighted sum. Of

course, in reality the true relationship between variables may be highly complex and nonlinear.

Indeed, assuming our dataset is sampled from a ‘true’ population distribution, there exists a

‘true’ functional form describing the functional relationships between the variables. Figure 2.1

illustrates how traditional methods (including linear regression) have the most limited capacity

(owing to strong restrictions on the functional form) to model complex real-world phenomena

(Coyle et al., 2020; M. J. van der Laan and S. Rose, 2018; M. J. van der Laan and Starmans,

2014).

A discussion about the limitations of linear predictive/causal models and correlation is not new

(M. J. van der Laan and S. Rose, 2011; Asuero, Sayago, and A. Gonzalez, 2006; Onwuegbuzie

and Daniel, 1999; Achen, 1977; King, 1986; Meehl, 1990; Taleb, 2019). However, in spite

of this prior commentary there is evidence that researchers in psychology and social science

may still be reluctant to adjust their methodological practice accordingly (e.g.,Ernst and Albers,

2017; Yarkoni and Westfall, 2017).
7It might be argued that any arbitrary function can be represented as some linear sum of features, and that

therefore all models are fundamentally linear. However, using such a broadly encompassing definition term ‘linear
model’ makes discussion pedantic. As such, we use the term to describe the typical linear regression model where
the outcome is modeled as a linear sum of raw variables or low-order functions of these variables (such as exponents:
x1,x2; and interactions: x1x2 etc.).



32 Chapter 2. Misspecification in Psychology and Social Science

Figure 2.1: Approximating Realistic Data Distributions

Traditional
Methods

Realistic

True

Machine Learning

Note. Traditional techniques such as linear regression may be severely limited in their capacity to
model highly complex, non-linear data. Machine Learning methods may help to expand the coverage of
realistic data distributions, but the true distribution may still lie outside. Combining flexible function
approximation techniques from machine learning, with an incorporation of domain knowledge and model
structure, can help us get as close as possible to modelling the true data distribution (M. J. van der Laan
and S. Rose, 2011).

Correlation

Correlation is generally used to measure the association or statistical dependence between

variables (i.e., to identify variables which may be good predictors). It ranges between [−1, 1]
and can be used as a basic predictive model. For example, when one variable is high, a

correlated variable is also likely to be high. However, as one of the most common ways to

measure dependence, there are two important aspects relating to correlation to bear in mind,

particularly when interpreting or drawing conclusions about measures of correlation.

In the bivariate case, the coefficients from a standardized linear regression correspond with the

correlation between the predictor variables and the outcome. Figure 2.2 shows a number of

bivariate distributions along with their correlation coefficient. The first thing to note from the

upper six plots is that correlation itself is a non-linear metric for dependence. Lower values

of the Pearson Correlation Coefficient (PCC) are associated with a disproportionately lower

dependence than higher values (and this is also reflected visually in the plots). The second thing

to note from the lower four plots is that the PCC catastrophically fails to capture non-linear

dependence.

The first issue is important for researchers to understand when drawing conclusions about

relative levels of correlation. For example, the difference between PCC = 0.1 and PCC = 0.2
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Figure 2.2: Pearson Correlation and Shannon Mutual Information.

Note. Simulations demonstrating the relationships between the Pearson measure of correlation, and
the Mutual Information metric for measuring statistical dependence. The upper six plots depict linear
bivariate relationships, whereas the lower four plots are non-linear.
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is less dramatic than, say the difference between PCC = 0.8 and PCC = 0.9, in spite of

the former describing a much higher proportionate increase. The second issue relates to an

assumption of linearity: If the relationship between the two variables is linear, then correlation

provides a measure of linear dependence; if the relationship is non-linear, then correlation may

provide meaningless measures of dependence. In cases where the relationship is non-linear,

researchers will need to either linearize the relationship (e.g., by creating a new variable that

accounts for this non-linearity), or consider using an alternative measure of dependence. One

such alternative to correlation is Shannon Mutual Information (M.I.), which gives us a measure

for how much information one variable contains about another (Cover and Thomas, 2006;

Kraskov, Stogbauer, and Grassberger, 2004; G. V. Steeg and Galstyan, 2012; G. Steeg and

Galstyan, 2013; Gao, G. Steeg, and Galstyan, 2015; Kinney and Atwal, 2014). The estimates

for M.I. are also shown in Figure 2.2, and it can be seen that M.I. not only handles non-linear

relationships between variables, but also increases linearly with the degree of dependence of the

variables. Note that M.I. ranges between [0, H] where H is the entropy of either distribution

when the two distributions are identical (i.e., I(x,y) = H(x) = H(y) when x = y).8 M.I.

cannot be negative, and as such it is not able to indicate the ‘direction’ of the association in the

way that correlation can. However, this is an acceptable limitation given that many non-linear

relationships are non-monotonic (i.e. they are not always either increasing or decreasing) and in

these cases a notion of positive or negative direction is unhelpful.

Linear Models/Regression

Linear regression is another very common modeling technique used for both predictive and

causal modeling. In the case of a typical linear multiple regression in psychology or social

science (which constitute a relatively small sub-class in the class of Generalized Linear Models),

the predictive mapping function f consists of a weighted sum of basis functions of the features

or variables X. These basis functions are usually exponents of the variables/features (e.g.,

x0,x1,x2...). In most cases, the input features constitute the raw (or, at most, normalized

and/or transformed) data collected from Likert scales, demographics, or coded observations.

8Readers are pointed to Cover and Thomas (2006) for an introduction to information theoretic concepts such as
entropy and mutual information.
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Sometimes, combinations of features are included which represent interactions (e.g. xik × xik′)

for k ̸= k′. The regression function is usually fit using a predictive heuristic such as Ordinary

Least Squares (OLS). OLS finds the solution to the regression such that the values of the function

parameters minimize the average squared difference between predictions and observations

θ̂ = argminθ
1
N

∑N
i (ŷi − yi)

2. Here, ŷi = xT
i θ̂, and θ̂ represents a vector of dimension K of

weighting coefficients/parameters estimated from the sample. These parameters derive from a

family of possible parameters θ̂ ∈ Θ, which in turn define a space of possible linear functions

fθ̂ ∈ F . OLS therefore identifies the parameters θ that minimize the mean squared error. The

total predictive function may be represented as: fθ̂(X) = y = Xθ̂. Various link functions may

be used to adapt the function to other outcome distributions (e.g., the logistic link for Bernoulli

distributed outcomes).

There is one principal assumption for linear regression which is important for achieving both

successful causal and predictive modeling. Namely, that the outcome can be well approximated

using a weighted linear sum of the input variables. Indeed, the linearity imposes a strong

functional constraint that restricts the function’s flexibility and is, therefore, an assumption

about functional form (M. J. van der Laan and S. Rose, 2011). Linear methods are unlikely to

match the functional form of realistic data distributions, and to get closer to the true functional

form, researchers should consider using more flexible predictive methods.

2.2.3 Improving on the Functional Form of Linear Models

In order to improve the predictive or associational performance of a predictive function, re-

searchers may need to explore either feature engineering approaches, or other functional

approximation techniques such as those commonly used in machine learning. Introducing hier-

archical structure within linear functions can improve the fit (Yarkoni, 2019; Gelman and Hill,

2007; Bolger, Zee, et al., 2019), but even hierarchical linear models are constrained according

to linear functional associations.

Feature engineering involves the substitution of raw input variables with functions of these

variables called features. Depending on the functional form used to derive these features, the

features themselves may then be linearly related to the outcome, facilitating better overall
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functional approximation. For instance, researchers may include more exotic basis functions

such (e.g., sinusoidal functions; M. J. Vowels, K. Mark, et al., 2018, or kernels; Scholkopf,

2019), or simply combine features to form new ones (e.g., interaction features which are

composed by multiplying two variables together). Feature engineering may thereby help to

account for the non-linearities of the data in the features themselves, but in doing so, each

feature may need to be carefully chosen or designed. For example, in Figure 2.2, the plot in the

fourth row on the right has a simple basis function which is x2. While the raw values of x could

not be used to model the outcome as part of a linear sum, the squared values could be used to

essentially linearize the predictor in question. However, in real-world applications (i.e., research

scenarios with real data) we will not know the functional form a priori and it may be difficult to

ascertain. For instance, the function may not be an exact quadratic function x2, but some other,

arbitrarily complex function. The feature engineering process may or may not be guided by

knowledge about the domain of interest. For example, in the case of a time series with known

seasonal variation (e.g., financial data exhibiting fluctuation due to the business cycle) the use of

sinusoidal basis functions may be well justified and aid prediction and generalization (Hamilton,

1994; M. J. Vowels, K. Mark, et al., 2018).

Besides generalized linear models with feature engineering, there exist many alternative and

much more powerful function approximation techniques, such as those common in machine

learning. These techniques are able to learn functional relationships from the data themselves

and can be used instead of, or in combination with, feature engineering. For instance, random

forests (Breiman, 2001a) comprise a group of decision trees that are capable of learning highly

non-linear relationships and interactions between variables, without these interactions needing

to be pre-specified. The mapping learned by the forest adapts to the data in order to minimize a

performance objective (e.g., mean squared error). One of the advantages of random forests is that

they employ bootstrapping and thereby mitigate problems with learned functions overfitting the

data. Neural networks are an alternative approach to function approximation which are also data-

adaptive and are highly parameterized (sometimes with billions of parameters) (I. Goodfellow,

Bengio, and Courville, 2016). They learn by iteratively updating their parameters according

to an error signal until some criterion for convergence is met. An example of predictions from

a simple neural network compared with those of a linear regressor on a bivariate problem is
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Figure 2.3: Neural network versus linear regression function predictions.

Note. Demonstrates how linear functional forms cannot capture the non-linear relationships. In contrast,
non-linear, data-adaptive techniques such as neural networks, can.

shown in Figure 2.3. It can be seen the neural network has fit the data almost perfectly, whilst

the linear regression approximates the mean slope of the line, ignoring the cycling fluctuation.

2.2.4 Overfitting and Double-Dipping

As described previously overfitting and double-dipping refer to the consequences of various

modeling practices which increase the fit of a model to a specific data sample, but which

negatively impact the validity and generalizability of results. An awareness of overfitting

becomes increasingly crucial when attempting to model non-linear functional relationships

between variables. These topics have been extensively covered elsewhere, particularly in the

machine learning literature (where overfitting is sometimes associated with what is known as

the bias-variance trade-off) (Belkin et al., 2019; Bishop, 2006; R. R. Murphy, 2000; Yarkoni

and Westfall, 2017; Mayo, 2013). Prior research has highlighted how modeling practices that

result in overfitting are common in psychology and social science, as well as a number of other

fields, and have been noted for their possible contribution to the replicability crisis (Shrout and

Rodgers, 2018; Gelman and Loken, 2013; Yarkoni and Westfall, 2017). Even the common

forward and backward method for variable inclusion constitutes data-driven overfitting practices

which have the potential to significantly impact model generalizability and interpretability, and
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yet these practices are routinely included as part of standard statistical education and practice

in psychology (e.g., see Field, 2009). We mention such (mis)practice again here because,

when using powerful function approximation techniques, a consideration for overfitting is

even more important. There are numerous techniques for mitigating issues with overfitting,

including regularization, cross-validation, train-test splits etc. and it is important that researchers

in psychology and social science familiarize themselves with these fundamental concepts,

especially when accounting for complex, non-linear associations between variables.

2.2.5 Summary

In Part 1, we presented how models with limited functional form may be unable to represent

the complex relationships between variables. The typical analyses used in psychology and

social science include simple measures of correlation, and various manifestations of linear

regression. While such modeling techniques are limited in their predictive capacity, there

are many algorithms used in the field of machine learning which can learn an appropriately

flexible functional form from the data themselves. When using more powerful techniques,

it is especially important to validate models on an out-of-sample test set (e.g., by using a

cross-validation method, or train/test splitting) in order to avoid overfitting. However, it is

worth noting that overfitting (and the related problem of double-dipping) is also possible with

simple linear models, and prior meta-research suggests that researchers may be unaware of these

issues. Finally, the rarity of modeling techniques with powerful, data-adaptive functional form

represents a possible missed opportunity in psychology and social science, and we encourage

researchers to consider the functional form of their models, and familiarize themselves with the

associated pitfalls and limitations (e.g., overfitting), in order that they can get closer to modeling

the true relationships underpinning the phenomenon under study.

2.3 Part 2: Causal Model Misspecification

As described in the Introduction, prior research has highlighted a reluctance to adopt explicit

causal approaches (Grosz, Rohrer, and Thoemmes, 2020; M. Hernan, 2018a). Causal techniques
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provide the means to answer fundamental questions that help us to develop an understanding of

the world (Pearl, 2009; M. J. van der Laan and S. Rose, 2011). To the best of our knowledge,

we are not aware of a well-established theory in psychology or social science which does not

incorporate at least some level of consideration for cause and effect, and, if there is one, we would

question its utility in so far as it can help us understand the world. Models which sufficiently

align with the structure of reality may facilitate causal inference, even with observational (as

opposed to experimental) data (C. Glymour, 2001; Pearl, 2009; Pearl, M. Glymour, and Jewell,

2016; Grosz, Rohrer, and Thoemmes, 2020) and have wide ranging applications including

advertisement (Bottou et al., 2013), policy making (Kreif and DiazOrdaz, 2019), the evaluation

of evidence within legal frameworks (Pearl, 2009; Siegerink et al., 2016), and the development

of medical treatments (Petersen et al., 2017; M. J. van der Laan and S. Rose, 2011). There are a

number of challenges associated with adopting a causal approach.

Misspecification represents one of the principal challenges associated with causal inference, and

arises when the true causal structure and/or the functional form of the relationships between

variables in the data generating process are not sufficiently reflected in a causal model. Misspec-

ification results in biased effect size estimates which are not meaningfully interpretable. In this

Part, we primarily focus on misspecification stemming from problems associated with structure

and to do so, we consider misspecfication in restricted linear settings. As we will show, even

in this restricted setting, it is extremely important that the model sufficiently accounts for the

true structure of the data in order that the resulting model is interpretable. We stress that this

section is not intended as a technical guide to undertaking causal inference in general (for more

information on causal inference see e.g., Pearl, 2009; Petersen et al., 2017; Pearl, M. Glymour,

and Jewell, 2016; C. Glymour, 2001; Angrist and Krueger, 2001; D. B. Rubin, 2005; Gelman

and Hill, 2007).

2.3.1 Recovering Causal Effects

Given the frequency with which psychologists and social scientists adopt linear regression

methods to test causal theories (Shmueli, 2010; Blanca, Alarcon, and Bono, 2018), it is

extremely important that researchers understand the structural bias associated with the use of
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Figure 2.4: Simple Directed Acyclic Graphs
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Note. Example causal Directed Acyclic Graphs (c-DAGs). Example (a) depicts the case where all
‘predictor’ or causal variables are exogenous (i.e., they have no causal parents and are independent
of each other). This corresponds with the causal structure of a simple multiple regression, where the
dependent outcome y is a linear sum of the x variables. The empirical causal effect of each variable is
equivalent to the multiple regression coefficient estimates. Example (b) is adapted from J. Peters, Janzing,
and Scholkopf, 2017. Example (c) depicts a graph with an unobserved confounding variable z.

such models. In this section, we demonstrate how typical linear regression models used in

psychology and social science impose a strong implicit causal/structural form which is unlikely

to reflect the true causal structure of the data, even when the functional form is linear, and are

therefore misspecified. We show that, through a consideration of the causal structure of the

phenomenon under study, one can nonetheless use linear regression to recover causal effects

under a number of restrictive assumptions.

Multiple Regression Without Misspecification

In this section we demonstrate the strong, implicit structural form associated with multiple

regression. We begin by demonstrating that multiple linear regression (in its basic form) is not

misspecified with respect to the true data generating process when all predictors are exogenous

(see structure in Figure 2.4(a)). In such a scenario, the resulting model is interpretable.

If the true data generating process could be described as a weighted sum of a set of input vari-

ables, then our goal of prediction within the Ordinary Least Squares multiple linear regression

framework (as described in the previous section) would also be adequate for causal modeling,

causal parameter estimation, or causal inference. Such a model might be depicted graphically as

in Figure 2.4(a). In this scenario, there would exist parameters θ∗ (also known as effect sizes)
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which represent the true causal parameters, and our OLS-derived parameters would represent

empirical/sample estimations thereof.

The graphs in Figure 2.4 are known as causal Directed Acyclic Graphs (c-DAGs), and they

represents a generalization of the graphical representation often used in Structural Equation

Modelling (SEM) (Pearl, 2009; Koller and Friedman, 2009; Rohrer, 2018). The arrows indicate

causal directional relationships between variables, parameterized by θ, and the grey nodes

indicate observed variables. The acyclicity pertains to the restriction that there can be no closed

loops (i.e., feedback) in the graph. Graph terminology (e.g., ‘parent’, ‘ancestor’, ‘descendant’,

‘child’) is useful in describing the top-level relationships between variables. For example, a node

with an incoming arrow is a child of its parent variable, and further upstream or downstream

variables are ancestors or descendants respectively.

In general, the arrows in a c-DAG indicate causal dependencies, and there is no implied

functional form that prescribes how the variables are combined at a node (i.e., there could

be highly non-linear, adaptive functions with interactions). Furthermore, the nodes represent

variables which may or may not be univariate or parametric. In other words, a node labelled x

does not restrict the dimensionality or (non-)parameterization of x itself. For instance, a node

x could comprise multiple predictors which do not conform to a parameterized distribution.

Hence, c-DAGs encode the fundamental essence of the causal structure, without imposing

potentially irrelevant restrictions. We have included some extra information in the c-DAG of

Figure 2.4(a) for the sake of demonstration. This particular c-DAG represents the intercept

parameter of a multiple linear regression as a vector of ones multiplied by the parameter θ∗0.

The structural equations for this graph may be represented in Equation 2.1:

xk=0 := 1

xk := Uk(0, 1) for k = 1, ..., (K − 1)

y :=
K−1∑

k=0

θ∗kxk +Uy(0, 1) for k = 0, ..., (K − 1)

(2.1)

Let us assume that Uk and Uy are N -dimensional vectors of identically and independently
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distributed (i.i.d.) normally distributed random noise. The ‘:=’ symbol (endearingly referred

to as the walrus operator in the Python programming world) denotes assignment rather than

equality. This distinction is useful in reflecting the structural/causal direction of the arrows in

the c-DAG. For example, the outcome y is a function of its inputs, and the equation should

not be rearranged to imply that the inputs are a function of the outcome (the arrows point in

one direction). These equations encode the fact that all the input variables are exogenous (i.e.

completely independent of each other and determined only by i.i.d. noise) and that the outcome

is a weighted linear combination of these variables. In this setting we might understandably

refer to the input variables as the independent variables, and the outcome as the dependent

variable. As mentioned, these equations correspond with a simple multiple linear regression and

can be solved to find θ using OLS. We demonstrate this by undertaking a simulation for K = 4

with θ∗0 = 3.3, θ∗1 = 0.1, θ∗2 = 0.3 and θ∗3 = 0.5. We set N = 5000 so that we do not have to

be concerned about the stochastic variability associated with small samples, and the results are

shown in Table 2.2.

import statsmodels.api as sm

import numpy as np

N = 5000 # N = sample size

# simulate data

x1 = np.random.randn(N,1)

x2 = np.random.randn(N,1)

x3 = np.random.randn(N,1)

X = np.concatenate((x1, x2, x3), 1) # combine predictors into array

y = 3.3 + 0.1*x1 + 0.3*x2 + 0.5*x3 + 0.3 * np.random.randn(N,1)

X = sm.add_constant(X, prepend=True) # add intercept term as x0

mod = sm.OLS(y, X) # initialize multiple regression model

res = mod.fit() # fit the regression model

From this demonstration it can be seen that the OLS regression successfully recovered θ̂ close to

θ∗. In this case, the data generating process directly matched the model we used to estimate the

parameters and was therefore not misspecified. When there is no misspecification, the estimated
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Table 2.2: Estimated parameters for DAG in Figure 2.4(a).

θ̂0 θ̂1 θ̂2 θ̂3

y 3.31 0.11 0.31 0.50

parameters may be interpreted as causal parameters that tell us about the phenomenon (in this

case, a simple, simulated phenomenon). Indeed, the parameters here can be interpreted as ‘one

unit increase in x1 yields a θ1 increase in y’, as is common practice in psychology and social

science.

The interpretability of the model was only possible because the structure of the data matched the

structure of a multiple linear regression, equivalent to Figure 2.4(a), where all ‘predictors’ are

exogenous. However, this is an unrealistic scenario, and in most real-world cases, the predictors

will not be exogenous. In the next section we demonstrate what happens when we apply the

multiple regression model to scenarios when the causal structure is more realistic.

Multiple Regression - Misspecified for Realistic Structure

In the previous section we showed how a simple multiple regression can be used to recover

meaningful, causal parameter estimates, so long as the true causal structure of the data cor-

responds with the implicit causal structure implied by the multiple regression. However, the

implicit causal structure of a linear regression is extremely restrictive and, when modeling

real-world data, it is likely to be misspecified. In this section we demonstrate what happens

when such misspecification occurs.

Let us see what happens when we follow the same procedure to try to estimate some parameters

for another simple data generating process which follows the example in Figure 2.4(b). We

assume the following data generating structural equations (adapted from J. Peters, Janzing, and

Scholkopf, 2017):
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x4 := U4, x2 := 0.8U2, x0 := x4 − 2x2 + 0.2U0, x1 := −2x0 + 0.5U1,

x3 := x2 + 0.1U3, x5 := 3x0 + 0.8U5, x6 := x1 + 0.5U6,

y := 2x3 − x1 + 0.2Uy, x7 := 0.5y + 0.1U7

(2.2)

For these equations we have simplified the notation to make things clearer: Uk ∼ N (0, 1). The

structural process is still linear and the additive noise is Gaussian, so we do not yet need to

worry about utilizing flexible function approximation techniques (such as those discussed in

Part 1).

It is worth studying these equations to understand their implications. Note that, for instance,

x3 is only determined by x2, as well as its own exogeneous noise U3. This means that, if we

perform surgery on these equations by, for example, setting x3 to a different value or distribution,

we have cut off its dependence to its parent. Such graph surgery enables us to explore a range of

causal queries such as interventions and counterfactuals, and is formalized by Pearl’s do-calculus

(Pearl, 2009).

Given the simple linear form in Equation 2.2 for Figure 2.4(b), it is possible to traverse the paths

in the c-DAG and to combine the effects multiplicatively. Such a process should be familiar to

those who have studied path diagrams and SEM (Kline, 2005). For instance, the effect of x0 on

y is the multiplication of the effect of x0 → x1 with the effect of x1 → y. Together, we have

the mediated path: x0 → x1 → y. According to Equation 2.2 and Figure 2.4, the effect of x0

on y therefore corresponds with −2×−1 = 2. In this case, x1 is mediating the effect of x0

on y. Readers may already be aware of the issues relating to the inclusion of mediators in a

regression analysis (see e.g., Cinelli, Forney, and Pearl, 2022; Rohrer, 2018; Pearl, 2009), and

this is trivially demonstrated by comparing the regressions of y onto x0 whilst (a) adjusting for

x1 and (b) and not adjusting for x1. Here, adjusting for a variable is equivalent to controlling

for it, but the adjustment terminology is more appropriate for structural scenarios (Pearl, 2009).

First let us simulate the data as follows:

N = 5000
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x4 = np.random.randn(N,1)

x2 = 0.8 * np.random.randn(N,1)

x3 = x2 + 0.1 * np.random.randn(N,1)

x0 = x4 - 2*x2 + 0.2 * np.random.randn(N,1)

x5 = 3*x0 + 0.8 * np.random.randn(N,1)

x1 = -2*x0 + 0.5 * np.random.randn(N,1)

x6 = x1 + 0.5 * np.random.randn(N,1)

y = 2*x3 - x1 + 0.2 * np.random.randn(N,1)

x7 = 0.5*y + 0.1 * np.random.randn(N,1)

These Python variables reflect those in Equation 2.2 above. The bivariate correlations and

p-values for each of these variables are shown in Table 2.3.

Table 2.3: Bivariate Pearson correlations and p-values for the DAG in Figure 2.4(b).

r(p) x0 x1 x2 x3 x4 x5 x6 x7

y .92(.00) -.92(.00) -.58(.00) -.56(.00) .76(.00) .91(.00) -.93(.00) 1.00(.00)

The results in Table 2.3 demonstrate a strong and statistically significant bivariate correlation

between each predictor and the outcome. Now, when using only x0 as a sole predictor in a

simple linear regression model, we estimate the effect of x0 on y to be θ̂0 = 1.28, where theˆ

notation indicates it is an empirical estimate. Recall that the true effect of x0 on y is 2. In spite

of the large sample size, the output estimate is highly biased and does not seem to correspond

with any of the parameters in the original simulation. Indeed, regardless of how large the sample

size is, this coefficient estimate will converge to a value that is far from the true estimand. This

is because the structure of the data generating process was not considered: We simply applied

a linear regression to the data without accounting for the fact that the implicit structure of a

linear regression does not match the structure in the data. In this situation, the regression might

still have some limited utility as a purely predictive function, but its parameters should not be

interpreted as anything relevant to the causal structure of the phenomenon of interest because it

is misspecified.

When confronted with the dilemma of multiple observed variables, typical practice in psychology
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and social science might involve using the forward or backward method for variable inclusion

(Field, 2009). Besides the problems associated with such practice and overfitting (as described

in Part 1 above), such practice is likely to result in misspecification. Another approach might

be to simply include all variables in the model. Indeed, all the xk variables are highly and

statistically significantly correlated with the outcome y, so if we were not already aware of

the implicit causal structure of linear regression, this might seem like a sensible thing to do.

When we include all variables in the model, this results in θ̂ = −0.01. Recall again that the true

effect of x0 on y is 2. The estimate of −0.01 is highly biased. This is because including all

the variables in the model imposes the structure shown in Figure 2.4(a), where all variables are

exogenous.

Including x0 and the mediating variable x1 confirms that including mediating variables is

problematic: The regression including both x0 and x1 yields θ̂ = −.94. As expected, the

effect of x0 on the outcome is highly biased, and of the opposite sign (i.e., negative rather

than positive) to the true causal effect. It should now be clear that the use of what might be

called naive multiple regression cannot yield meaningfully interpretable parameters unless the

model corresponds with Figure 2.4(a), and this is highly unlikely. Indeed, it is arguable as to

whether the interpretation of this parameter (and even its direction) is of any scientific value at

all. Utilizing hierarchical or Bayesian approaches will not help so long as the structure of the

model is misspecified.

Addressing Misspecification Using Causal Inference Techniques

We have seen that using naive multiple regression is inadequate when trying to estimate a

causal effect from data with a non-trivial structure, even when the underlying functional form

of the relationships is linear. Whether or not the structure is of relatively low complexity, the

resulting coefficient estimates can be wildly biased. This illustrates that, regardless of whether

the functional form matches the true functional form of the data (and in the simulations above,

it did), it is impossible to recover meaningful effect size estimations with a misspecified model.

In order to recover an unbiased estimate of the true effect, we need to understand techniques

from the field of causal inference.
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Structural Equation Modelling (SEM) was reported to be one of the most common methods

used in psychology and social science (Blanca, Alarcon, and Bono, 2018), and enables unbiased

estimation of the parameters, so long as the structure of the SEM model matches or at least

subsumes the structure of the data generating process, and so long as a number of restrictive

assumptions are met (J. Peters, Janzing, and Scholkopf, 2017). These assumptions apply to

causal inference in general. The subsumption point relates to the fact that researchers, when

faced with uncertainty about the structure of the data generating process, should choose to

expand their model class rather than restrict it. In other words, researchers should, in general,

choose to include an extra arrow in their SEM rather than remove one. The choice to expand

the model allows for the possibility of an effect in the data, whereas a removal of a causal link

enforces an absence of dependency and thereby represents a strong model restriction that needs

to be well justified before its imposition.

In practice, we rarely have access to the true model when we create an SEM (D‘Amour, 2019; Y.

Wang and Blei, 2019; Tenenbaum and Griffiths, 2002). Indeed, as the SEM grows in complexity

and/or its causal constraints, the chance of it becoming misspecified increases. If certain

assumptions are made, and we reduce our goal to the estimation of a specific and restricted set

of effects (e.g., just the effect of x0 on y), it may be sufficient to leverage domain knowledge

and causal inference techniques to acquire a reliable estimate without having to correctly specify

the full graph. Such techniques have been extensively covered elsewhere (J. Peters, Janzing,

and Scholkopf, 2017; Pearl, 2009; Imbens and D. Rubin, 2015; Pearl, M. Glymour, and Jewell,

2016; Angrist and Krueger, 2001) and include the use of instrumental variables, propensity

score matching, and regression discontinuity designs (Blossfeld, 2009), but we briefly cover

one particular technique known as backdoor adjustment below (Pearl, 2009).

Backdoor adjustment involves identifying what are known as backdoor paths. An example

of a backdoor path between x0 and y in Figure 2.4(b) is x0 ← x2 → x3 → y. x2 and x3

are therefore part of what is known as the backdoor adjustment set; a set of variables which,

if adjusted for, block the backdoor path. We can adjust for all the backdoor variables, or the

minimal set sufficient to block the path (in our case, either x2 or x3 will do). Including x0 and

x3 yields θ̂ = 2.00.
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Figure 2.5: Example Directed Acyclic Graph for Time Series
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Note. c-DAG for a time series setting, highlighting the complexity associated with identifying a particular
causal effect, especially when there may be unobserved confounding (J. Peters, Janzing, and Scholkopf,
2017).

We have now recovered an unbiased estimate of the effect of x0 on y (which was approximately

equal to two), and we only needed to regress y onto two variables, despite our world knowledge

dictating that at least eight were involved in the data generating processes as a whole (indeed,

all variables in this simulation are highly and significantly correlated with the outcome). If we

are also interested in the mediation through x1 then we can undertake separate regressions to

break the problem down. The estimated parameters are then meaningfully interpretable insofar

as the correspond with the parameters in the true data generating process. In other words, if

θ = 2, then every unit increase in x0 results in two units increase in y.

Does Time Help?

Researchers may believe that the inductive bias imposed with the directionality of time is helpful

in identifying the causal effect and correctly specifying a causal model. Indeed, the fact that

time cannot flow backwards constrains the possible directions of our arrows in our c-DAG, and

therefore reduces the complexity of a time series model. However, in spite of the fact that a

time series model may be the only way to answer a certain causal question, such time series

problems may be far more complex than cross-sectional models, owing to the introduction of

the additional time dimension. Therefore, certain causal questions may only be answerable
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by considering time, but the causal effect of interest may be considerably harder to identify

as a result. Figure 2.5 depicts a simple scenario with two variables, x and y, and a hidden

confounder z. Each variable influences its own future as well as the future of the other variable.

In the presence of the unobserved confounder the causal effect between x and y (however this

might be defined) is unidentifiable. The complexity of this graph could grow further still if we

include causal arrows between x and y (and potentially z) for the same time point (i.e., x and

time one influences y at time one), or if we add any additional (un)observed variables. In spite

of the restriction that the arrows cannot flow backwards, this structure therefore has the potential

to be immensely troublesome from the point of view of identifiability. Indeed, the use of causal

inference with time series phenomena is a very current and ongoing research topic in the fields

of causal inference and machine learning (J. Peters, Janzing, and Scholkopf, 2017; Krishnan,

Shalit, and Sontag, 2017; Lohmann et al., 2012). Interested readers are pointed to an accessible

introduction of the topic, and its use in psychology, by Gische, West, and Voelkle (2020).

2.3.2 Challenges, Assumptions, and Limitations of Causal Modeling

It is worth emphasizing that, with only naive multiple linear regression models, we were unable

to acquire a meaningful effect size estimate for non-trivial data generating process. This is

because multiple linear regression imposes its own implicit structural/causal form which is

likely to be misspecified when used in real-world applications. Indeed, we used a relatively

simplistic synthetic simulation to demonstrate that multiple linear regression yields meaningless

estimates, but in real-world applications the graph may actually be significantly more complex

which makes it extremely challenging to correctly specify the structure of the c-DAG, and

therefore to use techniques such as backdoor adjustment. This is because, without a sufficient

understanding of the causal structure, we would be unable to identify the necessary backdoor

adjustment variables.

More generally, it is extremely difficult to obtain reliable effect size estimates from observational

data concerning complex real-world social phenomena using these techniques. Indeed, the

infamous ‘crud’ factor, which describes the fact that “everything [in social science] correlates

to some extent with everything else” makes causal inference in social science and psychology
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particularly challenging (Meehl, 1990; Orben and Lakens, 2020).9 One challenge is finding

suitable backdoor adjustment variables, identifying other causal variables such as colliders,

mediators, instrumental variables, proxy variables etc. so that the causal effect of interest is

actually identifiable using the observed data (for techniques, see e.g., Cinelli, Forney, and

Pearl, 2022; D. B. Rubin, 2005; Imbens and D. Rubin, 2015; Angrist and Krueger, 2001; Pearl,

2009; Y. Wang and Blei, 2019; D‘Amour, 2019). Another challenge relates to the fact that

social scientists are often concerned with the study of complex social systems with dynamic

interdependencies. Such systems may not exhibit readily identifibale cause and effect pairs

(Blossfeld, 2009).

In the same way that we chose to identify a single causal effect using the backdoor adjustment

method, it may be beneficial for researchers to attempt to simplify their causal research questions.

For example, in contrast with the typical use of SEM in psychology and social science (where

the researcher attempts to derive multiple effect estimates simultaneously), targeted learning

adopts the philosophy by ‘targeting’ a specific causal effect of interest, and orienting the analysis

around its estimation using machine learning to reduce misspecification (M. J. van der Laan

and S. Rose, 2011). The ‘no free lunch theorem’ familiar to machine learners applies here:

causal inference yields the most information, but it is not easy (Wolpert and Macready, 1997).

Attempting to undertake inference across multivariate, complex, linear SEM graphs is therefore

extremely ambitious in light of its limited functional form and likely misspecification, and is

highly unlikely to yield meaningful estimates. That said, exploratory work can still be highly

valuable (Shrout and Rodgers, 2018). Part of the development process for SEMs (or, more

generally, the underlying theory about the phenomenon) could involve causal directionality tests

and validation via causal discovery techniques from machine learning (J. Peters, Janzing, and

Scholkopf, 2017; Scholkopf, 2019). Such techniques, at least in restricted circumstances, may

be able to test the directionality of the causal effects (Goudet et al., 2019; J. M. Mooij et al.,

2010), identify backdoor adjustment set variables (Gultchin et al., 2020), estimate the magnitude

of causal effects using flexible function approximation techniques (Yoon, J. Jordan, and van der

Schaar, 2018; Shi, Blei, and Veitch, 2019), or infer hidden confounders from proxy variables

9The crud factor also results in an abundance of meaningless statistical significance, owing to the fact that
null-effects are practically non-existent in social phenomena (Meehl, 1990).
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using variational inference (Louizos, Shalit, et al., 2017; M. J. Vowels, N. Camgoz, and Bowden,

2021). We recommend both Targeted Learning (M. J. van der Laan and S. Rose, 2011) as

well as deep latent variable neural network models (Louizos, Shalit, et al., 2017; M. J. Vowels,

N. Camgoz, and Bowden, 2021) as possible approaches to the significant problem of causal

effect size estimation, although many others exist (Gultchin et al., 2020; Shalit, Johansson, and

Sontag, 2017; Shi, Blei, and Veitch, 2019; W. Zhang, L. Liu, and J. Li, 2021; Yao et al., 2018).

Even once a researcher believes that they have accounted for these difficulties and have simplified

their research question or hypothesis, their consequent estimations then rest on the assumption

known as ignorability; that there are no further latent/unobserved factors that must be somehow

accounted for. Figure 2.4(c) depicts the presence of an unobserved confounder z. Particularly

in cases where researchers are dealing with observational (as opposed to experimental) data,

the assumption of ignorability may be strong, untestable, and unrealistic. Other assumptions

may also be relevant, depending on the causal question being asked, such as the stable unit

treatment value assumption and the positivity assumption for estimating treatment effects. It

is important researchers familiarize themselves with all relevant assumptions and limitations

before undertaking causal inference, and make them explicit in their work (e.g., when they use

SEM) (Grosz, Rohrer, and Thoemmes, 2020).

Finally, the simulations here assumed linear and additive structural equations of the form:

x1 := θ0x0 +U1. However, and as discussed earlier, c-DAGs are general and do not restrict

the functional forms relating the variables. Indeed, in real-world scenarios the assumption

of linearity may impair the capacity of the model to estimate unbiased coefficients, in much

the same way as it limited predictive models (Coyle et al., 2020; M. J. van der Laan and S.

Rose, 2011; M. J. van der Laan and Starmans, 2014; M. J. van der Laan and S. Rose, 2018).

The difficulties of effect estimation are therefore compounded by the difficulties associated

with identifying an appropriate functional form for the dependencies between variables (i.e.,

identifying what Blossfeld, 2009, calls “effect shapes”). Unless the structure of the model and

its functional form sufficiently match those of the true data generating process, and we have an

identifiable causal effect, the model may be misspecified and uninterpretable.
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Causal Modeling in Practice

The three most common methods used in psychology are ANOVA, multiple linear regression

(including hierarchical linear regression), and Structural Equation Modeling (SEM) (Blanca,

Alarcon, and Bono, 2018). The first two are forms of linear model which encode strong

implicit structural biases about the nature of the causal generating process (i.e., they encode

the assumptions of exogenous independent input variables). The third method encodes explicit

inductive bias relating to the causal generating process (Grosz, Rohrer, and Thoemmes, 2020).

All three methods, tending to be linear, restrict the functional form associating the variables.

The linearity and structural biases (whether implicit or explicit) yield misspecified models

which are unlikely to match the true data generating process and pivot on untestable and

unrealistic assumptions (such as strong ignorability). Misspecfication and the strong ignorability

assumption are not of great concern if the goal is prediction: We may not care whether a

mapping function reflects the data generating process, only that it provides good predictive

performance.10

Furthermore, all three methods are frequently fit, evaluated, and manipulated according to

predictive strategies (e.g., variable inclusion processes, structural changes) and the structure

in the graph is not properly tested or validated (Scheel et al., in press; Kline, 2005; Ropovik,

2015). This is problematic for three reasons: First, linear models are not optimal for modeling

complex real-world dependencies between variables; second, these models are rarely (if ever)

tested on an out-of-sample dataset, meaning that any inference performed using these models

is likely to have limited generalizability; third, the structure (and therefore, the practitioner’s

theory) is almost invariably accepted as valid a priori (Ropovik, 2015), despite misspecification

being highly likely (M. J. van der Laan and S. Rose, 2011; VanderWeele, 2020).

Summary, and a Note on RCTs

It is important that researchers recognize the significant difficulties associated with estimating

meaningful causal effects with observational data. We described how difficult it is to obtain
10However, predictive models may generalize better if they are robust to shifts in these unobserved confounders

(Suter, Miladinovic, and Scholkopf, 2019).
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reliable causal effect size estimates, and we have also demonstrated how a failure to consider the

causal structure may yield biased, meaningless effect sizes, regardless of whether the researcher

adopts a predictive or causal approach. We provided one example of a causal inference technique

known as backdoor adjustment, as a way to identify the causal effect of interest. Doing so

enabled us to simplify the analytical problem from one of estimating all path coefficients in a

complex graph, to one of estimating a specific effect by identifying variables from an adjustment

set. In practice, identifying these backdoor variables represents a significant challenge, because

it requires sufficient causal knowledge. In addition to these difficulties, causal inference rests on

a number of strong assumptions, perhaps the strongest of all being that of ignorability: That

there are no unobserved confounders. Finally, researchers must also consider the functional

form used to represent the causal dependencies between the variables. As such, problems with

identifiability, ignorability, misspecification due to incorrect structure, and misspecification due

to limited functional form have the potential to compound each other.

Given the complexity associated with avoiding misspecification, on top of considering functional

form, readers may come to the conclusion that causal inference should be reserved for Random-

ized Controlled Trial (RCT) and experimental contexts. Actually, we do not think the situation

is this clear-cut. The common view is that RCTs represent the “gold standard” of research.

However, a growing literature highlights the limitations of RCTs, and how observational studies

may, at least in certain circumstances, represent a promising alternative, particularly in terms

of lower cost, reduced ethical implications, and larger sample size (Frieden, 2017; Deaton

and Cartwright, 2018; Bothwell, Greene, and Podolsky, 2016; Jones and Podolsky, 2015).

Furthermore, in a social science context, randomized experiments may be practically infeasible

and potentially unethical (Blossfeld, 2009). To clarify, we do not wish to engage in a debate

about the merits and pitfalls associated with undertaking causal inference on experimental

versus observational data, but we do note that the perception of RCTs as representing a gold

standard is potentially limiting and scientifically unhelpful.
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2.4 Part 3: Unreliable Interpretations

In this part, we introduce explainability and interpretability, and describe how misspecified

models with limited functional form may be neither explainable, nor interpretable. When the

complexity of a model is increased to mitigate the issue of limited functional form it may

be explainable in spite of possible misspecification due to incorrect structure. We discuss a

range of problems relating to conflated and unreliable interpretations in psychology and social

science. In our view, the conflation arises not just as a result of the alleged taboo against

causal inference (Grosz, Rohrer, and Thoemmes, 2020), but also due to an apparent lack of

understanding concerning the limitations associated with the interpretability of misspecified

models with limited functional form and/or incorrect causal structure.

2.4.1 Explainability and Interpretability

Scrutinizing the parameters of a model in a predictive sense is referred to as explaining, in that

we are explaining the behavior of the model, rather than interpreting the model’s parameters in

relation to some external real-world causal phenomenon (Rudin, 2019). We therefore distinguish

interpretability from explainability. In this paper we use the term interpretation to describe the

process of using a model to understand something about the structure in the data or phenomenon,

and is therefore of particular relevance to causal approaches. As we will show, linear models

are not immune to problems affecting interpretability both for reasons of limited functional

form as well as misspecification (see Parts 1 and 2). Explainability, on the other hand, refers to

the capacity to explain why a model makes a certain prediction or classification, based on its

functional form or algorithmic rules (Rudin, 2019), and is therefore a term particularly relevant

to predictive approaches. As the complexity of a model’s functional form increases, it becomes

increasingly difficult to either interpret or explain a model (Rudin, 2019).

2.4.2 The (Un)Interpretability of Linear Models

Linear models are deceptively simple to explain because their model coefficients seem to provide

a direct means to understand why the model made a certain prediction. It is common to either



2.4. Part 3: Unreliable Interpretations 55

explain or interpret the parameters of a linear model as follows: For a one unit increase in xk,

the model produces a θk increase in the outcome, assuming all other variables are fixed. If the

model is not misspecified (i.e., it has adequate functional form and causal structure), then this

parameter may be interpreted in a causal sense as well as in a predictive/explainable sense. In

other words, the parameter not only tells us something about how the model’s output changes

with respect to a change in its input, but also something about the external phenomenon being

modeled. However, if the model is misspecified due to incorrect structure, then the parameter

may only be used to explain the behavior of the model, and will not correspond meaningfully

with some external causal quantity.

Perhaps surprisingly, if the model is misspecified both in terms of its functional form and its

structure, then the model may be neither interpretable nor explainable. In this scenario, complex

cancellation effects may render the coefficients of linear models meaningless (Lundberg, G.

Erion, et al., 2020; Breiman, 2001b; Haufe et al., 2014). Just because a predictive model (e.g.,

multiple linear regression) indicates that variable x1 has statistically significant association with

an outcome, does not imply that it is meaningful to interpret this coefficient either in terms of a

specific quantified value, or in terms of an ordinal level of variable importance. The problems

are caused both by the function’s inability to account for non-linear relationships and by the

mismatch of the function’s implicit structural (i.e., causal) form with the true form of the data.

We demonstrated the latter issue in Part 2. For the former, we generate a synthetic example,

closely following that of Lundberg, G. Erion, et al. (2020).11 Essentially, the relationship

between the outcome and two particular features in a semi-synthetic dataset is modified to

include an increasing amount of non-linearity following the relationships in Equation 2.3.

y = σ((1− q)(0.388x1 − 0.325) + q(1.714x2
1 − 1) + 1.265x2 + 0.0233) (2.3)

Here, σ is the logistic link function, q is the degree of non-linearity, which is varied between

zero (describing a linear relationship) and one (describing a model with a quadratic relationship),

y is the outcome, and x1 and x2 are the two predictor variables. The choice of the factors (e.g.,

11Full code for the original example can be found here: https://github.com/suinleelab/
treeexplainer-study/.

https://github.com/suinleelab/treeexplainer-study/
https://github.com/suinleelab/treeexplainer-study/
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0.388) and intercepts (e.g.,−0.325) are arbitrary, and derive from the classic NHANES I dataset

(Launer, 1994; Fang and Alderman, 2000) from which the predictors and outcome are drawn.

The relationship between the predictors and the outcome as q is increased from zero to one is

shown in the lowest plot of Figure 2.6. Two models were fit to these synthetic data: a linear

logistic regressor, and a machine learning algorithm known as XGBoost (T. Chen and Guestrin,

2016). The upper plot in Figure 2.6 shows how the logistic regressor’s error increases as the

non-linearity increases. In contrast, the XGBoost model’s prediction error remains low. Notably,

when q is close to zero (i.e., the percent non-linearity is low), the linear model outperforms

the XGBoost model, and has the potential to directly match the data generating process. The

middle plot shows how the contribution of irrelevant features to the outcome changes as the

non-linearity increases. For the XGBoost model, any irrelevant features are ignored regardless

of the degree of non-linearity, and their weights remain at zero (which is in line with the true

model). On the other hand, the linear model assigns weight (i.e., the coefficients of the model

change) to irrelevant features as the non-linearity increases. This is highly problematic for

explainability and interpretability - it results in irrelevant features being indicated to be of

predictive importance even when they are not.

2.4.3 The (Un)Interpretability of Models with Complex Functional Form - Camels

in the Countryside

In Part 1 we suggested that researchers explore machine learning methods which facilitate

the modeling of complex, non-linear relationships between variables. These techniques are

applicable to predictive as well as causal approaches. In spite of their flexible functional

form, powerful predictive approaches are explainable but not necessarily interpretable. We

now describe a famous example which highlights how using powerful function approximation

circumvents limitations in functional form does not yield interpretable models. This is one of the

principal limitations of purely predictive approaches and closely relates to misspecification (see

Part 2). The example involves the classification of images of cows and camels, where images of

cows frequently feature countryside backgrounds and images of camels tend to feature sandy or

desert regions (Arjovsky et al., 2020). A predictive function will not respect the orthogonality
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Figure 2.6: The Uninterpretability of Linear Models in the Presence of Non-Linearity

x1

x2

y

Note. Demonstrates how the predictive performance of a logistic regressor drops as non-linearity
increases, whereas the XGBoost (T. Chen and Guestrin, 2016) model does not (top); shows how
irrelevant feature attribution increases with non-linearity for the linear regressor, but for XGBoost it
does not (middle); the relationship between variables in the dataset for these experiments becomes
increasingly non-linear. These experiments were close adaptations of those by Lundberg, G. Erion, et al.
(2020).
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and semantics of the animal or background, and the background provides a convenient cue,

albeit one which is irrelevant and confounding, with which to classify the animal. Hence, a cow

in a desert may be wrongly classified as a camel, and a camel with a countryside background

may be wrongly classified as a cow. This issue may never become problematic in practice, so

long as the function is not exposed to a new distribution of images, where the joint distribution

of backgrounds and animals changes. This highlights how predictive models, owing to their

misspecification, are sensitive to what is known as covariate or distributional shift. Given a

change in the number of photographs of cows in desert regions, or camels in the countryside,

the performance of the classifier may suffer considerably.

This example concerning issues relating to classification of high-dimensional image data may

appear somewhat unrelated to the typical data that psychologists are concerned with, but actually

the problem of confounding is just as important in the low-dimensional setting (Cinelli, Forney,

and Pearl, 2022; Rohrer, 2018). Indeed, predictive models are usually fit by minimizing

an error criterion (e.g., mean squared error or binary cross entropy), and there is therefore

nothing to restrict these models from leveraging any or all statistical correlations present in

the data. The use of predictive model explainability techniques (discussed in more detail

below) can be used to help identify whether the model might be leveraging factors which have

the potential to be confounding, and can provide considerable insight. Unfortunately, if the

confounders are latent/unobserved, then it may be very difficult to identify and avoid such

problems. Consequentially, predictive models are rarely interpretable.

