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Abstract

NY-ESO-1 has been a major target of many immunotherapy trials because it is expressed by various cancers and is highly
immunogenic. In this study, we have identified a novel HLA-B*1801-restricted CD8+ T cell epitope, NY-ESO-188–96

(LEFYLAMPF) and compared its direct- and cross-presentation to that of the reported NY-ESO-1157–165 epitope restricted to
HLA-A*0201. Although both epitopes were readily cross-presented by DCs exposed to various forms of full-length NY-ESO-1
antigen, remarkably NY-ESO-188–96 is much more efficiently cross-presented from the soluble form, than NY-ESO-1157–165.
On the other hand, NY-ESO-1157–165 is efficiently presented by NY-ESO-1-expressing tumor cells and its presentation was not
enhanced by IFN-c treatment, which induced immunoproteasome as demonstrated by Western blots and functionally a
decreased presentation of Melan A26–35; whereas NY-ESO-188–96 was very inefficiently presented by the same tumor cell
lines, except for one that expressed high level of immunoproteasome. It was only presented when the tumor cells were first
IFN-c treated, followed by infection with recombinant vaccinia virus encoding NY-ESO-1, which dramatically increased NY-
ESO-1 expression. These data indicate that the presentation of NY-ESO-188–96 is immunoproteasome dependent.
Furthermore, a survey was conducted on multiple samples collected from HLA-B18+ melanoma patients. Surprisingly, all the
detectable responses to NY-ESO-188–96 from patients, including those who received NY-ESO-1 ISCOMATRIXTM vaccine were
induced spontaneously. Taken together, these results imply that some epitopes can be inefficiently presented by tumor
cells although the corresponding CD8+ T cell responses are efficiently primed in vivo by DCs cross-presenting these
epitopes. The potential implications for cancer vaccine strategies are further discussed.
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Introduction

Professional antigen presenting cells (APC) such as dendritic

cells (DCs) are responsible for the initial induction, also referred to

as priming, of the cellular immune response to pathogens [1] as

well as tumors [2]. Various forms of tumor antigens, soluble, cell-

bound or complexed to specific antibody as immune-complex (IC),

are taken up by DCs and their CD8+ T cell (TCD8+) epitopes are

then presented to antigen-specific TCD8+ - a process called cross-

presentation [3,4,5]. Various strategies targeting cross-presenta-

tion by DCs (such as ISCOMATRIXTM adjuvant [6]) or

stimulating DC differentiation and maturation (e.g. by tumor cells

expressing GM-CSF and CD40L [7]) have been developed and

trialed clinically. The validity of such vaccination strategies hinges

on the assumption that tumor cells display the same epitopes that

are generated by the targeted DCs.

It is well established that mature DCs express the immunopro-

teasome constitutively [8]. However under non-immune condi-

tions, tumor cells and other somatic cells, express the constitutive

proteasome and are generally considered unable to initiate T cell

responses via direct presentation due to the lack of co-stimulatory

molecule expression [9]. The two types of proteasomes have been

shown to cleave peptides with different specificities in vitro [10,11],

which is thought to lead to altered T cell selection and immune

response in vivo to viral antigens [12,13,14], self antigens [11], as

well as tumor antigens [15].
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However, none of these studies specifically addressed cross-

presentation by DCs, which is more relevant in anti-tumor

immunity. It has been demonstrated in mouse models that direct

antigen presentation requires continuous antigen synthesis and is

typically enhanced with increased intracellular protein degrada-

tion [16,17]; on the contrary, efficient cross-presentation relies on

more stable proteins, large protein fragments [18] or ongoing

protein synthesis in the antigen-donating cells [19]. It is also

known that the two presentation pathways differ markedly [20].

These differences imply that DC and tumor cell present different

repertoires of peptides and some of the differences may lead to

disparate patterns of immune responses. For example, if given

tumor antigen epitopes are not cross-presented by DCs, related

immune responses may not be primed, even when tumor cells

abundantly and directly present these epitopes. This scenario

could provide a novel opportunity for vaccine intervention.