2.4.4 Limited Functional Form and Misspecification Results in Conflated and

Unreliable Interpretations

The examples above highlighted that when the functional form of a model is limited in its ca-

pacity to model the relationships between variables, the model coefficients become meaningless

and the model is unexplainable. A further problem arises when the model is misspecified for

structural reasons. The issues associated with limited functional form and causal misspecifica-

tion therefore compound to yield model coefficients that are (doubly) uninterpretable. Treating

them otherwise would be to interpret these coefficients as being causally meaningful, and this is
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an example of conflated and unreliable interpretation. If the functional form of the model were

correct (i.e., both the model as well as the relationships between variables were linear), then a

linear model would be explainable, but not interpretable. This is because the outcome predicted

by the model would indeed be changing according to a βk change in the input variable xk, but

owing to misspecification, this βk would still not correspond with any causal quantity. As such,

it is only when linear models are neither misspecified due to limited functional form (compared

with the true relationship in the data) nor structurally misspecified, that they are interpretable.

2.4.5 Explainability Techniques

The ability to interrogate and explain our predictive models is important, particularly given that

the deployment of such models for automated decision making processes have the potential

to seriously impact individuals’ lives (Hardt, Price, and Srebro, 2016; Kilbertus et al., 2017;

Locatello et al., 2019; Y. T. Cao and Daume III, 2019; H. Liu et al., 2019; Howard and Borenstein,

2018; A. Rose, 2010; Louizos, Swersky, et al., 2017; Moyer et al., 2018; Buolamwini and

Gebru, 2018). Indeed, the European Union has recently decreed that the use of machine learning

algorithms (which includes the use of predictive functions) be undertaken in such a way that

any individual affected by an automated decision has the right to an explanation regarding that

decision (Aas, Jullum, and Loland, 2019; European Union, 2016). In the previous section we

described the camels in the countryside problem, whereby powerful predictive models with

flexible functional form do not respect causal structure in the data. However, complex models

(often called black box models) are more difficult to explain than linear models, and we therefore

need explainability techniques to do the explaining for us.

Model explainability is a burgeoning area of machine learning, in which commendable strides

have been made in recent years (e.g., Alaa and van der Schaar, 2019; Wachter, Mittelstadt,

and Russell, 2018; Lundberg, G. Erion, et al., 2020). The techniques facilitate a form of

meta-modeling, whereby a simpler, human-interpretable and thereby explainable model is used

to represent the more complex, underlying model (Rudin, 2019). One popular explainability

technique derives from a game theoretic approach to quantifying the contribution of multiple

players in a collaborative game; namely, Shapley values (Shapley, 1953). Recently, Shapley
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values have been adapted to yield meaningful explanations of models that correspond well

with human intuition (Lundberg and S.-I. Lee, 2017; Lundberg, G.G. Erion, and S.-I. Lee,

2017; Lundberg, G. Erion, et al., 2020; Sundararajan and Najmi, 2020; H. Chen et al., 2020).

Indeed, these methods were used with XGBoost in the experiments demonstrating the problems

with linear model interpretability above (Figure 2.6). The family of Shapley methods provide

breakdowns which indicate how much each input variable or feature contributes to a model’s

prediction for any individual datapoint. Such individualized prediction and explainability is

particularly important for (e.g.) individualized treatment assignments, and thereby mitigates

concerns regarding the use of aggregation in psychology and social science (Bolger, Zee, et al.,

2019; Fisher, Medaglia, and Jeronimus, 2018). The methods can be used equally for complex

functions (such as neural networks) as well as for simple linear functions. By combining

powerful function approximation with explainability techniques, we may be able to achieve

accurate forecasts and outcome predictions, while maintaining the capacity to understand what

our model is actually doing when it makes a prediction.

From a research standpoint, explainability techniques allow researchers to understand, in a

purely associational sense, which variables and interactions between variables are important

when making a prediction.12 For example, if one identifies that a variable, previously considered

to be important, contributes negligible predictive value then one might investigate whether this

variable does or does not fit into a particular theoretical framework. We would therefore argue

that researchers should consider a combination of predictive methods with explainability tools

as a useful means to contribute new knowledge, particularly during the early and/or exploratory

stages of investigation. It is, however, worth emphasizing that just because a predictive model

finds a particular feature (ir-)relevant to making a prediction, does not mean that this association

is meaningful outside of the function/model (as with camels in the countryside). Furthermore,

an explainability technique represents a form of model in its own right, and the process of

modeling a model brings its own difficulties (see e.g., Rudin, 2019; Kumar et al., 2020). Indeed,

if the explanation model is good at explaining the data in a simple, human-readable form, then

the explanation model provides evidence that a simpler, more explainable model was possible to

12We avoid the term ‘correlational’ on the basis of our earlier discussion - correlations do not describe dependence
well when the functional form is non-linear.
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begin with. These difficulties notwithstanding, the explainability techniques provide a valuable

means to leverage predictive model for exploratory research.

2.4.6 Summary

In Part 3, we have described how either limited functional form, or model misspecification,

or both, result in uninterpretable models. In such cases, any attempt to interpret the models

in spite of these limitations results in conflation and unreliability. The interpretations are

conflated because a misspecified model cannot be interpreted causally, and they are unreliable

because predictive models can only be explained. This distinction is important because, if a

misspecification has occurred (perhaps because we intentionally adopted a predictive/non-causal

approach), one can restrict the purview of scientific conclusions to the specific mathematics of

the algorithm used for prediction. In other words, powerful function approximation techniques

may be able to accurately predict outcomes and have the flexibility to match the functional form

of the true data distribution, but they do not necessarily respect or reflect the causal structure

in the data generating process. Does this mean that predictive techniques cannot generate

understanding? Not entirely. There are many scenarios, particularly during the exploratory

stages of a research project, for which researchers may not yet have a strong, empirically

supported inductive bias or theory about the data generating process. Rather than testing specific

theoretical hypotheses during these early stages, it may be pertinent to ask more general research

questions. The goal may then be to amass varied evidence (e.g., by using predictive models)

to gradually uncover a basis for the development of an increasingly refined theory (Gelman,

2014; Shrout and Rodgers, 2018; Oberauer and Lewandowsky, 2019; Tong, 2019). Of course,

researchers should be transparent about whether this is their goal, and carefully consider how

they interpret predictive models. Model explainability techniques may be useful in building up

an intuition about ‘what is important’ in the phenomenon of interest. However, these techniques

are not without their own limitations, and we urge researchers to engage broadly with experts in

the practice of these techniques to ensure that (a) their approaches are optimal for their research,

and (b) that their interpretations (or explanations) are tempered according to the limitations of

their models.
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2.5 Part 4: Discussion and Recommendations

2.5.1 Modeling in Practice

Flexible predictive modeling approaches appear to be used rarely in psychology and social

science, indicating a missed opportunity in these fields.13 Predictive modeling may be extremely

useful, particularly as part of the research exploration stage (Yarkoni and Westfall, 2017). When

combined with model explainability techniques (such as those deriving from Shapley values),

predictive methods provide a powerful way to interrogate associations present in the data. So

long as practitioners recognize the limitations and are transparent about their approach and any

associated assumptions, conclusions can still be drawn from predictive models, provided that

they are not presented as causal conclusions.

We would argue that, in general, undertaking meaningful causal inference is extremely challeng-

ing, and significantly more so than fitting predictive functions to data. Indeed, the former should

subsume the latter as part of a causal pipeline for (a) mitigating issues with limited functional

form by using (e.g.) data-adaptive function approximation to model the functional relationships

between variables, and (b) mitigating issues with model misspecification by carefully consid-

ering causal relationships between variables. As described earlier, researchers have noted the

ambiguity in the use of implicit causal (rather than predictive) language even in studies which

otherwise appear to be predictive (Grosz, Rohrer, and Thoemmes, 2020; M. Hernan, 2018a).

It has been suggested that this reluctance to be explicitly causal stems from a strange history

of discouragement for its use in observational studies (Grosz, Rohrer, and Thoemmes, 2020;

Dowd, 2011).

In terms of understanding, our view is that, in general, researchers in psychology and social

science lack some competence in the practice of prediction and causal inference. If researchers

were more competent at prediction, they would avoid interpreting linear model parameters using

implicit causal language (Grosz, Rohrer, and Thoemmes, 2020), avoid using naive linear models

to test causal hypotheses derived from causal theories, and instead be using varied and flexible

13For an example of researchers in psychology using machine learning techniques see Joel, Eastwick, Allison,
et al. (2020).
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function approximation techniques, model explainability tools, and train/test data splitting and/or

cross-validation techniques (Yarkoni and Westfall, 2017). On the other hand, if researchers

were more competent in causal inference, they would be less ambitious about specifying

and interpreting large (causal) SEM graphs, more restrained when it comes to interpreting

the coefficients of misspecified models, more transparent about assumptions when defining

explanatory models (Grosz, Rohrer, and Thoemmes, 2020), use more explicitly causal language

and terminology (Grosz, Rohrer, and Thoemmes, 2020), more clearly distill and identify the

specifics of their causal questions or hypotheses, and be less likely to worsen the bias and

generalizability of their inferences by adopting ad hoc, data driven variable model manipulation

techniques during the analysis stage. Finally, if researchers had a clearer understanding about the

differences between predictive and causal approaches, then we would also see more delineation

between the two. Typical practice therefore involves a combination of unreliable interpretations

regarding models with limited functional form and causal misspecification.

2.5.2 Recommendations

1. We recommend that psychologists and social scientists give more consideration to predictive

approaches, particularly during the exploratory stages of a research project.

The inherent complexity and non-linearity of the typical phenomena of interest to psychologists

and social scientists may make the goal of causal inference arbitrarily complex (Meehl, 1990).

This may partly explain why researchers in psychology and social science are generally discour-

aged from drawing causal conclusions from observational data, despite them doing so implicitly

anyway (Grosz, Rohrer, and Thoemmes, 2020; Dowd, 2011). Indeed, the use of SEM could be

taken as evidence of an explicit intention to undertake causal research, as the very structure of

the model is an imposition of the researcher’s view on the data generating process. The use of

an explicit causal graph with opaque predictive interpretations represents a further example of

the conflation of predictive and causal approaches. In cases where the models themselves are

misspecified both in terms of linear functional form and untestable structural assumptions, the

interpretation of such models becomes unreliable.

When researchers wish to model the relationships between variables, either as part of a causal
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model, or for purposes of prediction, then it may be extremely advantageous for them to

consider techniques common in machine learning, particularly in combination with model

explainability techniques. Indeed, Yarkoni and Westfall (2017) have previously made a similar

recommendation. Powerful function approximation techniques including feature engineering or

data-adaptive techniques such as neural networks or random forests, can be used to leverage as

many associations present in the data sample as possible. In the case of predictive modeling, a

consideration for the causal structure of the data is possible but not necessary. Incorporating

causal inductive bias may aid in generalization, but it is not strictly necessary to achieve good

predictive performance. Unfortunately, the use of techniques with potentially data-adaptive,

flexible functional form is extremely rare in psychology and social science, where the use of

models with restrictive linear functional form is ubiquitous (Yarkoni and Westfall, 2017; Blanca,

Alarcon, and Bono, 2018).

2. We recommend that psychologists and social scientists seek collaboration with statisticians

and machine learning engineers/researchers, whose principal focus is to understand, practice,

and develop function approximation and causal inference techniques. Given that there exist

entire fields dedicated to the study of relevant modeling approaches (e.g., statistics, machine

learning, causal inference), independently of the empirical human sciences, it is perhaps

unrealistic to expect an expert in, say, psychology or social science, to have equal expertise

in the practice of predictive and explanatory modeling, particularly when the mathematical

knowledge required to understand these techniques is both significant and rare in these fields

(Boker and Wenger, 2007). Furthermore, new methods are continually developed and updated

in the fields of statistics and machine learning. As well as encouraging researchers to make

themselves more familiar with the topics of predictive and causal modeling, we also recommend

they seek collaboration with experts in the practice of their chosen analytical approach. Note

that this recommendation has been made by researchers previously in various contexts (e.g.,

(Lakens, Hilgard, and Staaks, 2016)).

3. We recommend researchers be transparent about whether they are adopting a predictive

or causal approach and to qualify their interpretations. We have discussed how unreliable

interpretations may stem from issues of limited functional form and causal misspecification, and
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how these issues may be common in the fields of psychology and social science. We encourage

researchers to ask themselves what an interpretation of an effect size or parameter derived using

a naive (i.e., misspecified) model actually means: Is it actually an explanation for how much

the output of the model changes with respect to a change in the input; or is it being interpreted

causally (e.g., this childhood intervention increased well-being by θ-amount)? In either case,

researchers need to be transparent and clearly articulate whether they are adopting a predictive

or causal approach. Each approach is associated with assumptions and limitations which need

to be clearly stated in order to contextualize any explanations or interpretations which are made.

Predictive model explainability tools have their own limitations and may actually contradict the

results from undertaking causal inference: While the inclusion of a mediator in a regression can

completely block a causal path reducing the estimated effect to zero, a strong effect might be

indicated by an explanation of a predictive model. Similarly to Grosz, Rohrer, and Thoemmes

(2020), we therefore recommend that researchers clearly state their approach as well as its

associated assumptions and limitations, and moderate their explanations, interpretations, and

conclusions accordingly.

4. We recommend that researchers distill their research questions and hypotheses. It may be

pertinent for researchers to attempt to distill and simplify causal questions so that they are both

minimal and sufficient. For example, in our discussion of causal inference, we chose to identify

a single causal effect, and for this it was sufficient to identify the minimal backdoor adjustment

set necessary to render this causal effect identifiable. As such, a full graph did not need to be

specified, even though it may need to be considered in order to find the backdoor adjustment

variables. M. J. van der Laan and S. Rose (2011) recommend a similar “targeted” approach.

More generally, by distilling our research questions and hypotheses, we may be able to increase

the chance that our modeling attempts are successful, and that we have realistic expectations

of the level of understanding that can be achieved with some acceptable level of confidence.

This recommendation therefore overlaps with the recommendation for transparency in so far as

distilling a research question or hypothesis will make it easier to be transparent.
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2.6 Conclusion

The replicability crisis has drawn attention to numerous weaknesses in typical psychology and

social science research practice. However, in our view, issues relating to limited functional form,

model misspecification, and unreliable interpretations have not been sufficiently addressed in

prior meta-research. Indeed, while it is difficult, if not impossible, to quantitatively apportion

the crisis according to its myriad causes, in our view the issues covered in this work represent

significant contributing factors.

In this paper, we demonstrated the nature of these problems and how they manifest in typical

psychology and social science research. The typical models used in psychology and social

science are limited in their functional form and misspecified in terms of causal structure. The

result is that subsequent interpretations conflate predictive and causal language and are also

unreliable. We make four recommendations for researchers in these fields to update and

improve their research practice by (1) giving more consideration to the use of flexible and

varied predictive modeling and model explainability techniques; (2) to seek collaboration

with experts from the fields of statistics and machine learning; (3) to be transparent about

whether they are adopting a predictive or causal approach; and (4), to distill and simplify their

research questions and hypotheses in order to increase the chances that these questions and

hypotheses can be practically addressed and tested. While we have focused on the fields of

psychology and social science, we believe the highlighted issues are relevant to all empirical

human sciences fields. There is little doubt in our minds that the lack of understanding about

progress, assumptions, limitations, and pitfalls associated with predictive and explanatory

modeling has contributed to the replicability crisis, and we implore researchers to address these

shortfalls, lest they hinder scientific progress. Every research question and hypothesis may

present its own unique challenges, and it is only through an awareness and understanding of

varied statistical methods for predictive and causal modeling, that researchers will have the tools

with which to appropriately answer and test them.



CHAPTER 3

Application of Machine Learning and Explainability Techniques

In Chapter 2, I recommended that researchers engage with machine learning and machine

learning explainability methods for exploring data. Firstly, note that I will discuss the limitations

and risks associated with this approach in more detail in Chapter 6. Secondly, this Chapter

contains an example of such an application for the prediction of perceived partner support from

relational and individual variables, and is drawn from the following publication:

Vowels, L.M., Vowels, M.J., Carnelley, K.B., Kumashiro, M., 2022. A machine learning

approach to predicting perceived partner support from relational and individual variables.

Social Psychological and Personality Science, DOI: 10.1177/19485506221114982.

Contribution: All analyses, methodological write-up and presentation of results, manuscript

editing.

Abstract: Perceiving one’s partner as supportive is considered essential for relationships, but we

know little about which factors are central to predicting perceived partner support. Traditional

statistical techniques are ill-equipped to compare a large number of potential predictor variables

and cannot answer this question. The current research used machine learning analysis (random

forest with Shapley values) to identify the most salient self-report predictors of perceived

partner support cross-sectionally and six months later. We analyzed data from five dyadic

datasets (N = 550 couples) enabling us to have greater confidence in the findings and ensure

67
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generalizability. Our novel results advance the literature by showing that relationship variables

and attachment avoidance are central to perceived partner support while partner similarity,

other individual differences, individual well-being, and demographics explain little variance in

perceiving partners as supportive. The findings are crucial in constraining and further developing

our theories on perceived partner support.

3.1 Introduction

Perceiving one’s partner as supportive is considered an essential element in romantic relation-

ships, but we lack knowledge about which factors are central to predicting such perceptions.

Several relationship theories (e.g., attachment theory, self-determination theory, interdependence

theory) have underscored the centrality of partner support in promoting well-functioning rela-

tionships. Existing research has examined several potential factors that are considered important

for perceived partner support, but it has not compared the relative importance of these different

factors, in part because traditional statistical analyses are not well-equipped to examine a large

number of potential predictors at once. The purpose of the present study was to leverage the

power of machine learning to compare which theoretically relevant relational and individual

variables—from the perspectives of both the support receiver and the support provider—predict

the most variance in perceived partner support.

3.1.1 Established Relational Predictors of Perceived Partner Support

According to attachment and interdependence theories, actors should perceive partners as more

supportive when the relationship is characterized by high satisfaction, empathy, commitment,

trust, and willingness to sacrifice, and low conflict (B. Feeney and Collins, 2015; Kelley and

Thibaut, 1978; Mikulincer and Shaver, 2009; C.E. Rusbult and Van Lange, 2003; Ryan and

Deci, 2000). This is because partners in these relationships can count on each other to provide

support and are thus more open to support when needed or may be more willing to take risks

(C.E. Rusbult and Van Lange, 2003). This in turn leads the recipients to perceive their partners

as supportive. Furthermore, the transactive goal dynamics theory suggests that high goal
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correspondence allows partners to better coordinate their efforts to achieve their goals and thus

are likely to be more supportive (Fitzsimons and E.J. Finkel, 2018). Finally, self-expansion

theory (A. Aron, E. Aron, et al., 1991) suggests that inclusion of other in the self enables greater

shared intimacy, in turn leading partners to share resources and to perceive each other as more

supportive. Based on these theories, we would expect relationship variables (see Table 3.1 for

the full list of variables) to be important for perceiving partners as supportive, but it is not clear

whether there are specific relational variables that contribute to perceptions of support more

than others.

3.1.2 Established Individual Predictors of Perceived Partner Support

Interestingly, few theories on partner support have explicitly discussed which individual differ-

ences variables are the most likely to explain why some partners perceive and are perceived as

more supportive than others (see attachment theory for an exception; Mikulincer and Shaver,

2009). Attachment theory suggests that avoidantly attached individuals perceive partners as less

supportive because they doubt partners’ availability (A. Martin, Paetzold, and Rholes, 2010)

whereas anxiously attached individuals doubt their worthiness of being supported but feel others

as capable of providing support, which has resulted in mixed findings for attachment-anxiety (B.

Feeney, 2004; B. Feeney and Thrush, 2010; Jakubiak and B. Feeney, 2016; A. Martin, Paetzold,

and Rholes, 2010). According to attachment theory, individuals who trust themselves are also

more likely to trust other’s capacity to be supportive when needed (Collins and B. Feeney,

2004) and thus are more likely to perceive their partners as supportive. Thus, we expect that

individuals higher in promotion orientation (i.e., regulatory focus on dreams and aspirations;

Righetti and Kumashiro, 2012, self-control; Zuo et al., 2020, and self-efficacy; L. Vowels,

Carnelley, and Francois-Walcott, 2021; L. Vowels and Carnelley, 2022) feel a greater sense of

autonomy (self-determination theory; Ryan and Deci, 2000) and trust in their ability to achieve

their goals (attachment theory; Collins and B. Feeney, 2004). Furthermore, we expect that

individuals high in self-esteem (Harris and Orth, 2020) or self-respect (Kumashiro, E.J. Finkel,

and C.E. Rusbult, 2002) would perceive their partners as more supportive as they may self-

select into healthier relationships or be able to elicit higher quality support from their partners.
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Additionally, while better physical (Reblin and B.N. Uchino, 2008) and emotional well-being

(Canevello and Crocker, 2010; Drigotas, 2002) have often been considered as outcomes of

perceived partner support, it is also likely that individuals with higher well-being are more easily

supported. For example, depression makes people more pessimistic and view everything in

a negative light (Anzalidi and Shifren, 2019). Thus, we expect that people who have higher

well-being are more optimistic in their perceptions of partner behaviors and act in ways that

tend to elicit positive behaviors from their partners.

Finally, demographic variables such as relationship length, age, and gender have previously been

associated with perceived partner support, with mixed results (Bühler et al., 2019; Jakubiak,

B. Feeney, and Ferrer, 2020; Verhofstadt, Buysse, and Ickes, 2007). Several researchers have

hypothesized that support for goals is likely more important in early stages of the relationship

with the importance of support declining over time (Bühler et al., 2019; Jakubiak, B. Feeney,

and Ferrer, 2020; Verhofstadt, Buysse, and Ickes, 2007) while other researchers have found that

longer relationship length predicted higher perceived partner support (Lantagne and Furman,

2017). Furthermore, because women are traditionally socialized to be more caring, partners may

find women more supportive. Indeed, previous research has found women to be perceived as

more supportive, but both men and women felt equally supported by their spouse (Verhofstadt,

Buysse, and Ickes, 2007). There is no prior literature on education, ethnicity, or children on

perceived partner support, but we have provided a rationale for their inclusion in Table S1 in the

supplementary (accessible here: https://osf.io/bjvhu and provided at the end of this

chapter).

3.1.3 Machine Learning

Previous research has relied exclusively on traditional linear models (Breiman, 2001b; Lundberg,

G. Erion, et al., 2020; Luque-Fernandez et al., 2018; Orben and Przybylski, 2019; J. Peters,

Janzing, and Scholkopf, 2017). Machine learning algorithms have several key advantages over

these models: they can learn highly non-linear relationships between variables, handle a large

number of predictors at once, and estimate complex interactions between different variables.

As such, they are not susceptible to problems of multicollinearity or limited functional form

https://osf.io/bjvhu
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(e.g., expecting an association to be linear while the real relationship is cubic) misspecification

(M. J. Vowels, 2021). Because of this, using machine learning provides a much more flexible

and powerful approach to predicting an outcome. Machine learning algorithms are traditionally

fed as many predictors as possible to maximize prediction. It then learns which variables are

important for predicting the outcome. In the present study, we use a random forest algorithm

(Breiman, 2001a), which is a form of explainable decision tree that can handle highly non-linear

relationships and complex interactions without overfitting to the data.

Machine learning models, including random forests, have traditionally been “black box models”

where the researcher is unable to understand what the algorithm has used for predicting the

outcome. However, recent developments in machine learning have provided tools that allow

interpretation of the results through explanations of machine learning models (Lundberg and

S.-I. Lee, 2017; Lundberg, G.G. Erion, and S.-I. Lee, 2017). This work is particularly interesting

because it enables researchers to combine the use of powerful machine learning algorithms and

state-of-the-art tools for model explainability that can provide accurate predictions as well as

increase our understanding of which factors are the most important in predicting the model

outcome. The latter is of particular importance because one of the principal aims of psychology

is to develop a deeper understanding of human behavior (Grosz, Rohrer, and Thoemmes, 2020).

In the present study, we take advantage of this new development in machine learning by using

Shapley values (Lundberg and S.-I. Lee, 2017; Lundberg, G.G. Erion, and S.-I. Lee, 2017) to

estimate the effect size and direction of the effect of each variable predicting perceived partner

support.

3.1.4 The Current Research

Our aim was to examine which relational and individual factors are the most predictive of

perceived partner support. We examined two types of perceived partner support (B. Feeney and

Collins, 2015): perceived partner responsiveness (i.e., being available and responsive to the

partner’s needs, and understanding and validating one’s overall self; Reis, M. Clark, and Holmes,

2004) and perceived affirmation of the ideal self (i.e., perceiving and behaving in a manner

consistent with the partner’s ideal self; Drigotas et al., 1999). The former is a broader construct
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and is considered one possible central organizing theme for the diverse phenomena relationship

scientists study (Reis, 2007), whereas the latter is more specific and focused explicitly on

partner’s role in helping individuals become closer to their ideal self (Drigotas et al., 1999). As

such, although both are frequently used to examine partner support in romantic relationships,

they may be predicted by different factors due to affirmation being more specifically about the

ideal self.

The predictor variable selection for the present study was guided by existing theoretical frame-

works to test the explanatory power of different relational and individual variables (see Table 3.1

for the variables, expected direction of the effect, and state of the current evidence). The

selection was somewhat limited by the availability of variables across the datasets. Furthermore,

because there are (at least) two people in romantic relationships, it is important to understand

whether one person’s outcome is only determined by their own variables (actor effects) or

whether their partner’s reports also predict the actor’s outcomes (partner effects). Our hope is

to add to the current understanding of the factors that are the most and least likely to predict

perceived support. We used data from five dyadic datasets that had a large number of common

predictor variables and addressed the following research questions: 1) How much variance in

the overall outcomes can we explain? 2) Are relational or individual variables more important

for predicting partner support? 3) Do partner effects explain additional variance in outcomes

above actor effects? And 4) Can we predict support over time?

3.2 Method

3.2.1 Participants and Procedure

The preregistration and materials for the project can be found on the Open Science Framework

https://osf.io/v368c/ and provided at the end of this chapter.1

Five dyadic datasets (E. Finkel, 2020a; E. Finkel, 2020b; C.E. Rusbult, Kumashiro, Coolsen,

et al., 2019; C.E. Rusbult, Kumashiro, E.J. Finkel, et al., 2019) were combined in this project
1We also preregistered analyses for self-efficacy but due to the journal word limit have not included them

in the main manuscript. The results can be found in the Supplementary Material (accessible here: https:
//osf.io/bjvhu and provided at the end of this chapter). We also added longitudinal analyses to the manuscript.

https://osf.io/v368c/
https://osf.io/bjvhu
https://osf.io/bjvhu
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to create a large dataset of couples. These datasets were chosen because they included a large

number of predictor variables that were the same across the samples. We are aware of no other

datasets with such high overlap in the variables. All datasets included cross-sectional self-

reported data collected from both dyad members in romantic relationships. Two of the datasets

included only dating couples (n1 = 74, n4 = 92), one dataset included newly committed

couples (e.g., engaged, married, moving in together; n3 = 178), and two datasets included

married couples (n2 = 120, n5 = 77). The final sample consisted of 550 couples (1,100

individuals). Dataset 3 was also used to predict support six months later and included 161

couples.

On average, participants were 28.32 years old (SD = 10.90, range = 18-79) and had been in a

relationship for 5.59 years (SD = 8.13, range = 0.08 – 61.50). Most of the participants were

white (n = 876, 80%) with a minority being African American (n = 83, 8%), Hispanic (n = 35,

3%), or Asian (n = 72, 7%). The sample was primarily well-educated: 196 (18%) participants

had a graduate degree (M.S./PhD), 466 (42%) a Bachelor’s degree, 379 (34%) at least some

college, and 60 (5%) had no college courses. The couples were either married (n = 266, 48%),

cohabiting (n = 127, 23%), or dating and not living with each other (n = 220, 40%), and most

of the couples did not have any children (n = 462, 84%). All data were collected in the United

States.

Measures

The outcome variable, perceived partner support was measured using the 18-item responsiveness

scale (Reis, M. Clark, and Holmes, 2004) in four datasets and the partner affirmation scale

(Drigotas et al., 1999) in three datasets. The rest of the variables from each dataset were

included in the final dataset as predictors if the variable appeared in at least three of the five

datasets. These variables were divided into actor’s and partner’s individual (17) and relational

(11) predictors (summarized in Table 3.1; see supplemental material for the description of

the scales used, accessible here: https://osf.io/bjvhu and provided at the end of this

chapter).

https://osf.io/bjvhu


74 Chapter 3. Machine Learning Application

Table 3.1: The List of Included Variables with a Theoretical Rationale for Inclusion.

Variable Expected Direction Relevant Studies Prior Evidence Important Predictor*
Relational Variables
Core relationship variables
trust Positive B. Feeney and Collins (2015) Yes Yes
commitment Positive Kelley and Thibaut (1978) Yes
empathy toward partner Positive Mikulincer and Shaver (2009) Yes
conflict Negative C.E. Rusbult and Van Lange (2003) Yes
satisfaction Positive Ryan and Deci (2000) Only baseline
willingness to sacrifice Unclear No
Partner similarity
goal correspondence Positive Gere and Schimmack (2013) Yes No

L. Vowels, Carnelley, and Francois-Walcott (2021)
actual inclusion of the other in self Positive A. Aron, E. Aron, et al. (1991) None No

A. Aron and B. Fraley (1999)
Individual Variables
Attachment theorya

attachment avoidance Negative A. Martin, Paetzold, and Rholes (2010) Yes Yes
B. Feeney and Thrush (2010)
B. Feeney (2004)

attachment anxiety Negative Jakubiak and B. Feeney (2016) Mixed Only long. affirmation
Individual differences
self-control Positive Zuo et al. (2020); only relationship satisfaction) None No
regulatory focus (promotion) Positive Righetti, C. Rusbult, and Finkenauer (2010) Yes No
regulatory focus (prevention) No association Righetti, C. Rusbult, and Finkenauer (2010) Yes No
self-efficacy Positive L. Vowels, Carnelley, and Francois-Walcott (2021) No
self-esteem Positive Harris and Orth (2020) Yes No
self-respect Positive Kumashiro, E.J. Finkel, and C.E. Rusbult (2002); pro-relationship beh. only None No
Individual well-being
physical health Positive Reblin and B.N. Uchino (2008) Yes (as an outcome) Not consistently
life satisfaction Positive Drigotas (2002) Yes (as an outcome) Affirmation + responsiveness long.
depression Negative Canevello and Crocker (2010) Yes No
Demographic variables
relationship status Unclear Bühler et al. (2019) Mixed No
relationship length Unclear Jakubiak, B. Feeney, and Ferrer (2020) No
gender Unclear Verhofstadt, Buysse, and Ickes (2007) Mixed No
age Unclear Bühler et al. (2019) Mixed No

Jakubiak, B. Feeney, and Ferrer (2020)
ethnicity Unclear None None No
education Unclear None None No
children Unclear None None No

Note. For further details on the theoretical justifications, please see Table S1 in the supplemental file
(accessible here: https://osf.io/bjvhu and provided at the end of this chapter). Some of the
variables were not present in all analyses due to them not being included in all datasets. All variables
were present at least in one analysis for each outcome.
a. Because attachment styles are the only individual differences variables that have been linked to
perceived partner support theoretically, we chose to include them in a separate category.
* Summary of the findings across the analyses: predictors were considered important if they explained at
least 5% of the variance in the model performance.
‘long.’ = longitudinal, ‘beh.’ = behaviours.

https://osf.io/bjvhu
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Table 3.2: The Overall Prediction Results for Each Outcome Variable for Individual and Relational
Variables and Models with Actor Effects Only and with Actor and Partner Effects.

couples % Variance MSE R2 Individual Relational
Outcome n M (SE) M (SE) M (SE) %a / %p %a / %p

Responsiveness
Model 1 473 50.4 (0.03) 0.48 (0.03) .50 (0.03) 42.9 57.1
+ Partner 50.1 (0.02) 0.48 (0.03) .50 (0.02) 32.3 / 13.4 51.1 / 3.2
Model 2* 382 55.3 (0.02) 0.47 (0.04) .54 (0.02) 35.7 64.3
+ Partner* 54.8 (0.02) 0.48 (0.03) .54 (0.02) 26.6 / 11.9 57.4 / 4.0
Model 3 353 48.2 (0.03) 0.38 (0.03) .47 (0.03) 30.8 69.2
+ Partner 48.1 (0.02) 0.35 (0.03) .47 (0.03) 22.9 / 11.6 60.0 / 5.5
Longitudinal 161 27.6 (0.06) 0.34 (0.02) .25 (0.06) 49.4 50.6
+ Partner 26.7 (0.05) 0.34 (0.03) .24 (0.06) 27.1 / 13.4 33.3 / 0.7

Affirmation
Model 1* 356 34.5 (0.04) 1.16 (0.06) .34 (0.05) 48.2 51.8
+ Partner* 35.4 (0.05) 1.13 (0.07) .36 (0.04) 31.3 / 22.3 40.8 / 4.9
Longitudinal 161 18.2 (0.07) 1.26 (0.13) .15 (0.07) 51.1 48.9
+ Partner 16.3 (0.06) 1.29 (0.13) .13 (0.07) 34.7 / 16.2 37.7 / 11.4

Note. MSE = mean squared error, M = mean, SE = standard error. %a refers to the percentage of variance
explained by actor variables, %a refers to the percentage of variance explained by partner variables. The
first model for each outcome variable included as many samples as possible and subsequent models
included as many variables as possible. The full list of excluded variables and samples can be found on
the OSF project page as well as at the end of this chapter.
* Results presented in figures.
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Table 3.3: The Impact of All Variables of the Most Predictive Models for Responsiveness and Affirmation.

Responsiveness Affirmation
Cross-sectional Longitudinal Cross-sectional Longitudinal
Variable Importances Variable Importances Variable Importances Variable Importances
relationship satisfaction 0.26 attachment avoidance 0.17 trust 0.22 conflict 0.17
empathy toward partner 0.11 trust 0.15 life satisfaction 0.15 attachment anxiety 0.1
physical health 0.1 conflict 0.14 relationship satisfaction 0.14 attachment avoidance 0.09
conflict 0.09 empathy toward partner 0.07 commitment 0.06 trust 0.08
attachment avoidance 0.08 life satisfaction 0.05 self-efficacy 0.06 life satisfaction 0.05
trust 0.05 commitment 0.04 attachment avoidance 0.05 commitment 0.05
age 0.03 self-esteem 0.04 depression 0.03 empathy toward partner 0.05
promotion orientation 0.03 relationship length 0.03 empathy toward partner 0.03 relationship satisfaction 0.04
commitment 0.03 promotion orientation 0.03 physical health 0.03 promotion 0.04
self-esteem 0.03 goal correspondence 0.03 impression mngmnt 0.02 relationship length 0.03
relationship length 0.02 self-control 0.03 attachment anxiety 0.02 self-esteem 0.03
IOS 0.02 competence 0.02 age 0.02 prevention orientation 0.02
goal correspondence 0.02 prevention orientation 0.02 relationship length 0.02 goal correspondence 0.02
self-control 0.02 self-respect 0.02 self-esteem 0.02 sacrifice 0.02
self-respect 0.01 relationship satisfaction 0.02 self-control 0.02 age 0.02
attachment anxiety 0.01 physical health 0.01 self-respect 0.01 health 0.02
subjective well-being 0.01 age 0.01 married 0.01 depression 0.02
social desirability 0.01 attachment anxiety 0.01 some college 0.01 autonomy 0.02
prevention orientation 0.01 sacrifice 0.01 social desirability 0.01 relatedness 0.02
self-efficacy 0.01 impression mngmnt 0.01 Bachelors 0.01 IOS 0.02
children 0.01 IOS 0.01 IOS 0.01 self-control 0.02
sacrifice 0.01 social desirability 0.01 dating 0.01 competence 0.01
depression 0.01 self-efficacy 0.01 gender 0 impression mngmnt 0.01
impression mngmnt 0.01 depression 0.01 children 0 self-respect 0.01
gender 0.01 relatedness 0.01 graduate 0 self-efficacy 0.01
married 0.01 married 0.01 Hispanic 0 social desirability 0.01
graduate 0.01 cohabiting 0.01 cohabiting 0 married 0.01
Black 0 autonomy 0.01 Black 0 gender 0.01
White 0 Bachelors 0 White 0 graduate 0
Bachelors 0 dating 0 no college 0 Hispanic 0
cohabiting 0 White 0 Asian 0 Bachelors 0
some college 0 Hispanic 0 cohabiting 0
dating 0 gender 0 dating 0
no college 0 some college 0 some college 0
Hispanic 0 no college 0 White 0
Asian 0 graduate 0 no college 0

children 0 Asian 0
Black 0 Black 0
Asian 0 children 0

Note. Model importances have been normalized to represent percentage change on the model making the
effect sizes more interpretable. Variables that had at least 0.05 impact on the model are bolded. IOS =
inclusion of other in the self; impression mngmnt = impression management; autonomy, relatedness, and
competence are the needs based on self-determination theory.
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Data Analysis

Details of the data preparation and analyses can be found in the supplemental material (accessible

here: https://osf.io/bjvhu and provided at the end of this chapter). The results were

analyzed using Python 3.7. Each dataset was analyzed using a random forest regressor (Breiman,

2001a). A random forest is a type of decision tree that trains on bootstrapped sub-samples of the

data to avoid overfitting. We used the default “scikit learn” random forest regressor with ten-fold

cross-validation (Pedregosa et al., 2011). The metrics for test data model performance used

were the mean-squared error (which is the averaged squared difference between the prediction

and the observed value), the R2, and the variance explained. The full last model trained was

saved and explained using the “SHapley Additive exPlanations” package (SHAP) (Lundberg

and S.-I. Lee, 2017; Lundberg, G.G. Erion, and S.-I. Lee, 2017; Lundberg, G. Erion, et al.,

2020). The results are provided as feature importances, which describe how important the

variable is for the model outcome and how much it changes the outcome.

The analyses were conducted separately by first including as many participants as possible in

each analysis and then by including as many variables as possible. This resulted in a total of four

analyses (three for perceived partner responsiveness, one for affirmation) which were conducted

twice: once including only actor effects and once including both actor and partner effects. The

included variables and the results for all analyses can be found on the OSF project page as

well as at the end of this chapter. Random forests in their current form are unable to explicitly

model hierarchies in the data and it is possible that hierarchical data can inflate the predictive

performance. However, given we were primarily interested in the relative performance of

different predictors, which is not affected by hierarchical data, this is less of an issue in the

current study.

https://osf.io/bjvhu
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3.3 Results

3.3.1 Total Variance Explained (Research Questions 1-3)

Table 3.2 presents the overall prediction results for each outcome variable for each model for

relational and individual variables as well as for models including actor effects only and for

models including both actor and partner effects. In the actor only models, we were able to

explain the most variance in perceived responsiveness overall (48.2% – 55.3%) with relational

variables generally predicting the largest percentage of the variance (57.1% - 69.2%). Individual

variables predicted a total of between 30.8% – 42.9% of the variance. Partner effects did not

improve the predictive power of the models; if anything, partner effects contributed noise to

the data and made the prediction less accurate. However, in the models with partner effects

included, partners’ individual variables predicted between 11.6% and 13.4% of the variance. In

contrast, partners’ relational variables predicted very little variance (3.2% - 5.5%).

For perceived affirmation, the model with actor effects was able to predict 34.5% of the variance

with relational and individual variables predicting similar amounts of variance (48.2% and

51.8%, respectively). In the models with both actor and partner effects, actors’ relational

variables predicted the most variance (40.8%) followed by actors’ individual variables (31.3%).

Partners’ individual variables contributed 22.3% of the variance, whereas partners’ relational

variables contributed very little (4.9%).

3.3.2 Most Predictive Variables (Research Question 4)

In most of the models, the predictive importance of the variables decreased after only a small

number of predictors. The rest of the predictors contributed only a small amount of variance

into the model individually. We used 5% as a cutoff for percentage change in the model. We

present the top-10 variables for each outcome in the figures and all predictors in Table 3.3 for

the percentage model change for the main actor models. In the figures, the left side provides

the average effect of each variable on the model outcome. The right side of the figure provides

the estimates for each individual participant. Red indicates a higher value of the predictor



3.3. Results 79

Figure 3.1: The Top-10 Most Important Predictors for Responsiveness for Models with Actor Effects and
Actor and Partner Effects.
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Figure 3.2: The Top-10 Most Important Predictors for Affirmation for Models with Actor Effects and
Actor and Partner Effects.
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variable and blue indicates a lower value. For example, red is equal to 1 and blue is equal to

0 for binary variables. The Shapley values are additive and can be interpreted similarly to an

average effect from a linear model. For example, one unit increase in relationship satisfaction

predicted a corresponding average increase of 0.33 units in perceived responsiveness. The

individual effects show that low relationship satisfaction predicted up to a -3.0-unit change

in perceived responsiveness compared to average relationship satisfaction whereas a high

relationship satisfaction score predicted up to 0.5-unit increase in perceived responsiveness

compared to average relationship satisfaction. In Table 3.3, the impact is rescaled to be between

0 and 1 for ease of interpreting and comparing effect sizes.

Perceived partner support was measured using two variables: perceived responsiveness and

affirmation. There were four relational (relationship satisfaction, empathy toward partner, trust,

and commitment) predictors that were consistently predictive of higher levels of perceived

responsiveness (see Figure 3.1) and affirmation (see Figure 3.2). Experiencing higher conflict in

the relationship in general predicted lower perceived responsiveness and affirmation. Willingness

to sacrifice and inclusion of other in the self, on the other hand, explained very little variance in

the outcomes.

Out of individual (attachment, individual differences, individual well-being, and demographics)

variables, only higher actor attachment avoidance predicted lower perceived partner responsive-

ness and affirmation across analyses. Better physical health also predicted higher perceived

responsiveness whereas greater life satisfaction and depression predicted higher perceived affir-

mation. There were several variables that explained very little variance in the outcome including

all demographic variables and individual differences variables (other than attachment). There

were no partner variables that predicted perceived responsiveness and affirmation consistently

across analyses.

3.3.3 Exploratory Longitudinal Analyses

Finally, to examine whether the variables at baseline would be able to predict support six months

later, we used Sample 3 (n = 322 [161 couples]) to estimate the longitudinal associations
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between the predictor variables and the outcome.2 Overall, we were able to predict 27.6%

of variance in responsiveness and 18.2% of variance in affirmation with only actor effects.

Models with actor and partner effects were somewhat less predictive (26.7% for responsiveness

and 16.3% for affirmation). Relational and individual variables were equally predictive of

support (see Table 3.2 for the full model results and Table 3.3 for normalized impact on the

model). The only consistently important predictors across analyses were trust, commitment,

attachment avoidance, and life satisfaction. Trust and commitment consistently predicted higher

responsiveness and affirmation six months later, but relationship satisfaction did not. Both

higher attachment anxiety and higher attachment avoidance predicted a decrease in perceived

affirmation six months later but only attachment avoidance predicted responsiveness. Partici-

pants who reported higher life satisfaction at baseline reported higher perceived affirmation and

responsiveness six months later.

3.4 Discussion

The purpose of the present study was to add to the growing body of literature on perceived

partner support by using explainable machine learning to understand which variables reliably

predict perceived partner support and which variables do not. It was the first study to compare a

large number of variables providing novel insights into who perceives their partners as supportive

and in which types of relationships. It is important to understand what researchers, practitioners,

and policymakers should, and should not, focus on when designing interventions to improve

support, whether for quitting smoking, achieving career goals, or beating cancer. Overall, we

were able to predict a large amount of variance in both outcomes at baseline and six months

later but not predict any change over time. Joel, Eastwick, Allison, et al. (2020) also found

that variables included in existing datasets were unable to account for changes in relationship

satisfaction and commitment over time. Thus, it appears that while we can predict outcomes as
2Because all five datasets had different lengths of follow-ups, it was not possible to examine longitudinal

associations in a combined dataset. We selected the largest dataset that used a full measure of both responsiveness
and affirmation at follow-up. Furthermore, because controlling for variables in a machine learning model introduces
bias in the predictive accuracy of the model but does not affect the relative importance of the other variables, we
did not include baseline support in the models in line with Joel, Eastwick, Allison, et al. (2020). We also estimated
models where we predicted the change from baseline to follow-up. The R2 for these models were negative suggesting
we were unable to predict change.
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a field, we are unable to predict changes over time. Because perceived partner support has been

robustly associated with better individual and relationship well-being, it is useful to understand

variables that predict perception of support. However, we should also be able to predict changes

in our outcomes. Predicting actual change will likely become an important challenge for the

future of relationship research.

3.4.1 Summary of the Most and Least Important Predictors and Implications

for Theory

There were two types of variables that reliably predicted perceived support both at baseline and

six months later: general relationship variables and attachment styles. The finding that general

relationship variables is important for perceived partner support is unsurprising and in line with

major relationship theories suggesting that happier relationships are important for perceived

partner support (B. Feeney and Collins, 2015; Kelley and Thibaut, 1978; Mikulincer and Shaver,

2009; C.E. Rusbult and Van Lange, 2003; Ryan and Deci, 2000). Specifically, higher trust,

commitment, and empathy toward partner, and lower conflict predicted an increase in perceived

partner support. However, there were some relationship variables that varied across analyses

and were less robustly associated with perceived partner support. Interestingly, relationship

satisfaction was only predictive at baseline but not longitudinally suggesting that perhaps when

taking away shared method variance, overall relationship satisfaction is not that important for

perceived support, at least when compared against other relationship variables. Willingness

to sacrifice was the only relationship variable that did not predict perceived partner support.

Sacrifice is often seen as a mixed blessing in relationships (Day and Impett, 2018; Impett and

Gordon, 2010) and we showed that people who are willing to sacrifice do not perceive their

partners as more supportive and are not perceived as more supportive.

Of individual variables, actors’ attachment avoidance was the only consistent individual pre-

dictor of partner support: highly avoidant people perceived their partners as less responsive

and affirming. This finding is theoretically consistent given that individuals high in attachment

avoidance are theorized to have a negative model of others and do not trust others’ capacity

to be there when needed (Bartholomew, 1990). Previous research has also found avoidance
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to be associated with perceiving partners as less supportive (Collins and B. Feeney, 2004;

Florian, Mikulincer, and Bucholtz, 1995; A. Martin, Paetzold, and Rholes, 2010). Interestingly,

attachment avoidance was also more predictive of perceived partner support longitudinally than

relationship related variables highlighting its centrality for perceived partner support. High

attachment anxiety only predicted lower affirmation six months later. Results for attachment

anxiety are often mixed because while anxious individuals seek reassurance and support ex-

cessively, they doubt whether they are worthy of receiving the support (Collins and B. Feeney,

2004; A. Martin, Paetzold, and Rholes, 2010). The finding may be explained by attachment

anxious individuals being more focused on relationship maintenance than individual goal pursuit

(Mikulincer and Shaver, 2007). As such they may perceive their partners also as less supportive.

Furthermore, there were five categories of variables that did not reliably predict perceived

support: partner similarity, individual differences, individual and relational demographics,

individual well-being, and all partner variables. Understanding which variables are not that

influential in predicting perceived partner support is important so that researchers do not spend

unnecessary time and resources on examining these variables and can instead focus on variables

that are central to perceived partner support. There are several variables (e.g., inclusion of

other in the self, gender, goal correspondence, regulatory focus, self-esteem, and self-efficacy)

within these broader categories that would be expected to theoretically predict perceived partner

support but when compared against more central predictors, are not that important. Finally,

in line with previous research (Joel, Eastwick, and E.J. Finkel, 2017; Joel, Eastwick, Allison,

et al., 2020), we found that while partner-reports explained a small amount of variance across

outcomes, they did not explain any variance over and above actor-reports, did not predict much

variance in the outcome, and even made the prediction worse longitudinally. Together, these

findings can help constrain relationship theories to focus more on variables that are central to

perceived partner support.
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3.5 Supplementary Material

3.5.1 Discussion of Key Limitations

In this work, a number of key limitations are worth bearing in mind. Firstly, the combination

of datasets represents a statistically ‘bold’ undertaking, especially when different variables are

measured using different measures (e.g., the outcome variable). The combination of samples

with differences in demographics does not necessarily lead to either more diverse or more

representative samples. Furthermore, and as described in the main text, not all variables were

available in all samples, and we therefore struck a balance (a variable was included if it appeared

in at least three of the five datasets). In our view, these compromises are necessary if one is to

be able to explore the data in the best possible way. It would not, for instance, be a good idea

to run the same analyses on only one of the datasets (the sample size becomes impractically

small). To help justify the sample combination, we would reiterate the exploratory nature of this

study - we do not provide (causal) effect size estimates, nor do we undertake null hypothesis

significance testing, nor to we lend interpretative causal weight to the SHAP impact estimates

provided as part of the analysis.

3.5.2 Details of Predictor Variables

Self-efficacy toward long-term goals was measured using a single item from the self-control

scale (M = 5.86, SD = 1.65; “I am able to work effectively toward long-term goals”; (Tangney,

Baumeister, and Boone, 2004) in all datasets. Self-control (Tangney, Baumeister, and Boone,

2004) indicates the extent to which one is able to control their emotions and desires and was

measured using 12 items in Samples 1-2 and 10 items in Samples 3-5 (e.g., “I’m lazy”) from

the same scale. Self-esteem (Rosenberg, 1965) was measured using a 10-item Likert scale

(e.g., “At times I think I’m not good at all”). Self-respect was measured using the 10-item

self-respect scale (Kumashiro, E.J. Finkel, and C.E. Rusbult, 2002) in Samples 1-3 and 5

and with a single item from the scale in Sample 4 (e.g., “I have a lot of respect for myself”).

Attachment style was measured using the Experience in Close Relationships (Brennan, C.
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Clark, and Shaver, 1998) scale in Studies 1 and 2 and the Experience in Close Relationships

– revised (R. Fraley, Waller, and Brennan, 2000) scale in Studied 3-5. Both include 36 items

with two subscales: attachment anxiety (18 items; e.g., “I worry about being abandoned” and

attachment avoidance (18 items; e.g., “I prefer not to show my partner how I feel deep down”).

Participants’ regulatory focus (i.e., whether one is concerned with promotion of dreams and

goals or prevention of negative outcomes) was measured using the 11-item Regulatory Focus

Questionnaire (Higgins et al., 2001) in Samples 1 and 2. The scale included six items for

promotion (e.g., “I often do well at different things that I try”) and five items for prevention

orientation (e.g., “Growing up, I typically obeyed rules and regulations that were established

by my parents”). In Samples 3-5, regulatory focus was measured using the 18-item General

Regulatory Focus Measure (Lockwood, C. Jordan, and Kunda, 2002). The scale has nine items

for promotion (e.g., “I frequently imagine how I will achieve my dreams and aspirations.”) and

nine items for prevention (e.g., “In general, I am focused on preventing negative events in my

life.”). Socially desirable responding was measured using the two-component model (Paulhus,

1984) including social desirability (ten items; e.g., “I have not always been honest with myself”)

and impression management (ten items; e.g., I’m a completely rational person”).

There were also a number of physical and psychological well-being related variables that were

included in the study. Subjective well-being was measured using the Satisfaction with Life scale

(Diener et al., 0049), which includes five items (e.g., “In most ways, my life is close to ideal”).

Symptoms of depression were measured using the 8-item depressive symptoms subscale of the

Personal and Relationships Profile (e.g., “I feel sad quite often”; Straus et al., 1999) in Samples

1 and 2 and with a 13-item depression subscale from the Psychological Adjustment to Illness

Scale (e.g., “Feeling blue”; Derogatis and Lopez, 1983) in Samples 3-5. Physical health was

measured using a single item (“In general would you say your health is?”) rated from poor to

excellent in Samples 1 and 2. In Samples 3-5, physical health was measured using a 33-item

Cohen-Hoberman Inventory of Physical Health (Allen, Wetherell, and M. Smith, 2017) which

includes a checklist of symptoms such as back pain, weight change, and poor appetite.

There were a total of 11 relational variables in the datasets. Relationship status (dating, cohabit-

ing, married) and children (yes, no) were dummy coded. Relationship length was measured in
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years. Trust was measured using the 3-item (e.g., “How much do you trust your partner?”) trust

subscale of the Perceived Relationship Quality Components Inventory (Fletcher et al., 2011) in

Samples 1 and 2. In Samples 3-5, trust was measured using a 12-item (e.g., “I can rely on my

partner to keep the promises he/she makes to me.”) Trust in Close Relationships scale (Rempel,

Holmes, and Zanna, 1985). Relationship commitment was measured using the 7-item (e.g., “I

want our relationship to last forever”) commitment subscale of The Investment Model Scale

(C.E. Rusbult, Martz, and Agnew, 1998). Relationship satisfaction was measured using the

5-item (e.g., “I feel satisfied with our relationship”) subscale from the Investment Model Scale

(C.E. Rusbult, Martz, and Agnew, 1998) in Samples 1, 2, and 5. Satisfaction was not explicitly

measured in Samples 3 and 4 so we used a single item from the Dyadic Adjustment Scale: “The

dots on the following line represent different degrees of happiness in your relationship. The

middle point “happy” represents the degree of happiness of most relationships. Please circle the

dot that best describes the degree of happiness – all things considered – of your relationship”

rated from extremely unhappy to perfect.3 The degree to which partners’ experienced their

identities to be interlinked was measured using the Inclusion of the Other in the Self (A. Aron,

E. Aron, et al., 1991) measure in which participants were asked to select from Venn diagrams

with increasing levels of overlap according to how much they felt the other was included in

the self. Empathy toward partner was measured using 8-item (e.g., “I feel terribly sorry when

things aren’t going well for my partner”.) partner subscale of the Interpersonal Reactivity Index

(Davis, 1980).

Three further measures were also included but were only available in a subset of samples.

General relationship conflict was measured in Samples 1-3 and 5 using the conflict subscale of

the Personal and Relationships Profile (Straus et al., 1999). The scale asks about disagreement

on various topics such as money, friends, or sex (e.g., “My partner and I disagree about when

to have sex”). Willingness to sacrifice (Van Lange et al., 1997) was measured in Samples 1-3

and involved participants first rating four of their most important activities and then they were

asked about each activity: “Imagine that it was not possible for you to engage in Activity and
3Due to the differences in satisfaction measures across the samples, sample moderated the association between

satisfaction and the different outcomes but the nature of the effect remained the same. This was the only variable
that sample moderated despite some differences in other measures across the samples. However, because of the
importance of relationship satisfaction in predicting support and because random forest can fit complex non-linear
interactions (Breiman, 2001a) we retained this variable in the model.
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maintain your relationship (impossible for reasons that are not your fault). To what extent would

you consider giving up the activity?” A measure of goal compatibility (i.e., how problematic

one partner’s goals were for the other partner) was available in Samples 1-4 and was measured

using five items in Samples 1 and 2 (e.g., “Sometimes I feel like my goals are incompatible with

my partner’s goals”) and nine items in Samples 3 and 4 (e.g., “My partner does not completely

approve of my goals”). The majority of the scales used across the samples were well-established

and have good reliability and validity. The final list of variables differed somewhat from the

preregistration upon discovering that some of the variables were not available across at least

three datasets at baseline and therefore it was not possible to include them.

Table 3.4: The List of Included Variables with a More Detailed Theoretical Rationale for Inclusion.

Variable Rationale

Relationship variables

relationship status Support is likely to be more important in early stages of the

relationship with the importance of support declining over time

(Bühler et al., 2019; Jakubiak, B. Feeney, and Ferrer, 2020).

relationship length

trust

commitment Based on most relationship theories, we expect that overall better

quality relationships (high trust, commitment, satisfaction, empathy,

willingness to sacrifice, and lower conflict) will predict higher

support (B. Feeney and Collins, 2015; Kelley and Thibaut, 1978;

Mikulincer and Shaver, 2009; C.E. Rusbult and Van Lange, 2003;

Ryan and Deci, 2000).

satisfaction

empathy toward partner

willingness to sacrifice

conflict

goal compatibility/correspondence

actual inclusion of the other in self Interdependence theory suggests that higher goal conflict results in

less support. Previous research has shown that when goal conflict is

high, partners are less likely to provide support toward each other’s

opportunities and less likely to perceive their partners as supportive

(Gere and Schimmack, 2013; L. Vowels, Carnelley, and

Francois-Walcott, 2021).

Individual variables

gender The research on gender differences in support is mixed with some

studies finding that women are more supportive than men and others

finding no differences (Verhofstadt, Buysse, and Ickes, 2007).
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age Bühler et al. (2019) found that support became more important

for relationship satisfaction as people aged whereas Jakubiak, B.

Feeney, and Ferrer (2020) found that the association between support

and relationship satisfaction was stronger in the younger sample

compared to the older sample. Therefore, it is unclear whether and,

if so, how age might be associated with support.

ethnicity No prior studies have examined this, but it is possible that support

toward goals is more important in certain ethnic groups than others.

education No prior studies but it is possible that the importance of support

toward life’s opportunities differs across education levels. For exam-

ple, people who are less educated may be more focused on making

ends meet rather than pursuing life’s opportunities compared to

people who are more highly educated.

children No prior studies but the presence of children may mean that part-

ners have to divide their support between partner and children and

therefore be less supportive.

self-control Self-control has previously been associated with higher relationship

satisfaction (Zuo et al., 2020). It is possible that individuals higher

(vs. lower) in self-control also make better support providers and

also perceive their partners as more supportive but this has not been

examined in previous literature.

self-esteem Self-esteem has been positively associated with support (Harris and

Orth, 2020). We expect that self-esteem will be positively associated

with support.

self-respect Self-respect has been associated with pro-relationship behaviors

(Kumashiro, E.J. Finkel, and C.E. Rusbult, 2002). We expect that

self-respect will be positively associated with support.

attachment anxiety Attachment theory (Bowlby, 1969) suggests that individuals higher

in attachment anxiety doubt their worthiness and seek excessive

support and reassurance. Results are mixed on whether anxious

individuals experience their partners as less supportive (A. Martin,

Paetzold, and Rholes, 2010) as they generally see themselves as not

worthy of support but also seek excessive reassurance.
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attachment avoidance Attachment theory suggests that avoidant individuals rely on them-

selves and do not trust others and thus experience their partners

as less supportive, which has been supported in the literature (B.

Feeney, 2004)

physical health Support has previously been linked to physical health in that sup-

port predicts better physical health (Reblin and B.N. Uchino, 2008).

However, it is also possible that individuals who have poorer phys-

ical health perceive their partners as less supportive as they may

require more support from their partners compared to people in

better physical health.

depression Symptoms of depression include feeling like a burden to other peo-

ple. Therefore, individuals who score higher on depression may

experience their partners as less supportive compared to individuals

who are lower on depression. Previous research has shown that

higher levels of depression predict lower partner support (Canevello

and Crocker, 2010).

life satisfaction Life satisfaction is usually examined as an outcome of partner sup-

port (Drigotas, 2002), and shows that higher levels of support in

relationships predicts higher life satisfaction. However, it is also

likely that individuals who are satisfied with their lives will be more

likely to perceive their partners as more supportive.

self-efficacy Self-efficacy is often examined as an outcome of partner support

(e.g., L. Vowels, Carnelley, and Francois-Walcott, 2021). However,

we would also expect that individuals higher in self-efficacy perceive

their partners as more supportive.

regulatory focus (promotion) Promotion orientation has been previously positively associated with

partner support (Righetti, C. Rusbult, and Finkenauer, 2010).

regulatory focus (prevention) While we expect promotion orientation to be positively associated

with support, prevention orientation was included because it is the

other continuum of regulatory focus and has been included in past

research (Righetti, C. Rusbult, and Finkenauer, 2010).

social desirability This was included in the model as a measure of socially desirable

responding, we made no specific predictions for the variable.
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impression management This was included in the model as a measure of socially desirable

responding, we made no specific predictions for the variable.

3.5.3 Data Analysis

Data Preparation. Any missing variables in each dataset were included in the combined dataset

and designated as missing. All continuous variables were scaled to be between 0 and 8 with

higher numbers indicating higher levels of the variable (e.g., higher number in self-esteem

would indicate higher self-esteem). All categorical variables were dummy coded to be 0 or 1

with each category included in the analyses. A maximum of 0.05% of the data for each variable

were missing, and any missing data points were imputed using the scikit-learn package Iterative

Imputer (Pedregosa et al., 2011) with a Bayesian ridge estimator. If the variable was missing

from an entire subsample, it was not included in an analysis in which the subsample was used.

Analyses. The results were analyzed using Python 3.7 and the code can be found here: https:

//github.com/matthewvowels1/Aff_Eff_PPR. Each dataset was analyzed using

a random forest regressor (Breiman, 2001a). A random forest is a type of decision tree that

trains on bootstrapped sub-samples of the data to avoid overfitting. The tree can model highly

non-linear relationships in the data, and therefore represents a significantly more flexible model

than a linear regressor. In general, random forest models are sensitive to hyperparameter settings

(such as the number of estimators or the maximum depth of the decision tree). However, tuning

hyperparameters requires a separate validation data split which reduces the effective sample

size available for training and testing. Therefore, we used the default “scikit learn” random

forest regressor with k-fold cross-validation (Pedregosa et al., 2011). The out-of-bag error is a

built-in metric frequently used to estimate the performance of random forests (Joel, Eastwick,

and E.J. Finkel, 2017; Joel, Eastwick, Allison, et al., 2020), but in some circumstances this

metric has been shown to be biased above the true error (Janitza and Hornung, 2018; Mitchell,

2011). By using a k-fold cross-validation approach, instead of the out-of-bag error, we were

able to test the model over the entire dataset, and to acquire estimates for the standard error (see

below).

A ten-fold cross-validation scheme was used to train and test the model. This meant the total

https://github.com/matthewvowels1/Aff_Eff_PPR
https://github.com/matthewvowels1/Aff_Eff_PPR
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dataset was randomly split into ten equally sized folds. The model was trained on nine out of ten

folds, tested on the tenth, and the test fold performance was recorded. This was repeated until

all ten folds had been used as a test set. The average performance, as well as the standard error

across the ten folds, provided an estimate of model performance on unseen data. The metrics for

test data model performance used were the mean-squared error (which is the averaged squared

difference between the prediction and the observed value), the R2, and the variance explained.

The last model trained was then saved, and explained using the “SHapley Additive exPlanations”

package (SHAP) (Lundberg and S.-I. Lee, 2017; Lundberg, G.G. Erion, and S.-I. Lee, 2017;

Lundberg, G. Erion, et al., 2020).

The SHAP is a unified framework for undertaking model explanation, and derives from the

seminal game theoretic work of Lloyd Shapley (Shapley, 1953). The framework conceives

of predictors as collaborating agents seeking to maximize a common goal (i.e., the regressor

performance). The approach involves systematically evaluating changes in model performance

in response to including or restricting the influence from different combinations of predictors.

For example, the SHAP TreeExplainer function from the SHAP software implementation

provides estimations of the per-datapoint, per-predictor impact on model output, as well as the

average predictor impacts. These estimations are called ’explanations’ because they explain

why a particular regressor performs the way it does. The results are provided as feature

importances, which describe how important the variable is for the model outcome and how

much it changes the outcome. For the analysis, the default settings of the SHAP package

TreeExplainer were used, and the entire dataset was fed to the model for explanation. The

combination of the powerful function approximation capabilities of random forests with the

consistent and meaningful estimations of per-datapoint, per-predictor impact on model output

enables a reliable and informative exploration of predictor importance, and the identification of

key predictor interactions.

The analyses were conducted separately by first including as many participants as possible

in each analysis and then by including as many variables as possible. This resulted in a total

of four analyses (three for perceived partner responsiveness, one for affirmation) which were

conducted twice: once including only actor effects and once including both actor and partner
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effects. The included variables and the results for all analyses can be found on the OSF project

page. Random forests in their current form are unable to explicitly model hierarchies in the data

and it is possible that hierarchical data can inflate the predictive performance. However, given

we were primarily interested in the relative performance of different predictors, which is not

affected by hierarchical data, this is less of an issue in the current study.

3.5.4 Self-Efficacy Analysis Results

Total Variance Explained (Research Questions 1-3)

The models with actor effects only were less able to predict self-efficacy with between 23.6%

and 28.8% of the variance explained. For self-efficacy, individual variables (72.4% - 73.6%)

were more important predictors compared to relational variables (23.0% - 27.6%). Partner

effects contributed between 0.6% and 1.9% additional variance in the models for self-efficacy.

Partner’s individual variables contributed between 16.9% and 19.3% of the variance and partner’s

relational variables contributed between 4.7% and 8.0% of the variance in the models with both

actor and partner effects.

Most Predictive Variables (Research Question 4)

In addition to identifying the most important factors for perceived partner support, we also ex-

amined which predictors alongside perceived partner support were the most important predictors

of self-efficacy. Affirmation was in the top-10 predictors of self-efficacy with higher perceived

partner affirmation predicting greater self-efficacy. Perceived partner responsiveness was also

positively associated with self-efficacy; however, it was only in the top-10 most important

predictors once out of four models that it was included in. Self-control was the highest predictor

of self-efficacy with higher self-control predicting higher self-efficacy.

Other consistently predictive individual variables were self-esteem and life satisfaction with

higher scores in both predicting higher self-efficacy. Self-respect was also in the top-10

predictors in six out of eight analyses and higher scores in self-respect predicted higher scores

in self-efficacy. There were several individual actor variables that predicted very little variance

in self-efficacy including gender, age, education, attachment anxiety or avoidance, prevention
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Table 3.5: The Overall Prediction Results for Each Outcome Variable for Individual and Relational
Variables and Models with Actor Effects Only and with Actor and Partner Effects

% Variance MSE R2 Individual Relational
Outcome M (SE) M (SE) M (SE) %a/%p %a/%p

Self-Efficacy
Model 1 23.6 (0.03) 2.14 (0.10) .22 (0.03) 73.6 26.4
+ Partner 25.5 (0.02) 2.09 (0.10) .24 (0.02) 58.6 / 18.8 17.9 / 4.7
Model 2 24.4 (0.03) 2.04 (0.10) .24 (0.03) 73.0 27.0
+ Partner 26.0 (0.04) 1.99 (0.09) .25 (0.04) 59.9 / 16.9 16.2 / 7.8
Model 3 28.8 (0.03) 1.97 (0.12) .28 (0.03) 72.4 27.6
+ Partner 30.1 (0.02) 1.94 (0.12) .29 (0.02) 58.5 / 17.5 16.0 / 8.0
Model 4* 27.2 (0.04) 2.19 (0.13) .26 (0.03) 77.0 23.0
+ Partner* 27.8 (0.03) 2.18 (0.14) .26 (0.03) 61.0 / 19.3 12.9 / 6.8

Note. %a refers to the percentage of variance explained by actor variables, %p refers to the percentage of
variance explained by partner variables. The first model for each outcome variable included as many
samples as possible and subsequent models included as many variables as possible. The full list of
excluded variables and samples can be found on the OSF project page. * Results presented in figures.

orientation, and physical health. There were only two relational variables that consistently

predicted self-efficacy: relationship length and commitment. Individuals who had been in their

relationship for longer and were more committed in their relationship reported higher levels

of self-efficacy. Promotion orientation was among the top-10 predictors in the model it was

included in with higher scores predicting higher self-efficacy. Relationship satisfaction was

in the top-10 variables in six of the eight models apart from the model with affirmation also

included in the model. Higher relationship satisfaction predicted higher self-efficacy. The only

consistent partner variable was attachment avoidance: higher partner attachment avoidance

predicted lower actor self-efficacy.
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Figure 3.3: The Top-10 Most Important Predictors for Self-Efficacy for Models with Actor Effects and
Actor and Partner Effects.

Self-control
Self-esteem

Life satisfaction
Affirmation

Relationship length

Impression management
Commitment

Self-respect
Depression

Trust

Self-control

Self-esteem
Life satisfaction

Affirmation
Attachment avoidance - partner

Self-control - partner

Impression mngmnt - partner
Self-respect - partner

Relationship length
Commitment

Self-Efficacy – Actor Only

Self-Efficacy – Actor and Partner

0.0            0.1            0.2              0.3             0.4            0.5
Mean(|SHAP value|) (impact on output magnitude)

0.0            0.1              0.2              0.3.            0.4              0.5
Mean(|SHAP value|) (impact on output magnitude)

-2.0   -1.5.  -1.0   -0.5     0.0    0.5.    1.0     1.5
SHAP value (impact on model output)

-2.0   -1.5.  -1.0  -0.5    0.0    0.5.  1.0    1.5    2.0
SHAP value (impact on model output)

low

low

high

high

Fe
at

ur
e 

va
lu

e
Fe

at
ur

e 
va

lu
e

Note. The figure presents the results from the model with affirmation as a predictor. Responsiveness was
not in the top-10 predictors in the models and therefore was not included in the figures.
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CHAPTER 4

Application of Causal Discovery and Causal Inference

In Chapter 2, I recommended that researchers engage with causal methods when undertaking

their research. This Chapter contains an example of such an application, specifically with

causal discovery and causal inference techniques (with targeted learning for estimation) for

investigating the causal links between attachment styles and mental health during the COVID-19

pandemic. The content of this chapter is drawn from the following publication:

Vowels, L.M., Vowels, M.J., Carnelley, K.B., Millings, A. Miller, J.G., Under Review. Toward

a Causal Link between Attachment Styles and Mental Health during the COVID-19

Pandemic.

Contribution: All analyses, methodological write-up and presentation of results, manuscript

editing.

Abstract: Recent research has shown that insecure attachment, especially attachment anxiety, is

associated with poor mental health outcomes, especially during the COVID-19 pandemic. Other

research suggests that insecure attachment may be linked to nonadherence to social distancing

behaviors during the pandemic. In a nationally representative UK sample (cross-sectional n

= 1325; longitudinal n = 950) we examine the causal links between attachment styles (secure,

anxious, avoidant), mental health outcomes (depression, anxiety, loneliness), and adherence

97
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to social distancing behaviors during the first several months of the UK lockdown (between

April-August 2020). The data were analyzed using state-of-the-art causal discovery and targeted

learning algorithms to identify causal processes. The results showed that insecure attachment

styles were causally linked to poorer mental health outcomes, mediated by loneliness. Only

attachment avoidance was causally linked to nonadherence to social distancing guidelines.

Future interventions to improve mental health outcomes should focus on mitigating feelings

of loneliness. Limitations include no access to pre-pandemic data and the use of categorical

attachment measure.

4.1 Introduction

The COVID-19 pandemic has brought many challenges including navigating how best to protect

our health and well-being, while living our lives to the fullest. For some, the circumstances

surrounding COVID-19 have been more detrimental to their mental health than for others

(Shevlin et al., 2021). In this paper, we test novel hypotheses with important implications for

well-being using data from early in the pandemic collected by the COVID-19 Psychological

Research Consortium Study (C19PRCS), a longitudinal survey tracking changes in behavior

and mental health over the pandemic in a large representative sample of the UK adult population.

We aimed to develop a theoretical causal model to better understand how individual differences

in attachment styles influence adherence to social distancing behaviors, as well as mental

health outcomes (loneliness, depression, anxiety) in the context of the COVID-19 pandemic.

Importantly, we used a cutting-edge causal discovery algorithm known as Structural Agnostic

Modeling (SAM; Kalainathan et al., 2020) to estimate the causal structure of the model. We then

estimated and tested specific causal effects within the model using targeted learning (M. J. van

der Laan and S. Rose, 2011). Using these advanced methods allowed us to examine the possible

causal relationships between attachment styles, social distancing behaviors and mental health

outcomes during the COVID-19 pandemic in a representative sample of UK adults.
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4.1.1 Mental Health during the COVID-19 Pandemic

The pandemic has led to an increase in mental health difficulties in many nations (Burkova et al.,

2021; Pierce et al., 2020; Randall et al., 2021). For example, a systematic review of 43 cross-

sectional studies (Vindegaard and Benros, 2020) showed higher rates of depression, anxiety and

post-traumatic stress disorder (PTSD) compared to before the pandemic. Several longitudinal

studies support this pattern, for example, (Pierce et al., 2020) compared pre-pandemic levels

to one month into lockdown in the UK and showed roughly a 10% increase in depression and

anxiety after the pandemic began. Other longitudinal studies that examined outcomes over the

course of the pandemic show mixed results. Huckins et al. (2020) found an increase in anxiety

and depression over 12 weeks during the pandemic in a student sample, whereas C. Wang et al.

(2020) found that the moderate to severe levels of stress, depression, and anxiety assessed at

the start of the pandemic and four weeks later in China initially did not change over this time

period.

4.1.2 Attachment Styles and Mental Health during the COVID-19 Pandemic

Although many people have found the COVID-19 pandemic stressful, not everyone has experi-

enced worse mental health (e.g., Shevlin et al., 2021). Research has examined several factors

that predict who is more likely to experience elevated depression, anxiety, and poor wellbeing

due to the pandemic. One such variable is adult attachment style, which describes the human

predisposition to form close emotional ties to others, driven by the attachment behavioral system.

The primary purpose of forming these ties or ‘attachments’ is to maintain proximity to our care-

givers and thus ensure survival (Bowlby, 1969). The quality of these attachment relationships

throughout life becomes internalized over time as ‘attachment styles’ (Bowlby, 1969; Brennan,

C. Clark, and Shaver, 1998). When an individual experiences sensitive, responsive care from

their attachment figures (parents, partners, loved ones), they develop attachment security. At-

tachment security is associated with happiness, life satisfaction, and more positive physical and

mental health and well-being outcomes (Mikulincer and Shaver, 2016). Conversely, a history

of experiences in which attachment figures are rejecting, or inconsistent, leads to attachment

insecurity, conceptualized as avoidance (of intimacy) or anxiety (about abandonment) (Brennan,
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C. Clark, and Shaver, 1998). Low scores on both dimensions indicates a prototypically secure

attachment style. These individual differences should theoretically link to the ability to adapt

behaviorally and emotionally to the demands enforced by the COVID-19 pandemic.

Indeed, research demonstrates that adult attachment styles have influenced well-being during

the COVID-19 pandemic. Moccia et al. (2020) found that high levels of need for approval

differentiated between those who reported moderate-severe psychological distress versus no

distress during the pandemic in Italy, suggesting that attachment anxiety is a risk factor for

mental health problems. Similarly, Mazza et al. (2021) found in an Italian sample of healthcare

workers that attachment anxiety was positively associated with high stress, depression, and

anxiety. Carbajal et al. (2021) also focused on healthcare workers – first-time responders seeking

mental health treatment during COVID-19 in the USA– found that both attachment anxiety and

avoidance were negatively associated with resilience and positively associated with depression

and PTSD, whereas attachment anxiety was positively associated with generalized anxiety and

suicidality. Building on this cross-sectional work, L. Vowels, Carnelley, and Stanton (2022)

examined the effects of adult attachment on depression and anxiety in two longitudinal studies

that assessed depression and anxiety weekly over five weeks near the start of lockdown in the

UK. The study found that those high in attachment anxiety experienced higher depression and

anxiety than those low in attachment anxiety. Furthermore, those higher in attachment anxiety

maintained their elevated levels of depression and anxiety across the five weeks, but those

lower in attachment anxiety reported decreasing scores over time. In a study that compared

pre-pandemic to during pandemic levels, L. Vowels, Carnelley, and Stanton (2022) found that

those higher (versus lower) in attachment anxiety reported increasing depression and anxiety

over time. Attachment avoidance did not predict depression or anxiety in either study. The

evidence above suggests that insecure attachment, especially attachment anxiety, may be a

predictor of poor mental health during the pandemic.

4.1.3 Attachment Styles and Social Distancing Behaviors

The COVID-19 pandemic context presents several threats to the attachment system, most notably

separation from loved ones due to enforced national lockdowns and social distancing measures
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as well as persistent mortality salience and exposure to illness-related cues. This context also

required individuals to enact prescriptive COVID-19-related protective behaviors to prevent

infection and/or spreading the disease to others such as hand washing, maintaining a physical

distance from others, and wearing face masks.

Attachment style modulates how we respond to stress and threat (Brennan, C. Clark, and Shaver,

1998) including separation from loved ones (Ainsworth et al., 1978; R. Fraley and Shaver, 1998)

and cues of danger, such as illness. Consequently, attachment styles are predictive of how

people appraise (Meredith, Strong, and J. Feeney, 2005) and cope (Krasuska et al., 2018) with

symptoms, manage chronic conditions (Ciechanowski et al., 2004) and take preventive measures,

including enacting protective health behaviors (Pietronmonaco, B. Uchino, and Schetter, 2013).

Moreover, attachment styles have been found to be predictive of the capacity for prosocial

behavior and empathy (Boag and Carnelley, 2016; Mikulincer, Shaver, et al., 2005). Thus, we

believe that the requirement to physically and socially distance from others presents the greatest

threat to the attachment system that would initiate individual coping responses to regulate this

threat, driven by attachment style.

It follows, then, that attachment style is likely to be a key predictor of the enactment of social

distancing in the context of COVID-19; this is supported by some initial evidence. In a US

context, earlier in the pandemic, Lozano and R. Fraley (2021) examined attachment styles as

a predictor of engagement in, and reminding others about, the following protective behaviors:

hand washing, social distancing, wearing face masks, refraining from touching face/mouth and

disinfection of items. Attachment avoidance was negatively associated with both engagement

in, and reminding others about the behaviors, and attachment anxiety was positively associated

with reminding others. Brulin et al. (2022) examined the associations between attachment and

adherence to the COVID-19 regulations in Sweden. Both attachment anxiety and avoidance

were associated with nonadherence to authorities’ guidelines, such as social distancing and

hand washing. While these findings are consistent with attachment theory and are a first attempt

to apply and explore attachment to the COVID-19 context, much work remains to be done to

delineate the ways in which individual differences in attachment style affect people’s coping

and adherence to social distancing behaviors in the pandemic.
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4.1.4 Toward Causality in the Present Research

Prior research evidence is derived from non-experimental studies and their authors have un-

derstandably refrained from making causal claims about the association between attachment

styles, mental health and adherence to health guidance. The well-known phrase “correlation is

not causation” cautions researchers in the social and health sciences (M. Hernan, 2018a) to be

mindful about the scope and confidence of their conclusions when interpreting results obtained

from non-experimental and cross-sectional studies. Well-intentioned caution in this regard

often means that cross-sectional data is assumed to tell us nothing about causality. However,

recently, several researchers have argued that reluctance to make causal inferences does little

to make the interpretations more reliable (Grosz, Rohrer, and Thoemmes, 2020; M. Hernan,

2018a; Rohrer, 2018; M. J. Vowels, 2021). It instead results in a conflation of causal and

correlational language, a lack of transparency concerning the (causal) assumptions underlying

the research, and a reluctance to adopt robust statistical techniques for improving the validity

of our analyses (Grosz, Rohrer, and Thoemmes, 2020; Rohrer, 2018; M. J. Vowels, 2021).

Indeed, such techniques do exist, and a vast array of statistical developments can be applied to

the estimation of causal quantities from observational data (Imbens and D. Rubin, 2015; Pearl,

2009; Pearl, 2012). Furthermore, there exist techniques for estimation of causal quantities given

an assumed structure - a process known as causal inference (Pearl, 2009; Tian and Pearl, 2002;

M. J. van der Laan and S. Rose, 2011) - as well as techniques for estimating the structure itself –

a process known as causal discovery (C. Glymour, K. Zhang, and Spirtes, 2019; M. Vowels,

N. Camgoz, and Bowden, 2022).

Researchers in the field of causal discovery warn against interpreting the output of such al-

gorithms too literally, and thus they should be used to inform theory rather than overrule it

(M. J. Vowels, 2021; M. Vowels, N. Camgoz, and Bowden, 2022). These methods nonetheless

provide a means to validate certain aspects of theories, to explore data for possible causal

structures and thus to help us specify models that reflect the discovered structure, and which

can then be used to test hypotheses. In this work, we take advantage of recent progress in

the domain of causal discovery, by using a state-of-the-art causal discovery algorithm known

as Structural Agnostic Modeling (SAM; Kalainathan et al., 2020). Our aim was to develop
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a causal theoretical model between individual differences in attachment styles (i.e., secure,

anxious, avoidant), social distancing behaviors (i.e., adherence to government guidelines) and

mental health outcomes (i.e., loneliness, depression, anxiety). We then aimed to quantify the

causal estimates using a targeted learning approach (M. J. van der Laan and S. Rose, 2011)

which sits at the intersection of machine learning and causality. Targeted learning allowed us to

estimate the relationships between two target variables (i.e., the causal relationship between

attachment anxiety and depression) without making assumptions about the functional form of

that relationship (e.g., linear/non-linear).

4.1.5 The Current Research

We hypothesized that those with an insecure attachment style would report greater loneliness,

anxiety, and depression compared to those with a secure attachment style; especially so for

those with an anxious or fearful attachment style. In addition, we expected those with a secure

or avoidant attachment style to better adhere to social isolation/physical distancing than those

with an anxious attachment style. Finally, we expected secure individuals to better adhere to

social isolation/physical distancing than those with an insecure attachment style. Taking data

from two different time points, we also examine the effects of attachment styles on depression

and anxiety over time. We examine these hypotheses in a secondary analysis of data from two

waves of the COVID-19 Psychological Research Consortium Study (C19PRCS), a longitudinal

survey tracking changes in behavior and mental health over the pandemic in a large nationally

representative UK sample of adults.

4.2 Method

4.2.1 Participants and Procedure

We conducted a secondary analysis of UK data collected in waves two and three of the longitudi-

nal, internet-based survey COVID-19 Psychological Research Consortium Study (C19PRCS). A

detailed methodological account of the C19PRCS is available elsewhere (McBride et al., 2021)
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and the data is publicly available on the OSF at this location: https://osf.io/v2zur/.

Briefly, UK fieldwork of the C19PRC Study was conducted between April/May 2020 for Wave

2 and July/August 2020 for Wave 3. During Wave 2, strict social distancing measures were

in place whereas during Wave 3, many of the measures had been lifted for the summer and

restaurants and pubs were open and two households were allowed to meet indoors. Quota

sampling was used to recruit a panel of adults who were nationally representative of the UK

population in terms of age, sex, and household income. Participants were aged 18 years or older

at the time of the survey, must have been able to complete the survey in English, and resident

in the UK. Consenting adults completed the survey online and were reimbursed by Qualtrics

for their time. Ethical approval for this research was provided by a UK University Psychology

department (Reference number: 033759). At Wave 2, 1406 participants participated in the

survey, but some people did not report on their attachment styles and were thus removed from

the analyses. The final sample consisted of 1325 individuals in the cross-sectional analyses and

950 in the longitudinal analyses. The full demographic variables can be found in Table 4.1. This

study was not preregistered.

https://osf.io/v2zur/
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Table 4.1: Demographic Characteristics of Participants in Cross-Sectional and Longitudinal Analyses.

Demographic Variables Cross-Sectional (n = 1325) Longitudinal (n = 950)
Age M = 49.03 M = 51.84

SD = 14.94 SD = 14.45
Range = 18-88 Range = 18-88

Change in Income M = -9.5 M = -8.8
SD = 26.3 SD = 24.2
Range = -100 - 100 Range = -100 - 100
n (%) n (%)

Gender
Man 683 (51.5%) 521 (54.8%)
Woman 639 (48.2%) 426 (44.8%)
Transgender 1 (0.1%) 1 (0.1%)
Other 2 (0.2%) 2 (0.2%)
Relationship Status
Married 641 (48.4%) 478 (50.3%)
Single 305 (23.0%) 208 (21.9%)
Cohabiting 159 (12.0%) 101 (10.6%)
Separated 21 (1.6%) 18 (1.9%)
Divorced 108 (8.2%) 83 (8.7%)
Widowed 34 (2.6%) 27 (2.8%)
In a registered same-sex civil partnership 6 (0.5%) 4 (0.4%)
In a relationship but not living together 51 (3.85) 31 (3.3%)
Children
No 1002 (75.6%) 766 (80.6%)
Yes 323 (24.4%) 184 (19.4%)
Education
No qualifications 43 (3.2%) 32 (3.4%)
O-Level/GCSE or similar 251 (18.9%) 160 (16.8%)
A-Level or similar 229 (17.3%) 148 (15.6%)
Technical qualification 129 (9.7%) 97 (10.2%)
Undergraduate degree 378 (28.5%) 304 (32.0%)
Diploma 72 (5.4%) 46 (4.8%)
Postgraduate degree 208 15.7%) 150 (15.8%)
Other qualification 15 (1.1%) 13 (1.4%)
Race/Ethnicity
White British/Irish 1168 (88.2%) 861 (90.6%)
White non-British/Irish 64 (4.8%) 34 (3.6%)
South Asian 43 (3.2%) 24 (2.5%)
Chinese 15 (1.1%) 9 (0.9%)
Caribbean or African 13 (1.0% 9 (0.9%)
Arab 3 (0.2%) 1 (0.1%)
Other 19 (1.4%) 11 (1.2%)
Religion
Christian 697 (52.6%) 513 (54.0%)
Muslim 34 (2.6%) 16 (1.7%)
Jewish 10 (0.8%) 8 (0.8%)
Hindu 7 (0.5%) 4 (0.4%)
Buddhist 11 (0.8%) 7 (0.7%)
Sikh 7 (0.5%) 5 (0.5%)
Atheist 318 (24.0%) 228 (24.0%)
Agnostic 163 (12.3%) 122 (12.8%)
Other religious conviction. 78 (5.9%) 47 (4.9%)
Employment
Full time 720 (54.3%) 415 (43.7%)
Part time (regular hours) 152 (11.5%) 107 (11.3%)
Zero hours contract 23 (1.7%) 14 (1.5%)
Other flexible work practice 29 (2.2%) 22 (2.3%)
Unemployed (because of coronavirus) 36 (2.7%) 26 (2.7%)
Unemployed (not because of coronavirus) 204 (15.4%) 128 (13.5%)
Retired 272 (20.5%) 238 (25.1%)
Keyworker
No 940 (70.9%) 703 (74.0%)
Yes 385 (29.1%) 247 (26.0%)
Chronic illness
No 1004 (75.8%) 710 (74.7%)
Yes 321 (24.2%) 240 (25.3%)
Pregnant (self or partner)
No 1301 (98.2%) 940 (98.9%)
Yes 24 (1.8%) 10 (1.1%)
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4.2.2 Measures

Attachment style was measured using the Relationships Questionnaire (Bartholomew and

Horowitz, 1991) which is a categorical measure of the four attachment styles: secure, anxious,

avoidant, and fearful avoidant. Social distancing practices, in accordance with government

guidelines during the first UK lockdown, were assessed using a list of 16 statements with

respect to the past week. Generalized Anxiety Disorder Scale (GAD-7; Spitzer et al., 2006) was

used to measure generalized anxiety and the Patient Health Questionnaire PHQ-9: Kroenke,

Spitzer, and J. Williams, 2002) depression. Loneliness was measured using a 3-item Loneliness

Scale (Hughes et al., 2004). We also included a set of variables that were theoretically causally

related to the central variables in the study that we controlled for in the models. These variables

include demographics, COVID-19 related anxiety and perceived one month risk, and hygiene

practices. Due to the space limitations, a detailed description of all variables can be found in

Supplemental material (accessible here: https://osf.io/4ypuk/ and provided at the

end of this chapter).

4.2.3 Data Analysis

We used a state-of-the-art causal discovery algorithm known as Structural Agnostic Modeling

(SAM; Kalainathan et al., 2020) to infer the cross-sectional structure for Wave 2 (17 variables

and 1325 participants) and the longitudinal structure across Wave 2 and Wave 3 (19 variables

from 895 participants). We included all variables that were expected to be causally linked to the

main variables of interest and thus affect the estimation of the causal relationships. We applied

a constraint preventing the discovery of causal effects backwards in time, as well as constraints

preventing causal links between certain demographics: age and gender cannot be effects; change

in income was measured as the change between Waves 1 and 2 and thus was prevented from

affecting all demographic variables. We then used a state-of-the-art method at the intersection

of machine learning and causality known as targeted learning (M. J. van der Laan and S. Rose,

2011) to estimate the specific effect of attachment styles on social distancing behaviors and

mental health outcomes. Details of the data analysis can be found in Supplemental material

(accessible here: https://osf.io/4ypuk/ and provided at the end of this chapter).

https://osf.io/4ypuk/
https://osf.io/4ypuk/
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4.3 Results

Table 4.2 presents the means and standard deviations as well as the bivariate correlations between

the main study variables. The number of people identifying as secure (n = 441), avoidant (n =

392), and anxious (n = 367) were comparable, with fewer people identifying as fearful avoidant

(n = 124).

4.3.1 Cross-Sectional Model (Wave 2)

The graphical illustration of the results from the causal discovery algorithm can be found

in Figure 4.1 for the cross-sectional data and Figure 4.2 for the longitudinal data. The full

adjacency matrices with all causal paths can be found in the Supplemental Material Figures

S2 and S3. The directed causal relationships between the cause and effect with a confidence

score of at least 0.5 (where this score ranges between 0 and 1) have been included in the graphs.

We can see from Figure 4.1 that the only putative cause for attachment styles is participants’

gender whereas attachment styles cause relationship status, anxiety, depression, loneliness, and

social distancing behaviors. Loneliness was identified as a mediator between attachment styles

and anxiety, depression, and social distancing behaviors. We have highlighted the theoretically

relevant relationships in bold but have also included the required control variables in Figure 4.1.

Precision variables are included in grey as they are not necessary to produce an unbiased

estimate but can make the standard errors tighter because they explain variance in the outcome

variables.

The algorithm does not provide the direction or the size of the effects and thus we used targeted

learning to estimate the causal effects between attachment styles and each of the outcome

variables. For the targeted learning, we used only the control variables that were essential in

providing accurate causal estimates in line with what are known as the d-separation rules for

causal graphs, and precision variables that can help provide tighter estimates of the effect (i.e.,

smaller standard errors) (Cinelli, Forney, and Pearl, 2022). Thus, our set of control variables

consisted of gender as a confounding variable and age, chronic illness, number of children in

the household, adults in the household, change in income, keyworker status, one month risk,
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COVID-19 anxiety, and pregnancy as precision variables for all outcomes except for loneliness.

For loneliness, we used gender as a control variable but only change in income, keyworker

status, one month risk, COVID-19 anxiety, and chronic illness as precision variables.
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Table 4.3 shows both the naive estimates as well as the estimates following the targeted learning

steps. The naive estimates are essentially the correlations between the two variables without any

control variables. We only describe the targeted learning results below. We use Ψ* to denote

the targeted learning estimates within the text. The estimates are scaled to be between -1 and

+1 so an estimate can be understood in terms of percentages. For example, a Ψ* = .10 means

a 10% difference in the outcome between two groups. Note that we have opted to maintain a

correlational language given that it makes the description of the results easier and readers are

more used to interpreting this type of language. Thus, while the language used below is not

explicitly causal, we are nonetheless intending for these quantities to be interpreted causally as

a change in attachment style causing a corresponding change in the outcome.

We found that compared to secure individuals, fearful-avoidant individuals were higher in

anxiety (Ψ*= .06, p < .001), depression (Ψ* = .05, p < .001), and loneliness (Ψ* = .18,

p < .001); but did not report engaging in more social distancing behaviors (Ψ* = .01, p = .386).

The results were similar for attachment-anxious individuals who were higher in anxiety (Ψ*

= .05, p = .003), depression (Ψ* = .05, p = .010), and loneliness (Ψ* = .17, p < .001) than

secure individuals; but did not report engaging in more social distancing behaviors (Ψ* = .00,

p = .970). Avoidant individuals only differed from secure individuals in their social distancing

behaviors: Avoidant individuals were significantly less likely to engage in social distancing

behaviors compared to secure individuals (Ψ* = −.02, p < .001).

4.3.2 Longitudinal Model

The results from the causal discovery algorithm for the longitudinal model can be found in

Figure 4.2. The results were largely similar to the results of the cross-sectional model with

attachment styles being suggested as putative causes for anxiety, depression, loneliness, and

social distancing behaviors. Loneliness was again identified as a mediator between attachment

styles and the other outcomes. However, social distancing behaviors were also identified as a

mediator between loneliness and anxiety and depression. Attachment styles, anxiety, depression,

loneliness, and social distancing behaviors at Wave 2 were also causes of depression and anxiety

at Wave 3. Anxiety at Wave 3 was also identified as a cause of depression at Wave 3.
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Table 4.3 shows both the naive estimates as well as the estimates following the targeted learning

steps for the longitudinal analyses. The naive estimates do not differ between the analyses

with and without controlling for time given that naive estimates are estimated without any

control variables (including time). For the targeted learning, we used only the control variables

that were needed to provide accurate causal estimates in line with the d-separation rules for

causal inference. Based on these rules, we needed to control for age, gender, relationship status,

keyworker status, number of adults in the household, number of children in the household,

change in income, chronic illness, COVID-19 anxiety, and perceived one month risk. We did

not include any mediators in the models as we were interested in the total effect of attachment

styles on the mental health outcomes. We present the results for the longitudinal estimates with

and without controlling for Wave 2 reports of the variables. The estimates without the Wave

2 control refer to how much we can still explain the mental health outcomes at Wave 3 by the

participants’ self-reported attachment style at Wave 2. The estimates including the Wave 2

control variables refer only to changes in the mental health outcomes from Wave 2 to Wave 3 as

a result of attachment styles. However, we would not expect a fixed variable (i.e., a variable

which is assumed to not change over time and does not in our models) to cause changes in an

outcome over time but have included it in case readers are interested in this outcome.

We found that compared to secure individuals, fearful-avoidant individuals were higher in

anxiety (Ψ* = .07, p < .001) and depression (Ψ* = .06, p < .001) at Wave 3. We also found

that compared to secure individuals, anxious individuals were higher in anxiety (Ψ* = .06,

p = .007) and depression (Ψ* = .05, p = .022) at Wave 3. Finally, avoidant individuals

differed significantly from secure individuals only in that they reported higher anxiety (Ψ*

= .03, p = .025) but not higher depression (Ψ* = .01, p = .181). Changes in anxiety or

depression scores between Waves 2 and 3 were not significantly different between any of the

groups.

4.4 Discussion

The purpose of the present study was to identify putative causal relationships between attachment

styles, social distancing behaviors, and mental health outcomes. As hypothesized, attachment
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Figure 4.1: Cross-Sectional Causal Discovery Results.

Attachment Style

Anxiety

Depression

Loneliness

Social Distancing

Gender Relationship Status

Chronic Illness

Age
Keyworker
No. Adults

No. Children
Change Income
COVID 19 Anx.

1 Month Risk

(Precision Variables)

Note. The directed causal relationships between the cause and effect with a probability of at least 0.5
have been included in the graphs. We have highlighted the theoretically relevant relationships in bold but
have included the required control variables in the graph. Precision variables are included in grey as they
are not necessary to produce an unbiased estimate but can make the standard errors tighter because they
explain variance in the outcome variables.

Figure 4.2: Longitudinal Causal Discovery Results.

Attachment Style W2

Loneliness W2

Social Distancing W2

Anxiety W3

Depression W3

Anxiety W2

Depression W2

Gender
Age

Relationship Status
No. Adults

No. Children
Change Income
Chronic Illness

COVID 19 Anx.

Keyworker
1 month Risk

(Confounders)

(Confounders)

Note. The directed causal relationships between the cause and effect with a probability of at least 0.5
have been included in the graphs. We have highlighted the theoretically relevant relationships in bold
but have included the required control variables in the graph. There were no precision variables in the
longitudinal model given that all the cross-sectional precision variables caused Wave 2 outcomes as well
as Wave 3 outcomes meaning they introduced confounding in the data and needed to be included as
controls.
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insecurity was a risk factor for poor mental health during the COVID-19 pandemic. Specifically,

individuals with fearful avoidant or anxious attachment styles were 5-6% higher in depression

and generalized anxiety and 17-18% lonelier compared to secure individuals. Avoidant individ-

uals did not differ in their depression or anxiety levels but were also significantly lonelier than

secure individuals (albeit by a reduced margin, 5%). The differences in levels of depression

and anxiety between attachment anxious and fearful avoidant individuals and secure individuals

remained constant over time. This pattern is in line with recent research, which identifies

attachment anxiety, rather than avoidance, as being a risk factor for ongoing mental health

issues during the pandemic (Mazza et al., 2021; Moccia et al., 2020; L. Vowels, Carnelley, and

Stanton, 2022). To this we would add that those individuals with a fearful avoidant attachment

are similarly at risk.

The causal discovery algorithm also identified loneliness as a partial mediator of the causal

path between attachment styles to mental health outcomes. We found that while depression

and anxiety are higher in anxious and fearful avoidant individuals, they are almost four times

higher in loneliness than anxiety and depression compared to secure individuals. Again, this

pattern has been observed by other researchers; Vismara, Lucarelli, and Sechi (2022) showed

that loneliness had a partially mediating role between attachment anxiety and mental health

outcomes during the COVID-19 pandemic in a sample of Italian participants. These results

suggest that loneliness is particularly prevalent among anxious and fearful avoidant individuals

and any interventions that are designed to improve mental health outcomes for individuals with

insecure attachment styles should focus on preventing and ameliorating loneliness.

Furthermore, we also examined which attachment styles were causally linked to adherence to

social distancing guidelines. In contrast to our hypothesis, we found that avoidant individuals

were significantly less likely to follow social distancing guidelines compared to secure. Indeed,

recent research has also found the same pattern (Brulin et al., 2022; Lozano and R. Fraley, 2021).