Indeed, we have recently shown that TCD8+ specific for the

HLA-B7-resticted NY-ESO-160–72 are rarely primed under

physiological conditions, yet are easily detected in melanoma

patients vaccinated with NY-ESO-1 formulated with ISCOMA-

TRIXTM, a saponin and cholesterol based adjuvant that has been

shown to target exogenous antigen to the cytosol to enable antigen

cross-presentation [21]. Conversely, if tumor antigenic epitopes

are cross-presented by DCs, but not directly presented by tumor

cells, irrelevant immune responses may be primed. Such responses

may not be directly protective, because the activated, tumor

antigen-specific TCD8+ would not recognize and eliminate these

tumor cells. Furthermore, the elicited TCD8+ could even be

detrimental when they are immunodominant, because they may

eliminate the cross-presenting DCs upon subsequent vaccinations

and thus significantly impair priming of other subdominant T cell

responses that may be beneficial to the host, a phenomenon called

immunodomination [22,23]. This scenario has potentially high

clinical significance because it is difficult to alter antigen

presentation by tumor cells in vivo. To date, few studies

demonstrated such difference between direct- and cross-presenta-

tion for the same TCD8+ epitopes.

NY-ESO-1 is a cancer testis (CT) antigen expressed by a wide

range of human tumors [24,25,26]. It is highly immunogenic both

in natural disease and in vaccination settings [6,27]. To

understand the underlying mechanisms for such outstanding

immunogenicity, the antigen processing and presentation proper-

ties of the NY-ESO-1 ISCOMATRIXTM vaccine and other

formulations of NY-ESO-1 antigen have been characterized in our

laboratories [3,28]. In the present study, we identified and

characterized another unique NY-ESO-1 epitope restricted to

HLA-B*1801 (hereafter HLA-B18) from a patient who participat-

ed in our NY-ESO-1 ISCOMATRIXTM vaccine trial [6]. The

novel T cell epitope, NY-ESO-188–96 (LEFYLAMPF), was shown

to elicit immunodominant responses and to be efficiently cross-

presented by full-length, soluble NY-ESO-1 pulsed monocyte

derived dendritic cells (MoDCs). However, this epitope is poorly

directly presented by tumor cells expressing both HLA-B18 and

NY-ESO-1, unless the immunoproteasome is expressed at high

level. Our results demonstrate that not all immunodominant

responses may play a direct role to eliminate tumor cells.

Results

Identification and Characterization of a Novel TCD8+
Epitope NY-ESO-188–96 Presented by HLA-B18

In order to examine the T cell mediated immune response to

NY-ESO-1, a systematic 18 mer peptide screen was performed

using peripheral blood mononuclear cells (PBMCs) from melano-

ma patient 8 previously vaccinated with NY-ESO-1 ISCOMA-

TRIXTM vaccine [6]. To preserve PBMC samples, pooled 18 mer

peptides were used to stimulate NY-ESO-1 specific T cells in the

PBMCs. The cultures containing amplified NY-ESO-1-specific

TCD8+ were subsequently assessed with individual 18 mer

peptides. Our screen showed that the patient had an immunodo-

minant response to NY-ESO-1 in the 79–96 region (Figure 1A).

Using overlapping 13mer and shorter peptides within the 79–96

sequence in conjunction with peptide prediction algorithms, we

narrowed down the likely minimum epitope to 88–96. To confirm

this, the NY-ESO-188–96 peptide and two other shorter peptides

were synthesized and tested by the antigen-specific T cell line. As

shown in Figure 1B, at 1028 M and in the absence of serum

proteases, NY-ESO-188–96 was able to activate the antigen-specific

TCD8+, but the two peptides with a single amino acid truncation at

either end failed to do so, indicating that NY-ESO-188–96 is the

minimal epitope. Typically 50% of specific T cells within such a

TCD8+ line would be activated by as little NY-ESO-188–96 peptide

as 1029 M (Figure. 1C).