In our study however, there was only a small (2%) difference between avoidant and secure

individuals, which is not likely to be meaningful behaviorally. Overall, our results suggest

that while insecure individuals have worse mental health outcomes and feel lonelier compared

to secure individuals, the causal relationship between attachment styles and social distancing
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measures, while it exists, is very small.

The present study provided causal evidence of the link between attachment styles and mental

health outcomes during the COVID-19 pandemic. The study was the first to our knowledge

to use causal methods to examine these relationships. The results from the causal analyses

corroborate previous correlational findings but provide a more accurate estimate of the effect

size due to the use of targeted learning, which has been shown to produce estimates that are less

biased compared to other methods (Luque-Fernandez et al., 2018; M. J. van der Laan and S.

Rose, 2011). Furthermore, the data were drawn from a nationally representative UK survey and

the results were estimated both cross-sectionally and over time. Thus, we expect that the effect

size estimates are a relatively accurate estimate of the real average estimate in the population.

However, there are also several limitations that should be considered. While we were able

to establish causal relationships between our variables of interest using state-of-the-art causal

discovery and causal inference algorithms, we did not have access to pre-pandemic data. Thus,

we were only able to establish the causal relationships between attachment styles, social

distancing behaviors, and mental health outcomes during the COVID-19 pandemic but we do

not know whether insecure individuals were particularly at risk due to the pandemic or whether

they already had higher levels of mental health problems before the pandemic occurred. One

study to our knowledge has examined changes in mental health outcomes as a result of the

pandemic with pre-pandemic and early pandemic data (L. Vowels, Carnelley, and Stanton,

2022) and showed that individuals higher in attachment anxiety were particularly at risk of

worse mental health outcomes over time. However, attachment anxiety has also been linked

to worse mental health in general, not just during a pandemic (Mikulincer and Shaver, 2016).

What is clear is that attachment insecurity is causally linked to poorer mental health outcomes,

especially to loneliness.

Another limitation of the study relates to the measure of attachment. As is the case with most

large datasets in nationally representative samples, the choice of variables is limited to what is

available in the dataset. In our case, the only measure of attachment styles was categorical and

measured attachment on two dimensions: attachment anxiety and attachment avoidance. This

meant that participants were forced to place themselves into one of the four categories but there
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may be a great deal of heterogeneity within the categories. Arguably a categorical measure

of attachment is less likely to suffer from shared method variance with the outcome variable

(i.e., be closely correlated because of some third variable such as mood on the day) and thus the

actual relationship between the variables is more likely to be indicative of a real causal effect

rather than a non-causal correlation due to a third variable. This argument is also supported by

the fact that the estimates were the same strength within and between timepoints. However,

it is not clear which measures provide a more accurate depiction of attachment styles overall

(R. Fraley and Shaver, 1998) and the results may not be directly comparable to other studies

which use a continuous measure of attachment.

Finally, the validity of the estimates proposed to correspond with causal quantities relies on

four key assumptions generally described in the causal inference literature (Imbens and D.

Rubin, 2015; Pearl, 2009; Pearl, 2012). The first assumption is that our theory and graph

are correct. Of course, this is a strong assumption, and one which is ideally validated under

experimental conditions. The second assumption is known as ignorability (also known as

conditional exchangeability), which is closely related to the first, and is the assumption that

there exist no unobserved confounders which otherwise bias the effect size estimation. The third

assumption is that of positivity, which is the assumption that there exist a sufficient number of

people in each attachment style group to adequately estimate the effects (i.e., the probability

of being in each comparison group is positive / non-zero). The last is known as the Stable

Unit Treatment Value Assumption (SUTVA), which is the assumption that the participants

are independent of one another given their control variables (i.e., that the participants do not

influence one another). We expect that the latter two assumptions hold in our sample given the

relatively large sample size (which helps with positivity) and the participants being independent

of one another (which helps the SUTVA). However, it is more difficult to establish whether

the first two assumptions hold. We discussed the variables that were included in the study

thoroughly among experts in attachment and mental health research and validated the theoretical

variables using a causal discovery algorithm. We cannot, however, be certain that there are no

unobserved confounders that we should have controlled for. Other researchers may disagree

with the variables included and we encourage them to engage in the process of refining our

causal theoretical model.
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In conclusion, the present study provided causal evidence of the relationship between attachment

insecurity and mental health outcomes during the COVID-19 pandemic. Specifically, we showed

that anxious and fearful avoidant individuals have higher scores in depression, generalized

anxiety, and loneliness whereas avoidant individuals have higher scores in loneliness compared

to secure individuals. The results of the study imply that focusing on improving feelings of

loneliness and isolation in insecurely attached individuals can help ameliorate mental health

symptoms in this population. Many countries introduced lockdown and social distancing

measures during the pandemic and these measures are in place periodically in different areas

of the world. However, given the burden of social isolation among insecure individuals, it is

likely that these measures exacerbate feelings of loneliness. Thus, finding ways to support and

maintain social connection is likely to be crucial in ameliorating mental health problems in the

population.

4.5 Supplementary Material

4.5.1 A Note on Causality from Cross-Sectional Data

In this work, we used causal discovery and causal inference methods on cross-sectional data

(as well as longitudinal data). We understand that this is unusual, particularly in the domain of

psychology, and so take the opportunity below to discuss our reasoning.

One of the requirements for causality is that the cause precedes the effect (Pearl, 2009). In other

words, in the causal DAG X → Y , the change in X occurs before the subsequent change in

Y . Researchers have, understandably, generalised this rule of causality to data collection, such

that if, for example, one wants to estimate the strength of the causal effect between X and Y ,

one has to measure Y after one measures X . Indeed, in causes where X and Y are continually

interacting over time - vis a vis a medical drug, which requires X to occur at some distinct point

in time to be able to generate any subsequent effect on Y - it seems especially pertinent to always

ensure the measurement of Y occurs after any measurement of X to allow for the cause-effect

relationship to occur. Before we get into the details about why this may or may not always

be a pertinent consideration when deciding between cross-sectional and longitudinal data, we
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should recall that techniques in causal inference and causal discovery disentangle notions of

longitudinal/cross-sectional from the features of the data necessary for the associated (causal)

task. These features are encoded by conditional independencies, distributional asymmetries,

and dynamical causal fingerprints of the joint distribution (M. Vowels, N. Camgoz, and Bowden,

2022; Pearl, 2009; J. Peters, Janzing, and Scholkopf, 2017; Sugihara et al., 2012; M. Vowels,

N. Camgoz, and Bowden, 2021). Indeed, there is not always a clear advantage for longitudinal

data over cross-sectional data (as commonly assumed in psychology), whereas there are often

advantages of statistical power and accuracy of measurement which apply to cross-sectional

data.

Based on the temporal requirement separating cause from effect, it would seem that for most, if

not all, phenomena in psychology, one should only ever employ longitudinal methodologies

for speaking about causal effect estimation. Unfortunately, the time delay between many

psychological effects are completely unknown. For instance, for any given change in sexual

satisfaction in a romantic relationship, how long does it take for the corresponding effect on

relationship satisfaction to occur? Furthermore, many of these effects could be argued to be,

for all intents and purposes, continually reciprocal. In other words, sexual satisfaction has an

almost instantaneous effect on my relationship satisfaction which, in turn, immediately affects

the following levels of sexual satisfaction. The summary graph (no longer a DAG) would be

X ↔ Y (Sugihara et al., 2012). Alternatively, the cause-effect time delay may be different for

different couples, and/or take an arbitrarily short or long period of time. For instance, it may

take a week’s worth of low perceived partner support for an effect to manifest in my relationship

satisfaction, and two weeks for my partner’s. If we had a strong theory for the delay being

invariably equal to a week (notwithstanding the potential invalidity of this assumption), we

might delay the measurement of Y by a week, following the measurement of X . The two

situations - implicating either approximately reciprocal causality, or heterogeneous and arbitrary

temporal delay between cause and effect - already make it clear how extremely challenging it is

to establish a clear ‘best option’ for the data collection methodology. Collecting the follow-up at

the ‘wrong’ point in time, may render the estimated effect sizes completely meaningless. This is

trivial to demonstrate, and was discussed by M. J. Vowels, L. M. Vowels, and N. Wood (2021).
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A possible solution to the difficulty associated with not knowing the time lag of the effect would

be to collect data at several time points. Whilst this is indeed possible, it merely shifts the nature

of the challenge. When confronted with a series of measurements, one has to either identify

whether there exists a single optimal lag (e.g., the effect occurs somewhere between the 4th and

5th timepoint), or to somehow aggregate the causal effect across multiple timepoints, blurring

the nature of the cause relative to the auto-correlative effect of the outcome. In addition, this

assumes that measurements are taken regularly enough that difficulties with fluctuation and

newly introduced confounding do not impact the estimation (see, again M. J. Vowels, 2021; M. J.

Vowels, L. M. Vowels, and N. Wood, 2021). These challenges are particularly evident in causal

inference applied to dyadic interactions. Even if one can identify (e.g., behavioural) moments

from one partner in an interaction which are predictively salient of an outcome, it is not clear

how these moments cause the outcome over their auto-correlative effects, or over the interaction

of these behaviours with those of the partner’s. Indeed, one can undertake measurements

on a per-microsecond basis, thereby guaranteeing sufficient measurement precision (at least

temporal precision), but this does not help us overcome the inherent explosion in complexity.

Finally, the researcher would be forced to collapse the dataset down, losing both precision and

meaningfulness - its quite possible that there is no single meaningful cause-effect relationship.

Going further, let’s now make the two additional assumptions discussed above (which may not

hold) to make our lives easier, and see how far it takes us: (a) We assume that the cause-effect

relationships are not reciprocal, and (b) we assume that there does indeed exist a theoretically

justifiable and fixed delay of one week between cause and effect. This would suggest that all

one needs to do is to measure Y one week after measuring X . Unfortunately, this creates a

myriad of new problems relating to hidden confounding which can easily render the causal

effect of interest unidentifiable. This situation is illustrated in Figure 2.5. In the figure, the

hidden variable at each timepoint, confounds the estimation of the effect over time of X on

Y . Furthermore, longitudinal studies are much more challenging logistically, and often lead to

significant participant dropout and censorship.

As such, even under the two substantially simplifying assumptions stated above, the choice for

longitudinal data is not clear, and altogether we face the following challenges: (1) longitudinal
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data are more expensive to collect than cross-sectional data, leading to problems of dropout

and censorship and smaller sample sizes; (2) longitudinal data do not necessarily mitigate

problems with hidden confounding, but create their own challenges; (3) the choice of time delay

between cause and effect may be arbitrary, heterogeneous, or somewhat reciprocating for many

psychological constructs, leading to meaningless effect size estimates regardless of estimand

identification. Of course, in an ideal world, the first point about cost would not be relevant

- if the only options before us are to either perform a correct but costly experiment, or one

which is sub-optimal, we should perhaps cancel the experiment. However, in reality researchers

must make a decision, and given that all studies will be suboptimal in one sense or another

(confronted, as we always are, with numerous simultaneous practical compromises), trading

of cost and its associated impact on sample size and statistical power must play a role in our

decision. Specifically - for any given budget, if we are forced to choose between a longitudinal

study with no additional causal benefits, and a cross-sectional study with much higher statistical

power but the same causal disadvantages, it is reasonable to choose the latter. Thus, whilst on

the one hand, we accept that longitudinal data make sense for causality, it appears that they

often do us no real favours in practice.

So what is the case for cross-sectional data? Well, actually it faces many of the same challenges.

This is especially the case in psychology where almost everything correlates with everything

else (Meehl, 1990; Orben and Lakens, 2020) leading to a near impossibility of ruling out hidden

confounding and resulting in meaningless effect size estimates (M. J. Vowels, 2021). As such, it

is difficult to argue that there exists a clear benefit for longitudinal data over cross-sectional data

when we are practically doomed to non-identification in both cases. Putting longitudinal and

cross-sectional data collection on a similar footing with respect to the possibility of identification

behooves us to seek other justifications for choosing one over the other. In particular cases, for

instance (and these cases overlap strongly with the phenomena under study in this particular

chapter) there exist some justifiable cases where cross-sectional data can still serve to yield

equivalent levels of (un)identification to longitudinal data. Many variables can be measured

without worrying about the temporal aspects of cause and effect. For instance, ‘report the age

at which you got married’ does not (at least not generally) change over a course of days or

weeks, and one can measure this almost any time after the person got married. Other variables
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which might be assumed to be relatively stable, thus yielding flexibility to the data collection,

include things like attachment style, personality traits, or gender. If one is interested in the

effect of a hypothetical change in gender on, for instance, current levels of depression and

anxiety, one gains nothing from collecting the two variables longitudinally. Of course, if one

suspects that there may be some contemporaneous effect of (for example) retrospection on the

measurement of an otherwise stable trait, one can argue that longitudinal data may be required,

if only to acquire a more robust measure of that trait by averaging the measurements over time.

Alternatively, if it is precisely one’s suspicion that attachment (or whatever) is not a stable trait,

then, by definition, it does not fall into the category of traits hereby considered. Otherwise, the

justification for cross-sectional data is simple - it is comparatively abundant, logistically simple,

and inexpensive to collect. This allows us to divert resources otherwise used for participant

follow-ups towards the utilisation of better quality measures and/or larger sample sizes.

Finally, it is worth noting that the empirical samples for the variables and the conditional

independencies which exist between them, as reflected in the joint distribution as consequence

of the underlying causal (and therefore temporally ordered) structure, do not themselves care

about when they were collected. Indeed, it is not necessary to tell a causal discovery algorithm

when the data were collected, because the causal fingerprints in the data themselves tell this story,

and this will be reflected in the putative graph. With our use of SAM, for example, we identified

a putative graph based on the causal fingerprints in the data, and these fingerprints either

tell us whether X cases Y , or whether Y causes X , or whether the direction is unknowable

or ambiguous. Of course, and as discussed in the previous paragraph, if the conditional

independencies in data which have been recently collected are supposed to reflect a set of

conditional independencies from years before (as might be assumed, for example, for structures

between trait variables such as attachment), but the person’s recent reporting of their attachment

is somehow biased/coloured by recent experience, causal discovery may yield biased results in

turn. However, if the trait itself is so sensitive to this kind of measurement error, one may have

similar concerns for its reliability in a longitudinal context, too. Indeed, herein lies the tradeoff

between acquiring larger sample sizes with possibly longer questionnaires in a cross-sectional

designs (whilst also inheriting additional error due to, for example, retrospective problems

with a participant’s memory of past events), and shorter questionnaires, temporal sources of
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confounding, smaller sample sizes, and participant censorship in longitudinal designs.

In summary, given (a) that there is nothing inherently about data being cross-sectional that

precludes, at least in principle, causal discovery or causal inference (assuming that required

consequences of the causal process manifest, as needed, as conditional independencies and/or

distributional asymmetries, for example), and (b) that longitudinal methodologies cannot be

anymore guaranteed than cross-sectional methodologies to yield identification (in the face of

temporal forms of confounding and ambiguities regarding the arbitrary delays between cause

and effect), and (c) that cross-sectional data may be higher in quality for the same associated

cost as longitudinal data, it seems unreasonable to necessarily prioritise, as a matter of principle,

longitudinal data over cross-sectional data. At the very least, we would recommend researchers

consider each option based on its own merits, in the context of the specific research questions

and phenomena under study.

4.5.2 Details of Measures Included in the Study

Attachment style. Attachment style was measured using the Relationships Questionnaire

(Bartholomew and Horowitz, 1991) which included four statements, one for each attachment

style. The participants were asked to “Place a checkmark next to the letter corresponding to

the style that best describes you or is closest to the way you are”. The statements included

comfort with emotional closeness and dependence on others. (Secure = It is easy for me to

become emotionally close to others. I am comfortable depending on them and having them

depend on me. I don’t worry about being alone or having others not accept me. Fearful avoidant

= I am uncomfortable getting close to others. I want emotionally close relationships, but I

find it difficult to trust others completely, or to depend on them. I worry that I will be hurt if I

allow myself to become too close to others. Anxious = I want to be completely emotionally

intimate with others, but I often find that others are reluctant to get as close as I would like. I am

uncomfortable being without close relationships, but I sometimes worry that others don’t value

me as much as I value them. Avoidant = I am comfortable without close emotional relationships.

It is very important to me to feel independent and self-sufficient, and I prefer not to depend on

others or have others depend on me).
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Social distancing behaviors. Social distancing practices, in accordance with government

guidelines during the first UK lockdown, were assessed using a list of 16 statements with

respect to the past week, e.g., “Met up with friends or extended family (outside of your home).”

Response scales were: not at all; 1-2 days per week; 3-4 days per week; most days; every day.

The social distancing items were coded such that higher scoring reflected greater endorsement

of social distancing practices, e.g., the item “Engaged in close contact greetings with people

outside of your family (e.g., shaking hands, hugging)” was reversed-scored. We performed an

exploratory factor analysis to examine the scale items. The results showed that 10/16 variables

loaded well on one factor and were thus included as a total score. Variables that did not cluster

well with others included variables about keeping a distance, washing hands straight away, and

behaviors that were within guidelines. The reliability of the 10-item scale was α = .91.

Generalized Anxiety. Symptoms of GAD were measured using the Generalized Anxiety

Disorder 7-item Scale (GAD-7; Spitzer et al., 2006). The GAD-7 has been shown to produce

reliable and valid scores in community studies, and the reliability in the current sample was α =

.94.

Depression. Depression was measured using the Patient Health Questionnaire PHQ-9: Kroenke,

Spitzer, and J. Williams, 2002). The PHQ-9 is a 9-item self-report measure that asks participants

the degree to which they have been bothered by depressive symptoms in the last two weeks

(items are rated on a 3-point Likert scale ranging from 0 [not bothered at all] to 2 [bothered a

lot]). Multiple previous studies attest to the reliability and validity of the PHQ-9 (Hinz et al.,

2017). The reliability of the scale in the current sample was α = .93.

Loneliness. Loneliness was measured using a 3-item Loneliness Scale (Hughes et al., 2004).

Example items include “How often do you feel that you lack companionship?” The items were

measured on scale from 1(Hardly ever), to 2 (Some of the time), to 3 (Often). The reliability of

the scale in the current sample was α = .87.

4.5.3 Control variables.

We also included a set of variables that were theoretically causally related to the central variables

in the study that we controlled for in the models. These variables include demographics, COVID-



124 Chapter 4. Causality Application

19 related anxiety and perceived one month risk, and hygiene practices and are described below

in more detail.

Demographics. The following demographic variables were measured at Wave 2 and included in

the analyses: age, gender, relationship status, key/essential worker status, number of adults living

in household, number of children living in household, change in monthly household income

during pandemic, and currently pregnant – self (partner). Religion, ethnicity, employment status,

and education were measured at Wave 1 and only used for descriptive purposes.

COVID-19-related anxiety and perceived one month risk. We also included COVID-19

related anxiety and perceived one month risk in the analyses as control variables. The survey

included a question “How anxious are you about the coronavirus COVID-19 pandemic?”. The

one-month risk included a question “What do you think is your personal percentage risk of

being infected with the COVID-19 virus over the following time periods? - In the next month”.

Both items were rated on a ‘slider’ (electronic visual analogue scale) to indicate their degree of

anxiety/perceived risk with ‘0’ and ‘100’ at the left- and right-hand extremes respectively, and

10-point increments. This produced continuous scores ranging from 0 to 100 with higher scores

reflecting higher levels of COVID-19-related anxiety or higher perceived risk.

Hygienic practices. Reasons for maintaining hygiene practices included 18 self-reported

statements (e.g., “I knew about why it was important and had a clear idea about how the virus

was transmitted” and “I was able to overcome the physical and/or mental barriers that might

have stopped me from doing it”). Response scales were 1 (strongly disagree) to 5 (strongly

agree). We performed an exploratory factor analysis to examine the scale items. The results

showed that 11/18 variables loaded well on one factor and were thus included as a total score.

Variables that did not cluster well with others included variables that focused on reminders and

support and social pressure to engage in hygiene behaviors. The reliability of the 11-item scale

was α = .93.

4.5.4 Full Description of the Data Analysis

Missing Data As mentioned in the main text, we analysed only data for which the key causes

and outcomes were available. In the cross-sectional case, we list-wise deleted according to
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missing values in the attachment style (wave 2) variable, and in the longitudinal case, we

list-wise deleted according to missing values in the attachment style (wave 2), or depression

(wave 3), or anxiety (wave 3) variables. The amount of missing data following this for the

cross-sectional case was 5.7%, and for the longitudinal case was 32.43% out of 1406 participants

total.

Furthermore, we ran two logistic regressions (one for the cross-sectional and one for the

longitudinal cases) to see which demographic variables were associated with missingness.

For this we constructed two dummy outcome variables. The first was a set of binary la-

bels indicating whether the attachment style variable was missing (=1) or not (=0) for the

cross-sectional case, and the second was a set of binary labels indicating whether any of

the attachment style (wave 2), or depression (wave 3), or anxiety (wave 3) variables were

missing for the longitudinal case. In both logistic regression models, the predictors were as

follows: W2 Children household, W2 Keyworker, W2 Chronic illness self, W2 Relationship,

W2 COVID19 anxiety, W2 Hygiene total, W2 Dep Total, W2 Change Income, W2 Risk total,

W2 Age year, W2 Adults household, W2 Pregnant, W2 GAD Total, W2 Gender, W2 RISK 1month,

W2 Loneliness Total.

Assuming an alpha of 0.05, in the cross-sectional model, the only predictor which was a

significantly predictive of missingness in attachment style were W2 Hygiene total (B=-0.0472,

p=0.000). For the longitudinal model, the predictors which were significantly predictive of

missingness in either attachment style (wave 2), or depression (wave 3), or anxiety (wave

3), were W2 Children household (B=0.2245, p=0.003), W2 Dep Total (B=0.0468, p=0.020),

W2 Age year (B=-0.0266, p=0.000), and W2 Gender (B=0.2340, p=0.037).

Whilst the cross-sectional missingness is, at least based on these results, relatively minor,

the longitudinal results indicate more significant potential issues. It is generally known that

missingness has important structural and causal attributes (indeed, causal inference is, itself,

a missing data problem) (Shpitser, Mohan, and Pearl, 2015). As such, future work should

consider how missingness affects the results of the analyses in the current work.

Data Analysis The code for the associated analysis can be found here: https://github.

com/matthewvowels1/attachment_COVID We used a state-of-the-art causal discov-

https://github.com/matthewvowels1/attachment_COVID
https://github.com/matthewvowels1/attachment_COVID
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ery algorithm known as Structural Agnostic Modeling (SAM; Kalainathan et al., 2020). The

algorithm is based on a Generative Adversarial Network (I. J. Goodfellow et al., 2014) in

which one neural network (the adversary) proposes estimations of conditional distributions, and

another one (the discriminator) tries to distinguish the estimates from the true data. During opti-

mization, the adversary learns to approximate the true distributions such that the discriminator

fails to distinguish the estimates from the originals. The overall model derives a structure that

maximizes the fit to the data, whilst enforcing a constraint which encourages acyclicity (no

feedback loops in the resulting graph), and a constraint which encourages sparsity.

SAM also takes advantages of a number of structural heuristics which can be used to orient

cause-effect directions, thus improving over other contemporary approaches for which model fit

statistics are known be insufficient for estimating causal directionality (Pearl, 2009; M. Vowels,

N. Camgoz, and Bowden, 2022). By leveraging these heuristics, SAM is thus able to estimate

the causal structure of a set of variables under a number of assumptions. The algorithm does

not, for example, infer hidden variables for us. In the presence of unobserved confounding, the

algorithm may therefore mistake the direction of a causal effect. Nonetheless, it can be used

to ‘fill in the gaps’ of our theories, by proposing structures about which we may have no prior

domain expertise. These techniques are not meant to overrule our domain expertise, and so we

must evaluate the putative structure for face validity. The validity of the subsequent analysis,

which itself is informed by the structure, rests on the assumption that this structure is sufficiently

correctly specified. Of course, in reality there may exist some key factors without which our

analyses become biased. However, given that we are using causal discovery to specify our

structure in addition to domain expertise (whereby the latter is usually applied on its own) we

would argue that this approach helps us to robustify the specification of our model and therefore

our analysis. In particular, knowledge of the structure helps to guide us when it comes to the

selection of good control variables for the estimation of causal effects, and it is well known that

the selection of ‘bad’ control variables can have a dramatic impact on the resulting estimates

(Cinelli, Forney, and Pearl, 2022; M. J. Vowels, 2021).

With regards to the specifics of the analysis, we used SAM to infer the cross-sectional structure

for Wave 2 (17 variables and 1325 participants), as well as the longitudinal structure across



4.5. Supplementary Material 127

Wave 2 and Wave 3 (19 variables from 895 participants). We included all variables that were

expected to be causally linked to the main variables of interest and thus affect the estimation

of the causal relationships. We applied a constraint preventing the discovery of causal effects

backwards in time, as well as constraints preventing causal links between certain demographics:

age and gender cannot be effects; change in income was measured as the change between Waves

1 and 2 and thus was prevented from affecting all demographic variables.

SAM is a continuously optimized method and can be randomly initialized with a set of starting

parameters. This means it does not necessarily converge to the same solution for each initializa-

tion. We therefore fit SAM 50 times and took the consensus across the 50 resulting structures.

We explored a number of learning rates (0.01 and 0.001), and applied a regularizing penalty of

0.05 which encourages the structure to be acyclic. We found that a learning rate of 0.001 did

not converge (the resulting structure was fully saturated), and therefore used the results derived

using a learning rate of 0.01. Otherwise, the default hyperparameter settings for SAM were

used.

The output of SAM is a Directed Acyclic Graph, which is a structured / graphical model

encoding the directions of causal influence without cycles. This structure was used to construct

a Structural Equation Model (SEM) using the lavaan package in R. We used only observed

variables rather than constructing latent variables of our constructs given the causal discovery

algorithm was conducted with observed variables only. The numbers of paths or ‘edges’ between

variables in the cross-sectional and longitudinal graphs were prohibitively high, and the SEM

with all variables identified as causally linked to a part of the model would not converge. We

thus employed ‘d-separation’ rules (Koller and Friedman, 2009; Spirtes, C. Glymour, and

Scheines, 2000; Pearl, 2009) to reduce the complexity of the graph without impacting the

essential structure. An example of the application of the rules can be simply demonstrated by

considering the structure A→ B → C. Imagine we are concerned with estimating the effect of

B on C, then there is no need to estimate the effect of A on B, and the path A→ B can therefore

be removed from the model. This is because of what is known as the Markovicity assumption,

which tells us that knowing A tells us nothing about C which is not already contained in B.

Formally, the statement is that A is independent of C given B. Similarly, if we are only interested



128 Chapter 4. Causality Application

Figure 4.3: A Directed Acyclic Graph depicting the various components for consideration.

Note. We are interested in the effect of T on Y, where Y is the outcome variable; T is the treatment
variable; C is a set of confounders (which must be controlled for in the model); P is a set of precision
variables (which do not have to be included but which help explain variance in Y and which can therefore
improve estimation precision); M is a set of mediators (which should not be included and which can be
ignored unless they are of central importance to the research question).

in the effect of A on C, we can ignore B - a process known as projection (C. Glymour, 2001).

These rules can be applied to all the paths in the full graph and used to identify non-causal paths

which otherwise affect the estimation of the paths we care about. They can also be used to

identify what are known as ‘precision variables’ which may help in improving the precision

of estimation (i.e., to reduce the standard error). Unlike confounders, which are essential to

control for, precision variables do not help us debias the estimate of the causal effect. Using

these d-separation rules, we can therefore identify variables that are important and variables that

can be ignored, and as a result the graph can then be simplified to leave only what is necessary

to answer our research questions. Figure 4.3 illustrates an example structure comprising a cause

T, an outcome of interest Y, and sets of confounders C, mediators M, and precision variables P,

as a Directed Acyclic Graph (DAG). Here, we use bold to indicate sets of multiple variables.

We can use the putative structure from the causal discovery stage to identify these variables, and

therefore specify our model. SEM is a linear estimator and the causal discovery process used

was non-linear and given the large number of variables in the models the fit of the SEM was

poor. Thus, the SEM results including all mediations are presented in Tables 4.4 and 4.5.

In addition to SEM, we also used a state-of-the-art method at the intersection of machine

learning and causality known as targeted learning (M. J. van der Laan and S. Rose, 2011) which

has seen myriad applications and demonstrates across a range of subdomains in epidemiology

and biostatistics (H. Li et al., 2022; Luque-Fernandez et al., 2018; Schnitzer et al., 2014).

Interested readers are encouraged to consult the accessible introduction by Luque-Fernandez

et al. (2018), but essentially the targeted learning frameworks provide us with a means to

estimate causal effects of interest without having to make unreasonable assumptions about the
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functional or parametric form. The effect itself must be unambiguously specified according

to the required confounders and precision variables identified from the graph. Above we

provided a list of all included confounders and precision variables used as part of the targeted

learning analysis. Targeted learning involves the use of an ensemble of flexible and diverse

machine learning algorithms or ‘learners’ to derive an initial estimate for a target causal effect.

The ensemble is known as a SuperLearner (M. van der Laan, Polley, and Hubbard, 2007).

It derives estimates from each of the individual learners and, via a process known as k-fold

cross-validation, estimates a set of weights across these learners which are used to derive a final

linear, weighted combination from each learner. The SuperLearner has been shown to exhibit

several desirable properties relating to its optimality and performance. It is more accurate than

using any one algorithm alone as it takes a weighted average of many different machine learning

algorithms. For modeling the causal effect, we used the following learners for continuous

outcome variables: Elastic Net (Zou and Hastie, 2005), Support Vector Regressor (Platt, 1999),

linear regressor, linear regressor with quadratic features and moderation effects, Random Forest

regressor (Breiman, 2001a), a Multilayer Perceptron regressor (I. Goodfellow, Bengio, and

Courville, 2016), and an AdaBoost Regressor (Drucker, 1997).

The process of targeted learning involves an update step that removes a residual bias associated

with the causal estimate derived using the Super Learner, and also renders a Gaussian distribution

of estimates which is therefore amenable to the derivation of confidence intervals and p-values.

The update step requires a second Super Learner model for the cause itself, known as a

propensity score model. The propensity score is the likelihood of receiving treatment, and

this quantity can be used to help us remove confounding associated with treatment group

imbalance. In our case, we were interested in the effect of attachment style (a categorical

variable) on a number of continuous outcomes, and thus one can consider attachment style to

be equivalent to the treatment in our cause-effect model. The propensity score Super Learner

comprises the following algorithms for categorical outcomes: a logistic regressor, a logistic

regressor with quadratic and moderation effects, a MultiLayer Perceptron, a Random Forest

classifier, a Support Vector classifier, and an AdaBoost classifier. The propensity model is

used to generate predictions for the probability of being in a particular attachment category,

from a set of predictors. Using the propensity scores, we can derive what is known as a ‘clever
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covariate’ which quantifies the degree to which the estimate of the causal effect of interest is

being biased by the relationship between a set of covariates and the cause. Definitions of clever

covariates falls beyond the scope of this paper, but again, interested readers are encouraged to

consult Luque-Fernandez et al. (2018). Once we have modeled this bias, we can correct for it by

updating the initial estimate. It also provides us with a means to derive the Influence Function

(Hampel, 1974; Hines et al., 2021; M. Vowels, Akbari, et al., 2023), which in turn is used to

undertake valid statistical inference, despite the fact that our original estimates were derived

using non-parametric methods. The power of the targeted learning approach is thus threefold:

We can use powerful non-parametric machine learning algorithms to achieve high precision

estimates; we can undertake typical statistical inference; and the update step removes residual

bias thus improving the estimate. All algorithms in the Super Learner were implemented using

the default implementations in the sklearn package (Pedregosa et al., 2011).

We concern ourselves with the estimation of the Average Causal Effect (ACE), which is the

average difference in outcomes for participants of different treatment groups. For instance, the

ACE for people in group 1 compared with group 0 can be expressed as:

Ψ1,0 = E [E[Y |C,P, T = 1]− E[Y |C,P, T = 0]]

where E indicates an expectation operator and the bold font denotes that these may be sets of

multiple variables. As is usual in causal inference, the validity of our estimates for rests on three

key assumptions (Pearl, 2009; Imbens and D. Rubin, 2015): (1) ignorability - we assume that

we have sufficiently controlled for confounding such that we can assume that there exist no

remaining unobserved confounders, (2) positivity - we assume that the probability of having

any attachment style is bounded away from 0 for all participants, and (3) stable unit treatment

value assumption - we assume that the outcomes for each participant are independent of the

outcomes for any other participant.
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Figure 4.4: Cross-Sectional Results for the Causal Discovery Algorithm

Note. The causes can be found on the Y axis and effects on the X axis. The boxes in lighter colors
identify a directed causal relationship between the cause and effect with a probability of at least 0.5. For
example, we see from the figure that the only cause for attachment styles is participants’ gender (there is
a lighter colored box with gender on Y axis and attachment style on X axis) whereas attachment styles
cause relationship status, anxiety, depression, loneliness, and social distancing behaviors. Attach Style =
attachment style; Dep Total = depression, GAD Total = generalized anxiety, Risk total = social distancing
behaviors.
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Figure 4.5: Longitudinal Results for the Causal Discovery Algorithm

Note. The causes can be found on the Y axis and effects on the X axis. The boxes in lighter colors
identify a directed causal relationship between the cause and effect with a probability of at least 0.5.
Attach Style = attachment style; Dep Total = depression, GAD Total = generalized anxiety, Risk total =
social distancing behaviors.
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4.5.5 Structural Equation Modeling (SEM) Results

In addition to the targeted learning approach, we also conducted a more traditional structural

equation modeling (SEM) approach which also allowed us to estimate loneliness as a potential

mediator. However, SEM is limited in its linear assumptions and given the causal estimates were

derived using a non-linear model, the results of the SEM are thus presented in the supplemental

file. The full results of the SEM model can be found in Table S1 and the significant results of

the relevant variables in Figure 4.6. The model fit the data well: χ2(12) = 35.99, p < .000, CFI

= 0.99, TLI = 0.96, RMSEA = 0.04. Based on a sensitivity power analysis, we had a power of

.80 to detect a minimum effect size of r = .12 and a power of 1.00 to detect a medium effect of r

= .30 with an alpha level of .05. We found that compared to secure individuals, fearful-avoidant

individuals were higher in anxiety (B = 1.19, p = .001), depression (B = 1.10, p = .001), and

loneliness (B = 1.28, p < .001); and reported engaging in more social distancing behaviors (B

= 1.28, p < .001). The results were similar for attachment-anxious individuals who were also

higher in anxiety (B = 1.35, p = .003), depression (B = 1.18, p = .014), and loneliness (B =

1.11, p < .001); and reported engaging in more social distancing behaviors (B = 1.42, p = .013)

compared to secure individuals. The results for avoidant attachment looked somewhat different

with no significant differences between avoidant and secure individuals on anxiety (B = 0.07,

p = .825) or depression (B = 0.11, p = .741). Avoidant individuals were higher than secure

individuals in loneliness (B = 0.29, p = .014) and reported engaging in less social distancing

behaviors (B = -1.01, p = .009).

There was a significant mediation by loneliness on the causal relationship between attachment

styles and the other four outcomes (depression, anxiety, risk, and hygiene behaviors). There

was a significant indirect effect through loneliness between fearful-avoidant attachment and

anxiety (B = 1.74, p < .001), depression (B = 2.23, p < .001), and social distancing behaviors

(B = 0.40, p = .001). There was also a significant indirect effect through loneliness between

anxious attachment and anxiety (B = 1.54, p < .001) and depression (B = 1.97, p < .001), as

well as social distancing behaviors (B = 0.36, p = .002). There was also a small but significant

indirect effect through loneliness between avoidant attachment and anxiety (B = 0.40, p = .015),

depression (B = 0.52, p < .015), and social distancing behaviors (B = 0.09, p = .043). All
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Figure 4.6: The SEM equivalent graph for the Relevant Significant Paths for Cross-Sectional Analyses

Depression

Anxiety
Anxious attachment

Avoidant attachment

Fearful avoidant attachment

Social distancing behaviors

Loneliness

Note. Only the main variables of interest were included in the figure. The full results can be found in the
tables.

total effects between all causes and effects were significant except the relationship between

attachment avoidance and anxiety and depression.

For the longitudinal models, there was a significant effect of fearful-avoidant attachment on

anxiety at W3 (B = 0.92, p = .003) but none of the other longitudinal effects of attachment styles

on anxiety or depression were significant when accounting for the W2 levels of the outcome

variables. Thus, attachment styles did not cause a significant change from W2 to W3 in anxiety

or depression except for fearful-avoidant attachment on anxiety.

Table 4.4: The Results of the Structural Equation Modeling for Cross-Sectional Data

Estimate Std. Err. z p

Regression Slopes

W2 anxiety

Fearful 1.19 0.33 3.66 0

Anxious 1.35 0.46 2.96 0.003

Avoidant 0.07 0.31 0.22 0.825

Loneliness 1.39 0.07 19.48 0

Woman 0.5 0.24 2.03 0.042

Keyworker 0.02 0.27 0.06 0.953

Risk.1month 3.72 0.5 7.51 0

Chronic.illness.self -0.02 0.29 -0.08 0.932

W2 depression

Fearful 1.1 0.34 3.21 0.001

Anxious 1.18 0.48 2.45 0.014
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Avoidant 0.11 0.33 0.33 0.741

Loneliness 1.78 0.08 23.59 0

Woman 0.24 0.26 0.94 0.345

Keyworker 0.01 0.29 0.02 0.982

Risk.1month 3.39 0.52 6.47 0

Chronic.illness.self 0.03 0.3 0.09 0.932

W2 loneliness

Fearful 1.25 0.12 10.37 0

Anxious 1.11 0.17 6.42 0

Avoidant 0.29 0.12 2.45 0.014

Woman 0.15 0.09 1.6 0.109

Keyworker 0.15 0.1 1.43 0.152

Risk.1month 0.84 0.19 4.45 0

Chronic.illness.self 0.39 0.11 3.55 0

W2 social distancing

Fearful 0.92 0.41 2.25 0.024

Anxious 1.42 0.57 2.49 0.013

Avoidant -1.01 0.39 -2.61 0.009

Loneliness 0.32 0.09 3.6 0

Woman -0.97 0.31 -3.18 0.001

Keyworker 2.41 0.34 7.04 0

Risk.1month 3.91 0.62 6.29 0

Chronic.illness.self 0.03 0.36 0.08 0.936

W2 hygiene

Fearful -2.84 0.52 -5.48 0

Anxious -4.42 0.73 -6.1 0

Avoidant -0.97 0.49 -1.98 0.048

Loneliness -0.12 0.11 -1.05 0.293

Woman 1.74 0.39 4.46 0

Keyworker -1.37 0.44 -3.15 0.002

Risk.1month -0.99 0.79 -1.25 0.211

Chronic.illness.self -0.55 0.46 -1.2 0.229

Intercepts

Anxiety -4.4 0.42 -10.55 0

Depression -5.13 0.44 -11.65 0

Loneliness 3.64 0.12 29.2 0

Risk 9.4 0.52 18.01 0
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Hygiene 48.89 0.66 73.65 0

Fearful 0.28 0.01 22.53 0

Anxious 0.09 0.01 11.75 0

Avoidant 0.3 0.01 23.59 0

Woman 0.48†

Keyworker 0.29†

Risk.1month 0.40†

Chronic.illness.self 0.24†

Indirect Effects through Loneliness

Fearful to anxiety 1.74 0.19 9.15 0

Anxious to anxiety 1.54 0.25 6.1 0

Avoidance to anxiety 0.4 0.17 2.43 0.015

Fearful to depression 2.23 0.23 9.49 0

Anxious to depression 1.97 0.32 6.2 0

Avoidance to depression 0.52 0.21 2.43 0.015

Fearful to social distancing 0.4 0.12 3.4 0.001

Anxious to social distancing 0.36 0.11 3.14 0.002

Avoidance to social distancing 0.09 0.05 2.02 0.043

Total Effects

Total.fear.anxiety 2.93 0.36 8.25 0

Total.anx.anxiety 2.89 0.51 5.68 0

Total.avo.anxiety 0.47 0.35 1.35 0.177

Total.fear.depression 3.33 0.39 8.44 0

Total.anx.depression 3.15 0.56 5.58 0

Total.avo.depression 0.63 0.39 1.61 0.107

Total.fear.social distancing 1.32 0.39 3.35 0.001

Total.anx.social distancing 1.78 0.56 3.15 0.002

Total.avo.social distancing -0.92 0.39 -2.36 0.018

Fit Indices

χ2 35.99(11) 0

CFI 0.99

TLI 0.96

RMSEA 0.04

†Fixed parameter

Note. Gender, keyworker status, 1 month risk, and chronic illness were used as control variables as
identified by the causal discovery algorithm and minSEM.
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Table 4.5: The Results of the Structural Equation Modeling for Longitudinal Data

Estimate Std. Err. z p

Regression Slopes

W3 GAD Total

W2.fearful 0.92 0.31 3.01 .003

W2.anxious 0.76 0.46 1.64 .100

W2.avoidant 0.30 0.28 1.09 .276

W2.Loneliness.Total 0.39 0.08 4.80 .000

W2.Social distancing.total 0.00 0.02 0.18 .856

W2.Hygiene.total -0.01 0.02 -0.38 .706

W2.GAD.Total 0.62 0.03 21.74 .000

W2.Age.year 0.00 0.01 0.34 .735

W2.woman 0.31 0.23 1.35 .177

W2.married 0.24 0.35 0.69 .490

W2.single 0.61 0.39 1.57 .116

W2.cohabiting 0.61 0.46 1.32 .188

W2.Keyworker -0.10 0.27 -0.37 .714

W2.Adults.household 0.09 0.14 0.66 .507

W2.Children.household -0.01 0.18 -0.08 .936

W2.Change.Income 0.00 0.00 0.60 .552

W2.Chronic.illness.self 0.46 0.26 1.80 .072

W2.COVID19.anxiety 0.01 0.00 2.52 .012

W2.RISK.1month 0.00 0.00 0.57 .566

W3 Dep Total

W2.fearful 0.04 0.29 0.15 .880

W2.anxious -0.24 0.43 -0.57 .571

W2.avoidant -0.16 0.26 -0.61 .544

W2.Loneliness.Total 0.33 0.08 4.16 .000

W2.Social distancing.total 0.02 0.02 1.10 .271

W2.Hygiene.total -0.03 0.02 -2.08 .038

W2.Dep.Total 0.26 0.03 9.20 .000

W3.GAD.Total 0.73 0.03 25.80 .000

W2.Age.year 0.00 0.01 0.19 .849

W2.woman -0.36 0.22 -1.66 .098

W2.married 0.48 0.33 1.46 .144

W2.single 0.04 0.36 0.11 .913
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W2.cohabiting -0.21 0.43 -0.49 .621

W2.Keyworker -0.43 0.25 -1.71 .088

W2.Adults.household -0.24 0.13 -1.76 .078

W2.Children.household -0.31 0.17 -1.86 .063

W2.Change.Income -0.00 0.00 -0.53 .595

W2.Chronic.illness.self -0.02 0.24 -0.10 .921

W2.COVID19.anxiety -0.01 0.00 -1.86 .063

W2.RISK.1month 0.01 0.00 1.12 .263

W2 GAD Total

W2.fearful 0.86 0.35 2.47 .013

W2.anxious 1.15 0.52 2.20 .028

W2.avoidant 0.35 0.31 1.12 .264

W2.Loneliness.Total 1.19 0.09 13.88 .000

W2.Social distancing.total 0.10 0.02 4.12 .000

W2.Hygiene.total -0.02 0.02 -1.25 .210

W2.Age.year -0.05 0.01 -4.49 .000

W2.woman 0.55 0.26 2.08 .037

W2.married 0.80 0.40 2.01 .044

W2.single 0.07 0.44 0.15 .880

W2.cohabiting 0.33 0.52 0.64 .525

W2.Keyworker -0.38 0.31 -1.23 .218

W2.Adults.household 0.23 0.16 1.41 .157

W2.Children.household -0.54 0.20 -2.63 .008

W2.Change.Income -0.01 0.01 -0.95 .341

W2.Chronic.illness.self 0.03 0.29 0.11 .912

W2.COVID19.anxiety 0.05 0.01 9.42 .000

W2.RISK.1month 0.01 0.01 2.49 .013

W2 Dep Total

W2.fearful 0.88 0.37 2.36 .018

W2.anxious 1.25 0.57 2.21 .027

W2.avoidant 0.45 0.34 1.33 .184

W2.Loneliness.Total 1.49 0.09 16.10 .000

W2.Social distancing.total 0.15 0.03 5.68 .000

W2.Hygiene.total -0.04 0.02 -1.80 .071

W2.Age.year -0.04 0.01 -2.94 .003

W2.woman 0.12 0.28 0.41 .680

W2.married 0.49 0.43 1.13 .257
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W2.single 0.66 0.48 1.38 .169

W2.cohabiting 0.42 0.57 0.75 .455

W2.Keyworker -0.50 0.33 -1.48 .139

W2.Adults.household 0.12 0.18 0.67 .503

W2.Children.household -0.24 0.22 -1.08 .281

W2.Change.Income -0.01 0.01 -1.27 .204

W2.Chronic.illness.self -0.05 0.32 -0.17 .864

W2.COVID19.anxiety 0.03 0.01 5.55 .000

W2.RISK.1month 0.01 0.01 1.68 .093

W2 Loneliness Total

W2.fearful 1.31 0.14 9.37 .000

W2.anxious 1.23 0.22 5.60 .000

W2.avoidant 0.30 0.13 2.28 .022

W2.woman 0.16 0.11 1.44 .150

W2 Risk total

W2.fearful 0.66 0.46 1.43 .152

W2.anxious 1.77 0.69 2.55 .011

W2.avoidant -0.76 0.42 -1.82 .069

W2.Loneliness.Total 0.29 0.11 2.54 .011

W2.Age.year -0.04 0.02 -2.92 .003

W2.woman -0.97 0.35 -2.80 .005

W2.married 0.48 0.53 0.91 .364

W2.single -0.29 0.59 -0.49 .622

W2.cohabiting -0.20 0.70 -0.28 .779

W2.Keyworker 1.59 0.41 3.91 .000

W2.Adults.household -0.46 0.21 -2.17 .030

W2.Children.household 0.78 0.27 2.89 .004

W2.COVID19.anxiety -0.00 0.01 -0.36 .716

W2.RISK.1month 0.03 0.01 4.57 .000

W2 Hygiene total

W2.fearful -2.15 0.59 -3.62 .000

W2.anxious -2.33 0.90 -2.59 .010

W2.avoidant -0.68 0.54 -1.26 .209

W2.Loneliness.Total -0.04 0.15 -0.28 .779

W2.Social distancing.total -0.28 0.04 -6.66 .000

W2.Age.year 0.06 0.02 3.20 .001

W2.woman 1.99 0.45 4.44 .000
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W2.married 0.78 0.69 1.13 .257

W2.single -0.06 0.77 -0.08 .934

W2.cohabiting 0.58 0.90 0.65 .518

W2.Keyworker 0.27 0.53 0.50 .619

W2.Adults.household 0.10 0.28 0.35 .726

W2.Children.household -0.37 0.35 -1.05 .295

W2.Change.Income -0.01 0.01 -1.22 .224

W2.Chronic.illness.self -0.88 0.51 -1.73 .083

W2.COVID19.anxiety 0.04 0.01 4.30 .000

W2.RISK.1month -0.01 0.01 -0.74 .461

W2 Children household

W2.Age.year -0.01 0.00 -8.13 .000

W2.Keyworker 0.07 0.05 1.41 .158

W2.RISK.1month 0.00 0.00 1.58 .114

W2 Adults household

W2.Children.household 0.03 0.04 0.85 .393

W2.RISK.1month -0.00 0.00 -1.49 .137

W2 married

W2.Keyworker 0.03 0.03 0.97 .332

W2.Adults.household 0.18 0.02 10.00 .000

W2.fearful -0.18 0.04 -4.55 .000

W2.anxious -0.10 0.06 -1.64 .102

W2.avoidant -0.08 0.04 -2.26 .024

W2 single

W2.Keyworker 0.01 0.03 0.45 .652

W2.Adults.household -0.06 0.02 -4.19 .000

W2.fearful 0.16 0.03 4.73 .000

W2.anxious 0.16 0.05 2.94 .003

W2.avoidant 0.11 0.03 3.44 .001

W2 cohabiting

W2.Keyworker 0.00 0.02 0.04 .969

W2.Adults.household 0.01 0.01 0.94 .347

W2.fearful 0.01 0.03 0.29 .768

W2.anxious -0.01 0.04 -0.25 .801

W2.avoidant -0.02 0.02 -0.88 .380

Intercepts

W3.GAD.Total -2.19 1.20 -1.82 .069
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W3.Dep.Total 1.42 1.13 1.26 .206

W2.GAD.Total -3.95 1.36 -2.89 .004

W2.Dep.Total -3.85 1.47 -2.61 .009

W2.Loneliness.Total 4.04 0.10 39.50 .000

W2.Social distancing.total 12.80 1.37 9.37 .000

W2.Hygiene.total 44.89 1.85 24.26 .000

W2.Children.household 0.90 0.10 9.33 .000

W2.Adults.household 2.03 0.05 38.03 .000

W2.married 0.22 0.04 4.95 .000

W2.single 0.26 0.04 6.67 .000

W2.cohabiting 0.09 0.03 3.06 .002

W2.fearful 0.25 0.01 17.57 .000

W2.anxious 0.07 0.01 8.63 .000

W2.avoidant 0.30 0.01 20.13 .000

W2.woman 0.45+

W2.Age.year 51.84†

W2.Keyworker 0.26†

W2.Change.Income -8.80†

W2.Chronic.illness.self 0.25†

W2.COVID19.anxiety 60.41†

W2.RISK.1month 38.50†

Indirect Effects*

FearfultoLtoGAD 0.52 0.12 4.27 .000

AnxioustoLtoGAD 0.49 0.13 3.65 .000

AvoidancetoLtoGAD 0.12 0.06 2.06 .039

FearfultoLtoDep 0.44 0.11 3.81 .000

AnxioustoLtoDep 0.41 0.12 3.34 .001

AvoidancetoLtoDep 0.10 0.05 2.00 .045

FearfultoLtoHtoGAD 0.00 0.00 0.23 .822

AnxioustoLtoHtoGAD 0.00 0.00 0.22 .823

FearfultoLtoHtoDep 0.00 0.01 0.28 .781

AnxioustoLtoHtoDep 0.00 0.01 0.28 .781

AvoidancetoLtoHtoDep 0.00 0.00 0.28 .783

FearfultoLtoRtoHtoGAD 0.00 0.00 0.37 .710

AnxioustoLtoRtoHtoGAD 0.00 0.00 0.37 .710

AvoidancetoLtoRtoHtoGAD 0.00 0.00 0.37 .713

earfultoLtoRtoHtoDep 0.00 0.00 1.54 .123
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AnxioustoLtoRtoHtoDep 0.00 0.00 1.51 .132

AvoidancetoLtoRtoHtoDep 0.00 0.00 1.29 .197

FearfultoRtoGAD 0.00 0.01 0.18 .857

AnxioustoRtoGAD 0.01 0.04 0.18 .857

AvoidancetoRtoGAD -0.00 0.02 -0.18 .857

FearfultoRtoDep 0.02 0.02 0.87 .382

AnxioustoRtoDep 0.04 0.04 1.01 .312

AvoidancetoRtoDep -0.02 0.02 -0.94 .346

FearfultoRtoHtoGAD 0.00 0.00 0.36 .716

AnxioustoRtoHtoGAD 0.00 0.01 0.37 .710

AvoidancetoRtoHtoGAD -0.00 0.00 -0.37 .712

FearfultoRtoHtoDep 0.01 0.01 1.16 .245

AnxioustoRtoHtoDep 0.02 0.01 1.57 .117

AvoidancetoRtoHtoDep -0.01 0.01 -1.34 .180

Total Effects

total.fear.GAD 1.44 0.31 4.64 .000

total.anx.GAD 1.25 0.47 2.68 .007

total.avo.GAD 0.42 0.28 1.48 .139

total.fear.Dep 0.51 0.29 1.72 .086

total.anx.Dep 0.20 0.44 0.46 .649

total.avo.Dep -0.05 0.26 -0.17 .861

Fit Indices

χ2 2245.54(77) .000

CFI 0.63

TLI 0.00

RMSEA 0.17

†Fixed parameter

Note. The full model results are presented in the table for transparency but only the bolded paths
are of interest. All indirect effects are italicized. The fit effects of this model are poor but given fit
statistics are inherently predictive metrics rather than causal, we have not modified the model. *Indirect
effects: L = loneliness, H = hygiene, R = risk behaviors. The indirect paths can be interpreted as:
AvoidancetoLtoRtoHtoGAD = indirect affect of attachment avoidance to anxiety through loneliness, risk
behavior, and hygiene (serial mediation).
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4.5.6 Model Specification for Targeted Learning

Outcome: W3 Dep Total

Confounders: Empty Set

Precision Variables: W2 Chronic illness self, W2 Adults household, W2 Keyworker, W2 Change Income,

W2 Age year, W2 Children household, W2 RISK 1month, W2 COVID19 anxiety, W2 Pregnant,

W2 Gender

Outcome: W3 GAD Total

Confounders: Empty Set

Precision Variables: W2 Chronic illness self, W2 Adults household, W2 Keyworker, W2 Change Income,

W2 Age year, W2 Children household, W2 RISK 1month, W2 COVID19 anxiety, W2 Pregnant,

W2 Gender

Outcome: W2 Risk Total

Confounders: W2 Gender

Precision Variables: W2 Chronic illness self, W2 Keyworker, W2 Change Income, W2 Age year,

W2 Children household, W2 RISK 1month, W2 COVID19 anxiety, W2 Pregnant

Outcome: W2 Dep Total

Confounders: W2 Gender

Precision Variables: W2 Chronic illness self, W2 Keyworker, W2 Change Income, W2 Age year,

W2 Children household, W2 RISK 1month, W2 COVID19 anxiety, W2 Pregnant

Outcome: W2 GAD Total

Confounders: W2 Gender

Precision Variables: W2 Chronic illness self, W2 Keyworker, W2 Change Income, W2 Age year,

W2 Children household, W2 RISK 1month, W2 COVID19 anxiety, W2 Pregnant
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Outcome: W2 Loneliness Total

Confounders: W2 Gender

Precision Variables: W2 Chronic illness self, W2 Keyworker, W2 Change Income, W2 RISK 1month,

W2 COVID19 anxiety

Intentional Mediation Included:

Mediator: W2 Dep Total

Outcome: W3 Dep Total

Confounders: Empty Set Precision Variables: W2 Chronic illness self, W2 Adults household,

W2 Keyworker, W2 Change Income, W2 Age year, W2 Children household, W2 RISK 1month,

W2 COVID19 anxiety, W2 Pregnant,W2 Gender

Mediator: W2 GAD Total

Outcome: W3 GAD Total

Confounders: Empty Set Precision Variables: W2 Chronic illness self, W2 Adults household,

W2 Keyworker, W2 Change Income, W2 Age year, W2 Children household, W2 RISK 1month,

W2 COVID19 anxiety, W2 Pregnant,W2 Gender



CHAPTER 5

Prespecification of Structure for the Optimization of Data Collection

and Analysis

“Causal effects are not binary signals that are either detected or undetected; causal

effects of numerical quantities that need to be estimated. Because the goal is to

quantify the effect as unbiasedly and precisely as possible, the solution to

observational analyses with imprecise effect estimates is not avoiding observational

analyses with imprecise estimates, but rather encouraging the conduct of many

observational analyses... meta-analyze them and provide a more precise pooled

estimate.”