To characterize which HLA class I allele bound the NY-ESO-

188–96 peptide, homozygous lymphoblastoid cell lines (LCL)

sharing HLA molecule with patient 8, namely 9010, 9039, and

9063, were pulsed with NY-ESO-188–96, washed, and co-cultured

with TCD8+ specific for NY-ESO-188–96. Clearly these TCD8+
produced IFN-c only when co-cultured with peptide pulsed LCL

9039 (Figure. 1D), which shared HLA-B18 and HLA-Cw5 with

patient 8. However, LCL 9063 also expressed HLA-Cw5 and was

not able to present NY-ESO-188–96. We further excluded HLA-

Cw7 as the restriction allele using NY-ESO-188–96-pulsed LCL

that only shared HLA-Cw7 with the patient, which did not

activate the TCD8+ line (data not shown), and concluded that

HLA-B*1801 presented NY-ESO-188–96.

Having shown that the NY-ESO-188–96-specific TCD8+ response

is HLA-B18-restricted, and is immunodominant in patient 8, we

investigated whether this response was induced by vaccination. We

expanded T cells from PBMC of patient 8 collected before or 70

days after vaccination. Although the response to HLA-B18/NY-

ESO-188–96 was detectable in the pre-vaccination PBMC sample

(0.19% of total TCD8+, Figure 2A), it was obviously boosted by the

NY-ESO-1 ISCOMATRIXTM vaccine (1.38% of total TCD8+ post

vaccination, Figure 2A). We then examined whether a similar

response can be found in PBMCs from other melanoma patients

who also express HLA-B18 and had anti-NY-ESO-1 antibody

response, which is often associated with anti-NY-ESO-1 T cell

response [27]. Antigen-specific TCD8+ were expanded using NY-

ESO-179–91 peptide and then assessed their antigen-specificity

using both tetramer and intracellular cytokine staining (ICS) for

IFN-c. As shown in Table 1, among eight other HLA-B18+

patients, three of the patients had detectable TCD8+ specific for

HLA-B18/NY-ESO-188–96. Interestingly, all three were inciden-

tally placed in the vaccine groups and the responses were pre-

existed before vaccination, indicating that the response we

detected in patient 8 is not a single case and the anti-NY-ESO-

188–96 response is likely the immunodominant response associated

with HLA-B18. However, the other five samples showed no

detectable response to this epitope.

To further characterize this immunodominant T cell response,

we conducted a T cell repertoire analysis on TCD8+ specific to

HLA-B18/NY-ESO-188–96 in PBMCs from patient 8. While the

majority of T cells used Vb3.1, 5a, 8a and 13, other Vb chains

were also used by the antigen-specific TCD8+ (Figure 2B),

indicating that the NY-ESO-188–96-specific TCD8+ lines used in

this study are of polyclonal nature.

A CD8+ Epitope Crosspresented from Soluble Antigen
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NY-ESO-188–96-specific TCD8+ do not Recognize
Melanoma Cell Line SK-MEL-8

We have so far shown that the NY-ESO-188–96-specific TCD8+
in most patients were spontaneously generated and can be boosted

by vaccination with NY-ESO-1 ISCOMATRIXTM vaccine. It is

important to find out whether these TCD8+ are able to recognize

tumor cells. To this end, we expanded TCD8+ lines either specific

to HLA-B18/NY-ESO-188–96, or HLA-A2/NY-ESO-1157–165, a

well characterized and naturally presented epitope to serve as a

positive control [3,29]. The two TCD8+ lines were then used to

detect direct antigen presentation on a melanoma cell line, SK-

MEL-8, which expresses NY-ESO-1 as well as HLA-B18 and

HLA-A2. HLA-B18/NY-ESO-188–96 and HLA-A2/NY-ESO-

1157–165 tetramers were used in combination with ICS for IFN-c
to positively identify the antigen-specific TCD8+ [30]. As expected,

peptide-pulsed HLA-B18+ and HLA-A2+ LCL line 9039 (not

shown) and SK-MEL-8 induced IFN-c production from most of

the tetramer+ TCD8+ specific to either epitope (Figure. 3A left

panels). Importantly, more than half (50.3% and 52.2%) of the

NY-ESO-1157–165 specific TCD8+ were stimulated to produce IFN-

c by co-culture with SK-MEL-8 tumor cells regardless of the 48

hour IFN-c induction (Figure. 3A middle and right panels).