M.A. Hernan (2022)

The content of this chapter is drawn from the following publication:

Vowels, M.J., 2023, Prespecification of Structure for the Optimization of Data Collection and

Analysis. Collabra: Psychology.

Abstract: Data collection and research methodology represents a critical part of the research

pipeline. On the one hand, it is important that we collect data in a way that maximises the

validity of what we are measuring, which may involve the use of long scales with many items.

145
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On the other hand, collecting a large number of items across multiple scales results in participant

fatigue, and expensive and time consuming data collection. It is therefore important that we use

the available resources optimally. In this work, we consider how the representation of a theory

as a causal/structural model can help us to streamline data collection and analysis procedures by

not wasting time collecting data for variables which are not causally critical for answering the

research question. This not only saves time and enables us to redirect resources to attend to other

variables which are more important, but also increases research transparency and the reliability

of theory testing. To achieve this, we leverage structural models and the Markov conditional

independency structures implicit in these models, to identify the substructures which are critical

for a particular research question. To demonstrate the benefits of this streamlining we review the

relevant concepts and present a number of didactic examples, including a real-world example.

5.1 Introduction

Imagine you want to estimate the effect of a therapeutic treatment on depressive symptoms,

and how this effect may be mediated via another variable, say, therapeutic alliance. One might

suspect that these variables are linked through a complex causal web involving multiple other

factors - but which of these other factors are necessary, in terms of data collection, for estimating

the main effect of interest? Collecting too many variables increases the cost and time required

to complete data collection, having an impact on participant fatigue (Lavrakas, 2008) as well as

draining valuable project resources. Conversely, collecting too few may make render the results

of the statistical tests invalid. In this manuscript, we describe how to identify those variables

which are strictly necessary to arrive at unbiased answers to pre-specified questions. Of course,

other interests may influence data collection (such as subsequent applications and usage), but

knowing what is strictly necessary allows one to make more informed decisions about what to

include.

In this paper, we argue that the data collection and research project methodology can be

optimized by specifying the causal structure underlying a theory in graphical form. Using rules

from the structural modeling framework, one can then use the graph to identify variables or

scales which are either causally necessary or which can be omitted from the data collection
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process. This liberates resources to either improve the quality of the remaining scales (e.g.,

by using scales with a more comprehensive set of items), and/or to reduce participant fatigue

by shortening the duration of a questionnaire and using these resources to increase the overall

sample size. Indeed, concerns about inadequate statistical power are growing in response to

the replication crisis (Sassenberg and Ditrich, 2019; Baker et al., 2020; Correll et al., 2020;

Aarts et al., 2015), and researchers are thus encouraged to make sure they have sufficient data to

estimate the effects of interest.

Furthermore, even if a researcher decides not to undertake any analyses (perhaps they are

not able to collect data, for whatever reason) the process of reflecting a theory graphically

nonetheless helps with transparency, reproducibility, and the meaningfulness of subsequent

interpretation. Psychology has been accused of being ‘not even wrong’ (Scheel, 2022) on the

basis that the theories are too vague to be adequately tested. By reflecting our theories in a

graphical form, we thus improve the clarity and reduce the one-to-many relationship between

our theories and our statistical models. Translating our theories to graphs also forces researchers

to think carefully about the underlying process, and the concomitant implications for data

collection. The specification can then be made explicit, preregistered (Nozek et al., 2018), and

compared unambiguously against other work. This, in turn, facilitates more precise replication

by subsequent researchers, as well as a clearer understanding of the relationships between the

hypotheses being tested and the assumptions and theory which underpin the model specification

and results (Navarro, 2021; Haslbeck et al., 2021; Grosz, Rohrer, and Thoemmes, 2020).

In this work we show how four related concepts - conditional independencies, Markov Blankets,

projection, and causal identification - can be used to judiciously shrink the number of variables

required to answer a research question, without impacting downstream analyses and without

impacting the congruity of the model with the underlying theory. The process is not data-driven

and is not the same as seeking model ‘parsimony’ - our approach does not fundamentally change

the complexity of the underlying processes reflected by the ‘full’ model. Instead, using a set

of rules which are consistent with the assumptions of the original graph being specified, our

initial graphical representation can be reduced to focus in on the effects we really care about.

Thus whilst the complexity of the statistical model reduces, it does so without introducing any
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additional simplifying assumptions beyond those which already existed in the original theory.

The techniques are relevant to a broad range of problems amenable to specification in graphical

form. For example, the didactic examples given by Rohrer (2018) involve health problems and

work satisfaction, genetics and child’s depressiveness, or educational attainment and income.

Additionally, social psychologists interested in complex, mediated processes and multiple

baseline control variables could also benefit from the proposal presented here. To this end, as

well as providing a set of experimental results to demonstrate the performance characteristics in

a general and non-domain-specific way, we also provide an example application to a graph used

in organizational behavior (Spurk and Abele, 2011). Our hope is that researchers can use the

techniques presented in this work so that they can optimize their data collection and analysis in

a more transparent way which is tailored specifically to the particular relationships of interest.

We begin by motivating the specification of our theories in graphical form. Then, we introduce

the relevant statistical/structural concepts needed to understand the process for reducing this

model. We then walk through a number of didactic examples, comparing an assumed ‘real-

world’ or Data Generating Process (DGP) against the minimal required model for estimating a

set of causal effects of interest. We also provide the associated multiple linear regression models

where a single regression model can be used to provide the same information, and present a

real-world example. In supplementary, we also provide simulation results to demonstrate that

the approach does not introduce bias, and in some cases can improve model fit and reduce

standard error. Finally, in the supplementary we also provide the code for an automatic tool

for reducing the graph (along with a description of the associated algorithm). The code for

reproducing the simulations as well as the automatic tool are also provided here: https:

//github.com/matthewvowels1/minSEM.

5.1.1 Terminology and Conceptual Overview

In this work, we assume that psychologists/researchers are principally concerned with estimating

a particular causal effect (e.g., the effect of treatment on an outcome). Indeed, this goal aligns

with the causal nature of psychological theories (which, in general, describe causal processes),

as well as the goal to design and implement effective interventions which improve peoples’ lives.

https://github.com/matthewvowels1/minSEM
https://github.com/matthewvowels1/minSEM
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Figure 5.1: Top level terminology.

Real-world DGP SEM Graph for DGP Reduced SEM Graph Regression Model(s) 

Y ~ X + M +… Ck

Research Question / Hypothesis

X

M

Ya

b c
M ~ X + … Ck

Note. We assume (left) there exists a real-world causal Data Generating Process (DGP), which we wish
to model using a structural model. This structural model can be represented graphically (see SEM graph
for the DGP in the figure). Using our proposed approach, this SEM can be simplified in such a way that
does not jeopardise the estimation of a particular (causal) effect size which is of interest to our research.
For example, we may be interested in estimating path coefficients/effects a, b, and c in a mediation model.
Finally, the effect sizes may be estimated using straightforward regression models.

As such, we assume that a researcher wishes to test a particular hypothesis which concerns a

(causal) effect size of interest.

We will refer to a number of objects which deserve to be defined up-front. In Figure 5.1 we

present examples of these objects for reference. Firstly, we assume that there exists some

(potentially highly complex) real-world Data Generating Process (DGP). According to our

existing theories, we wish to model this DGP in such a way that we are able to meaningfully

represent it. One option for doing so involves the use of Structural Equation Models (SEMs).

SEM provides us with a powerful and popular (Blanca, Alarcon, and Bono, 2018) statistical

framework to unambiguously reflect and test causal theories and relationships (M. J. Vowels,

2021; Rohrer, 2018; Grosz, Rohrer, and Thoemmes, 2020; S. Wright, 1921; S. Wright, 1923;

Pearl, 2009). In particular, the SEM can be represented in an intuitive graphical (and therefore

visual) way, thereby specifying our domain knowledge about the DGP.

The graphical representation of the theory, which we will refer to as the graphical or structural

model, can be used early on in the research pipeline to inform the data collection methodology,

by helping us specify which constructs we need to measure. Furthermore, early specification

of a statistical models helps us with preregistration and research transparency (Wagenmakers

et al., 2012). Such transparency is increasingly important in the fields of psychology and social

science, where attention has been drawn to numerous problems with theory testing, research

methodology, and analytical practice (M. J. Vowels, 2021; Flake and Fried, 2020; Scheel et al.,

in press; Gigerenzer, 2018; McShane et al., 2019; Aarts et al., 2015; Marsman et al., 2017).
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As we will discuss, we will apply the rules of a type of graphical model known as a Directed

Acyclic Graph (DAG) to the graphical representations of our SEM. These rules are actually

more general than those specific to SEM, because whilst SEM assumes linear relationships

between variables, the rules we use are applicable to problems with almost arbitrarily non-linear

relationships. Using these rules, and in combination with a Research Question expressed as a

set of target causal effects of interest, we can reduce its complexity (which we refer to as the

Reduced SEM) without sacrificing our ability to estimate what we care about for a particular

research question or hypothesis. This reduced model then determines which variables we are

required to collect data for. In some cases, we may not need to use the typical SEM estimation

techniques to answer our research questions, and a simple multiple regression model may suffice.

However, it is worth emphasising that this work is not concerned with the estimation of the

coefficients themselves, but rather how we can use the graphical modeling rules to simplify the

representation of a theory, and in turn streamline our data collection and study design.

5.2 Motivation

In this section we provide two principal motivations for our proposed approach: Statistical

power, and model under- or mis-specification. In light of these motivations, we then provide a

top-level overview of our proposal.

5.2.1 Statistical Power and Model Specification

Psychological research is frequently underpowered (Vankov, Bowers, and Munafo, 2014;

Maxwell, 2004; Crutzen and G. Peters, 2017), and the theory and analysis are often poorly

specified (Scheel et al., in press; Scheel, 2022; Grosz, Rohrer, and Thoemmes, 2020; Rohrer,

2018; M. J. Vowels, 2021). The studies are underpowered to the extent that the sample sizes

are insufficient to test a target hypothesis. For example, for a minimum assumed true effect

size of interest, it is generally recommended that enough data are collected to yield a power

of 80%, meaning that there is an 80% probability that we will find a statistically significant

result (at a given threshold such as 0.05) (Gelman, Hill, and Vehtari, 2021). Researchers are
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thus encouraged to ensure that their studies are adequately powered, and have been encouraged

to do so for some time (Vankov, Bowers, and Munafo, 2014; Sedlmeier and Gigerenzer, 1989).

However, depending on the complexity of the theory under test, researchers may need to measure

a large number of constructs, each with a large number of items. For example, depending on

the format, the IPIP-NEO Big 5 inventory contains between 120-300 items (Goldberg, 1999;

Goldberg et al., 2006) and therefore takes considerable time to complete. Besides the associated

cost and time required to measure constructs using such comprehensive scales, the participants

may also experience fatigue, lowering the quality of the responses (Lavrakas, 2008).

The second problem of under-specification has prompted meta-researchers to describe research

in psychology as ‘not even wrong’ (Scheel, 2022). That is to say, if the theories are too vague to

be specified unambiguously, then it is not clear what it is that any particular statistical test is

actually testing. If we are considered with understanding the real-time process of dyadic support,

for instance, we might need to develop a statistical model which can capture the intricacies of

back-and-forth, multi-modal (verbal, para-verbal, non-verbal) interactions between partners.

Without unambiguously reflecting the complexity of the process in our statistical model, it is

not clear what a typical model in psychology (e.g., a multiple linear regression model) is really

doing for us. The structural representation of this process can be a helpful aid to understand (a)

what data we need to collect, and (b) whether the data can even be collected in principle (the

acquisition of real-time, multi-modal data may in some cases be infeasible).

Furthermore, a single theory may admit multiple statistical models, each of which tests some-

thing slightly different but all of which are valid given the malleability of the underlying theory.

Few psychological theories make it clear which variables are necessary to include as control

variables, for instance. And yet, the inclusion of different control variables can have a large

impact on the resulting parameter estimates, and it is not usually clear how these control vari-

ables are chosen or how they relate to the tested theory (M. J. Vowels, 2021; Hullman et al.,

2022; Cinelli, Forney, and Pearl, 2022). As an example, in medical studies older patients may

be more likely to choose medication over surgery, but also be less likely to recover. This makes

age a key confounder that must be controlled/adjusted for to evaluate the treatment effects.

However, perhaps there exist other, less obvious confounders which we have not collected and
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which we can therefore not adjust for. Some variables may need to be controlled for but be

unattainable, some may be inconsequential (and can be omitted without consequence), and still

others may actually be detrimentally biasing the model. In order to determine which control

variables should or should not be included, and to therefore avoid what is known as structural

misspecification (M. J. Vowels, 2021), researchers need to somehow formalise their theories.

5.2.2 The Proposed Solution

With respect to statistical power, there exists a need for compromise - maximising the quality of

a survey such that it measures all that we need, at a sufficient level of quality, for a sufficient

number of participants. Of course, we acknowledge that there often exist multiple goals for

studies in which new data will be collected - they may have either confirmatory or exploratory

research questions, or both; they may wish to compare and contrast multiple competing hypoth-

esized structures; they may want to ‘future-proof’ the study, such that additional variables are

collected with a view that they may be necessary for answering research questions which are

not yet specified.

At the same time, and in order to correctly specify a model with respect to a psychological

theory, it is important that psychologists consider not only the structure between the primary

constructs central to their theory, but also the full data-generating process (DGP) which leads to

a set of observations. The theory can then be translated into a graphical/structural model which

reflects this DGP, which we can use to make sure we are not missing variables which are key to

answering a particular research question. The process of deriving a structural model from our

theory has been previously discussed by Rohrer (2018) and others (Kline, 2005; Loehlin and

Beaujean, 2017), and we do not describe the procedure in this work, but note that the graphical

framework (more about this in later sections) makes the process quite intuitive.

The advantages of reflecting the theory unambiguously in a structural model include repro-

ducibility (it is clear what exactly is being tested) and an increase in the interpretability and

validity of the resulting effect sizes. Rather than the effect sizes being arbitrary consequences

of ad hoc models loosely connected to theory, they reflect specific causal effects within a fully

specified structural/causal process. Whilst the causal validity of effect sizes estimated using
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these models still depends on whether a number of strong assumptions hold (e.g., whether the

hypothesized structure is correctly specified with respect to the actual, real-world structure), the

transparent specification of the model makes subsequent criticisms and revisions more precise.

The task of translating our theories may also highlight possible weaknesses in the theory, or call

attention to possibly insurmountable difficulties for data collection. For instance, theories which

involve dynamic processes that unfold at irregular intervals over time may require very specific,

expensive, and challenging data collection procedures (Hilpert et al., 2019). Identifying the

specifics of such challenges in advance could save a lot of wasted time and effort.

Unfortunately, the task of identifying all relevant variables will likely implicate a large number

of secondary variables (such as demographics and other theoretically related constructs), and

thus require longer questionnaires. The problems of statistical power, comprehensive scale

inventories, and the need to collect a broad range of variables and constructs relevant to our

theory puts a lot of pressure on researchers to find a suitable ‘Goldilocks’ design, and one or

multiple methodological facets are likely to be compromised as a consequence. As such, after

the specification of the full DGP, we should examine the resulting model to identify possible

shortcuts in the data collection process. Indeed, and as we will show, even if a variable or

construct is relevant to a particular causal process, it may not be required for the actual analysis.

To know this, however, the variable needs to be transparently situated in a causal model for us

to understand whether it is essential for answering a target research question, or not.

Once the structure of the DGP is fully specified, and as we will describe in detail below, we are

able to identify essential substructures which are sufficient for testing our intended hypotheses.

The substructures, by definition, exclude certain variables. Thus, if we can identify these

substructures in advance of data collection, we may be able to significantly reduce the number

of constructs we need to measure. Indeed, in example 2i in Figure 5.4) below, we show that it

is possible to reduce the number of variables/constructs by two thirds, although this depends

on how much of the causal process we are interested in testing. It goes without saying that

any simplification must be done carefully. Indeed, the potential consequences of any resultant

model misspecification can be severe, and includes heavily biased parameter estimates which

are almost impossible to meaningfully interpret (M. J. Vowels, 2021; Hullman et al., 2022).
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However, there are no requirements for researchers to ‘go all the way’ with the simplification,

and the proposal is flexible insofar as the degree of desired reduction can be determined by the

researcher and their specific requirements.

We thus advocate that researchers consider the DGP upfront, before the data collection stage.

Such prespecification in the form of a structural (or, as we will present, graphical) model

represents a beneficial step in terms of preregistration and transparency, helps researchers

distill their theories into testable models, thereby increasing the validity and meaningfulness of

downstream statistical inference and results interpretations, and provides us with an opportunity

to ‘prune’ the structure to optimize for statistical power during data collection.

5.3 Background

In this section, we introduce a number of relevant technical concepts for reducing our structural

models. In general, we assume that the model is being specified in graphical form as a path

model, or a Structural Equation Model (SEM), where directed paths/arrows correspond with

causal links. As we mention above, the techniques we use are more general than the SEM

framework, and come from the graphical models literature.1 A number of existing resources

discuss the implications of changes in causal structures on statistical estimation. For example,

M. J. Vowels (2021) discusses the problems that arise due to misspecification of causal models,

and notes the potential to focus on specific effects within a causal process; and Cinelli, Forney,

and Pearl (2022) provides a laconic summary of how to choose control variables such that the

choice does not induce bias in our parameter estimation. Unfortunately, these resources do not

discuss the possibility of reducing our SEMs to the most simple model which can still yield

unbiased estimates of (possibly multiple) causal effects.

To best communicate our approach, we begin with a brief review of the relevant background. We

aim to review four related concepts in particular: causal identification, conditional independence,

1Both path and SEMs represent subtypes of the graphical modeling framework known as Probabilistic Graphical
Models (Koller and Friedman, 2009; Pearl, 2009), and the relevant concepts are adequately reflected in SEMs which
are already popular in psychology (Blanca, Alarcon, and Bono, 2018). In order to avoid terminological pedantry we
thus assume researchers are using SEMs, but note that the ideas here generalise to other structural frameworks as
well (such as Directed Acyclic Graphs and Structural Causal Models).
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Markov Blankets, and projection. Briefly, identification is the goal of isolating causal from

non-causal statistical dependencies, and, when possible, facilitates the estimation of causal

effects. It relies on conditional independencies, which describe how statistical dependencies

arise due to the underlying causal process, and how conditioning on these variables enables us

to isolate or disentangle different sources of dependence. Markov blankets show that, through

the use of conditional independencies, we can completely isolate an entire substructure in a

graph, thereby making it clear that not all variables are necessarily required for a particular

research question. Finally, projection enables us to combine/reduce the number of paths. This

is particularly true in the case of mediation, where a mediator can be excluded entirely if the

researcher is not interested in estimating the mediation per se.

Interested readers are encouraged to consult useful resources by Hünermund and Bareinboim

(2021), M. Vowels, N. Camgoz, and Bowden (2022), Cinelli, Forney, and Pearl (2022), J. Peters,

Janzing, and Scholkopf (2017), Koller and Friedman (2009), Kline (2005), Pearl (2009), Pearl,

M. Glymour, and Jewell (2016), and Loehlin and Beaujean (2017). In terms of notation, we

use X (or, e.g. A,B,C etc.) to denote a random variable, and bold font X (or, e.g. A,B,C

etc.) to denote a set of random variables. We use the symbols |= and⊥̸⊥ to denote statistical

independence and statistical dependence, respectively. For linear systems, such statistical

dependence may be identified using correlation, but the majority of our discussions are general

and non-parametric. We use directed arrows to denote a directional structural/causal dependence,

and U (or U) for a single (or set of) unobserved variable(s). 2

For example, in SCM terminology A := f(B,C,UA) indicates that A is some general function f

of B and C. Here, UA tells us that A is also a function of exogenous random process UA. Indeed,

it is this UA which prevents the relationship between A and B and C from being deterministic.

Structural Equation Models (SEMs), on the other hand, assume that all endogenous variables

are the result of a linear weighted sum of others, such that A := βBAB + βCAC + UA. Here,

2Note that the theory we discuss is applicable to models with latent constructs (such as factor or measurement
models), as well as those without (such as path and structural models), and generalises beyond linear models. The
theory we discuss is part of the general Structural Causal Modeling (SCM) and Directed Acyclic Graph (DAG)
frameworks (Pearl, 2009). Path models and SEMs both represent a subset of the family of SCM and DAG models,
where the functional relationships between variables are assumed to be linear. In other words SCMs and DAGs
make no assumptions about whether one variable is an arbitrarily complex function of another (strictly, there are
exceptions to this, as discussed by Maclaren and Nicholson, 2020).
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Figure 5.2: A set of demonstrative graphs.
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Note. This figure provide a number of example graphical models. Solid black lines indicate causal
dependencies, dashed red lines indicate statistical dependence, parallel red bars indicate a ‘break’ in
statistical dependence (example (e)), boldfont indicates a set of variables, and the letter U is reserved to
denote unobserved variables.

the βs are structural parameters (also called path coefficients or effect sizes) which we wish to

estimate. The walrus-shaped assignment operator := tells us that the left hand side is a structural

outcome of the right hand side; the equations are not intended to be rearranged and there is very

much a directional relationship involved.

As we construct system of equations representing our SEM (or, indeed, our SCM) it is often

convenient to represent these relationships graphically/visually. For example, consider the

following set of (linear) structural equations:

A := UA,

B := βABA+ UB,

C := βACA+ βBCB + UC .

(5.1)

These can be represented simply as the mediation model depicted in black, solid arrows in

Figure 5.2(a). The variables U are generally not included unless they are statistically dependent.

Of course, they frequently are dependent in psychology, and this may be denoted using a curved,

bidirected edge, as between variables A and B in Figure 5.2(c), or by explicitly including the

relationship as in Figure 5.2(d). Such relationships can, of course, also be included in the system
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of equations comprising the SEM. Note that, as a result of the causal structures present in the

DGP, there are induced a number of statistical dependencies indicated in Figure 5.2 by the red

dashed lines. By induced statistical dependency, we mean that the variables are correlated, or,

more generally, statistically dependent, by consequence of the causal relationships between the

variables in the underlying causal process.

5.3.1 The Data Generating Process

It is worth maintaining conceptual separation between: (1) the process occurring in the real

world, which we consider to be the true Data Generating Process (DGP), (2) Our SEM, which

we generally want to sufficiently capture the process in the real world, and (3) the specification

of a multiple linear regression. Note that (1) and (2) do not have to match precisely. Indeed,

when we create our SEM we expect it to be a significant simplification of the real-world process,

but it needs to be somewhat consistent with the true process (and the degree to which this is

achieved is one of the primary aims of our research). If it is not sufficiently consistent, we might

deem it to be misspecified, and it will not yield meaningful statistical estimates.

For example, if we have a strong theory that the true DGP can be adequately represented by

a fully mediated process A → B → C, then we would be advised to employ an SEM which

is consistent with this structure. By consistent we mean that the model we use facilitates the

unbiased estimation of the parameters of interest, and that these estimated parameters correspond

with something meaningful in the real-world (e.g., causal effects sizes).3 One option we have

is to specify everything about our theory explicitly using an SEM, and this can be done in

graphical form to aid formalisation. However, what we aim to show is that if we are primarily

concerned with a subset of parameters (vis a vis all path coefficients in the model), then in some

cases we can significantly reduce the complexity of our model without affecting the consistency

of our resulting model. In the case of the full mediation, it is interesting to note, for example,

that including a direct path in the SEM (in addition to the indirect effect) does not bias our

estimates of the indirect path parameters. This is because the direct path will have an estimated

3For the estimation task itself, we can either use the SEM estimation framework (and estimate all the included
paths), or alternatively, we can derive a set of equivalent regression equations.
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effect of zero if it does not exist in the real-world, and its inclusion does not influence the value

of the coefficient estimated for the indirect path. This is an example of how increasing the

complexity of the SEM does not necessarily result in ‘disagreement’ or misspecification with

respect to the SEM and the real-world DGP. In contrast, failing to include a direct path which

does exist in the real-world DGP, can affect the resulting path estimates. As such, in some cases

assumptions which simplify the graph can be more ‘dangerous’ than those which increase the

complexity of the graph, and it is especially important any simplification be done with care to

avoid biasing the estimates of the remaining path coefficients.

Finally, note that the effect sizes of interest in the final SEM can be estimated using multiple

regression. Indeed, the specification of an SEM using the popular lavaan R library (Rosseel,

2012) follows a very similar syntax to that used to estimate each path using the lm regression

library. Note that this may not always be possible, particularly if one needs to estimate latent

factors. However, we provide the equivalent regression syntax to highlight the equivalence

between the techniques, and to show that even if a structural model is used to specify the DGP,

it may be possible to use a straightforward linear regression model for the actual estimation.

5.3.2 Identification and Disentangling Statistical Influence

Identification is the goal of isolating causal from non-causal statistical dependencies, and,

when possible, facilitates the estimation of causal effects. It concerns whether or not, for a

given graph, the causal effect we are interested in is actually estimable from the observed

data, even in the absence of an experiment (Huang and Valtorta, 2006; Shpitser and Pearl,

2008). In the case where the full graph is given and there are no unobserved confounders,

all causal effects are technically identifiable from the data. This means that there exists a

mathematical expression which expresses the causal effect(s) of interest as a function of the

observed statistical associations. If a causal effect is identifiable, it may be possible to estimate it

with only a fraction of all the observed variables. Furthermore, if researchers are only interested

in estimating a single path coefficient in a structural model, it may not be necessary to run the

full SEM estimation process, and instead researchers can run a multiple regression (possibly

employing machine learning techniques) to directly estimate the effect of interest (M. J. Vowels,
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N. Camgoz, and Bowden, 2021; M. J. van der Laan and S. Rose, 2011).

In the case where researchers are interested in the estimation of multiple paths (for example, in

a mediation model), one can choose either to undertake a series of multiple regression analyses

(and we provide examples of this below), or to estimate them simultaneously using the SEM

estimation framework. In both cases, however, all effects of interests must fulfil the requirements

for identification. In other words, the estimation multiple causal effects (e.g., from treatment to

mediator and from mediator to outcome) requires that all effects can be identified from the data,

which is obviously entails more stringent requirements than does the estimation of only one of

these paths.

A detailed description of how to use identification is beyond the scope of this paper, but we de-

scribe below how to isolate/disentangle statistical influence using the conditional independency

properties below. For now, let us consider the case where we are interested in estimating only

one path coefficient / causal effect - the rules generalize to multiple coefficients. Consider the

graphs in Figure 5.2(g) and (h). Graph (g) represents the canonical Randomized Control Trial

setup, where T represents some treatment, Y some outcome, and X some set of covariates which

help to explain the outcome Y . In this graph, the covariates X are independent of treatment

T because of the random assignment of treatment. Such a structure means the only statistical

dependence that exists between the treatment and the outcome is a result of the treatment itself.

This statistical dependence is thus equivalent to the causal dependence we are interested in. As

such, the effect can be directly estimated by comparing the outcome under different treatments.

Note that one may still wish to consider X too - it can be used to explain additional variance in

Y in order to tighten the estimate of the treatment effect. In other words, the inclusion of these

variables may reduce the standard errors associated with a particular causal effect size estimate.

In contrast, in observational studies patients may select their own treatment, and graph Fig-

ure 5.2(h) is more appropriate. For instance, if age is one of the covariates, older patients

may prefer medication and have a lower chance of recovery, whilst younger patients may

prefer surgery and have a higher chance of recovery. Thus, if we wish to estimate the causal

influence of treatment T on the outcome Y , we cannot simply compare the outcomes of the two

treatment groups, but now also need to somehow adjust or ‘control’ for the additional statistical
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dependence that exists between Y and T which results from the ‘backdoor’ non-causal path

T ← X → Y . This is non-causal because there is no directed path between T and Y via X

(the arrow points from X to T , not the other way around). Knowing the rules of conditional

independencies described below, we will be able to isolate the causal effect of interest such that

the remaining statistical dependence between T and Y corresponds with the causal dependence

we actually wish to estimate.

Note that we will use the term control variables to mean variables which we wish to adjust for to

identify causal effects of interest, and which would otherwise leave an opening for non-causal,

statistical association. For example, the set of variables X in Figure 5.2(h) could be considered

to be a set of relevant control variables which enables us to get unbiased estimation of the effect

of treatment T on the outcome Y . However, it is worth considering that a set of control variables

itself may comprise a complicated structure in its own right, and we consider two cases in the

examples section below.

5.3.3 Conditional Independencies

The visual graphs provide us with a way to directly read off the conditional independency

structure of the model. Conditional independencies tell us whether the inclusion of additional

information changes anything about our knowledge. For instance, consider the (illustrative)

fully mediated model Testosterone → Bone Length → Height. This model tells us that, in

the absence of a direct path from Testosterone to Height, if we already know someone’s Bone

Length, knowing their Testosterone in addition changes nothing about their likely height. In

other words, no more of the statistical dependency between Testosterone and Height is left to

explain once Bone Length is known. Equivalently, if we condition our knowledge on Bone

Length, Testosterone is rendered conditionally independent of Height. Indeed, if a linear

regression is used to estimate the effect of Testosterone on Height, but we include Bone Length

as a control variable, the coefficient on Testosterone will tend towards zero. This is a useful

example which highlights the importance of a consideration for structure and the associated

conditional independencies - if we do not already know that the process is fully mediated, we

might incorrectly arrive at the conclusion that Testosterone is unrelated to Height.
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If our graph Testosterone→ Bone Length→ Height is a sufficient representation of the process

in reality, and if the statistical relationships hold in the data we observe, then the graph is also

said to be Markovian (i.e., the ‘Markov condition’ holds). In fact a Markovian graph is simply a

graph for which its implied conditional independencies hold in the data it is being used to model.

Conversely, if their exists one or more unobserved variables which we have failed to include in

our model, and which influence the statistical dependencies in our data such that the Markov

condition no longer holds, the graph is said to be semi-Markovian. If we suspect a graph is

semi-Markovian because of the presence of some unobserved confounder(s), we should do our

best to update our graph and include this unobserved factor, so that the rules apply to our (now

Markovian) model. If we find this unobserved variable is necessary for identification, but we

simply cannot collect data for it (it might not be an easily measurably factor), then it may not be

possible to estimate the causal effects of interest.4 Whether or not a causal effect of interest is

identifiable is important to understand early on, because it may determine the feasibility of the

study. This is another reason why a graphical specification of a theory can be useful.

We can use conditional independencies to isolate causal from non-causal statistical dependence

(the task of identification described above), as well as to identify which variables we need

to include or exclude in our SEM. Starting with the example in the full mediation model of

Figure 5.2(b), we see that variable C cannot contain information about A which does not already

‘pass’ through B. Therefore, if we already know B, knowing A tells us nothing more about C

than we already knew. This renders A statistically independent of C given B, which can be

expressed as: A |= C|B. This is known as a conditional independence statement, because it tells

us which sets of variables are independent of each other given a set of conditioning variables.

It is worth noting that when we run a regression (logistic or otherwise) we are estimating

some expected outcome conditioned on some set of predictors. Running the regression to

estimate E[C|B,A] (i.e., the expected value of C, controlling for B and A) from data generated

according to a fully mediated DGP will result in the same consequences as above: the fact

we have included B means that the importance given to A will be zero (notwithstanding finite

sample deviations). Clearly, therefore, an understanding of the structure is therefore absolutely

4One might consider sensitivity analysis as a means to quantify the extent to which a causal effect can be
explained by unobserved third variables (Diaz and M. van der Laan, 2013).
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crucial for constructing the regression models (M. Vowels, 2022). For instance, if A is a

treatment variable and we do not recognise B as a mediator, the inclusion of B in the model

will result in a negligible coefficient estimate for A which may well mislead us to think the

treatment is ineffective.

To generalise this result to other graph structures, it is worth committing some rules to memory.

If a graph contains these two substructures:

A→ B → C,

A← B → C,
(5.2)

then knowing/conditioning on B renders A and C statistically independent. Of course, without

this conditioning, A, B, and C are all statistically dependent. These two graphs are known,

respectively, as a chain and a fork. One can start to write the complete list of conditional

independencies which are implied by both of these two graphs is:

A⊥̸⊥ B, A⊥̸⊥ C, B ⊥̸⊥ C, C |= A|B, C ⊥̸⊥ B|A, B ⊥̸⊥ C|A. (5.3)

The first, A ⊥̸⊥ B, means that A is not statistically independent of B (because A causes B),

the second means that A is not statistically independent of C (because A causes C through

B), and so on. Importantly, both of the graphs in Eq. 5.2 imply the same set of conditional

independencies, and therefore there is no way to tell them apart using statistical dependencies

alone.5 Alternatively, if a graph is structured as follows:

A→ B ← C, (5.4)

we have what is known as a collider. Unlike the examples in Eq. 5.2, variables A and C are
5Given that the chain and the fork are yield statistically equivalent data, it is worth considering the implications

for testing for mediation structures.
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actually already independent such that A |= C. A collider is also depicted in Figure 5.2(e), and

the parallel vertical red lines depict the ‘break’ in statistical dependence between A and C.

Furthermore, conditioning on B in this structure actually induces statistical dependence between

A and C - a phenomenon known as explaining away (Pearl, 2009; Pearl, M. Glymour, and

Jewell, 2016). A corresponding list of conditional independency statements for this collider is

therefore:

A⊥̸⊥ B, B ⊥̸⊥ C,A |= C, A⊥̸⊥ C|B, (5.5)

Variables are known as ancestors of downstream descendants if there exists a directed path

between the variables. A direct descendent is also called a child, and the direct ascendant is

called a parent. Note that conditioning on descendants of the variable B in the two graphs

depicted in Eq. 5.2 can partially render A and C independent (because it essentially contains

critical information from A via B). Similarly, conditioning on a descendent of the collider

variable B in Eq. 5.4 can also render variables A and C partially dependent. Of course, two

variables are either dependent or not, and the partial terminology is used here to communicate

that the effect of conditioning is not as strong as would be the case using B itself, as opposed

to one of its descendants. We can actually test for these conditional independencies using

conditional independence tests (which, in the linear Gaussian setting are essentially partial

correlations). These tests can then be used to discover the underlying structure in the data - a

task known as causal discovery, for which many methods exist (M. Vowels, N. Camgoz, and

Bowden, 2022).

Finally, returning to Figure 5.2(h), which was discussed above in relation to estimating the effect

of treatment T on outcome Y given some confounders X, we know that for the substructure

T ← X → Y , we can achieve Y |= T |X in order to essentially simulate the structure of the

graph for the RCT in Figure 5.2(g). In other words, by conditioning on X we ‘block the

backdoor’ path of confounding statistical dependence which ‘flows’ from treatment to outcome

by conditioning on X. This leaves only the one statistical path, which is also the causal path
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we care about. In this case, the statistical dependence is equivalent to the causal dependence

we wish to estimate. Thus, we have used conditional independency rules to isolate the causal

statistical dependencies, and disentangle them from the non-causal statistical dependencies.

5.3.4 Markov Blanket

The conditional independency rules introduced above can be used to define a Markov Blanket.

Essentially, the blanket constitutes a set of variables which yield conditional independence

between variables ‘within’ the blanket, and those outside it. The notion of a Markov Blanket

confirms the idea that not all variables are necessarily needed to estimate or identify a particular

causal effect. The implication of this is that if we have knowledge of a set of conditioning

variables, other variables which are causally ‘downstream’ of these conditioning variables

become effectively ‘disconnected’ from those which are upstream.6

Consider Figure 5.2(f) which depicts a Markov blanket around variables X and Y . The

underlined variables B, D, and E constitute the Markov blanket - knowing or conditioning on

these variables renders X and Y independent of variables A and C, which are outside of the

blanket.

An SEM model can be reduced in size to comprise only the variables and paths necessary to

estimate set of paths of interest. Considering, again, Figure 5.2(f), if we are only interested in

the path coefficients proximal to the variables X and Y , we do not need variables A or C, thus

reducing the number of estimated paths from ten (if we include the paths from unobserved U )

to five. We discuss more opportunities below.

5.3.5 Projection

A cause-effect relationship can often be broken down into smaller and smaller subdivisions,

until one starts talking about the effect of one molecule on the next to explain a simple game

6It is possible to have variables which fall into the set of defining Markov blanket variables but which do not
need to be explicitly conditioned on. This can occur, for example, in the presence of a collider structure which may
already render upstream variables (which are outside of the blanket) as statistically independent of those within the
blanket, without conditioning (recall that conditioning on a collider can open up an otherwise ‘closed’ path.
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Figure 5.3: An illustration of ‘infinite mediation’.

X Y

X M1 M2 .… Y
Note. This figure illustrates that between any two cause-effect pairs, there exists an almost infinitely
decomposable chain of intermediate mediators.

of billiards. As per Figure 5.3, each subdivision of the cause-effect relationships between

X and Y could be represented as a mediating path with an infinite number of intermediate

mediating paths. By consequence of the Markov assumption (described above) it is thankfully

not necessary to model all these intermediate mediators, and it suffices to abstract to the key

‘beginning and end points’. For instance, it is not necessary to know the intermediate position

and velocity of a billiard ball (assuming these are well known), but it may be important to know

when/if it changes course following a collision. One can, for example, reduce X →M → Y

simply to X → Y (C. Glymour, 2001, pp.40). Of course, if one is specifically interested in a

mediating variable then one can collect the relevant data and explore the process (such examples

are provided below). Of course, some reductions may yield an intractably blunt abstraction, or,

in the extreme, a form of infinite causal regress (e.g. regressing all first causes to our birth or the

beginning of time), and one might instead consider more modest examples, such as whether a

treatment is mediated by some psychological mechanism(s). In this case, one can nonetheless

reduce the problem (via projection) to an estimation of the total effect of treatment on the

outcome, thus aggregating the intermediate direct and indirect effects and thereby reducing the

complexity of the graphical representation.

5.4 Reducing SEMs - Worked Examples

In the previous section we reviewed four concepts which we will use for simplifying our SEMs

without introducing bias into our effect estimates: (1) causal identification, (2) conditional

independencies, (3) Markov Blankets, and (4) projection. In order to demonstrate these various

techniques, we will walk through a number of examples which are presented in Figure 5.4.
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For each example, we specify (a) a full DGP as our starting point which we assume to be true

and complete (‘Full DGP’ in Figure 5.4), (b) a set of causal effects of interest, that must be

identifiable for subsequent estimation (‘Research Question’ in Figure 5.4), (c) a minimal SEM

(denoted Reduced in Figure 5.4), and (d) syntax for the R lm() function for a multiple regression.

Five example DGPs are shown in Figure 5.4. Again, whilst we are not concerned with the

estimation itself, note that one can choose to either use the SEM framework to estimate all the

path coefficients in the resulting model, or one can undertake (possibly multiple) regressions to

arrive at the same goal. In both cases, the graphical representation of the theory is what enables

us to reduce the model in a way which does not invalidate the subsequent analysis (as well

as increasing transparency, helping us to think more deeply and concretely about the causal

process, etc.).

In practice, the graphical representation of our DGP will be developed using domain knowledge

and/or causal discovery techniques (M. Vowels, N. Camgoz, and Bowden, 2022; M. J. Vowels,

2021; C. Glymour, K. Zhang, and Spirtes, 2019). For now, we provide general examples with a

view to demonstrating the ways in which the concepts reviewed above can be used to reduce

our SEM. Similarly, in practice the set of paths of interest will be determined by our research

questions and our hypotheses. Note that it may be possible to simplify SEMs bearing in mind

other techniques which are applicable to linear models (such as instrumental variables) (Bollen,

2019), but we focus on those techniques reviewed above because they are generally applicable

to a much broader family of problems. Finally, it is worth remembering that if a set of variables

and paths are not needed for the SEM, then we also do not need to collect these variables to

begin with, thus saving additional time and expense which could be used to, for example, collect

more samples of the variables that really matter. Note that some variables may not strictly be

necessary for the estimation of the effect but may nonetheless be worthwhile including. For

example, proximal causes of an outcome which do not interfere with our estimation of other

desired causes can increase the precision/tightness of our estimates, and may therefore still be

worth including (Cinelli, Forney, and Pearl, 2022).

Unobserved variables and/or latent constructs may also be integrated into the specification of

the graph. In terms of the planning, these objects can be considered in the same way as other
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observed variables, at least insofar as they relate to the estimation of the causal dependence we

are interested in. One may find, for example, that the existence of certain unobserved variables

fundamentally preclude identification (i.e., the estimation of the target effect), perhaps because

they induce a backdoor/confounding path between the ‘treatment’ and the outcome. Conversely,

one may find that either certain unobserved variables, or particular latent constructs are not

necessary for the identification of the target effect. We later consider a number of worked

examples involving unobserved variables (Examples 3 and 4).

To motivate the examples, we will attempt to describe semi-plausible DGPs for psychological

processes, but note that these examples are likely to be overly simplistic, and are only intended

to illustrate the process. We will discuss each of the examples in Figure 5.4 in turn. Finally, in

the supplementary material we also provide simulation results for DGPs 2-5 in Figures 5.7-5.9.7

5.4.1 Example 1: Mediated Treatment

Starting with the first example depicted in Figure 5.4, let us begin by considering what this

graph could possibly represent. Variable Y could be an outcome (e.g. depressive symptoms) for

a therapy X , the effect of which is mediated by therapeutic alliance M . The set C represents

covariates that influence the choice of therapy modality as well as the likelihood of recovery,

and includes factors such as age, gender, history of mental health problems, and so on. Finally,

variable A could represent a personal attitude which influences the choice of treatment but

which does not influence whether the person recovers.