However, NY-ESO-188–96 specific TCD8+ did not respond to the

same APCs (Figure. 3A top panels), despite higher avidity for

HLA-B18/NY-ESO-188–96 compared to the TCD8+ specific to

HLA-A2/NY-ESO-1157–165 (Figure. 3B), indicating that either

HLA-B18/NY-ESO-188–96 is not directly presented or not

presented in sufficient quantity by this tumor line, as required to

trigger the antigen-specific TCD8+.

Presentation of NY-ESO-188–96 is Immunoproteasome-
dependent and Requires Higher NY-ESO-1 Expression

It is well established that IFN-c treatment of cell lines lead to

enhanced antigen processing and presentation, as IFN-c up-

regulates MHC class I expression and switches constitutive

proteasome to immunoproteasome [31].

The apparent lack of endogenous presentation of HLA-B18/

NY-ESO-188–96 by this tumor cell line was further investigated, in

combination with IFN-c treatment, using the following two

strategies to enhance NY-ESO-1 expression. Firstly, we treated

Figure 1. Identification and characterization of a novel NY-ESO-1 TCD8+ epitope. A. PBMCs were collected from patient 8 on day 70
following vaccination with NY-ESO-1 ISCOMATRIXTM vaccine. These cells were cultured with a panel of overlapping NY-ESO-1 18 mer peptides and
then tested for responsiveness to each peptide in an ICS assay for IFN-c. Because the background to control peptides was negligible, the results from
individual cultures were plotted as a single combined figure. B, C, TCD8+ line expanded with NY-ESO-179–96 18 mer was tested under FCS-free
condition for its reactivity to various HPLC-purified peptides (B) and the minimum peptide NY-ESO-188–96 at various peptide concentrations (C). D, a
panel of LCL lines sharing HLA alleles with patient 8 were pulsed with the minimum NY-ESO-188–96 peptide, extensively washed, co-cultured with NY-
ESO-188–96-specific TCD8+ line and followed with ICS.
doi:10.1371/journal.pone.0044707.g001

A CD8+ Epitope Crosspresented from Soluble Antigen
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tumor line SK-MEL-8 with DNA hypomethylation agent 5-aza-2-

deoxycytidine (5-aza-dC), which has been reported to upregulate

cell surface class I and induce or upregulate the expression of

different CT antigens in cultured human melanoma lines [32].

Secondly, we infected the cell line with recombinant vaccinia

viruses encoding NY-ESO-1 (rVV-NY-ESO-1), which was

expected to boost NY-ESO-1 expression. As shown in Figure 4A,

the IFN-c treatment increased cell surface class I expression by

two fold for SK-MEL-8. However, 5-aza-dC treatment did not

increase class I expression. We also performed the treatment under

various concentration of 5-aza-dC and similar results were

obtained (data not shown). We next used Western blotting to

assess the changes in the expression of NY-ESO-1 and the

immunoproteasome subunits for the tumor cell line after these

treatments. As shown in Figure 4B, SK-MEL-8 expressed NY-

ESO-1 at a level that was readily detected and was not further

induced by 5-aza-dC treatment. IFN-c treatment did not enhance

NY-ESO-1 expression although it clearly induced the expression

of the immunoproteasome subunit LMP2, LMP7 and MECL-1

(Figure 4B) indicating the switching over from constitutive

proteasome to immunoproteasome. Of note, there are faint,

similar sized bands revealed by both anti-LMP2 and anti-LMP7

anti-sera before IFN-c treatment. It is possible that these cells may

express low level of these subunits under normal culture condition.