For this example, let us assume that our research question concerns estimation of the efficacy of

treatment on the outcome, i.e., X → Y . The reduced model (denoted in Figure 5.4 as Reduced)

requires three fewer paths to estimate this effect. Firstly, if we are not interested in the particulars

of the mediated path X → M → Y then we do not need to include X → M → Y , or to

therefore collected data for M (afforded by the projection concept reviewed above). Secondly,

even though there exists a spurious/confounding/backdoor path X ← C→ Y , we do not need

to estimate the actual path X ← C so long as we include the path C→ Y . The inclusion of C

7We omit simulations for DGP 1 because it represents a reduction of the other examples, and so including it is
somewhat redundant.
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Figure 5.4: Finding the reduced model.
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Note. This figure presents a number of examples for taking the full ‘true’ Data Generating Process (DGP)
and finding the reduced graph and minimal linear/logistic regression required to answer a given research
question.
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facilitates identification of the principal effect of interest X → Y . Note that in this case we do

not have to use SEM for the estimation procedure. Indeed, in this example we are not interested

in the path coefficients linking C to Y either, even though these paths must be included to

acknowledge the dependence that Y has on C and to block the backdoor path. Given we are

only interested in the path from X to Y , we can simply run a multiple regression, using C as

control variables and restricting interpretation to the coefficient on X . Note that the resulting

lm() syntax contains only the two necessary components as predictors - X and the set of control

variables C.

Finally, we do not need to include A in the model (neither do we need to collect data for A)

because it is not necessary for the causal identification of the target causal effect of interest.

Adding the path A→ X into the model is superfluous to the effect we are interested in.8

5.4.2 Example 2: Structured Controls

The first graph with structured controls is given as example 2 in Figure 5.4. We can consider the

meaning of variables A,X,M , and Y to be the same as in Example 1, that is attitude, treatment,

treatment-outcome mediator, and outcome, respectively. The difference now is that we also

have a mediation child N , an outcome child H , and a structured set of control variables K,P ,

and R. If, as indicated in example 2i, we are only interested in estimating the effect of X on Y

then, as in the first example, we can ignore A and M . Similarly, we can also exclude N and H

for our reduced model, as their existence in the DGP does not change the principal relationship

we are interested in.

There still exists a backdoor path through the control variables K,P,R, and Y , and so we need

to understand which of the associated variables and paths to include in our reduced model to

adjust for this spurious path. There exist the following options which block this path: K → Y ,

K → P → Y , and R → Y ← P . Note that R → Y is not an option by itself because this

would leave the path through P → Y open. Note also that we do not need to estimate the path

K → X because we are not interested in this effect. Thus, overall, our initial/complete model

8Indeed, its inclusion can even increase the standard errors on the effect of X → Y because it makes it ‘harder’
to disentangle the variance in Y that stems from X and the residual variation of A which is also contained in Y .



170 Chapter 5. Prespecification of Structure

reduces to the estimation of only two paths (reduced from ten), as in the previous example. The

linear regression also remains equivalent.

If our research question involved the estimation of the mediation, as in example 2ii in Figure 5.4,

then the only change to the model needs to be the inclusion of the mediation X → M → Y .

The linear regression now involves two stages to decompose the problem into two sets of paths

(one from X →M , and the other comprising the paths M → Y and K → Y ).

5.4.3 Example 3: Colliding Controls

One might be forgiven for thinking that the safest thing to do with a set of control variables is

to always include them in the model to make sure we are blocking the backdoor paths. In the

previous example, for instance, we could just play it safe by including {K,P,R}. However,

example 3 in Figure 5.4 shows that some putative control variables may include collider

structures. Let us consider that variables C, M , and L are class-size, math exam score, and

language exam score, respectively. H represents a mediator such as whether a student does

their homework, S represents Social Economic Status (SES) - perhaps children with higher

SES attend schools with smaller class sizes and have better grades overall - U represents an

unobserved attribute of intelligence Q a measured attribute of intelligence, and A musical

ability.

Based on example 3i we are interested in the effect of class size on math exam score. It might

be tempting to include the paths concerning the other related scores (such as language score, or

musical ability). In the case of musical ability, we could include the paths C → A← Q→M

without causing any problems, but it doesn’t actually help us estimate the effect we are interested

in. Indeed, the collider structure C → A← Q prevents any backdoor information affecting our

estimation of C →M , so we do not need these paths for causal identification. Another collider

exists between C → L← U →M , and even though the structure is the same, the fact that U

is unobserved means we cannot and should not include L in the model. Indeed, if L were to

be included (without U as U is unobserved) we would induce a spurious path linking C to M

through L and U . Thus, whilst these might appear to be tempting control variables which we
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might think would, at best increase precision and at worst do nothing, in fact they should not be

included owing to the collider structure with an unobserved variable.

We have no need to include paths relevant to A or L in our model. Including the path Q→M

may improve the precision of our desired estimate, but it is not necessary. The partial mediation

through H , if not part of our research question, does also not need to be included. The only

path we have to be concerned about is C ← S → M , and we can deal with the induced

statistical path by simply including the path S → M . In this case, the the reduced model

contains two paths, whilst the full model (including the unobserved paths) involves thirteen.

The corresponding linear regression is equally simple, and only includes C and S as predictors.

If we are interested in the partial mediation of class size, homework, and math exam score, then

we can simply augment the reduced model from example 3i to include this additional structure.

The linear regression also changes to accommodate the estimation of the additional paths, as

with example 2ii.

5.4.4 Example 4: Simple Unobserved Confounding

The fourth example is relatively straightforward. Here, R,S, and C could represent relationship

satisfaction, partner support, and communication style, respectively, where the unobserved

confounder U between support and communication. The unobserved confounder induces a

non-causal statistical dependence between S and R through C, and the reduced model therefore

needs to include the path C → R. The linear regression, similarly, needs only S and C as

predictors.

5.4.5 Example 5: Longitudinal Dyadic Effects

The final example concerns a longitudinal dyadic process, whereby variables for e.g. relationship

satisfaction for two individuals A and B are collected at three timepoints, but there exist

intermediate opportunities where confounding could occur. This confounding could represent,

for example, shared stressful events. The target causal effects involve all of the ‘actor effects’

(that is, autocorrelation in each individual’s variables which results in similar values across
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consecutive timepoints), as well as two partner effects from A2 → B3 and a ‘concurrent’ effect

A3 → B3.9 This example demonstrates when the use of SEM may be less complicated than

undertaking a series of multiple regression tasks; our research question concerns the estimation

of six separate causal effects, all of which have to be identified.

We do not need to estimate the paths C → A1, so long as we include the path C → A2, which

enables us to block the backdoor path from A1 to A2 via C and thereby identify the effect

A1 → A2. For the same reasons, we do not need to estimate the path C → B1. In this example,

we are not able to make any data collection savings (i.e., we need to collect all variables), even

though some of the path coefficients are not needed for estimation of the principal causal effects

of interest.

5.4.6 Real World Example

To motivate the application of the techniques to non-synthetic examples, we have chosen a

graph adapted from a paper published in the domain of business psychology and organizational

behaviour. The graph is shown in Figure 5.5, and was presented to test the relationship between

personality (‘P’ in the graph), and salary (‘S’). First, let us consider the model required in the

case where our research question solely concerns P → S. The only non-causal path from

personality to salary, assuming the graph shown in Figure 5.5, is via gender: P ← G→ S. The

reduced graph is shown in Figure 5.6i. In this case, the simple regression S ∼ P +G would

suffice, and the graphical representation of the SEM would be P → S ← G. Once again, it is

only possible to confirm this if we already have a representation of our model which enables us

to identify the required control variables.

In the original work (Spurk and Abele, 2011), the researchers were specifically interested

in a double-mediation by occupational self-efficacy (‘OSE’) and career advancement goals

(‘CAG’), which represent the first set of mediating variables, and working hours (‘WH’) which

represents a second mediation of the effect of personality on salary. In this case, all variables

9Even though the causal framework does not strictly admit simultaneity (there must be some time delay between
the case and the effect), we assume that this concurrence is permitted according to the data collection procedure (i.e.,
within wave three, partner A can influence partner B with some arbitrary time delay which is not distorted by the
otherwise cross-sectional nature of the data collection methodology).
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Figure 5.5: Real-world example graph.

P = Personality
S = Salary
G = Gender
PS = Prior Salary
Tr = Training / Skill
CAG = Career Advancement Goals
OSE = Organisational Self-Efficacy
WH = Work Hours per week

P

CAG

S

OSE

WH

G

PS

Tr

Note. Real-world example graph adapted from Spurk and Abele (2011).

are required for the analysis, and no savings can be made at the data collection stage, but we

can nonetheless reduce the number of paths to be estimated. The reduced graph is shown in

Figure 5.6ii. Identifying this reduced solution by eye is already becoming challenging, and

automated tools (such as the one provided in supplementary material) are helpful in ensuring

the reduction is correct. In addition, identifying the set of multiple regressions which can

yield unbiased estimates of each of the target paths is also quite involved, and this example

demonstrates how the SEM estimation framework might provide a more convenient alternative.

In any case, it can be seen that six out of a total of 24 paths were not required.

5.5 Discussion

We have provided a number of didactic examples showing that if we are presented with a specific

question regarding a relatively complex process, we can simplify our SEMs considerably. The

simplification process takes advantage of a number of graphical rules, and does not introduce any

additional assumptions to those which already apply to the full model. Furthermore, researchers

are also free to choose whether they actually wish to estimate all the path coefficients using

SEM framework itself, or whether a multiple regression would be more straightforward. Indeed,

in cases where only a single causal effect needs to be estimated, one might consider using the

graphical representation first, and then estimating it using a multiple regression instead. In
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Figure 5.6: Reduced real-world example graph.

P

CAG

S

OSE

WH

G

PS

Tr

P S

P

CAG

S

OSE

WH

i.

ii.

Research Question Regression.Reduced

S ~ P + G

S ~ WH + G + OSE + CAG…
…+ PS + P + Tr 

P S

G

WH ~ PS + CAG + OSE + G

OSE ~ P + Tr + G + PS

CAG ~ P + PS + G + Tr

Note. Reduced real-world example graphs for the real-world DGP assumed in Figure 5.5. Bold black
lines are those key to a multiple-mediation research question, whereas red dashed lines are those that
may be excluded from a graphically specified SEM without affecting the estimation of the target paths.

this work we provided both the graphical representation of the SEM that one needs to estimate

in order to answer a research question relating to one or more causal effects, as well as the

equivalent multiple regression equation(s).

In one of the demonstrative examples, an SEM with upwards of thirteen paths was reduced to

only two. The simulation results provided and discussed in the supplementary material highlight

unsurprising improvements in adjusted model fit metrics (unsurprising because simpler models

are penalised less than complex models according to such metrics). Importantly, note that the

simplification process does not bias the effect size estimates.

Even without the simplification process, translating a psychological theory into a graph is a

worthy exercise, particularly when undertaken before the data collection stage. It helps us

be transparent and unambiguous about our model and assumptions, increases specificity for

preregistration, and can highlight potential methodological challenges and difficulties before any

resources have been expended. It may even highlight cases where estimation is not possible, and

this relates to the problem of causal identification. For example, if there exists an unobserved

confounder between X and Y in the graph X → Y , i.e. X ← U → Y , the causal effect cannot

be estimated because the non-causal statistical association induced by the confounder cannot

be adjusted for without access to U . These problems can, again, be seen by an inspection of
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the graph, and it is worthwhile identifying these problems sooner rather than later. In practice,

such problems may be common, and either a researcher must do all they can to account for

the possible unobserved confounders, or they must assume that a sufficient number have been

already collected to assume that the problem is ‘ignorable’ (Pearl, 2009). In general, it is

important to remember that the goal of estimating causal effects rests on a number of strong

(and often untestable) assumptions. However, it is only by taking causality seriously that we

can understand what these assumptions are and whether they are reasonable.

5.5.1 Limitations

We have used SEM throughout the text because researchers in psychology may be familiar with

this framework (Blanca, Alarcon, and Bono, 2018). Furthermore, if they wish/need to estimate

latent variables, the SEM framework readily facilitates this. Note, however, that SEM is generally

considered to be an estimation framework, rather than a means to graphically represent one’s

causal theory. Furthermore, SEM usually assumes linear (or at least pre-specified) functional

relationships between variables. Fortunately, and as we briefly discussed earlier, all the rules

and techniques discussed in this work belong to a broader class of graphical model known as

Directed Acyclic Graphs (DAGs). DAGs do not make assumptions about the parametric (e.g.,

normally distributed vs. non-parametric) form of the variables, nor about the functional (linear

vs. non-linear) form relating variables. This means that when one uses our proposed method to

construct and subsequently simplify a graphical structure, they can also consider themselves to

be working directly with a DAG. If the researcher then wishes to avoid making assumptions

about the functions and distributions, they do not have to use the SEM framework to do the

estimation, but can instead use non-parametric regression or machine learning techniques (a

discussion about which is beyond the scope of this paper). Indeed, another reason that we

provide the multiple regression syntax is because its specification can be generalized relatively

straightforwardly to non-parametric settings. For example, the specification of the regression

Y ∼ X + C relates to the estimation of E[Y |X,C], which is the conditional expectation of Y

given X and C. The conditioning set given on the right hand side of the tilde in the regression

syntax, or the right hand side of the conditional expectation, are the variables/predictors in the
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regression which are being used to identify the causal effect(s) of interest, and this can be done

in both linear parametric as well as non-linear, non-parametric settings.

The reduction which is achievable depends on the research questions being asked, as well

as the requirements of the researcher. We foresee that some researchers may wish to collect

more variables than are strictly required for identification to future-proof their datasets, thereby

facilitating the testing of currently unspecified hypotheses. The collection of extra variables

can not only provide the opportunity for researchers to answer potentially unforeseen research

questions, but it also enables researchers to include ‘hedge’ variables, in cases where the theory

specification is uncertain and researchers do not want to risk variable omission. Indeed, if the

researcher is contending with multiple hypothesized graph structures, they may wish to avoid

putting all their eggs in one basket by collecting only the smallest set of variables relevant

for one particular graph and one particular research question. Furthermore, researchers may

also be able to promote the project, and thereby indirectly achieve higher statistical power

and better measurement precision, if they agree to collect variables beyond those which are

strictly necessary for the specific research question but which may be relevant to collaborators.

Finally, by ‘over-collecting’ variables, they may also open up opportunities to undertake causal

discovery - a data driven approach to the validation of putative causal structures. Without the

extra variables, researchers would be somewhat stuck with what they have. In any eventuality,

being able to determine which variables are strictly necessary for a particular research question

is not only helpful in optionally streamlining data collection, but also in ensuring that none

of the essential variables are otherwise excluded (even in the case where many non-essential

variables are collected).

Finally, researchers should be mindful that the success of the approach rests on the degree of

correct specification achieved when the DGP model is constructed.10 However, this limitation

applies to all statistical approaches which concern the estimation of interpretable / causal effects,

and this approach does not alleviate the consequences of model misspecification. Furthermore,

10Note that the use of a reduced graph reduces the chances that the associated structural components are mis-
specified (there are fewer opportunities for misspecification in a smaller graph). Put differently, if I have the
choice between estimating two effects or four effects, the estimation of four effects puts stronger requirements on
identification than the estimation of two does (requiring, as it does, all four effects to be identified, rather than only
two).



5.5. Discussion 177

reducing model complexity may reduce the precision of the estimation because less explanatory

power may be available to estimate an effect. For instance, if a set of risk/precision variables

are included (risk variables being parents of the outcome), the ability to estimate the target

effect does not change, but the efficiency may improve. This is because risk/precision variables

can explain variation in the outcome which derives from other causes than the one of interest,

and the model is thereby able to obtain more reliable estimates for the target effect. This is

evidenced by a review of the simulation results for the p-values, as well as the error bars on the

coefficient estimation plots in the supplementary material. This downside is somewhat offset by

the possibility that, with a simpler model, a larger sample size may be acquired for equivalent

cost. For example, if the simplification process indicates that a number of constructs with large

inventories are no longer required, we may gain back significant data collection time which

can be put towards the recruitment of more participants. Such possibilities therefore enable

us to increase statistical power for estimating the effects we really care about. Furthermore,

the specification of larger models increases the chances of misspecification (simply put, in the

specification of larger graphical models, there is more opportunity for error). Reducing the

model and being specific and less ambitious about the number of primary effect sizes of interest

(as opposed to wishing to estimate as many effects as possible) increases the likelihood that, at

the end of the project, we have estimated something meaningful.

5.5.2 Related Options

It is worth noting that other approaches for streamlining data collection and reducing study

cost, such as the tools for the development of short-form scale design (Greer and J. Liu, 2016;

G. Smith, Combs, and Pearson, 2012) and planned missingness design (J. Wood et al., 2019).

In the case of the former, researchers can use statistical techniques to identify reduced scale

designs which provide similar performance in terms of certain scale quality measures, such as

validity. In the case of the latter, there are a number of planned missingness techniques which

enable researchers to amortize data collection cost over the course of a longitudinal design, or to

leverage statistical associations to compensate for foreseen missing data. These methods differ

significantly from our proposal, and can even be used in combination with ours. Specifically,
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the short-form scale design approaches are motivated by the fact that there may exist redundant

information in a scale which is already represented by other items (or combinations, thereof).

In contrast, our approach is concerned with the assumptions about and formal specification

of the causal structure of data generating process itself, and does not concern redundancies in

the scales used to measure the constructs/variables within this structure. The data generating

process can therefore be considered independently of scale-item redundancy. Similarly, planned

missingness techniques include split form designs (Raghunathan and Grizzle, 1995) which split

large questionnaires into multiple smaller blocks, each of which is completed by participants at

different stages of a longitudinal design. Alternatively, multiple imputation provides researchers

with a way to leverage statistical associations to compensate for instances of missing data.

Again, in contrast with our proposal, this approach does not consider the opportunities already

implicit in the specification of our theory.

5.5.3 Conclusion

In summary, graphical representations of our theories provide us with an opportunity to encode

our domain knowledge about a particular phenomenon of interest. In this paper we showed that,

by using graphical modeling rules (in particular, the concept of conditional independencies), we

can significantly shrink the required causal structural model without affecting the validity of

the associated estimates, thereby reducing the required sample size and enabling us to redirect

resources and funds towards the collection of variables which are critical to answering the

questions we care about.

5.6 Supplementary: Simulation Results

The purpose of the simulation is to illustrate the differences in χ2, Root Mean Squared Error

of Approximation (RMSEA), Comparative Fit Index (CFI), Mean Absolute Error (MAE) and

p-values, between two models which differ in complexity but which are otherwise correctly

specified (with respect to the true, underlying DGP). It is worth noting that χ2 is known as

an ‘absolute’ fit index, and is not adjusted for model complexity. A lower χ2 value indicates
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better fit and provides a measure of how much our sample covariance matrix differs from our

fitted covariance matrix. In contrast, RMSEA adjusts for the model complexity (favouring

model parsimony), and here a lower value is preferred. Finally, CFI is not adjusted for model

complexity, and higher values are preferred. For more information on these metrics, readers are

pointed towards works by Maruyama (1998) and Hoyle and Panter (1995).

It is important to note that under these conditions (and when researchers use the process/tools

presented in this work), the causal effect size estimates are unbiased regardless of whether the

full model or the reduced models are used. As such, even though the use of these tools can have

an effect on the standard errors (and therefore also the p-values and null-hypothesis significance

testing), it does not affect the large-sample performance of the model. Indeed, this is evidence

in the lower four plots of Figure 5.7, which confirm that the choice of model does not affect the

effect size estimates (all are unbiased). Nonetheless, it is important to understand the possible

impact on the various model metrics to understand that two different correctly specified models

can yield different finite-sample behaviours. These differences are discussed in more detail in

this section.

Simulation results for DGP examples 2-5 in Figure 5.4 are shown in Figures 5.7-5.9. We use

the sem function in the lavaan library (Rosseel, 2012) to estimate a single target effect for each

variant. For the MAE and the p-values, we provide results for a single effect of interest. For

example, for the DGP research question 2ii in Figure 5.4, we specify the SEM models given in

the ‘Full DGP’ and ‘Reduced’ columns and generate MAEs and p-values for the total effect

of X on Y . Similarly, for DGP research question 3ii, we specify the SEM models given in

the ‘Full DGP’ and ‘Reduced’ columns, and generate MAEs and p-values for the total effect

of C on M . Finally, for example 5, we specify the SEM models given in the ‘Full DGP’ and

‘Reduced’ columns, and generate MAEs and p-values for the total effect of A1 on B3.

For each of the example DGPs, we generate data across a range of sample sizes (10-200), and

for each sample size we undertake 100 simulations. The results of these 100 simulations are

used to derive means and standard deviations for each of the metrics, thus allow us to compare

the results when specifying the full DGP model compared with the reduced models.

Starting with the results for the model fit metrics χ2 in Figure 5.7, we see that for DGPs 2-4 the
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reduced models have better fit (lower χ2 indicates better fit). This comes as no surprise because

here the complexity of the model impacts our ability to reduce error for the path coefficients we

are estimating (reducing the degrees of freedom). For similar reasons, it is also not surprising

that the differences for the full and reduced models for DGP 5 were not different - the reduced

model did not differ greatly in its reduction of complexity. In this sense, reducing the complexity

of the model can have an effect on the resulting χ2, in such a way that yields a value which is

considered desirable (of course, in practice we should specify theories based on more than just

the resulting fit-statistics).

In Figure 5.7 we provide estimates for the target effect size ‘Coefs’, on top of the true effect

size ‘True Coef’. Importantly, the results confirm that the simplification process does not bias

the estimates - all model variants correct estimate the effect size.

Results for CFI (higher is better) and RMSEA (lower is better) are shown in Figure 5.8. Once

again, the smaller models are preferred and yield higher CFI values. This again comes as a

consequence of the complexity of the larger models and the concomitant impact on estimation.

This notwithstanding, as the sample size increases, the results converge fairly quickly. The

RMSEA results indicate a great improvement with the use of the reduced models, particularly

for smaller sample sizes. This is not surprising beacuse RMSEA is an adjusted metric, and so

the results are consistent with the expectation that lower RMSEA values are associated with

smaller models.

Finally, the p-values and MAEs for the target effect size estimates are shown in Figure 5.9. For

DGP 2 (top left plot), the p-values are higher for the reduced model than the complete model.

This is consistent with the expectation that the inclusion of more variables can help increase the

precision of our estimates. Indeed, in general we expect that the inclusion of variables into a

structural equation model will reduce the standard error and, by the mathematical expressions

relating these quantities, also reduce the p-values. However, this is only reliably the case if the

model is correctly specified, and the reason it happens is because we are able to partial out the

variance more completely. For example, consider the graph X1 → Y ← X2. Here, Y has two

causes, but let’s say that we actually only care about the link X1 → Y . In this case we have two

options: create an SEM which includes X2 → Y (in addition to the X1 → Y link), or create
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an SEM which does not. Note, however, that the inclusion of X2 → Y can help us estimate

X1 → Y because it partials out variance in Y which, in a finite sample, might otherwise be

attributable to X1. Unfortunately, in practice it may not be as simple as this, because every time

we include a new variable and a new path, we also increase the chances that we incorrectly

specify the graph. Thus, whilst the option to reduce standard error by the inclusion of more

paths is perhaps still a good thing to consider/understand in general, doing so requires us to be

more and more confident that our specification is correct as we include more and more paths in

our model.

Returning to the examples in the figure, the reduced model in DGP 2i only includes two effects

of the outcome Y , which is X and K. However, other more proximal variables P and R

exist, and their inclusion would improve the quality of the estimate. In this case, R and P

would be doubling as both control variables (adjusting for the backdoor path from X to Y , as

well as variables which aid in precision (Cinelli, Forney, and Pearl, 2022). Note also that the

standard deviation of these p-values is higher, indicating greater variation across simulations.

This increased variance also results in a higher MAE, which is also evidence in the DGP2 -

MAE plot in Figure 5.9 (third row, first column). Thus, even though the effect size estimates

will be unbiased (owing to correct specification of the reduced model with respect to the full

DGP), the removal of explanatory variables can impact the precision of the estimates. In order

to compensate for this, one can choose to retain variables which have explanatory power so

long as their inclusion does not contradict the full, underlying model. DGP 2 represents a useful

example insofar as variables R and P can be included (optionally in addition to K), to help

explain the effect of X on Y .
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Figure 5.7: Simulation χ2 and Coefficient Estimation Results.

DGP 2 - DGP 3 -

DGP 4 - DGP 5 -

χ2 χ2

χ2 χ2

DGP 2 - Coefs DGP 3 - Coefs

DGP 5 - CoefsDGP 4 - Coefs

Note. Averages and standard errors over 100 simulations with varying sample sizes for χ2 and estimated
coefficient values for data generated from Data Generating Processes (DGPs) 2-5 in Figure 5.4.
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Figure 5.8: Simulation CFI and RMSEA Results.

DGP 3 - CFI

DGP 4 - CFI DGP 5 - CFI

DGP 2 - RMSEA DGP 3 - RMSEA

DGP 4 - RMSEA DGP 5 - RMSEA

DGP 2 - CFI

Note. Averages and standard errors over 100 simulations with varying sample sizes for Comparative Fit
Index (CFI) and Root Mean Squared Error of Approximation (RMSEA) for data generated from Data
Generating Processes (DGPs) 2-5 in Figure 5.4.
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Figure 5.9: Simulation p-value and MAE Results.

DGP 2 - p-value DGP 3 - p-value

DGP 4 - p-value DGP 5 - p-value

DGP 2 - MAE DGP 3 - MAE

DGP 4 - MAE DGP 5 - MAE

Note. Averages and standard errors over 100 simulations with varying sample sizes for p-values and
Mean Absolute Error (MAE) for data generated from Data Generating Processes (DGPs) 2-5 in Figure
5.4.



CHAPTER 6

Trying to Outrun Causality with Machine Learning: Limitations of

Model Explainability Techniques for Exploratory Research

“This [causal] ingredient should allow computer systems to choreograph a

parsimonious and modular representation of their environment, interrogate that

representation, distort it by acts of imagination and finally answer “What if?” kind

of questions. Examples are interventional questions: “What if I make it happen?”

and retrospective or explanatory questions: “What if I had acted differently?” or

“what if my flight had not been late?” Such questions cannot be articulated, let

alone answered by systems that operate in purely statistical mode, as do most

learning machines today.”

Pearl (2018)

The content of this chapter is drawn from the following publication:

Vowels, M.J., Under Review. Trying to Outrun Causality with Machine Learning: Limitations

of Model Explainability Techniques for Exploratory Research.

Abstract: Machine Learning explainability techniques have been proposed as a means for

psychologists to ‘explain’ or interrogate a model in order to gain an understanding about a

phenomenon of interest. Researchers concerned with imposing overly restrictive functional

185
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form (e.g., as would be the case in a linear regression) may be motivated to use machine learning

algorithms in conjunction with explainability techniques, as part of exploratory research, with

the goal of identifying important variables which are associated with / predictive of an outcome

of interest. However, and as we demonstrate, machine learning algorithms are highly sensitive

to the underlying causal structure in the data. The consequences of this are that predictors

which are deemed by the explainability technique to be unrelated/unimportant/unpredictive,

may actually be highly associated with the outcome. Rather than this being a limitation of

explainability techniques per se, we show that it is rather a consequence of the mathemati-

cal implications of regression, and the interaction of these implications with the associated

conditional independencies of the underlying causal structure. We provide some alternative

recommendations for psychologists wanting to explore the data for important variables.

6.1 Introduction

Researchers in psychological and social science seem to be aware that machine learning cannot

be used ‘naively’ to yield causal quantities, and that causal conclusions cannot be drawn from

the results of predictive algorithms. This is evidenced by the adage ‘correlation is not causation’,

which is well-baked (almost to a fault - see M. Hernan, 2018b) into the research zeitgeist, and

has been widely discussed in commentaries by Yarkoni and Westfall (2017), Pearl (2009), M. J.

Vowels (2021), Grosz, Rohrer, and Thoemmes (2020), and Shmueli (2010). Seemingly without

contradicting this mantra, it is becoming increasingly popular to use machine learning techniques

to infer ‘important’ or ‘predictive’ variables. Indeed, random forests with explainability methods

such as random forest importances, or Shapley values (Lundberg, G. Erion, et al., 2020) have

seen application in the domains of psychology (L. Vowels, M. Vowels, and K.P. Mark, 2021;

L. M. Vowels, M. J. Vowels, and K.P. Mark, 2020; L. M. Vowels, M. J. Vowels, and K.P.

Mark, 2021a; Joel, Eastwick, Allison, et al., 2020), genetics (Goldstein, Polley, and Briggs,

2011), epidemiology (Orlenko and Moore, 2021; Khalilia, Chakraborty, and Popescu, 2011),

drug-discovery (Jiménez-Luna, Grisoni, and Schneider, 2020), and many others (C. Strobl

et al., 2007). Other commentaries have encouraged similar practice. For instance, Yarkoni and

Westfall (2017) discuss ways to interpret predictive machine learning models for psychology,
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and argue that ‘psychologists stand to gain a lot by relaxing their emphasis on identifying the

causal mechanisms governing behavior, and focusing to a greater extent on predictive accuracy’.

Similarly, M. J. Vowels (2021) recommends machine learning in order to avoid imposing

restrictive, unrealistic limitations on the relationships between variables.

Given a general trend towards the incorporation of machine learning and explainability tech-

niques into empirical research in psychology, it is important to understand the associated

behavior of such techniques and whether they can be used productively to guide research.

Whilst researchers may be interested in identifying predictive variables to inform the design of

intervention or to guide theory development and future research, explainability techniques may

actually yield conflicting or unhelpful evidence. In fact, due to the causal structure underlying

the data generating process, the identification of predictive variables depends heavily on which

other variables are included in the model. Machine learning algorithms are just as sensitive to

the ‘partialling’ out of variance deriving from other variables as linear regression is, and yet

this sensitivity is not well acknowledged by psychologists wishing to use these techniques to

guide their research. Without strong prior knowledge of the underlying structure, this sensitivity

makes it difficult to use explainability and variable importance techniques to draw conclusions

about anything other than the behavior of the algorithm itself, and we would thus question the

meaningfulness of any associated conclusions.

In this paper we adopt a causal perspective to help us understand and explain the limitations of

machine learning and model explainability techniques. In particular, we examine the sensitivity

of these techniques to the underlying structure of the Data Generating Process (DGP). We

empirically demonstrate the almost inescapable dependence that linear models (and their

coefficients), random forests (both variable importance measures and Shapley values), and

MultiLayer Perceptrons (and the associated Shapley values) have on the underlying structure,

highlighting how highly correlated/predictive variables may nonetheless be deemed unimportant,

even when using powerful ML algorithms and state-of-the-art explainability techniques. Whilst

the sensitivity of the coefficients of linear models can be well understood given knowledge

of the underlying structure (M. J. Vowels, 2021), the fact that this sensitivity translates to

machine learning explainability techniques has, to the best of our knowledge, not been described
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before. Our conclusion is that it is not possible to ‘outrun causality with machine learning’, and

that it always important to understand the possible interactions between the algorithm and the

underlying causal structure in the data, whenever our goal is to use the predictor importances to

guide our research and theory development.

The paper is structured as follows: In the Motivation section, we review some of the discussion

surrounding the use of machine learning approaches to research in psychology and social

science. In the Background, we review some relevant background theory relating to causality,

Directed Acyclic Graphs, d-separation, regression, random forests, multilayer perceptrons,

and explainability. Readers already familiar with this background can skip this and proceed

directly to the Methods section, where we provide details on the experiments, including the

datasets, algorithms, and explainability techniques. Then, in the Results section1, using three

different datasets of increasing structural complexity, we demonstrate how both random forest

importances and Shapley value techniques for machine learning algorithms cannot be used to

reliably infer anything about the presence of correlations/associations in the data. Following

a discussion of the results, we discuss a number of methods which could be used to develop

an understanding of a phenomenon at the exploratory stages of a research project. Finally, we

summarise the work in the Conclusion.

6.2 Motivation

Psychological phenomena are well known to be complex, making causal inference and causal

discovery exceptionally challenging (Meehl, 1990; Eronen and Bringmann, 2021) even in

experimental scenarios, where causal interventions often suffer from ‘fat-handedness’ (Eronen,

2020). Accordingly, it is often difficult to properly develop and test theories, resulting in theories

which are assumed to be true a priori and which are underspecified and often vague (Scheel et al.,

in press). Simultaneously, it is well accepted that theories are essential to our science (Oberauer

and Lewandowsky, 2019; VanderWeele, 2020; Muthukrishna and Henrich, 2019b; Fiedler,

2017). Recently, and perhaps with some acknowledgement of the difficulties associated with

1Complete code can be found here: https://github.com/matthewvowels1/ML_structural_
interactions

https://github.com/matthewvowels1/ML_structural_interactions
https://github.com/matthewvowels1/ML_structural_interactions
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taking causal approaches, researchers have proposed taking a predictive approach to help validate

and test theories utilising machine learning techniques. This approach was recommended by

Yarkoni and Westfall (2017), who argued that it can be used to ‘help gain a deeper understanding

of the general structure of one’s data.’ Similarly, M. J. Vowels (2021) argued that machine

learning can be used to explore the data to identify strong associations and predictive variables.

Researchers have already started implementing this advice. For example, in large scale analysis,

Joel, Eastwick, and E.J. Finkel (2017) established sets of variables which are robustly predictive

of relationship quality, with the aim of using these results to guide future modeling; L. M.

Vowels, M. J. Vowels, and K.P. Mark (2021b) and L. M. Vowels, M. J. Vowels, and K.P. Mark

(2021a) identified predictive variables and the associated per-variable importances for sexual

desire and infidelity, and suggested that these variables could be focus of future research and

interventions; Mun and Geng (2019) identified variables predictive of post-experiment fatigue

and suggested that the results highlighted a network of connections associated with health

behaviors; and Plonsky et al. (2016) proposed a way to predictive human behaviours, and

demonstrated that their method could also be used to identify important contributing factors. In

all cases, the researchers used some combination of machine learning algorithms and model

explainability techniques to infer something about the phenomena under study. Specifically,

rather than simply establishing predictive validity, they used explainability techniques to read

further into the underlying structure of the data. Furthermore, all of these studies used a

combination of random forests and random forest importances, feature selection techniques, or

Shapley value techniques to identify predictive or important variables.

Unfortunately, methods for explainability are only intended to be used to understand the

algorithmic decisions themselves, and care must be taken when using model explanations to

draw inference about external reality (Kumar et al., 2020; Lundberg, G. Erion, et al., 2020).

Indeed, a variable is ‘important’ or ‘predictive’ insofar as it is useful to an algorithm for reducing

prediction error. As we will demonstrate, whilst it is possible to infer that predictive/important

variables are only predictive because the associated construct is linked in some way with the

outcome (and therefore arguably theoretically relevant), the converse is not true. Variables which

are deemed to not be predictive, may nonetheless contain just as much relevant information as

the variables that are. Thus, it is at least not possible and even ill-advised to draw conclusions
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about which variables are not important, because one may be inadvertently discounting the

relevance of highly predictive variables. This comes as a consequence of the underling structure

in the Data Generating Process (DGP), which is something that is unlikely to be known a priori.

For instance, if a treatment T is fully mediated by variable M which have an effect on outcome

Y , the combined inclusion of T and M as predictors will result in zero predictive importance

being placed on T . These kinds of interactions are not limited to mediation structures, and

depend broadly on the underlying structure governing the DGP.

Even though it is well known that similar consequences occur with partial correlation coeffi-

cients, whereby the shared variance between the outcome and the mediator renders the treatment

to be ostensibly unimportant, the reasons behind this phenomenon, and the associated implica-

tions, are not generally well understood by practitioners, particularly from a causal perspective

(Pearl, 2009; Rohrer, 2018; Cinelli, Forney, and Pearl, 2022; M. J. Vowels, 2021; VanderWeele,

2019). The fact that this phenomenon extends beyond linear regression to machine learning

explainability techniques seems to be even less well appreciated, at least judging from the

research in which they are used. Indeed, if explainability techniques cannot be reliably used to

explore the data to uncover theoretically relevant predictive variables, we would encourage re-

searchers to ask themselves whether algorithmic explainability measures of variable importance

can reliably be used to inform and guide them in the ways that they expect. Consider the case

where an explainability technique indicates that one particular set of variables A is important

whilst another B is not. Would researchers be willing to make recommendations about the scope

of further research if they also understand that set B may, in fact, be just as important as set A?

Even if the importances accurately reflect the use of information by the predictive algorithm, we

should temper any conclusions relating to the nature of the psychological phenomenon itself. In

particular, we should be reluctant to use the explainability results to influence the development

of our theory. As such, it is important that researchers understand the behaviour of explainability

techniques. To the best of our knowledge, the implications have yet to be discussed.
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6.3 Background

As described above, the interaction between the underlying (usually unknown) causal structure

and the output of machine learning explainability techniques is not generally well understood by

practitioners, and has important implications for any subsequent interpretations. The Directed

Acyclic Graph (DAG) framework and the associated d-separation rules make the consequences

of structure visually intuitive, and recent commentaries have encouraged psychologists and social

scientists to engage with these concepts (Hünermund and Bareinboim, 2021; Grosz, Rohrer,

and Thoemmes, 2020; Rohrer, 2018; M. Hernan, 2018b). We believe that understanding these

concepts is key to understanding the behaviour of machine learning explainability techniques,

and we introduce them in this section. We also introduce some background concepts relating

to regression and machine learning explainability techniques, in particular, the techniques we

subsequently evaluate empirically.

6.3.1 Structure

In order to explore the inability of machine learning models and explainability techniques

to reliably inform us of correlations in the data, we take a causal perspective, which means

we adopt the machinery developed for Structural Equation Modeling, probabilistic graphical

models, and graphs. In particular, we use Directed Acyclic Graphs (DAGs) to operationalize the

dependence of machine learning models on the underlying structure in a general, non-parametric

way. In this section we introduce the relevant concepts for the subsequent exploration. Interested

readers are encouraged to consult other resources on graphical models and causal inference such

as Hünermund and Bareinboim (2021), M. Vowels, N. Camgoz, and Bowden (2022), J. Peters,

Janzing, and Scholkopf (2017), and Koller and Friedman (2009).

The Link with Structural Equation Modeling

We follow a similar formalism to J. Peters, Janzing, and Scholkopf (2017) and E. Strobl (2018).

These definitions are quite dense, and we therefore provide a figure illustrating them in Fig. 6.1.
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Figure 6.1: Notational conventions.
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Note. This figure aims to visually communicate some of the notational conventions defined in the text.

Many psychologists may already be familiar with Structural Equation Models (SEMs), which

represent a popular subclass of Structural Causal Models (SCMs), whereby the SEMs are

usually constrained to encode linear dependencies. SCMs enable an expression-based (rather

than graphical) representation of structure. For example, the chain structure represented as the

graph Xi → Xj → Xk tells us that Xi causes Xk via a mediator Xj . The variables Xi,j,k are

graphically represented as vertices or nodes which are corrected via directed edges or paths

which represent the flow of cause-effect. The chain structure can be specified as a system of

equations in an SEM or SCM:

Xi := fi(Ui),

Xj := fj(Xi, Uj),

Xk := fk(Xj , UK).

(6.1)

In the case of SEM, the functions f are linear. Furthermore, the use of the assignment operator

‘:=’ makes explicit the asymmetric nature of these equations. In other words, they are not to be

rearranged to solve for their inputs. Also of note are the U{i,j,k} terms, which represent unob-

served exogenous noise variables which are usually omitted from the graphical representation.

Including them would involve additional causes for each of the X nodes e.g., Ui → Xi.
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Graphs

Working with the graphical portrayals of structural relationships provides an intuitive and

immediately visually comprehensible representation. As such, we devote some time to defining

the relevant notation and terminology. A directed graph G represents a joint distribution P
as a factorization of d variables X = {X1, ..., Xd} using d corresponding nodes/vertices and

connecting, directed edges. If two variables or nodes Xi and Xj are directly connected by an

edge we call them adjacent (think of them as being ‘next to each other’ in the graph), and, can

also denote this in terms of the corresponding graph X as Xi → Xj or Xi ← Xj . If all edges

are directed, and there are no cycles (see the right hand graph in Fig. 6.1 for an example of how

a cycle might be induced), we have the class of Directed Acyclic Graphs (DAGs).

We can define a parent variable paj as one which has a child which is connected by a directed

edge e.g. Xi → Xj . Further upstream parents are ancestors of downstream descendants if there

exists a directed path constituting ik → jk+1 for all k in a sequence of vertices. An immorality

or v-structure describes when two non-adjacent vertices are parents of a common child. A

collider is a vertex where incoming directed arrows converge.

DAGs are assumed to fulfil the Markov property, such that the implied joint distribution factor-

izes according to the following recursive decomposition, characteristic of Bayesian networks

(Pearl, 2009):

P (X) =

d∏

i

P (Xi|pai). (6.2)

Eq. 6.2 tells us that the joint probability of the system can be calculated as the product

of the probabilities of each of the d variables, conditional on its parents. Taking the log

of this expression makes the quantity computatable as a sum, instead of a product. By

way of example, the likelihood of the graph on the left hand side of Fig. 6.1 can be com-

puted as: P (A,B,C) = P (A)P (B)P (C|A,B), and the log-likelihood can be computed as:

logP (A,B,C) = logP (A) + logP (B) + logP (C|A,B).
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d-Separation Rules

The decomposition relates to the rules of d-separation and the implied conditional independen-

cies implied by the graph. Two vertices Xi and Xk are d-separated, by the set of vertices S if

Xj ∈ S in any of the following structural scenarios (J. Peters, Janzing, and Scholkopf, 2017):

Xi → Xj → Xk (chain)

Xi ← Xj ← Xk (chain)

Xi ← Xj → Xk (fork)

(6.3)

That is to say that there exists a ‘flow’ of statistical dependence between Xi and Xk i.e.,

Xi ⊥̸⊥ Xk for all three graphs above, but this flow is ‘blocked’ if we condition on the middle node

Xj , in which case the two outer variables become statistically independent i.e., Xi |= Xk|Xj .

They are also d-separated if neither Xj nor any of the descendants of Xj are in set S in the

following structural scenario:

Xi → Xj ← Xk (collider) (6.4)

This means that if we condition on Xj , there is an induced statistical dependence between Xi

and Xk which otherwise would not exist. Essentially, the ‘flow’ of statistical dependence is

already ‘blocked’ by the collider structure, and conditioning on the collider itself unblocks it. As

we will see, these rules have important implications for undertaking regression, which includes

conditioning on a set of variables.

To transform these relationships from graphical/mathematical relationships to causal relations,

the Causal Markov Condition is imposed, which simply assumes that the arrows represent

causal dependencies and that there are no unobserved or unmodelled confounders (J. Peters,

Janzing, and Scholkopf, 2017, p.105-6). It is then common to use the DAG framework as

a means to represent domain knowledge relating to the underlying Data Generating Process
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(DGP). The ultimate benefit of the graphical and structural model frameworks is that they, at

least in principle and under some strong assumptions, enable us to use observational data to

answer scientific questions such as ‘how?’, ‘why?’, and ‘what if?’ (Pearl and Mackenzie, 2018).

If a domain expert has a theory about the structure underlying a given phenomenon, they may

represent this theory graphically using a DAG.

In the presence of statistically dependent unobserved variables, the graph is said to be semi-

Markovian, because some of the implied graphical conditional independencies may not hold in

practice as a result of the additional dependencies induced by the unobserved variables. These

unobserved variables are usually denoted with U , as in Eq. 6.1, but if the Markov condition

holds they are usually omitted from the graph for convenience (their presence does not affect the

entailing machinery of the graph). However, when the graph is semi-Markovian, it is actually

more convenient to indicate these relationships graphically than in a system of equations, by

including the dependence between U vertices graphically. For example, a curved, dashed,

bidirectional link between the observed variables can be used to indicate the presence of an

unobserved confounder U .

6.3.2 Regression

As psychologists wishing to undertake an analysis, we may be confronted with a dataset of N

samples from random variables Y , an outcome of interest, and X, a set of predictors. In terms

of notation, we use bold to denote that we have multiple predictors, lower-case to denote a

realisation yi of upper-case random-variable Y. This notation is compatible with the notation

used above for graphs, such that xij is a specific datapoint i of variable Xj , which in turn may

constitute a variable in a graph.

In the regression setting, we might be concerned with estimating the conditional expectation

of Y using the set of variables X with regression model having parameters θ. Specifically, we

wish to estimate E[Y |X], i.e., the expected value of Y given a particular set of values for the set

of predictor variables. It is important to highlight the conditioning statement in this expectation

Y |X (i.e., Y conditioned on X). If Y were binary, the expectation would be equivalent to

P (Y |X = x). This has important implications for d-separation as we described in the previous
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section because conditioning on variables can induce independence or dependence (depending

on the structure).

We can use a regression model (e.g., a random forest) mθ to approximate E[Y |X = x] ≈ mθ(x)

with an empirical sample or subset of our dataset D. Of course, with parametric assumptions

we can fit a linear function mθ via Ordinary Least Squares. However, we assume readers are

already familiar with the construction of such as model (following the usual Y = β0 + β1X1 +

...+ βKXK + ϵ form where K is the number of variables in the set X and ϵ is exogenous noise,

or model error). It is, however, useful to review some theory behind much more flexible models,

because it is in light of their flexibility that the results in the experiment section may seem

unintuitive. We therefore provide a brief review of both the random forest, and the MultiLayer

Perceptron (MLP), below.

Random Forests

Random forests (Breiman, 2001a) are a type of adaptive decision tree. Decision trees partition

the input space recursively according a set of thresholds. They determine a set of variables and

thresholds with which to ‘split’ up the input and to logically derive a prediction of the outcome.

The model can be trained to identify the best variable and thresholds to split on according to

a variation of the squared error (K. P. Murphy, 2012, pp.548)
∑N

i (yi − ȳ)2 where here, ȳ

represents the average of the outcome variable for the associated set of data.

The popular extension of the decision tree, namely the random forest, reduces the variance of

estimates from a decision tree by averaging together the predictions from many similar trees.

By training J different trees using different subsamples of our dataset (subsamples of both

datapoints and variables), we can derive a powerful algorithm for prediction. As such, the

random forest ‘carves’ up the input space according to these splits, thereby deriving a highly

non-linear mapping from the predictors to the outcome.
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MultiLayer Perceptrons (MLPs)

The MLP (Haykin, 1999) is a type of neural network, comprising multiple linear layers and

non-linear activations. Each layer serves not only as a non-linear transformation of the input,

but also as a means to change (expand or shrink) the dimensionality of the set of predictors. In

other words, if we start with e.g. five predictors, we can take 20 different functions (where these

functions are learned by the algorithm) of each of these predictors to achieve a 100-dimensional

expansion of these predictors. We take a set of predictors and recursively process them according

to a set of these non-linear layers, until they can be mapped to the desired outcome. By stacking

any number of these layers (we use two layers in the experiments), one after the other, and by

having the inner layers operating at a much higher dimensionality than the dimensionality of

the set of predictors we started with (we use a dimensionality of 100 in the experiments). MLPs

thus facilitate the learning of highly complex, non-linear functions, and have been shown to be

‘universal function approximators’ (Hornik, Stinchcombe, and White, 1989), which, loosely,

means that they can approximate any function.

The MLP is generally trained according to gradient descent, where the parameters are updated

according to their impact on a specified loss function (e.g. mean squared error). Using relatively

elementary calculus (chain rule) one can compute the extent to which each weight or bias

parameter and update them according to a learning rate. The principal consideration that arises

is that these algorithms may not converge to the global optimum, and may even ‘get stuck’

at arbitrary local optima. Interested readers are directed to the accessible overview of deep

learning by I. Goodfellow, Bengio, and Courville (2016) and additional information in the

Supplementary material for this Chapter.

6.3.3 Model Explainability

Random Forest Importances for Model Explainability

One of the most common ways to derive feature importances for random forests is via the use

of impurity measures. In this work, we consider continuous outcome variables (i.e., we use
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regressors, rather than classifiers), and in this case the measure of impurity is usually the mean

squared error (others are possible, e.g., the mean absolute error). For each of the decision trees

in the random forest, the importances can be calculated based on the decrease in impurity (i.e.,

the improvement in performance) for each node, weighted by the probability of using that node

in a particular tree, and these improvements can be averaged across data samples (Breiman,

2001a; C. Strobl et al., 2007).

In the empirical literature, it is common to use these importances as proxies for variable

importance outside the model. For example Joel, Eastwick, Allison, et al. (2020) used machine

learning importance measures to infer the presence of associations between variables pertinent

to relationship quality in the real-world. The logic seems to be that if a random forest finds a

variable useful in making a prediction, then there exists some (potentially non-linear) association

in the real world. Indeed, given the bootstrapped nature of random forests, and the way that

they can carve up the input space to define highly non-linear mappings between predictors and

outcome, we can understand this thought process. Unfortunately, in spite of their flexibility, they

are nonetheless constrained according to the structure in the data, and variables which appear

unimportant, may actually be important and highly statistically associated.

Shapley Values for Model Explainability

The Shapley value explainability methods derive from the seminal game theoretic work of

Lloyd Shapley (Shapley, 1953). The methods conceive of a regression task as a collaborative

game, where each of the predictor variables represents a player. The goal of the game is to

maximise the regression performance (or, equivalently, to minimize the regression error), and

the explanation quantifies the degree to which each player (i.e., predictor) contributes to this

goal. Of course, the role that each predictor plays is difficult to directly ascertain, because it is

‘collaborating’ with other predictors at the same time (in the form of multiplicative interactions

X1 ·X2, for example) in specific and complex ways which are largely determined by the ML

algorithm itself. The Shapley value methods therefore disentangle these complex contributions

by evaluating the impact that each possible combination of predictors has on the model output.

The result is a per-predictor, per-datapoint estimation of the impact on model performance, thus
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Figure 6.2: Example d-separation implications.
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Note. In the first graph (a chain structure), all the variables are statistically dependent. However, if we
are interested in predicting C from A and B, we ‘block’ the path from A to C when we condition on
B, inducing independence. This would result in A being unimportant for the regression E[C|A,B]. In
the middle graph, A is already independent of C because of the collider structure at B. The regression
E[C|A] does nothing to affect this independence structure. However, by conditioning on D, we are
conditioning on a descendent of a collider, which renders A important for the regression E[C|A,D].
Finally, whilst the regression E[C|A,B] renders A independent of C via B (which is useful for ‘blocking
the non-causal backdoor path’), the conditions do not prevent B or A from being important, as predictors,
to the regressor.

providing a fine-grained summary of model behaviour. Interested readers are directed to the

recent papers by Lundberg and colleagues (Lundberg and S.-I. Lee, 2017; Lundberg, G.G. Erion,

and S.-I. Lee, 2017; Lundberg, G. Erion, et al., 2020). It is this level of fine-grained information

which gives Shapley values a distinct advantage over random forest importances. Furthermore,

they have also been shown to be more reliable, in general, than random forest importances

(Lundberg, G. Erion, et al., 2020), and can be derived for almost arbitrary model classes. Indeed,

in the experiment section we will use the Shapley value techniques to derive estimates of variable

importances from neural networks. Further details on explainability methods and SHAP in

particular can be found in the supplementary material for this chapter.

6.3.4 Regression and Structure - Possible Explanations

In order to glean an understanding for why the results reported in later sections are seemingly

so structurally dependent requires an understanding of the conditional independencies implied

by the underlying graph. Before we present the results, we therefore devote some time to

discuss a couple of simple examples and, in addition, Fig. 6.2 provides some other instances for
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consideration. First, let us look more closely at the important implications of the d-separation

rules.

Consider the graphs given by:

X1
β1−→ Y

β2←− X2

X1
β1−→ X2

β2−→ Y
(6.5)

As with our later experiments, let us assume that the dependencies are linear, to keep things

simple. We have indicated with the path coefficients β the true (population level) strengths of

the dependencies between variables in these graphs. Let us also assume that the true values of

these path coefficients are all equal to one, i.e., β1 = β2 = 1 for both graphs.

In the context of regression, we may wish to estimate E[Y |X]. This expectation is, itself,

dependent on a model of the conditional distribution of Y |X. For both graphs above, our

regression implies a conditional density Y |X1, X2, and this has different implications for each

of the two graphs above, and the implications can be understood via the d-separation rules.

For the first graph in Eq. 6.5, the regression entailing the conditional density for Y |X1, X2 does

nothing to interfere with the conditional independencies encoded by the original graph. Namely,

X1 |= X2 regardless of whether we are conditioning on the X variables as part of the regression

or not. Indeed, if we were to undertake a linear regression, or fit the data using a random forest,

we would expect the associated coefficients/importances to be approximately equal, reflecting

the fact that the true dependencies between these variables (β1 = β2 = 1) are also equal. In

this case, the coefficients from a linear regression will be unbiased estimates of the true path

coefficients, i.e., β̂1 ≈ β1, and β̂2 ≈ β2.

On the other hand, in the second graph, the conditioning in our regression results in X1 |= Y |X2.

In words, even though there is a clear dependency structure between X1 and Y , by conditioning

on X2 this structure is ‘broken’, and X1 and Y are rendered independent. Imagine the true

dependencies are linear and that β1 = β2 = 1. This means the effect of both X1 and X2 on Y

is also one (according to the multiplication of the path coefficients). Instead, the coefficients of
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a linear regression Y |X1, X2 will estimate β̂1 ≈ 0 ̸≈ (β1β2), which is misleading (although

a natural consequence of the underlying structure), and conversely will correctly estimate

β̂2 ≈ 1 ≈ β2.

6.4 Methodology

Having reviewed some relevant background material, we take a moment to discuss the motivation

for the following experiments.2 On the face of it, given the nature of random forests and neural

networks, there is little to concern us that a random forest would be necessarily prevented

from leveraging any or all useful correlations between the predictors X and the outcome Y .

Indeed, it seems like the opposite might be more likely: The fact that a random forest can

arbitrarily partition the input space according to multiple bootstrapped decision trees, where

the details of the partitioning are driven by a very general cost function (such as the squared

error) perhaps encourages us to think that the algorithm can do whatever it wants to leverage

any and all statistical associations in the data. Similarly, the fact that the neural network is a

universal function approximator, and can expand the dimensionality of the predictors arbitrarily

might lead us to believe that it has relatively free-reign or equal opportunity to use any and all

useful variables. In turn, then, we might also expect explainability techniques (such as random

forest importance measures, or Shapley values) to yield predictor importance levels which are

relatively agnostic to the structure of the Data Generating Process (DGP) which led to the

observations with which the models were trained.

However, and as we will see in the results section, in spite of the flexibility of random forests

and neural networks, the methods are nonetheless sensitive to the interaction between the

conditioning statements in the associated regression being undertaken, and the underlying

structure of the DGP. As a result, the use of variable importance measures (including Shapley

value techniques) does not help us to reliably identify predictively useful variables.

2Note that full code for the experiments is provided at https://github.com/matthewvowels1/ML_
structural_interactions.

https://github.com/matthewvowels1/ML_structural_interactions
https://github.com/matthewvowels1/ML_structural_interactions
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Figure 6.3: The causal structures of the two datasets used in the experiments.
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Note. On the left, the graph is trivial - all predictors are independent of each other and cause the outcome
Y . The path coefficients are all one. In the centre, the effect of X on Y is mediated by M , and Q
represents a descendent of X . In a slight abuse on notation, in both graphs variables X and Y are
highlighted in bold. On the right, the structure of the second dataset is more complex. This to emphasize
that in practice, we might be particularly interested in the influence a particular predictor has on the
outcome, when that predictor is just one in a system of many. In the left graph, the influence of X on
Y is the same as all the others (and equal to one), whereas in the right graph, the influence of X on Y
is equal to −2×−1 = 2 according to the multiplication of the path coefficients for the mediated path
X → D → Y .

6.4.1 Data

We create three datasets, one with four variables (three predictors and one outcome variable),

and two with nine variables (eight predictors and one outcome variable). The structures of

these datasets are shown in Fig. 6.3. All datasets are generated according to linear functional

relationships, and the corresponding path coefficients are denoted in the Figure. In a slight abuse

of notation, variables X and Y are highlighted in bold in these graphs, because we assume

them to be variables of interest for the sake of the experiments. For instance, X might refer to

some kind of ‘risk’ variable, which we expect, as domain experts, to affect outcome Y . We use

a sample size N = 10, 000 to avoid estimation variability due to sample size.

It can be seen that the first dataset (Fig. 6.3, left) has a trivial, exogenous error structure, with

independent predictors. The second dataset has a mediation structure (Fig. 6.3, centre) and has

a system of equations (SCM) given by:
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X ∼ N (0, 1), UM ∼ N (0, 1),

M = X + UM , UQ ∼ N (0, 1),

Q = X + UQ, UY ∼ N (0, 1),

Y = M + UY ,.

(6.6)

Finally, the the third dataset (Fig. 6.3, right) is based on one from Peters et al. (J. Peters, Janzing,

and Scholkopf, 2017) and Vowels (M. J. Vowels, 2021), and is more complex, containing direct

effects, e.g., D → Y ; mediated effects, e.g., X → D → Y ; ‘backdoor’ paths (Pearl, 2009), e.g.,

X ← A → K → Y , where X is linked to Y via an indirect, non-causal path; and colliders,

e.g., C → X ← A.

The system of equations (the SCM) representing this second dataset is:

C ∼ N (0, 1), A ∼ N (0, 0.8),

UK ∼ N (0, 0.1), K = A+ UK ,

UX ∼ N (0, 0.2), X = C − 2A+ UX ,

UF ∼ N (0, 0.8), F = 3X + UF ,

UD ∼ N (0, 0.5), D = −2X + UD,

UG ∼ N (0, 0.5), G = D + UG,

UY ∼ N (0, 0.2), Y = 2K −D + UY ,

UH ∼ N (0, 0.1), H = 0.5Y + UH .

(6.7)

Here, ∼ N (µ, σ) denotes that observations for these variables are samples from a normal

distribution with mean µ and standard deviation σ. Despite the increased complexity of this

graph, in our opinion it is not so complex to be implausibly representative of real-world causal

structures. The dataset is split 60/40 into train and test proportions. Given that previous work

has highlighted the sensitivity of random forest importance measures to the variance of the
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data, we standardized all data before use (C. Strobl et al., 2007). This also makes comparison

between different explainability measures more comparable, particularly as the absolute values

of the bivariate correlations are, by their definition, constrained to fall between 0 and 1. The

bivariate correlations are shown in Table 6.1. It can be seen that all variables are highly (and

statistically significantly) correlated with the outcome. This is intentional and provides a best

case scenario for the explainability techniques - they are all important variables, and we wish to

understand whether machine learning methods can help us identify them.

Table 6.1: Bivariate Pearson correlations and p-values, R(p), for the right-hand DAG in Figure 6.3.

r(p) X D A K C F G H

Y .92(.00) -.94(.00) -.60(.00) -.59(.00) .76(.00) .91(.00) -.93(.00) 1.00(.00)

6.4.2 Models / Algorithms

We provide results for bivariate correlations, Linear Regression (LR), Random Forest (RF),

and MultiLayer Perceptron (NN - for Neural Network). It is generally known that the default

parameters of random forests perform well across a range of applications, without the need

for hyperparameter tuning (Probst, M. Wright, and Boulesteix, 2018), and as such, we use

the default settings in the scikit-learn package (Pedregosa et al., 2011). Similarly, rather than

undertaking an exhaustive hyperparameter search for the MLP, we stay close to the default

parameters and verify that the test performance is comparable to that of the random forest. The

dimensionality of the layers is set to be 100, the number of layers set to 2 (with one additional

outcome layer), the activation is chosen to be ReLU, we use the Adam (Kingma and Ba, 2017)

optimizer with an adaptive learning rate starting at 1× 10−3, and trained for 200 iterations. All

implementations were written in Python 3.7.

6.4.3 Explainability Techniques

We provide the bivariate correlations between each of the predictors and the outcome, denoted

‘bi-corrs’ in the results. For the linear regression we simply provide the coefficient values as

measures of predictor importances, these are denoted ‘LR-coefs’ in the results. Indeed, linear

regression is straightforward to interpret in this regard. For the random forest we provide both
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importances derived according to the built-in node impurity method in scikit-learn - denoted ‘RF-

imps’ in the results - as well as Shapley values using the SHAP (SHapley Additive exPlanations)

‘Tree Explainer’ package (Lundberg, G. Erion, et al., 2020) - denoted ‘RF-Shap’ in the results.

For the MLP we use the SHAP ‘Kernel Explainer’ package, denoted ‘NN-Shap’ in the results.

For both the Tree Explainer and the Kernel Explainer we use a train and test size of 1000

datapoints.

6.4.4 Trials and Results Presentation

In order to demonstrate the interaction between the structure of the second (structurally mode

complex) dataset and the models, we undertake a number of analyses, each time removing

different variables to understand the concomitant impact on the explanations. In each case, we

provide a bar plot showing the relative importance of each variable for each method. In order

to make the linear regression coefficients, the Shapley values, and random forest importances

more visually comparable, we normalize them to have a range of zero to one (the bivariate

correlations are left untouched). The Shapley results are derived to be the absolute values of the

per-datapoint impact on model output, averaged over the datapoints. Finally, we provide mean

squared errors for each of the algorithms / models.

6.5 Results

In practice, we are unlikely to have access to the true graph structures as provided in Fig. 6.3.

We may also be interested in the relationship (associational/predictive or causal) between two

variables in particular, and we assume these to be X and Y , which are highlighted in bold in the

graphs. In order to evaluate the sensitivity of explainability measures to the underlying structure,

we can use a dataset for which we know a priori that there is a strong association between X

and Y . For the left graph, the causal effect is equal to that of all other variables (one), for the

right graph the effect is comparable to the other variables, and equal to −2×−1 = 2 according

to the multiplication of the coefficients on the mediated path X → D → Y . We therefore also

know that these variables should ideally be denoted to be of importance by the explainability
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techniques. Indeed, if the explainability techniques cannot highlight the presence of a strong

association (such as that between X and Y ), we might easily discount otherwise key variables

as being unrelated/unimportant.

Let us begin by checking that ML algorithms and explainability techniques are not fooled by

trivial/idealistic structures. In Fig. 6.4 we show the results for the simple structure depicted on

the left of Fig. 6.3. We know from the construction of this dataset that all variables have equal

importance, because the causal effect of each variable on the outcome is equal to one. An evalu-

ation of the importances in Fig. 6.4 proves to be reassuring because, indeed, regardless of which

method we choose, the importances are rated as equal. even though there are differences in the

absolute levels of importance between methods, one can nonetheless see that these importances

are approximately equal for all variables. To this extent, we have confirmed our expectations

that when the structure is trivial (all variables independently causing the outcome), machine

learning algorithms can be used to highlight variables of particular importance. There is nothing

in the conditional independency structure skewing our assessment of variable importance.

Figure 6.4: Results for trivial DAG structure.

Note. Results for linear regression coefficients ‘LR-coefs’, random forest importances ‘RF-imps’, random
forest Tree Explainer Shapley values ‘RF-Shap’, neural network Kernel Explainer Shapley values ‘NN-
Shap’, and bivariate correlations ‘bi-corrs’ for the left-hand graph of Fig. 6.3. It can be seen that the
importances derived from each method are equal across variables. Figure best viewed electronically and
in colour.

The results for the second dataset with the mediation structure are shown in Fig. 6.5. For

convenience, these plots feature the DAG in the plot whitespace, with underlined variables
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highlight variables included as predictors in the models. On the left, we include X , M and Q as

predictors of outcome Y . The results show that all explainability techniques place importance

on the mediator M . In contrast, X is deemed to be unimportant with negligible ‘LR-coefs’,

‘NN-Shap’, and ‘RF-imps’. Interestingly, some importance was assigned to X by the ‘RF-Shap’.

Results for Q were very similar to those for X . On the right, we exclude M from the set

of predictors, thereby d-connecting X and Y . The consequence is that all the importance is

assigned to X , thereby confirming that the inclusion of the mediator ‘blocks’ the path from X

to Y . This simple example with only three predictors already illsutrates the sensitivity of the the

importances to the underlying structure in the data.

Figure 6.5: Results for mediation DAG structure.
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Note. Results for linear regression coefficients ‘LR-coefs’, random forest importances ‘RF-imps’, random
forest Tree Explainer Shapley values ‘RF-Shap’, neural network Kernel Explainer Shapley values ‘NN-
Shap’, and bivariate correlations ‘bi-corrs’ for the central graph of Fig. 6.3. It can be seen that the
importances depend on the inclusion of M . Figure best viewed electronically and in colour.

The results for the third dataset with the more complex structure are shown in Fig. 6.6(i-iv), and

these deserve a longer discussion. Once again, for convenience, these plots feature the DAG in

the plot whitespace, with underlined variables highlight variables included as predictors in the

models. Starting with plot (i), which includes all predictor variables, we see dramatic changes

in the relative levels of importance between variables and across methods. For instance, the

linear regression coefficients ‘LR-coefs’ on variables K and H are high, followed by D, and

then all other coefficients are approximately zero. This particular result is easy to explain given

knowledge of the true graph - the only paths which have not been blocked by other control

variables in the linear model are H ← Y , D → Y , and K → Y . At least the linear regression

is consistent in this regard, but remember that without this knowledge we would not be able to
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use the coefficients to infer which variables are important.

Perhaps the next most reasonable set of importances are given by the neural network Shapley

values ‘NN-Shap’. Here, the top three most important variables are, as with the linear regression,

K, D, and H . However, K’s importance is doubtful. Both the random forest’s importances

‘RF-imps’ and Shapley values ‘RF-Shap’ are very misleading - the only variable of note is H ,

with all others having very low importance.

From the first plot alone, we see very strong interaction between the structure and the machine

learning explainability results. If we were interested in understanding whether variable X is

relevant to Y (which we know it certainly is, because unlike in practice, we have ground truth

and simulated the data ourselves) we would have discounted it as unimportant. We could stop

there - we have demonstrated that machine learning algorithms, despite their flexibility, are not

able to overcoming the constraints deriving from the conditional independencies implied by

the underlying graph. However, it is of interest to understand how these importances change,

as variables are removed. In plot (ii) we remove H from the set of predictor variables. Linear

regression again provides predictable results - the unblocked paths to the outcome are significant

predictors, namely K → Y and D → Y . It would still not be possible to reliably interpret

these results without knowledge of the true graph. However, they are, at least, consistent with

the graph, to the extent that we know there exist variables which ‘block’ the flow of statistical

dependence. Again, the neural network provides results which are reasonably consistent with

the linear regression, with K and D being highlighted as the most important. Unfortunately,

the random forest importances and Shapley values are completely unpredictable: This time,

variables C and D are most important.

In plot (iii) we have removed variables H and D. Variable X is now (finally) deemed to be an

important variable by the linear regression and the NN. However, this is despite the fact that

the descendent of the mediator G is still in the model. This may bias the estimate somewhat,

but it is not enough to block the path completely between X and Y . As such, the fact that

the linear regression coefficients and NN Shapley values indicate importance for X is still

reasonable. They also indicate that G is important, which is also reasonable given the open path

G← D → Y without D included as a predictor. Once again, the random forest Shapley value



6.5. Results 209

results are somewhat unexplainable, with C being denoted to be the most important variable,

followed by G. The random forest importances only indicate that G is important.

The final plot (iv) removes H , D, and G. Now we expect unbiased estimates of the causal

effect of X on Y by the linear regression, and this is indicated also by the high values for the

coefficients on X . As before, K is also deemed important, as expected. The NN yields similar

results, whereas, once again, the random forest importances and Shapley values are somewhat

unpredictable.

Figure 6.6: Results for non-trivial DAG structure.

C A K

D Y

F G H

X

C A K

D Y

F G H

X

Im
po
rta
nc
e

Im
po
rta
nc
e

(i) (ii)

(iii) (iv)
C A K

D Y

F G H

X

C A K

D Y

F G H

X

Note. Result plots (i-iv) for linear regression coefficients ‘LR-coefs’, random forest importances ‘RF-
imps’, random forest Tree Explainer Shapley values ‘RF-Shap’, neural network Kernel Explainer Shapley
values ‘NN-Shap’, and bivariate correlations ‘bi-corrs’ for the right-hand DAG in Fig. 6.3. The DAGs
featured in the whitespace of each plot denote which variables are included as predictors according
to whether the variable is underlined. It can be seen that the methods different widely in the relative
importances of each variable depending on on the set of predictors as well as the algorithm used. Figure
best viewed electronically and in colour.
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6.6 Discussion

Linear regression and neural networks were severely influenced by the underlying structure,

but the associated importances (linear regression coefficients and Shapley values, respectively)

were at least consistent with our expectations given knowledge of the true graph. In this sense,

the explainability techniques worked as expected. In contrast, random forests were also severely

affected by the underlying structure but in ways which were quite unpredictable even given

knowledge of this structure. Based on these experiments, we could recommend neural networks

over random forests for identifying important predictors. However, this recommendation is

somewhat moot, because even though neural networks were affected by the underlying structure

in ways which were predictable, they nonetheless would not be useful in guiding research

without prior knowledge of said structure. Indeed, in practice none of these methods would yield

interpretable results without knowledge of the underlying graph, and so are not recommended

as part of an initial exploration for the development of a theory.

The results confirmed that variables which are deemed to be unimportant or unpredictive of

the outcome by the explainability techniques, may actually be highly predictive to the extent

that the exclusion of a single variable can completely shift the spread of results. Estimations

of predictive importance that are meaningless to the extent that variables which are deemed to

be unimportant may yet still be important are not helpful to researchers. One might argue that

we can use theory to strongly inform which variables are included, and whether some may be

mediators. However, one of the original motivations for such an approach is to explore the data

and to help discover structure in the data (Yarkoni and Westfall, 2017) when it is not already

known. In recent work, researchers used large numbers of variables with these techniques -

Joel, Eastwick, and E.J. Finkel (2017) explored datasets with upwards of 100 variables - and

we suspect it would be most unlikely for a researcher to be able to confidently account for the

underlying structure of such a dataset, at least in the domain of psychology.

By consequence, rather than recommending that psychologists utilize predictive approaches to

‘help gain a deeper understanding of the general structure of one’s data’ (Yarkoni and Westfall,

2017) (which can, as we have shown, greatly mislead us as to the relevance of certain variables),
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we provide two recommendations for researchers who are, perhaps, at the early, exploratory

stages of a research project, and who are seeking a means to identify important variables.

Namely, we recommend mutual information as a means to identify statistical dependence

between variables, without the need for assumptions about the functional form, and without

needing to constrain the analysis to parametric distributions. M.I. is a measure of how much

information one variable contains about another (Cover and Thomas, 2006; Kraskov, Stogbauer,

and Grassberger, 2004; G. V. Steeg and Galstyan, 2012; G. Steeg and Galstyan, 2013; Gao,

G. Steeg, and Galstyan, 2015; Kinney and Atwal, 2014; M. J. Vowels, 2021).

Secondly, we recommend researchers engage with techniques from the domains of causal

discovery, in order to provide a means to highlight variables which have statistical relevance and

to contextualise such variables within an initial estimate of the causal structure. For overviews

of causal discovery methods, interested readers are directed to M. Vowels, N. Camgoz, and

Bowden (2022), Heinze-Deml, Maathuis, and Meinshausen (2018), C. Glymour, K. Zhang, and

Spirtes (2019), and Spirtes and K. Zhang (2016). As with any data-driven approach, particularly

those which implicate causality, we, like Dawid and his reference to Bourdieu, warn researchers

to beware of ”sliding from the model of reality to the reality of the model” (Dawid, 2008;

Bourdieu, 1977). Descriptions of both mutual information and causal discovery can be found in

the supplementary material to this chapter.

We would also like to emphasize that rather than practitioners being generally discouraged from

using machine learning techniques as a consequence of this work, we instead highlight the

potential for machine learning techniques to mitigate the need for unreasonable assumptions

about the functional form. Indeed, in some regards it is reassuring that machine learning

algorithms, in spite of their ‘black-box’ reputation, are nonetheless constrained according to

the rules of regression and the conditional independency structure of the data. Furthermore, if

we are able to integrate machine learning algorithms into analyses which adequately account

for the underlying structure, we can benefit from the power of the machine learning algorithms

without the associated problems demonstrated in this work (M. J. van der Laan and Starmans,

2014; Kennedy, 2020; Yoon, J. Jordan, and van der Schaar, 2018; M. J. Vowels, N. Camgoz,

and Bowden, 2021; Wu and Fukumizu, 2022; W. Zhang, L. Liu, and J. Li, 2021).
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6.7 Conclusion

The use of machine learning with explainability was motivated by a need to explore data,

particularly when our existing theories are still in the development stage, and/or when we wish

to understand their predictive validity (M. J. Vowels, 2021; Yarkoni and Westfall, 2017). The idea

is essentially that the identification of predictive variables can help guide our theory development

process, and this idea is already guiding current research in psychology (Joel, Eastwick, and

E.J. Finkel, 2017; L. M. Vowels, M. J. Vowels, and K.P. Mark, 2021a). Unfortunately, in this

work we have shown that flexible, powerful machine learning algorithms are not agnostic to

the underlying conditional independency structure of the DGP which yielded the observations,

and that concomitant estimations of variable importance are arbitrarily skewed by the choice of

algorithm as well as the underlying (unknown) causal structure in the data.

We emphasise two points: Firstly, results depended heavily on the underlying structure in

the DGP, and on which variables are included as predictors in the model. It is important

to note that, in the absence of any dependency structure, i.e., there exist direct causal paths

between all variables and the outcome, as in the graph on the left hand side of Figure 6.3,

importance measures can be used as a proxy for association. Assuming the algorithm is behaving

without bias towards any particular variable, the associated importances should (assuming stable

performance) be proportional to the amount of shared information between each predictor and

the outcome. In contrast, in datasets containing variables between which there exist important

structural relationships - that is, both correlational/predictive and causal - machine learning

techniques can ‘miss’ key predictive variables, at least insofar as the explanations deem them

to be unimportant. As we explained, this is consequence of the interaction between otherwise

flexible machine learning algorithms, the task of regression conditional on some set of covariates,

and the underlying structure in the data.

Secondly, a distinction must be clearly made between what explainability techniques can tell us

about what the algorithm is doing (these explanations thereby remaining local to the model), and

what they can (not) tell us about the presence or absence of correlations or associations in the

real-world. As we have seen from the empirical evaluations, the nature and convergence of the
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algorithm itself may be somewhat unpredictable, even if the explainability techniques function

as a reliable means to identify variables which are important for the algorithm in predicting the

outcome.

In summary, we would question the utility of measures of predictive importance and explain-

ability techniques to psychologists wishing to explore the data to guide their research. Indeed,

how useful is it for the development of a theory to know that variable X is useful for predicting

variable Y in arbitrary algorithm f , if the estimation of usefulness is specifically tied to the

algorithm and to choice of other predictors? The bottom line is that one cannot ‘outrun causality

in machine learning’, and that despite of the powerful function approximation capabilities of

machine learning algorithms, they cannot be used to reliably explore the data for theoretically

relevant predictive and/or causal variables.

6.8 Supplementary Material

6.8.1 MultiLayer Perceptrons

The Multilayer Perceptron (MLP) is a generalization of the classic perceptron, developed by

Rosenblatt (1958), and inspired by a simple model for a neuron in the human brain. Top-level

diagrams for the perceptron and the MLP are shown in Figure 6.7. The perceptron can be

viewed as a form of generalised linear model, where a weighted sum of the inputs and a bias

offset is passed to a non-linear function (such as the sigmoid function). In fact, if the sigmoid

is used as the activation function, the calculation is equivalent to that for a prediction from a

logistic regression model parameterised by weights W and bias term b.

If this logistic regression model is stacked both ‘horizontally’ and ‘vertically’, we arrive at an

MLP. In other words, instead of performing just one prediction from a logistic regression model

we perform P1 of them, where P1 is the number of neurons in the first hidden layer of the

MLP, we form the first vector of neuron values H1. Then, in turn, for each of the values in the

vector of H1 we perform P2 logistic regression prediction calculations, we arrive at the vector

of neuron values H2. This process can be repeated L times, where L is the number of hidden
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layers in the MLP, until we arrive at the last hidden layer, where we perform, one final logistic

regression prediction. As such, the MLP is a set of recursive linear operations with a non-linear

activation function between each subsequent operation. The number of neurons at each layer

determines its width, which can vary across the layers, and the number of layers determines its

depth. The computational interconnectedness thereby resembles a network, and these models

are also forms of artificial neural network. Once the depth increases beyond, say, 30-40 layers,

they tend to be called deep neural networks.

When the MLP is initialized, the values for the parameters (the weights and biases) are usually

randomly sampled from a Gaussian with a mean of zero and a variance scaled according to

the dimensions of the MLP architecture (I. Goodfellow, Bengio, and Courville, 2016; Glorot

and Bengio, 2010). As such, the MLP begins by making nonsense predictions. In much the

same way as a logistic regression needs to be ‘fit’ to the data, the MLP also requires a fitting

or training process. The most common way to train these networks is via a form of gradient

descent. The process of gradient descent involves deriving (usually automatically via a symbolic

differentiation process) the derivatives of a target objective function or loss function which

characterizes the predictive performance of the network, with respect to the corresponding

parameters. The objective function can be, for example, the mean squared error in predictions

from the network, and the derivatives thereby characterize how much the performance of the

network changes with respect to a change in the parameters. The goal is then to find the

parameters which maximise the performance in terms of the objective function. In the case of

the mean squared error objective function, a network which performs well is a network which

minimizes the mean squared error of its predictions with respect to the ground truth.

To briefly explain the process of gradient descent, we consider how it might be undertaken

firstly in the case of the simple perceptron. Assuming the task of the network is regression, and

that we wish the minimize the squared error, our objective function for a single prediction from

the perceptron can be defined as L = (Ŷ − Y )2. Here, Ŷ is a prediction from the perceptron,

and Y is the ground truth for that particular prediction. In turn, assuming the identity function

as our activation (the process generalises to any differentiable activation function), the output

for the network can be expressed as Ŷ = WX + b. The symbolic differentiation process then
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Figure 6.7: Top-level diagrams for the perceptron and the multilayer perceptron.
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XK

X2

X1

…

Ŷ
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Note. In the diagrams for both the perceptron and the MLPm X is a single input sample from a
K-dimensional dataset, σ is a non-linear activation function (such as the sigmoid),Ŷ is a scalar outcome
prediction (e.g. for a regression task). In the perceptron model, b is a scalar bias term, and the weights W
are a K-dimensional vector of scalar valued weights. The diagram for the MLP is a generalisation of the

one for the perceptron. For each column or ‘layer’ of circles or ’neurons’ after the input layer, each
neuron represents a scalar value which is the outcome of a weighted linear combination with a bias
added and an activation function, equivalent to the computation for Ŷ in the perceptron. The MLP

therefore represents a set of stacked perceptrons. l indexes the hidden layer number, and pl indexes the
number of neurons in hidden layer l (maximum Pl).
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finds the partial derivatives of this objective function with respect to the parameters:

∂L

∂W
=

∂L

∂Ŷ

∂Ŷ

∂W
(6.8)

and

∂L

∂b
=

∂L

∂Ŷ

∂Ŷ

∂b
(6.9)

Thanks to the chain rule, we are thus able to recursively decompose the derivative of the

objective function with respect to the parameters one layer at a time. Each of the individual

terms represents straightforward calculus. For example:

∂L

∂Ŷ
= −2Y + 2Ŷ = 2(Ŷ − Y ) (6.10)

Once we have a symbolic representation for ∂L/∂θ where θ comprises the weights and bias

parameters, we can evaluate this derivative using the data and our predictions. The value of this

derivative provides us with a proxy for how far our parameters are from being able to make

perfect predictions. This is because, if the value of ∂L/∂θ∗ = 0, we assume we have found the

basin of lowest error (i.e., at this particular θ∗, our objective function is at a minimum). This

minimum is searched for following a simple iterative update rule:

θt+1 = θt − α

(
∂L

∂θt

)
(6.11)

In words, the next (and hopefully improved) values of the parameters, is equal to the previous

values of the parameters plus some amount α of the derivative of the loss function with respect

to the parameters, evaluated using the values in the dataset. There exist many hundreds of

variations of this process (e.g., ADAM Kingma and Ba, 2017, RMSProp Tieleman and Hinton,

2012), but they are all based on the principles of gradient descent.

The MLP can be generalised to yield multidimensional outputs, perform regression tasks, classi-

fication tasks, and hybrids between the two. The flexibility of the architectural design is partly
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why these models have seen such wide success over such a diverse range of tasks, including

computer vision and natural language processing (I. Goodfellow, Bengio, and Courville, 2016).

6.8.2 Explainability Methods

Whilst simple models, such as multiple linear regression models, have straightforward and

simple explanations, others, such as random forests (Breiman, 2001a) and neural networks (I.

Goodfellow, Bengio, and Courville, 2016) are much more complex and defy trivial explanations.

There exist a range of options for explaining such complex models, including (1) gain based

approaches, which include the traditional Gini and impurity based approaches in random forests,

(2) split count based approaches, which evaluate how many times a particular feature or variable

is used to split a decision process, and (3) permutation based approaches, which permute values

of a feature of variable and assess the corresponding impact on the model (Lundberg and S.-I.

Lee, 2017). Unfortunately, the first two methods do not yield consistent results, which means

that “a model can change such that it relies more on a given feature, yet the importance estimate

assigned to that feature decreases.” (Lundberg and S.-I. Lee, 2017). Furthermore, none of these

methods (including the permutation based methods which may otherwise be consistent) provide

individualized results.

In contrast to these other (inconsistent and/or non-individualized) methods, SHAP is a unified

framework for explanation which is both consistent and provides explanations for individual

predictions from the model. It derives from the seminal game theoretic work of Lloyd Shapley

(Shapley, 1953). The framework conceives of predictors as collaborating agents seeking to

maximize a common goal (i.e., the regressor performance). The approach involves system-

atically evaluating changes in model performance in response to including or restricting the

influence from different combinations of predictors. It is an additive method, which means that

the explanation model g it provides is a linear function of binary variables z′:

g(z′) = ϕ0 +
M∑

i=1

ϕiz
′
i, (Lundberg and S.-I. Lee, 2017) (6.12)

Here, z′ are binary indicators which represent where a variable was observed or unknown, and
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ϕ are the variables’ attribution values (i.e., the degree to which the model attributes weight to

the associated variable/feature). SHAP is designed such that the sum of the feature attributes ϕ

is equal to the value of the statistical model’s output (‘statistical model’ is what I call the model

f that we wish to explain). Lundberg and S.-I. Lee (2017) explain that in order that the method

can handle missing variables or features (and thereby attribute importance to features when

they are not included), they need to define a mapping hx which maps between the pattern of

missingness determined by z′ (where z′i = 0 when the associated feature is missing), and the

statistical model’s input space. This mapping can then be used to evaluate f(hx(z
′)), where

f is the statistical model, which enables us to calculate the consequence of including or not

including the associated feature.

Then, the authors define S as a subset of the features which are present (i.e., for these features,

z′ = 1), as well as fx(S) = f(hx(z
′) = E[f(x)|E[f(x)|xS ]. As such, E[f(x)|xS ] is the

expected value of the statistical model f(x), knowing/conditional on the subset of the inputs S.

For N as the set all input variables/features, and following the attribution process of Shapley’s

game theoretic work, the attribution for input variable i is defined by Lundberg and S.-I. Lee

(2017) as:

ϕi =
∑

S⊆N\{i}

|S|!(M − |S| − 1)!

M !
[fx(S ∪ {i})− fx(S)] (6.13)

Authors demonstrate that this approach is, at least theoretically, the only possible approach

which fulfils an important set of requirements for explanation, including consistency and

individualized explanations. Indeed, the SHAP TreeExplainer function from the SHAP software

implementation provides estimations of the per-datapoint, per-predictor impact on model output,

as well as the average predictor impacts for tree-based methods like random forests.

6.8.3 Mutual Information

To discuss mutual information, it is necessary to first define entropy (in terms of which mutual

information is usually expressed). Entropy describes the degree of surprise, uncertainty, or

information associated with a distribution and is computed as H(X) = −∑N
i=1 p(xi) log p(xi)
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where N is the number of datapoints in the sample distribution, xi is a single datapoint in

this distribution, and p(xi) is that datapoint’s corresponding probability. If the entropy is low,

it means the distribution is more certain and therefore also easier to predict. Taking a fair

coin as an example, p(x = heads) = p(x = tails) = 0.5. The entropy of this distribution is

H(X) = −(0.5 log2 0.5 + 0.5 log2 0.5) = 1. The units of entropy here are in bits. The fact

that our fair coin has 1 bit of information should therefore seem quite reasonable - there are two

equally possible outcomes and therefore one bit’s worth of information. Furthermore, because

the coin is unbiased, we are unable to predict the outcome any better than by randomly guessing.

On the other hand, let’s say we have a highly biased coin whereby p(x = heads) = 0.99 and

p(x = tails) = 0.01. In this case H(X) = −(0.99 log2 0.99 + 0.01 log2 0.01) = 0.08. The

second example had a much lower entropy because we are likely to observe heads, and this

makes samples from the distribution more predictable. As such, there is less new or surprising

information associated with samples from this distribution, than there was for the case where

there was an equal chance of a head or a tail.

Mutual information is an information theoretic measure of the degree to which information

associated with one variable X (or set of variables) is shared by another variable Y (or set of

variables). It is a more general form of correlation which is a measure of statistical association

that assumes linear forms of dependence. It can be expressed in terms of entropy as follows:

I(X;Y ) = H(X)−H(X|Y ), (Cover and Thomas, 2006) (6.14)

As the entropy is a measure of uncertainty, mutual information tells us to what extent knowl-

edge of Y reduces the uncertainty in X . Using the definition of conditional entropy, mutual

information can be expressed as:

I(X;Y ) =
∑

X,Y

P (X,Y ) log
P (X,Y )

P (X)P (Y )
(6.15)

In this formulation, one can observe that when the two variables X and Y are completely

independent of each other, the joint distribution P (X,Y ) will be equal to the product of their
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marginals P (X)P (Y ), which results in the latter term log((P (X,Y )/P (X)P (Y )) = 0, and,

by consequence, mutual information I(X;Y ) = 0.

Whilst these definitions concern discrete variables, there exist extensions to continuous variables.

One must then decide whether parametric models suffice for the representations of the probability

density functions. Of course, if parametric models are sufficient, there exist closed-form

analytical representations of the definitions above. If not, then one must perform density

estimation to approximate these functions.

6.8.4 Causal Discovery

Causal discovery is the process of exploiting properties of the joint distribution to identify

causal/structural links in the data. These properties include conditional independencies (also

known as constraint-based methods), distributional asymmetries, score-based, intervention

based, and shadow-manifold based methods (M. Vowels, N. Camgoz, and Bowden, 2022). For

the purposes of this explanation we consider the first two, but interested readers are directed to

M. Vowels, N. Camgoz, and Bowden (2022) for more information.

Conditional Independencies: Consider the graph:

X → Y ← Z.

This graph implies a set of conditional independencies, specifically:

X |= Z|∅

X ⊥̸⊥ Y |∅,

Z ⊥̸⊥ Y |∅,

X ⊥̸⊥ Z|Y.

It is possible to test for these, in the linear case, by measuring partial correlations between them.
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For instance, straightforward multiple linear regressions can be used for each of the conditional

independencies above as follows:

E[Z|X],

E[Y |X],

E[Y |Z],

E[X|Z, Y ].

Assuming these multiple regressions yield coefficients, one can use these coefficients to establish

the existence or non-existence of a statistical dependence between the relevant variables. This

approach can then be generalised the non-linear, non-parametric circumstances using, for

example, mutual information (described above).

The challenge with this approach is that there exist a class of different structures called the

Markov Equivalence Class, which all underpin joint distributions with the same conditional in-

dependencies. For instance, there is nothing in the conditional independencies which distinguish

the following graphs:

X → Y → Z

X ← Y → Z

X ← Y ← Z

As such, collider structures (such as the one in the first example in this description, above) are

helpful in orienting edges in larger structures.

Distributional Asymmetries: Figure 6.8 illustrates the possibility to recover the causal direction

between two variables under the assumption of noise additivity. Regression Y on X yields a

different association between residuals and covariates than the inverse (regressing X on Y ).

This concept generalises to a broader class of models, and may be detectable using machine
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Figure 6.8: Illustration of how distributional asymmetries can be used to identify pairwise causal
directionality.

A B C D

Note. The true structural relationship is Y = X + UY and X = UX where UX and UY are uniform
noise sources. (A) shows the regression line when regressing Y onto X , and (B) shows the

corresponding residuals plotted against X . (C) shows the regression line when regressing X onto Y and
(D) shows the corresponding residuals plotted against Y . Together, these demonstrate that under the

assumption of linear functional form and non-Gaussian noise, the true structural direction is identifiable
as the one for which X is independent of the residuals, as indicated in (B). Example adapted from

J. Peters, Janzing, and Scholkopf, 2017 and M. Vowels, N. Camgoz, and Bowden, 2022.

learning methods, as in work by J. Mooij et al. (2016). The fact that this is (sometimes) possible

comes as a consequence of the independence of mechanisms assumption in causal processes:

“Assuming that the true structural direction is X → Y , the concept of independent mechanisms

holds that P (X) contains no information about P (Y |X), and vice versa. A common illustrative

example J. Peters, Janzing, and Scholkopf, 2017 involves measurements of temperature Y

at weather stations of different altitudes X . Regardless of the distribution of weather station

altitudes P (X), the mechanisms linking altitude to temperature (e.g. the law determining the

relationship between the temperature and pressure of a gas) exist independently, and changing

the temperature around a weather station does not increase its altitude.” (M. Vowels, N. Camgoz,

and Bowden, 2022)



CHAPTER 7

Typical Yet Unlikely: Using Information Theoretic Approaches to

Re-Characterize Normality

The content of this chapter is drawn from the following publication:

Vowels, M.J., Under Review, Typical Yet Unlikely: Using Information Theoretic Approaches

to Identify Outliers which Lie Close to the Mean.

Abstract: Normality, in the colloquial sense, has historically been considered an aspirational

trait, synonymous with harmony and ideality. The arithmetic average has often been used to

characterize normality, and is often used as a blunt way to characterize samples and outliers.

Prior commentaries in the fields of psychology and social science have highlighted the need

for caution when reducing complex phenomena to a single mean value. However, to the best

of our knowledge, none have described and explained why the mean provides such a poor

characterization of normality, particularly in the context of multi-dimensionality and outlier

detection. We demonstrate that even for datasets with a relatively low number of dimensions,

data start to exhibit a number of peculiarities which become progressively severe as the number

of dimensions increases. We show that normality can be better characterized with ‘typicality’, an

information theoretic concept relating to entropy. An application of typicality to both synthetic

and real-world data reveals that in multi-dimensional space, to be normal (or close to the mean)

223
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is actually to be highly atypical. This motivates us to consider one example application of

outlier detection, and we demonstrate typicality for outlier detection as a viable method which

is consistent with this updated definition. In contrast, whilst the popular Mahalanobis based

outlier detection method can be used to identify points far from the mean, it fails to identify

those which are too close. Typicality can be used to achieve both, and performs well regardless

of the dimensionality of the problem.

7.1 Introduction

In a well known United States Air Force (USAF) experiment seeking to identify ‘the average

man’, Gilbert Daniels found that out of 4,063 men, not a single one fell within 30% of the

arithmetic sample averages for each of ten physical dimensions simultaneously (which included

attributes such as stature, sleeve length, thigh circumference, and so on) (Daniels, 1952). Rather

than this being an unlikely fluke of the sample, averages, rather than representing the most

‘normal’ attributes in a sample, are actually highly abnormal in the context of multi-dimensional

data. Indeed, even though averages may provide seemingly useful baselines for comparison,

it is important and perhaps surprising to note that the chance of finding an individual with

multiple traits falling close to the average is vanishingly small, particularly as the number of

traits increases.

The arithmetic average has been used to represent normality (vis-a-vis abnormality, in the

informal/colloquial/non-statistical sense), and is often used both productively and unproductively

as a blunt way to characterize samples and outliers. Prior commentary has highlighted the pitfalls

associated with the use of the mean as a summary statistic (Speelman and McGann, 2013); the

limitations in relation to its applicability and usefulness of parametric representations (such as

the Gaussian) when dealing with real-world phenomena (Micceri, 1989; Modis, 2007); and the

societal context (Misztal, 2002; Comte, 1976), surrounding the potentially harmful perception

of normality as a “figure of perfection to which we may progress” (Hacking, 1990, p. 168).

Whilst these commentaries are valuable and important in developing an awareness for what it

means to use averages to characterize humankind, they do not provide us with an alternative.

They also do not discuss some of the more technical aspects of normality in the context of
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multiple dimensions and outlier detection, or explain why normality, when characterized by the

arithmetic average, is so difficult to attain in principle.1

In this paper, we discuss averages in the context of multi-dimensional data, and explain why it

is that being normal is so abnormal. We touch on some of the peculiarities of multi-dimensional

spaces, such as how a high-dimensional sphere has close to zero volume, and how high-

dimensional random variables cluster in a thin annulus a finite distance away from the mean.

Whilst not the primary focus of this work, we also consider the relevance of these phenomena to

outlier detection, and suggest that outliers should not only be considered to include datapoints

which lie far from the mean, but also those points close to the mean.

Using information theoretic concepts, we propose an alternative way of characterizing normality

and detecting outliers, namely through the concept of ‘typicality’. We demonstrate the peculiari-

ties as well as the proposed concepts both on idealistic simulated data, as well as data from the

‘Politics and Views’ LISS panel survey (Scherpenzeel and Das, 2010).2

Finally, we compare the outlier detection performance of typicality with the most common

alternative (based on the Mahalanobis distance) and demonstrate it to be a viable alternative.

More broadly, we argue that if the average value in a multivariate setting is unlikely, then outlier

detection techniques should be able to identify it as such. This means updating our working

conceptualization of outliers to include not only points which lie far from the mean (as most

outlier detection methods do) but also those points which lie too close to the mean, particularly

as the dimensionality of the dataset increases.

7.2 Background

The notion of the mean of a Gaussian, or indeed its finite-sample estimate in the form of the

arithmetic average, as representing a ‘normal person’ still holds strong relevance in society and

research today. Quetelet did much to popularise the idea (Quetelet, 1835; Caponi, 2013), having

devised the much used but also much criticized Body Mass Index for characterizing a person’s
1One exception includes work by Kroc and Astivia (2021) for the determination of scale cutoffs.
2An anonmyized github repository with the Python code used for all analyses, simulations, and plots can be

found at https://anonymous.4open.science/r/Typicality-F87B

https://anonymous.4open.science/r/Typicality-F87B
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weight in relation to their height. The average is used as a way to parameterize, aggregate,

and compare distributions, as well as to establish bounds for purposes of defining outliers and

pathology vis-à-vis ‘normality’ in individuals. Quetelet’s perspective was also shared by Comte,

who considered normality to be synonymous with harmony and perfection (Misztal, 2002). Even

though it is important to recognize the societal and moral implications of such views, this paper

is concerned with the technical aspects of multivariate distributions; in particular, those aspects

which help us understand why averages can be such a poor characterization of ‘normality’, and

what we should use as an alternative, particularly for the identification of outliers in data.

In the past, researchers and commentators (including well-known figures such as Foucault) have

levied a number of critiques at the use of averages in psychology (Speelman and McGann, 2013;

Myers, 2013; Foucault, 1984; Wetherall, 1996). Part of the problem is the over-imposition of

the Gaussian distribution on empirical data. The Gaussian has only two parameters, and even

if the full probability density function is given, only two pieces of information are required

to specify it - the mean (which we treat as equivalent to the arithmetic average) and the

variance. Even in univariate cases, the mean can be reductionist, draining the data of nuance and

complexity. Many of the developments in statistical methodology have sought to increase the

expressivity of statistical models and analyses in order to account for the inherent complexity

in psychological phenomena. For example, the family of longitudinal daily diary methods

(Bolger and Laurenceau, 2013), as well as hierarchical models (Raudenbush and Bryk, 2002)

can be used to capture different levels of variability associated with the data generating process.

Alternatively, other methods have sought to leverage techniques from the engineering sciences,

such as spectral analysis, in order to model dynamic fluctuations and shared synchrony between

partners over time (M. J. Vowels, K. Mark, et al., 2018; Gottman, 1979). Machine learning

methods provide powerful, data-adaptive function approximation methods for ‘letting the data

speak’ (M. J. van der Laan and S. Rose, 2011) as well as for testing the predictive validity of

psychological theories (M. J. Vowels, 2021; Yarkoni and Westfall, 2017), and in the world of

big data, comprehensive meta-analyses allow us to paint complete pictures of the gardens of

forking paths (Gelman and Loken, 2013; Orben and Przybylski, 2019).

Multi-dimensional data exhibit a number of peculiar attributes which concern the use of averages.
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Assuming one conceives of a ‘normal person’ as having qualities similar to those of a ‘typical

person’, we find that the arithmetic average diverges from this conception rather quickly,

as the number of dimensions increases. The peculiar attributes start to become apparent in

surprisingly low-dimensional contexts (as few as four variables), and become increasingly

extreme as dimensionality increases. Understanding these attributes is particularly important

because the dimensionality of datasets and analyses is increasing along with the popularity of

machine learning. For instance, a machine learning approach identifying important predictors

of relationship satisfaction incorporated upwards of 189 variables (Joel, Eastwick, Allison,

et al., 2020), and similar research looking at sexual desire used around 100 (L. M. Vowels,

M. J. Vowels, and K.P. Mark, 2021b; Joel, Eastwick, and E.J. Finkel, 2017). Assuming that

high-dimensional datasets will continue to be of interest to psychologists, researchers ought to

be aware of some of the less intuitive but notable characteristics of such data.

As we will discuss, one domain for which the mean can be especially problematic in multiple-

dimensional datasets is outlier detection. In general, outlier detection methods concern them-

selves with the distance that points lie from the mean. Even methods designed to explore

distances from the median are motivated by considerations/difficulties with estimation, and are

otherwise based on the assumption that the expected value (or the estimate thereof) provides an

object against which to compare datapoints (Leys, Delacre, et al., 2019). Unfortunately, and as

Daniel’s discovered for the USAF, values close to the mean become increasingly unlikely as the

number of dimensions increases, making the mean an inappropriate reference for classifying

outliers. As we describe later, one can successfully summarise a set of datapoints in multiple

dimensions in terms of their typicality. We later evaluate the performance of a well-known

multivariate outlier method (based on the Mahalanobis distance) in terms of its capacity to

identify values far from the empirical average as outliers, and compare it against our proposed

measure of typicality.

7.3 Divergence from the Mean

This section is concerned with demonstrating some of the un-intuitive aspects of data in higher

dimensions. We begin by showing that, as dimensionality increases, the ‘distance’ that a
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datapoint is from the mean/average increases at a rate of
√
D where D is the number of

dimensions. We then provide a discussion of the ramifications. Finally. we briefly present an

alternative geometric view that leads us to the same conclusions.

Notation: In terms of notation, we denote a datapoint for an individual i as xi where i =

{1, 2, ..., N}. The total number of individual datapoints is N , and the bold font indicates that the

datapoint is a vector (i.e. it is multivariate). A single dimension d from individual i’s datapoint

is given as xid, where d ∈ Z+D, where D is the total number of dimensions, and where we use

the subscript i or d according to the relevant context.

7.3.1 Gaussian Vectors in High Dimensions

Let us begin in familiar territory - for a multivariate distribution with independently and

identically distributed (i.i.d) Gaussian variables, the probability density function for each

dimension may be expressed as:

p(xi) =
1√
2πσ2

d

e
− (xi−µd)

2

2σ2
d (7.1)

Each multivariate datapoint x may be considered as a vector in this D-dimensional space. An

example of two datapoints drawn from a two-dimensional/bivariate version of this distribution

(i.e., D = 2), is shown in Figure 7.1. In this figure, the values of these two random samples

are x1 = (0.4, 0.8) and x2 = (0.55, 0.35). Assuming that these datapoints are drawn from a

distribution with a mean of 0 and a variance of 1 for all dimensions (i.e., N (µd = 0, σ2
d =

1) ∀ d), then we can compute the distance these datapoints fall from the mean µ = 0 using

the squared Euclidean distance (see Eq. 7.2),

||x||22 =
D∑

d

x2d. (7.2)

Here, we use the subscript d to index the dimension of the multidimensional datapoint x. For

the two example vectors in Figure 7.1, taking the square root of the values derived using Eq. 7.2,
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Figure 7.1: Two-Dimensional Vector Space

x2 = (0.55, 0.35)

x1 = (0.40, 0.80)

x2

x1
Note. Two samples in two-dimensional space, with their corresponding coordinates.

the distances are ||x1||2 = 0.8 and ||x2||2 = 0.3. Importantly, note that the squared Euclidean

norm closely resembles the expression for sample variance (Eq. 7.3):

Var(xd) =
1

N

N∑

i=1

x2i . (7.3)

In other words, the variance of a sample is closely related to the distance that each sample

is expected to fall from the mean. Note that, when computing the variance we sum across

datapoints i, rather than dimensions d. Secondly, and more importantly, the variance contains

a normalization term N−1, whereas the expression for the norm does not. Consequently,

the expected squared distance of each datapoint from the mean will grow with increasing

dimensionality. In this example, we know that the variance of our distribution σ2
d = 1 for

both dimensions, and as such, it is trivial to show that each individual dimension d will have

an expected length equal to one. Without the normalization term (i.e., D−1), this means that

the expected squared length of the vectors grows in proportion to the number of dimensions.

Alternatively, taking a square root, we can say that the expected length of the vectors increases

proportional to the square-root of the dimensionality of the distribution. More concretely:
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Figure 7.2: Expected distances of vectors from the mean in high dimensions.

E
[||

x
|| 2

]

D
Note. The red dashed curve is simple

√
D, whilst the black curve is a simulated estimate of the expected

lengths, calculated over 200 datapoints, for increasing dimensionality D. The blue interval represents the
1-99% percentiles.

E [||x||2] ∝
√
D (Vershynin, 2019).

This can of course also be verified in simulation, and Figure 7.2 shows both the analytical as

well as sample estimates for the average length of the vectors as the number of dimensions

increases. The intervals are defined by the 1st and 99th percentiles. Each approximation to the

expectation is taken over a sample size of 200 datapoints. The dashed red curve depicts the
√
D relationship, and the black simulated curve is a direct (albeit noisier, owing to the fact that

this curve is simulated) overlay. This should start to remind us of Daniel’s experience when

working for the USAF - he found that out of 4,063 people, not a single one of them fell within

30% of the mean over ten variables. Indeed, if any had done, we should consider labelling them

as outliers, in spite of the fact that most existing outlier detection methods are only sensitive to

points which lie far from the mean.

The implications of this are important to understand. Whilst we know that each variable xd

has an expected value of zero and a variance of one, the expected length of a whole datapoint

(all dimensions) grows in proportion to the square root of the number of variables. Dieleman

(2020) summarised this informally when they observed that “if we sample lots of vectors from a
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Figure 7.3: Histograms of χ2 and sums of squares

||x||22

∼ χ2

||x ∼ N (0,1)||22

Note. For D = 40 these histograms show the distributions of 10,000 datapoints sampled from a χ2

distribution (red) and the sums of squared distances ||x||22.

100-dimensional standard Gaussian, and measure their radii, we will find that just over 84% of

them are between 9 and 11, and more than 99% are between 8 and 12. Only about 0.2% have a

radius smaller than 8!” In other words, the expected location of a datapoint in D-dimensional

space moves further and further away from the mean µ = 0 as the dimensionality increases.

It can also be shown that such high-dimensional Gaussian random variables are distributed

uniformly on the (high-dimensional) sphere with a radius of
√
D, and grouped in a thin annulus

(Stein, 2020; Vershynin, 2019).3 The uniformity tells us the direction of these vectors (i.e.,

their location on the surface of this high-dimensional sphere) is arbitrary, and the squared

distances, or radii, are Chi-squared distributed (it is well known that the Chi-squared distribution

is the distribution of the sum of squares of D independent and identically distributed Gaussian

variables). The distribution of distances (vis-à-vis the squared distances) is therefore Chi-

distributed. Figure 7.3 compares samples from a Chi-squared distribution against the distribution

of 10,000 squared vector lengths. Altogether, this means that in high-dimensions, (a) it is

3See also Gaussian Annulus Theorem (Blum, Hopcroft, and Kannan, 2020).
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Figure 7.4: High-Dimensional Gaussian.

Almost All Probability 
Mass Here

Probability Density 
Maximized Here

σ
√

D

Note. The plot illustrates how, in high-dimensions, the probability mass is located in a thin annulus at a
distance σ

√
D from the average (in the text, we assume σ = 1), despite the mean representing the

location which maximizes the probability density. Adapted from (MacKay, 1992).

unlikely to find datapoints anywhere close to the average (even though the region close to the

mean represents the one with the highest likelihood, the probability is nonetheless negligible),

(b) randomly sampled vectors are unlikely to be correlated (of course, in expectation the

correlation will be zero because the dimensions of the Gaussian from which they were sampled

are independent), and (c) randomly sampled vectors have lengths that are close to the expected

length which increases at a rate
√
D. As such, the datapoints tend to cluster in a subspace which

lies at a fixed radius from the mean (we will later refer to this subspace as the typical set). This

is summarized graphically in Figure 7.4.

It is important that researchers understand that while the mean of such a high-dimensional

Gaussian represents the value which minimizes the sums of squared distances (and is therefore

the estimate which maximises the likelihood), most of the probability mass is actually not

located at this point. As such, even though a set of values close to the mean represents the most

likely in terms of its probability of occurrence, the magnitude of this probability is negligible,

and most points fall in a space around
√
D away from the mean. Figure 7.5 depicts the lengths

of 2000 vectors sampled from a 40-dimensional Gaussian - they are nowhere close to the

origin. Another way to visualize this is to plot the locations of the expected lengths for different

dimensionalities on top of the curve forN (0, 1), and this is shown in Figure 7.6. In terms of the

implications for psychological data - datasets which involve high numbers of variables are likely

to comprise individuals who are similar only insofar as they appear to be equally ‘abnormal’, at
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Figure 7.5: Vectors in High Dimensions and Typical Sets

||x||2

Sample Index

≈ E||x||2

Tϵ

Note. A scatter plot showing the lengths of 2,000 vectors sampled from a 40-dimensional Gaussian. Red
line shows the average vector length, and the green intervals depict the size of the typical set for different

values of ϵ. Note that the mean (0,0) is nowhere near the distribution of norms or the typical set.

Figure 7.6: Expected Lengths in Relation to the Standard Normal.

f(x)

x

D5 D15 D25 D40

E[||x||2]

Note. This plot shows the location of the expected lengths of vectors of different dimensionality in
relation to the standard normal in one dimension. It can be seen that even at D = 5, the expected length

is over two standard deviations from the mean.

least insofar as a univariate characterization of normality (e.g. the mean across the dimensions)

is a poor one when used across multiple dimensions. Indeed, if an individual does possess

characteristics close to the mean or the mode across multiple dimensions, they could reasonably

be considered to be outliers. We will consider outlier detection more closely in a later section.
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7.4 Typicality: An Information Theoretic Way to Characterize

‘Normality’

In the previous section, we described how randomly sampled vectors in high-dimensional space

tend to be located at a radius of length
√
D away from the mean, and tend to be uncorrelated.

This makes points close to the mean across multiple dimensions poor examples of ‘normality’.

In this section we introduce the concept of typicality from information theory, as a means to

categorize whether a particular sample or a particular set of samples is/are ‘normal’ or ‘abnormal’

(and therefore also whether the points should be considered to be outliers).

7.4.1 Asymptotic Equipartition Property and Entropy

A few concepts should first be introduced. Once again, let us start with something familiar:

The well celebrated Law of Large Numbers (LLN). LLN states that the expected value of

independent and identically distributed random variables is close to the empirical approximation

to this expected value for large sample sizes. More formally:

E [x] ≈ 1

N

N∑

i=1

xi = µ̂ for sufficiently large N (7.4)

There exists an analogue of this law in information theory, known as the Asymptotic Equiparti-

tion Property (AEP). AEP itself is described in terms of entropy H , which is a useful quantity in

its own right.4 Entropy describes the degree of surprise, uncertainty, or information associated

with a distribution and is computed as −∑N
i=1 p(xi) log p(xi) where N is the number of data-

points in the sample distribution, xi is a single datapoint in this distribution, and p(xi) is that

datapoint’s corresponding probability. If the entropy is low, it means the distribution is more

certain and therefore also easier to predict.

Taking a fair coin as an example, p(x = heads) = p(x = tails) = 0.5. The entropy of

this distribution is H = −(0.5 log2 0.5 + 0.5 log2 0.5) = 1. Recall from above that entropy
4We temporarily consider the discrete random variable case for this example, but note that the intuition holds for

continuous distributions as well.
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describes the amount of information content - the units of entropy here are in bits. The fact that

our fair coin has 1 bit of information should therefore seem quite reasonable - there are two

equally possible outcomes and therefore one bit’s worth of information. Furthermore, because

the coin is unbiased, we are unable to predict the outcome any better than by randomly guessing.

On the other hand, let’s say we have a highly biased coin whereby p(x = heads) = 0.99

and p(x = tails) = 0.01. In this case H = −(0.99 log2 0.99 + 0.01 log2 0.01) = 0.08. The

second example had a much lower entropy because we are likely to observe heads, and this

makes samples from the distribution more predictable. As such, there is less new or surprising

information associated with samples from this distribution, than there was for the case where

there was an equal chance of a head or a tail.

AEP states that (Cover and Thomas, 2006):

−1
N

log p(x1,x2, ...,xN ) ≈ H(x) for sufficiently large N (7.5)

which, for i.i.d. samples (and/or variables), yields:

−1
N

N∑

i=1

log p(xi) ≈ H(x) for sufficiently large N (7.6)

In words, the negative log of the joint probability tends towards the entropy of the distribution.

Note that the form given in 7.6 is very similar to the form for the expectation in 7.4: whilst

the expected value of the distribution tends towards the mean, the log joint probability tends

towards the entropy of the distribution. AEP therefore gives us an alternative way to characterize

normality: but instead of doing so using the arithmetic mean, we do so in terms of entropy.

Now, rather than comparing the value of a new sample against the mean or expected value of a

distribution, we can now consider the probability of observing that sample and its relation to the

entropy of the distribution.
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7.4.2 Defining the Typical Set

We are now ready to define the typical set. Rather than comparing datapoints against the mean,

we can compare them against the entropy of the distribution H(x). For a chosen threshold ϵ,

datapoints may be considered typical according to (Dieleman, 2020; Cover and Thomas, 2006;

MacKay, 2018):

T = {x : 2−(H+ϵ) ≤ p(x) ≤ 2−(H−ϵ)} (7.7)

In words, the typical set T comprises datapoints x which fall within the bounds defined either

side of the entropy of the distribution. Datapoints which have a negative log likelihood close

(where close is defined according to the magnitude of ϵ) to the entropy of the distribution are

thereby defined as typical. The quantity given in Eq. 7.7 can be computed for Gaussian data

using the analytical forms for entropy H for the univariate and multivariate Gaussian provided

as Supplementary, and the probability density function for a univariate or multivariate Gaussian

for p(x). This is undertaken for the outlier detection simulation below.

Recall the thin annulus containing most of the probability mass, illustrated in Figure 7.4;

this annulus comprises the typical set. Note that, because this annulus contains most of our

probability mass, the set quickly incorporates all datapoints as ϵ is increased (Cover and Thomas,

2006). Note that this typical set (at least for ‘modest’ values of ϵ) does not contain the mean

because, as an annulus, it cannot contain it by design (the mean falls at the centre of a circle

who’s radius defines the radius of the annulus).

7.4.3 Establishing Typicality in Practice

Even though it is arguable as to whether the Gaussian should be used less ubiquitously for

modeling data distributions than it currently is (Micceri, 1989), one of the strong advantages of

the Gaussian is its mathematical tractability. This tractability enables us to calculate (as opposed

to estimate) quantities exactly, simply by substituting parameter values into the equations (as-

suming these parameters have themselves not been estimated). Thus, moving from a comparison
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of dataset values against the average or expected value to a consideration for typicality does not

necessitate the abandonment of convenient analytic solutions. A derivation of the (differential)

entropy for a Gaussian distribution has been provided in supplementary material, and is given in

Eq. 7.8.

H(f) =
1

2
log2(2πeσ

2) (7.8)

Note that the mean does not feature in Eq. 7.8 - this make it clear that the uncertainty or

information content of a distribution is independent of its location (i.e., the mean) in vector

space.5 As well as being useful in categorising datapoints as typical or atypical (or, alternatively,

inliers and outliers) in practice, Eq. 7.8 can also be used to understand the relationship between ϵ

and the fraction of the total probability mass that falls inside the typical set. Returning to Figure

7.5 which shows the lengths of 2,000 vectors sampled from a 40-dimensional Gaussian, we can

see that as ϵ increases, we gradually expand the interval to cover a greater and greater proportion

of the empirical distribution. Note also that the mean, which in this plot has a location (0,0) is a

long way from any of the points is not part of (and, by definition, cannot be part of) the typical

set.

7.5 An Example with Real-World Data

To demonstrate that these effects do not only apply to idealistic simulations, we use the LISS

longitudinal panel data, which is open access (Scherpenzeel and Das, 2010). Specifically, we

use Likert-style response data from wave 1 of the Politics and Values survey, collected between

2007 and 2008, which includes questions relating to levels of satisfaction and confidence in

science, healthcare, the economy, democracy etc. Given that no inference was required for these

data, a simple approach was taken to clean it: all non-Likert style data were removed, leaving

58 variables, and text based responses which represented the extremes of the scale we replaced

with integers (e.g., ‘no confidence at all’ is replaced with a 0). For the sake of demonstration, all

5Note that entropy is closely related to the score function (the derivative of the log likelihood) as well as Fisher
information, which is the variance of the score.
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missing values were mean-imputed6 (this may not be a wise choice in practice), and the data

were standardized so that all variables were mean zero with a standard deviation of one. In total

there were 6,811 respondents.

Figure 7.7 depicts the bivariate correlations for each pair of variables in the data. It can be seen

that there exist many non-zero correlations, which makes these data useful in understanding

the generality of our expositions above (which were undertaken with uncorrelated variables).

Qualitatively, some variables were highly non-Gaussian, which again helps us understand the

generality of the effects in multi-dimensional data. Figure 7.8 shows how the expected lengths

of the vectors in the LISS panel data change as an increasing number of dimensions are used. To

generate this plot, we randomly selected D variables 1000 times, where D range from three up

to the total number of variables (58). For each of the 1,000 repeats, we computed the Euclidean

distances of each vector in the dataset across these D variables, and then computed their average.

Once the 1,000 repeats were complete, we compute the average across these repeats to obtain

an approximation to the expectation of vector lengths in D dimensions. Finally, we overlaid a

plot of
√
D to ascertain how close the empirically estimated vector lengths are, compared with

the expected lengths for a multivariate Gaussian. We also plot the 1-99% intervals, which are

found to be quite wide, owing to the mix of lowly and highly correlated variables in conjunction

with possibly non-Gaussianity.

These results demonstrate that even for correlated, potentially non-Gaussian, real-world data,

the peculiar behaviour of multi-dimensional data discussed in this paper still occur. For the

LISS data, the expected lengths were slightly lower than for samples from a ‘clean’ multivariate

Gaussian, and this is likely to be due to the correlations present in the data.7

7.6 Moving Forward with Multivariate Outlier Detection

Grubbs defined outliers as samples which “deviate markedly from other members of the sample

in which it occurs” (Grubbs, 1969). This definition is useful to us here, because it is not
6Across all included variables the amount of mean-imputation, on average, was 7.9%. Note that such imputation

makes the demonstration more conservative, because it forces values to be equal to the mean for the respective
dimension.

7For further discussion relating to this point, see Kroc and Astivia (2021).
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Figure 7.7: LISS Panel Data Correlation Matrix

Note. Depicts the bivariate correlations for the LISS panel data (Scherpenzeel and Das, 2010).

expressed in terms of distance from the mean, but in broad/general terms. Indeed, as we have

already discussed, in as few as four dimensions, points near the mean become increasingly

unlikely. This suggests that outlier methods should not only identify points which are too far

from the mean, but also those which are too close.

Two related definitions of outliers which were noted by Leys, Delacre, et al. (2019) are: “Data

values that are unusually large or small compared to the other values of the same construct”,

and “Data points with large residual values.” The first is quite similar to Grubbs’ definition,

identifying values as unusually large or small (i.e., deviating markedly) with respect to other

values of the same construct (i.e., with respect to the other members of the sample in which they

occur). The second defines them with respect to the residuals of a statistical model. In other

words, they are values which lead to large discrepancies between true and predicted values. Note

that both of these definitions bear the consequences for our work - whether we are comparing

datapoints against the rest of the sample, or comparing them against the predictions from a
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Figure 7.8: LISS Panel Data Vector Lengths

E
[||

x
|| 2

]

D

√
D

LISS Data

Note. The lengths for vectors from the LISS panel data (red), for increasing D, as well as the expected
lengths for a multi-variate Gaussian (blue). The LISS panel data curve includes 1-99% percentile

intervals (Scherpenzeel and Das, 2010).

statistical model designed to estimate an expected value (which is by far the most common case

in psychology and social science), the relevance of these definitions to our discussion remains

the same.

It is also, perhaps, of interest to note that our definition of outliers makes not value judgement

about whether outliers are good or bad. Indeed, depending on the application and our research

questions, outliers may represent ‘golden’ samples. Consider a manufacturer interested in

fabricating the perfect mechanical prototype. Each sample may have its own unique blemishes,

and our target may represent the perfect average across all (high-dimensional) opportunities for

such blemishes. In such a case, the average represents the golden target for our manufacturer,

and identifying it necessitates outlier detection methods which understand that values across

high-dimensions close to the mean should be considered to be (in this case, desirable) outliers,

in much the same way as samples which deviate because they are too far from the mean may

also be outliers for opposite reasons.
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Leys, Delacre, et al. (2019) provide a useful summary of options for both univariate and multi-

variate outlier detection, as well as a discussion about the consequences of outlier management

decisions. Whilst their work provide an excellent introduction to multivariate outlier detection

and good practice, they do not discuss the strange behaviour of the mean in multiple dimensions,

nor the impact of this behaviour on multivariate outlier detection methods which are unable to

detect outliers which lie close to the mean

We note, as other researchers have (Leys, Delacre, et al., 2019), that the most common method

used for multidimensional/multivariate outlier detection in the domain of psychology is the

Mahalanobis distance (Mahalanobis, 1930). For a description of the Mahalanobis distance and

its application, readers are directed to work by X. Li et al. (2019) and Leys, Klein, et al. (2018).

Briefly, the method assesses the distance of a point from the centroid (i.e., the mean) of a cloud

of points in (possibly correlated) multidimensional space. The researchers note that in order to

compute the distance from putative outliers to the mean, it is first necessary to estimate the mean

and covariance whilst including those points in the estimation (Leys, Ley, et al., 2013; Leys,

Klein, et al., 2018). This process is somewhat problematic because if outliers are included in the

calculation being used to compute the mean and covariance, the estimation of these quantities

will themselves be biased towards these outliers, thereby reducing the chances of correctly

identifying the outliers. A solution is proposed which is called the ‘robust’ Mahalanobis distance

(X. Li et al., 2019; Leys, Klein, et al., 2018), which leverages what is known as the Minimum

Covariance Determinant (MCD), and estimates the centroid / mean by selecting an estimate of

the mean from a set of estimates derived from different subsets of the dataset.

Unfortunately, despite the Mahalanobis distance and its robust variant being the most commonly

used multidimensional/multivariate outlier detection techniques in psychology, it suffers from

the same problems as any multidimensional method based on distances from the centroid/mean.

By consequence it would certainly not flag someone average in all dimensions as an outlier,

even though statistically they would represent an extremely unusual individual (it would not

help Daniels with his project, for example). It is therefore important that researchers qualify

their definition of the outlying set to explicitly admit points which may fall too close to the

mean.
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When using the Mahalanobis distance, one can make decisions about the set of outliers O using

the following expression:

O = {x : M(x) > c}, (7.9)

where M(x) =
√

(x− µ̂)TS−1(x− µ̂) and is the estimated Mahalanobis distance (in units of

standard deviation) for the multivariate datapoint under consideration x, and c is the threshold for

classifying a point as an outlier. In the expression for M(), µ̂ is the estimate of the mean of the

distribution, S is the estimated covariance matrix. One of the benefits of the Mahalanobis based

methods is that one can use them to threshold the data based on units of standard deviations.

Thinking in terms of standard deviations is not unusual and therefore the process of selecting

outliers in these terms thus leads to intuitive selection thresholds. In contrast, we see in Eq. 7.7

that the threshold for determining whether a datapoint falls within the typical set T depends on

ϵ, which is not related to the standard deviation, but rather to a distance away from the entropy.

We have already seen how typicality has the added advantage of classifying datapoints which lie

too close to the mean. In Figure 7.9 we show that, in low-dimensional settings, typicality can be

used to make approximately the same classification of outliers as the Mahalanobis distance to

the extent that some datapoints which lie far from the mean should still be classified as outliers.

Of course, in practice a balance must be struck between the value of ϵ in Eq. 7.7, in the same

way that c in Eq. 7.9 must be decided.

Specifically, for Figure 7.9, we generated 125 points from a bivariate Gaussian with a covariance

of 0.5, and then added a set of equally spaced outlier points ranging from negative four to

positive four on the y-axis (indicated with horizontal dashes). As such, not all these points are

expected to be identified as outliers, because some of their values lie well within the tails of

the distribution. They do, however, enable us to compare at which point they are identified as

outliers by the two detection methods under comparison. Note that the subsequent estimation is

done after the creation of the complete dataset (including the outliers) using all the empirical

values. Using the robust MCD estimator mentioned above, we computed both the Mahalanobis

distance (in units of standard deviation), and colored each point according to this distance. For
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typicality, we followed the estimation of entropy for the multivariate Gaussian which also takes

in an estimate for the covariance (see the Supplementary Material for the relationship between

the covariance matrix and the entropy of a Gaussian), for which we again used the MCD method.

The use of MCD for typicality arguably arguably makes our typicality estimator ‘robust’ for

the same reason that it is considered to make the Mahalanobis distance estimation robust. The

threshold for the Mahalanobis distance was set to three standard deviations, whilst the value for

the typicality threshold was set to five. In practice, researchers may, of course, need to suitably

select and justify these values.

The scatter-plot marker shapes are set according to whether the outliers were classified as such

by both methods (circles), just the Mahalanobis method (squares), or just the typicality method

(triangles). If neither method classifies a point as an outlier, the points are set to vertical dashes

(i.e., ‘inliers’). Note that there are no points which are classified as outliers by the Mahalanobis

method which are not also classified as outliers by the typicality method. The inverse is not

quite true, with one additional point (indicated with the triangle marker) being classified as

an outlier by the typicality method.8 Figure 7.9 therefore indicates that, in low-dimensions,

Mahalanobis distance performance similarly to typicality as an outlier detection method.

In Figure 7.10, we undertake the same task, but this time in a 20-dimensional space. The figure

shows the lengths of each of 1400 points (the lengths are used for visualisation purposes) drawn

from a 20-dimensional, isotropic Gaussian. Fifteen of these points are manually set to fall very

close to the mean / expected value of zero, and these are the simulated outliers we wish to

identify. Now, in contrast to the example above, we see a large difference between the outliers

identified using the two methods. Typicality successfully identifies all 15 true outliers as outliers,

whereas MCD fails to identify any of them. Conversely, some points which lie far from the

mean (but which have a low probability of occurrence relative to the entropy of the distribution)

are identified by both MCD and typicality, although it is possible that by tweaking the thresholds

one could achieve greater overlap between the classification of these points by the two methods.

In summary, typicality does not only have a role in detecting outliers in high-dimensional

scenarios (where the outliers may include values close to the expected value), but can perform
8Although this classification is technically correct, this point lies on the limit of the cloud of true inliers, and so

in practice it would not be clear whether this would represent a useful outlier classification or not.
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Figure 7.9: Outlier detection comparison.

Note. Comparison of Mahalanobis distance and typicality for outlier detection. The outliers are
generated as a vertical set of equally spaced points (indicated with horizontal dashes) ranging from

negative four to positive four on the y-axis, superimposed on a set of 125 points (indicated with vertical
dashes) drawn from a bivariate Gaussian with a covariance of 0.5. The points identified to be outliers by

both methods are indicated in circles, whilst those indicated to be outliers by the the Mahalanobis or
typicality methods separately are indicated by squares or triangles, respectively. The color of the points

represents the Mahalanobis distance in units of standard deviation. The estimation of the covariance
matrices for both methods used the robust Minimum Covariance Determinant (MCD) method.

similarly to how current approaches (such as MCD) do in low-dimensional scenarios, which

otherwise fail in high-dimensions. We thus recommend practitioners consider using typicality

as a valid outlier detection approach under both low- and high-dimensional conditions, and

especially in high-dimensions. To this extent, researchers a encouraged to consult various

commentaries on the usage of outlier detection methods, such as the one by Leys, Delacre,

et al. (2019) which provides general recommendations for practice (including pre-registration).

It is notable that prior commentary does not include a discussion about the limitations of
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Figure 7.10: Outlier detection comparison.

||x||2

Note. Comparison of Mahalanobis distance and typicality for outlier detection in 20 dimensional space.
The outliers are generated as a set of 15 points close to the expected value of 0, superimposed on a set of
1400 points drawn from a 20 dimensional isotropic Gaussian. For visualation purposes, this plot shows
the lengths of each point (the x-axis is simply the index of the point in the dataset). The points identified
to be outliers by both methods are indicated in circles, whilst those indicated to be outliers by the the
Mahalanobis or typicality methods separately are indicated by squares or triangles, respectively. The

color of the points represents the Mahalanobis distance in units of standard deviation. The estimation of
the covariance matrices for both methods used the robust Minimum Covariance Determinant (MCD)

method.

Mahalanobis based methods for outlier detection once the number of dimensions increases,

which serves as a reminder of how important it is that researchers explore typicality. Finally, we

recommend updating the working conceptualisation of outliers to include those points which, in

high-dimensions (but as few as 4-10 dimensions) fall too close to the mean.
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7.7 Conclusion

The arithmetic mean has been used both productively and unproductively as a blunt way

to characterize samples and populations. It has been used to pathologize deviations from

‘normality’, where normality has been said to represent a harmonious ideal. Through our

exploration of multi-dimensional space, we have shown that the mean, far from representing

normality, actually represents abnormality, in so far as encountering a datapoint close to the

mean in datasets comprising more than a handful of dimensions becomes incredibly unlikely,

even with a large number of datapoints.

In contrast with the arithmetic average, the information theoretic quantity known as ‘typicality’

provides a way to establish normality (or rather, whether a datapoint is typical or atypical),

which is particularly useful in high-dimensional regimes. Given that researchers in psychology

and social science frequently deal with multivariate datasets, and that the peculiarities associated

with multi-dimensional spaces start occurring in relatively low dimensions (as few as four), it is

important that researchers have some awareness of the concepts presented in this paper.

Clearly, the motivations behind the characterizations of points as either normal or abnormal

overlap strongly with those behind outlier detection. The discussion also provides us with a

good justification for updating our working definition of ‘outlier’ to include points which lie

unusually close to the mean. Unlike popular multivariate outlier detection techniques such

as the Mahalanobis distance, which characterize outliers as points which lie far from the

expected value of the distribution, typicality additionally offers a means to detect those which

are close. Whilst such additional benefits of typicality based methods become more evident as

the dimensionality of the dataset increases (where traditional methods like Mahalanobis distance

fail) we showed that typicality also performs as one would hope/expect in low dimensions. To

show this, we finished with an evaluation of typicality for bivariate outlier detection using a

‘robust’ version of entropy using the Minimum Covariance Determinant estimation technique,

and verified via simulation that in low-dimensions it works well as an alternative to the popular

Mahalanobis distance. Researchers are encouraged to consult the supplementary material, which

includes code for computing and applying typicality based methods (including those for outlier
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detection).

7.8 Supplementary: Differential Entropy of a Gaussian

Following Cover and Thomas, 2006, the differential entropy (in bits) is defined as:

H(f) = −E[log(f(x))] = −
∫ +∞

−∞
f(x) loge f(x)dx (7.10)

The probability density function of the normal distribution is:

f(x) =
1√
2πσ2

e−
(x−µ)2

2σ2 (7.11)

Substituting the expression for f(x) into h(f):

H(f) = −
∫ +∞

−∞
f(x) loge

[
1√
2πσ2

e−
(x−µ)2

2σ2

]
(7.12)

H(f) = −
∫ +∞

−∞
f(x) log2 e

(
loge

(
1√
2πσ2

)
+ loge e

− (x−µ)2

2σ2

)
(7.13)

H(f) = −
∫ +∞

−∞
f(x) log2 e

(
− loge(

√
2πσ2)− (x− µ)2

2σ2

)
(7.14)

H(f) = log2 e loge
√
2πσ2

∫ +∞

−∞
f(x)dx+ log2 e

∫ +∞

−∞

(x− µ)2

2σ2
f(x)dx (7.15)

Note that: ∫ +∞

−∞
f(x)dx = 1 (7.16)

and recall that:

∫ +∞

−∞
(x− µ)2f(x)dx = E[(x− µ)2] = Var(x) = σ2 (7.17)
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Therefore:

H(f) = log2
√
2πσ2 +

log2 e

2σ2
σ2 (7.18)

And finally:

H(f) =
1

2
log2(2πeσ

2) (7.19)

For a D-dimensional Gaussian, the derivation for the entropy is as follows:

H(f) = −E[log(f(x))] = −
∫ +∞

−∞
f(x) loge f(x)dx, (7.20)

where the bold font indicates multidimensionality.

H(f) = −E[log[(2π)−D/2|S|−0.5exp(−0.5(x− µ)TS−1(x− µ))]], (7.21)

where S is the covariance matrix, T indicates the transpose, and |.| indicates the determinant.

H(f) = 0.5D log(2π) + 0.5 log |S|+ 0.5E[(x− µ)TS−1(x− µ)] (7.22)

= 0.5D(1 + log(2π)) + 0.5 log(S) (7.23)

This last expression can then be expressed in bits by multiplying by log2 e. Note that this

derivation follows the approach provided by Gundersen (2020) and uses a number of ‘tricks’

relating to the trace operator
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Discussion, Limitations, and Future Work

Despite the attention that the replication crisis has drawn to itself, and the increased pressure

to preregister studies, undertake power analyses, and collect data from a sufficiently large

number of participants, I have argued that replication represents only one challenge out of

many which face researchers in psychology and social science. Independently of whether

data have been collected for a sufficient number of participants, if the statistical models we

use are either functionally or structurally/causally misspecified, or both, the inference we

undertake using these data can be arbitrarily biased. In the introduction I also discussed the high

inherent complexity of psychological phenomena and the potential ramifications for research.

Confronting this complexity can lead to an impasse - but I argued an awareness of it can help us

identify the opportunities to improve research, and remain skeptical and cautious in our search

for ‘the truth’.

In Chapter 2, I discussed the nature of the misspecification problems at length, and provided

some recommendations for researchers to (1) consider machine learning approaches for alleviat-

ing problems with the assumption of linearity; (2) to collaborate with researchers outside of

psychology (for instance, experts in machine learning, statistics, engineering, causality); (3) to

be more transparent and specific about whether they are taking a predictive or causal approach

to research; (4) that researchers be concise and not overambitious in the specification of their

research questions and hypotheses.

In Chapters 3 and 4, I provided application examples for the recommendations made in Chapter 2.

249
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Specifically, in Chapter 3 I provided an example of machine learning and machine learning

explainability techniques applied to the task of predicting perceived partner support from

relational and individual variables. Whilst a psychological interpretation of these results is

beyond the scope of this thesis (which is method based), the demonstration provides evidence

for the utility of machine learning and explainability in exploring the data for possibly important

associations. Then, in Chapter 4, I provided an example of causal discovery, machine learning,

and causal inference techniques (specifically targeted learning) in combination, to demonstrate

how we can use these tools to further knowledge in the domain of attachment styles and mental

health. Again, a psychological interpretation of the results is beyond the scope of this thesis,

although the relevance and utility of these techniques has been demonstrated in this work.

In Chapter 5, I introduced some techniques from the literature on Directed Acyclic Graphs

and Probabilistic Graphical Models to identify ways in which the mathematical, graphical

representation of a theory can be simplified without affecting the reliability of the associated

estimation process (e.g., for estimating a particular causal effect size). The motivation for these

techniques stems from (1) an acknowledgement for the inherent complexity of psychological

theories - if there exist opportunities to simplify the models we ought to take them; (2) the

need to prioritise data collection for variables which are crucial for the subsequent estimation

process; and (3) to encourage transparency when translating our otherwise often verbal theories

into unambiguous mathematical objects. I also provided code to simplify graphs automatically,

given a particular research question.

Given the burgeoning popularity of machine learning based methods for prediction, and also

given the recommendation that researchers take causality seriously, Chapter 6 provided a set

of simulation results to illustrate that one cannot ‘outrun’ causality with the use of powerful

algorithms. In other words, it is necessary to always consider the underlying causal structure of

Data Generating Process, and how this structure manifests statistically in the data. One should

therefore consider the phenomenon from both functional and structural perspectives together.

The interaction between the prediction task and the causal structure can result in important

causes of an outcome as being seemingly unimportant for prediction - it all depends on what is

included in the model and, again, what the causal structure of the phenomenon is.
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The last contribution is presented in Chapter 7. In this Chapter, I approached the complexity

challenge in psychology from the perspective of outlier detection / normality / typicality.

Specifically, I explore the ways in which data tend to behave as the number of variables we

collect for an individual increases. As I demonstrated, unintuitive statistical behaviours start

occurring with as few as four dimensions, and the average/expected value become increasingly

unsuitable as a characterization of the distribution as this number increases. I show that whilst

the expected value represents the location of highest probability density, there exists barely any

real probability mass at this location (i.e., very few datapoints fall close to the expected value). I

identify typicality as a valuable information theoretic measure for quantifying ‘normality’ (in

the sense that a datapoint is normal or abnormal), and demonstrate its performance against a

popular alternative which otherwise fails in high dimensions

Throughout the work involved in developing the ideas presented in this thesis, I have had the

opportunity to apply some of the proposals made to ‘real-world’ psychological applications -

in the Declaration Section, I provide a list of such works (five accepted for publication, three

under review at the time of writing). The statistical, causal, and machine learning approaches I

discuss in this work have been adapted to a wide variety of problems relating to obesity, COVID,

and mental health, partner support, sexual desire, and others. These projects help motivate and

justify the real-world applicability of the proposals made herein.

8.1 Limitations, Reflections, and Further Work

Whilst the specific limitations for each contribution are discussed in the associated contribution

Chapters, it is worth discussing the limitations associated with the work in this thesis. Firstly, it

is worth emphasising that many of the problems we identified are indicated to exist in general

in psychology, and of course are not problems that apply to all researchers in all domains of

psychology and social science. Indeed, despite the recommendations made and the problems

with current research highlighted in this thesis, the two application contributions (Chapters 3

and 4) both included sub-optimal research practice. For instance, both included compromises

associated with the limitations of real-world data (e.g., potential missingness issues, differences

in measures used in otherwise combined samples, simple averaging of individual items to
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compose the constructs). Such compromises highlight how difficult it is to undertake the

‘perfect study’. Indeed, if one were unwilling to make such compromises, it would be very

difficult to undertake any research at all. To this extent, all research is likely to be, and likely to

always be, limited by practical constraints. On the one hand, I therefore understand that being

too absolute about what constitutes good or bad practice can paralyse researchers when they face

the reality of necessary compromise. On the other hand, we need to be aware of the problems

in order to overcome them where possible. Analytically, at least, in combining state-of-the-art

methods in causal discovery, machine learning, and causal inference, Chapter 4 represents a

significant step forward.

Secondly, and on a related point, the conclusions of Chapter 6 seems to contradict the recom-

mendation to utilize machine learning with explainability techniques made in Chapter 2. Part of

this comes as a natural consequence of the evolution of understanding I personally underwent

during the work undertaken for this thesis, which in turn reflects the self-correcting nature we

hope is reflected in science in general (whether this occurs in reality a matter of debate, see

McElreath, 2016; Ioannidis, 2012). Indeed, the degree to which machine learning methods,

explainability techniques, and the underlying causal structure interact was not well known to

be until undertaking the work presented in Chapter 6, and to this extent, it contains content at

odds with that in Chapter 2. I hope, therefore, that by presenting the work as it was carried

out, as well as reflecting openly upon it in this way, speaks more to the potential for science to

self-correct, than it does to my initial over-optimism regarding exploratory machine learning.

Thirdly, and in a general sense, all of the contributions are more or less compatible with the

dominating paradigm current in psychology and social science, and provide ways to ameliorate

certain problems within this paradigm (for example, DAGs are a more general form of SEMs).

Whilst on the one hand this might represent an advantage because it implies that the proposals

can be readily assimilated into the field, it represents a limitation because some of the top-level

challenges remain unaddressed. In particular, the complexity issue discussed in the Introduction

and referred to as ‘The Big Assumption’, may preclude the utility such high-level models

for many psychological phenomena. In addition, we cannot expect more advanced statistical

methods (e.g., data-driven machine learning algorithms) to fix issues with poor theories (see
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also: Smaldino, 2019). Fundamentally, it may be necessary to take an altogether different

approach to the modeling of such complex, dynamic phenomena.

One option which bypasses the problem of The Big Assumption is to learn from the approaches

taken in the domains of machine learning and artificial intelligence, and to adopt state-of-the-art,

computer vision, signal processing, and other highly adaptive real-time analytical techniques.

The author has actually already been working on such projects (M. Vowels, 2020), from

which the initial results are promising. Whilst such an approach might yield better predictive

performance than overly reductionist alternatives, it makes the interpretation of such a model

very challenging (although, once again, we are reminded that the human-interpretability of a

phenomenon is not necessarily a given). In turn, this makes it difficult to use such models to

design new interventions and to make new discoveries about the nature of the phenomenon under

study. Future work therefore should also explore the potential of machine learning explainability

techniques with such complex, multi-modal approaches (i.e., combining audio, language, vision,

etc.).

Whether or not the use of highly parameterized models from the domains of machine learning

and artificial intelligence really represent the future of psychology, there exist many problems

with the status quo which can be substantially ameliorated without necessitating such a paradigm

shift. Issues with replication, the over-utilization of linear models, conflation of correlational

and causal approaches to research, a general lack of statistical awareness and engagement with

meta-research, vague and untestable theories and hypotheses, etc. - all these issues can be vastly

improved before we necessarily need to tackle more fundamental questions about research

philosophies in psychology and social science. Indeed, perhaps if the field were to move in a

positive direction with respect to the existing problems, the answers to the fundamental questions

about the appropriateness of the existing research paradigm (i.e., that psychological phenomena

can be modeled usefully and accurately using researcher-specified mathematical models) would

emerge naturally as part of rigorous research practice. In other words - by improving current

research practice, the answer to whether or not a fundamental paradigm shift is needed may

naturally emerge. As it stands, the current problems have the potential to seriously hinder

progress (in any direction) and inhibit the self-correcting nature of science.
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Finally, on multiple occasions I use the term ‘sufficiently’ as a way of delineating whether or

not our models are ‘sufficiently correctly specified in terms of the structural and functional

form, with respect to the true, underlying process (see, in particular, Chapter 2). One recalls

the famous George Box quote ‘all models are wrong and some are useful’ (Box and Jenkins,

1976). Indeed, short of modeling the trajectories of all sub-atomic particles in the universe (if,

indeed, this is enough), our models will always represent simplifications and abstractions of the

true, underlying real-world processes. Thus, whether or not a model is ‘sufficiently’ correctly

specified is a subjective point which depends on some (arbitrary) measure of usefulness for

a particular task, for a particular group of researchers. For instance, if we are interested in

generalizing the estimated efficacy of a drug from our empirical sample to a population, our

model has to be sufficiently correct for our analytical process to yield practically meaningful

results. If our estimates are wildly biased (as I argue that many in psychology are likely to be),

then clearly our model is not sufficiently correctly specified. If, on the other hand, they are biased

by some negligible quantity (where, again, negligible has to be defined according to the task

and our priorities) we might say the model is sufficiently correctly specified. Understanding the

degree to which our model is biased is part of the process in science, and as my model explains

observations more accurately, we progress (hopefully) towards a more correctly specified model,

with respect to our particular measures of accuracy.

8.2 Putting Into Practice

In this thesis I made a number of proposals for improving practice and demonstrated with two

application papers that these recommendations are not just ideas but can be put into practice

today. As I have noted, I am certainly not the first to highlight some of the problems in

psychology and social science, and neither am I the first to propose solutions. Unfortunately,

despite many years (in some cases, decades) of meta-research commentary, the field still exhibits

many of the same problems, as evidenced by the persistence and tone in these commentaries over

the years. Of course, some things have changed / are changing. For instance, pre-registration

is more common than it used to be, and being recommended and requested by some journals

and funding agencies (Kupferschmidt, 2018). On the other hand, we have already discussed the
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reluctance of researchers to use and engage with causal methods (Grosz, Rohrer, and Thoemmes,

2020; Rohrer, 2018), how linear models are still by far the most common family of statistical

models being used (Blanca, Alarcon, and Bono, 2018), etc. And this, in my view, has not

changed substantially over the decades.

So, how to we know we are making progress and how do we know that the work in this

thesis (for example) can/will make a difference? We might be pessimistic about the answer to

this question if we also accept that, to some extent, change cannot be achieved if any single

one of the recommendations is adopted, but rather requires systematic change across multiple

dimensions together. The requirement for systematic change (as opposed to incremental progress

following an accumulation of evidence; see Godfrey-Smith, 2003; Popper, 1959, for a discussion

about, amongst other things, Karl Popper’s alternative viewpoint on the rational progression

of science) is reflected in discussions from other researchers. For instance, McElreath (2016,

pp.442) discusses the nature of progress in science as being achieved almost in spite of its own

mechanisms:

“How can we reconcile such messy history, and widespread contemporary failure, with obvious

successes like General Relativity? Science is a population-level process of variation and selective

retention. It does not operate on individual hypotheses, but rather on populations of hypotheses.

It comprises a mix of dynamics that may, over long periods of time, reveal the clockwork of

nature. But these same dynamics generate error. So it’s entirely possible for most findings at any

one point in time to be false but for science in the long term to still function. This is analogous

to how natural selection can adapt a biological population to its environment, even though most

individual variation in any one generation is maladaptive.”

This, in turn, reminds one of Max Planck’s argument, which was also shared by Thomas Kuhn,

that “A new scientific truth does not triumph by convincing its opponents and making them see

the light, but rather because its opponents eventually die and a new generation grows up that is

familiar with it ...” (Planck, 1949; Kuhn, 1962)

In this sense, the instigation of a domain-wide shift in the approach to research, methodology,

modeling, and analysis, takes time, and might only be achievable through the education of the

next generation(s) of psychologists and social science researchers. Instead of only teaching stu-
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dents about traditional forms of analysis, we might more broadly expose students to alternative

modes of thinking and modeling (perhaps even the lumped parameter modeling techniques from

engineering). They may then understand that there exists rich and lively debate as to the best

modeling approaches for a particular task, and that the approaches themselves may fall at the

intersection of statistics, causality, engineering, philosophy of science, machine learning, and

artificial intelligence. Part of this also involves openness about the challenges the field currently

faces.

The fact that this debate exists can itself be a stimulating topic of research, and encourage

students to find the niche which suits their own passions (the topics of statistics and methodology,

particularly in the domains of psychology and social science, are far from solved). Indeed, such

transparency is probably well advised, in face of the conspicuous problems the domains face,

and given the concomitant risk of disillusionment that might ensue once a student discovers

that many of the ‘facts’ taught on typical psychological syllabi may not have the solid empirical

foundations they might otherwise assume.

In my own experience, psychology attracts students with a wide variety of, often non-technical /

non-research-based, aspirations. Thus, part of the shift towards training psychology and social

science students who are eclectic in their methodological skill sets, may also necessitate the

offering of multiple ‘study tracks’ for those technically-minded students who wish to specialize

and to become the next generation of academics in psychology and social science. Unfortunately,

even within the current paradigm, many students and professors misunderstand basic concepts

relating to fundamental and traditional statistics (Gigerenzer, 2004; Cassidy et al., 2019). Yet

another question then naturally emerges regarding who the field can call upon to update and

improve the situation, if, in general, neither the current students, nor the current professors, have

the expertise to do so by themselves. I leave an investigation of this question to future work,

but might tentatively reason that by gradually fostering an increased interest in statistics and

methodology in students and researchers, we might also indirectly begin to attract an increasing

number of researchers from other domains (such as engineering, statistics, etc.), thereby forming

a strong and diverse pool of researchers with technical expertise.
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8.3 Conclusion

I conclude by returning to the quotation at the beginning of this thesis: “To question the

foundations of a discipline or a practice is not necessarily to deny its value, but rather to

stimulate a judicious and balanced appraisal of its merits.” (Ashcroft and ter Meulen, 2004).

A number of strong limitations associated with the current research paradigm in psychology

were highlighted and discussed at length. In spite of the difficulties these problems present, I

am optimistic that if researchers acknowledge them, then research methodology and analysis in

psychology and social science can begin to move in a positive direction. Indeed, the nature of at

least some of the problems, such as the ubiquity of unsophisticated research methodologies and

analytical methods, would seem to encourage an optimistic interpretation of the situation: That

there presently exists a tremendous opportunity to innovate and modernise the current approach

to research, simply by assimilating recent advances and developments from other domains such

as engineering, machine learning, and statistics. Psychology and social science are complex

domains, full of rich and nuanced phenomena. The phenomena deserve to be represented and

studied using research methodologies which are flexible enough to reflect this complexity.
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