As expected, rVV-NY-ESO-1 infection of the tumor line greatly

boosted NY-ESO-1 expression (,6-fold increase according to the

analysis performed using ImageQuant TL software, Amershan

Biosciences, data not shown). Importantly, the above-described

changes were treatment-specific because the internal loading

control of each sample, b-actin, remained unchanged (Figure 4B

top and data not shown).

Using similar T cell lines as shown in Figure 3, we tested the

above treated SK-MEL-8 cells for their antigen presenting

capacity. NY-ESO-1157–165 was again efficiently presented without

the treatments. However, the IFN-c-treated SK-MEL-8 showed

enhanced antigen-presenting capacity for NY-ESO-1157–165

Table 1. TCD8+ response to HLA-B18/NY-ESO-188–96.

Group Patients HLA
Tetramer or ICS (% of total
CD8+ T cells) Vaccination status

HLA-A HLA-B HLA-C Pre-vac Post-vac

NY-ESO-1 ISCOMATRIXTM

Vaccine
8 A68 B1801, B4402 Cw5, Cw7 0.19 1.220 Boosted

111 A2, A3 B1801, B5101 Cw1,Cw7 2.87 3.76 Pre

102 A3, A11 B1801, B4403 Cw7,Cw16 3.89 4.76 Pre

109 A2 B1801, B4402 Cw5,Cw7 0.140 0.140 Pre

12 A25, A68 B1801, B1402 Cw7,Cw8 ND –*

Placebo controls 115 A2, A30 B1801, B3901 Cw5 ND –*

114 A2, A25 B1801, B3701 Cw6 ND –*

29 A1, A31 B18, B27 Cw2,Cw6 ND –*

113 A3, A25 B18, B7 Cw7, ND –*

Melanoma patients from three clinical trials (see Materials and Methods) with detectable anti-NY-ESO-1 antibody responses and HLA-B18 expression were selected for
the screen. T cells from PBMC samples post vaccination (or placebo controls that did not receive the NY-ESO-1 ISCOMATRIXTM vaccine but received diluents) were
expanded with 18 mer NY-ESO-179–96 peptide for 12,15 days and assessed with NY-ESO-188–96 in an ICS assay (only ICS results ,0.1% are shown as negative ‘‘–’’
indicated by ‘*’). For patients who showed positive TCD8+ response to this epitope (.0.1%, data not shown) in their post vaccination samples, pre- and post-vaccination
PBMC samples were then expanded the same way side-by-side in a second screen intended to determine whether the response was a result of the vaccination. The
peptide-specific TCD8+ in the second screen were assessed with the specific HLA-B18/NY-ESO-188–96 tetramer. Tetramer results .0.1% of total CD8+ T cells with a discrete
staining pattern are shown; and those results ,0.1% are shown as ‘‘-’’. Pre – pre-existed response; Boosted – vaccine-boosted response; ND – not determined, Pre-vac,
prior to vaccination; Post-vac, after vaccination.
doi:10.1371/journal.pone.0044707.t001

Figure 2. NY-ESO-188–96-specific T cells are vaccine boosted
and utilize polyclonal T cell receptors. PBMCs from patient 8
collected before (day 0) and after (day 70) vaccination with NY-ESO-1
ISCOMATRIXTM vaccine were expanded with 18 mer NY-ESO-179–96 and
the T cells were assessed by ICS (A). A similar T cell line expanded from
day 70 PBMC sample from patient 8 was first stimulated with NY-ESO-
188–96 peptide, then split into multiple wells and stained with anti-CD8
and a panel of antibodies specific to various TCR Vb families separately,
followed with ICS for IFN-c (B). Graph indicates the percentage of NY-
ESO-188–96-specific (IFN-c-producing) T cells expressing the indicated
TCR Vb families.
doi:10.1371/journal.pone.0044707.g002

A CD8+ Epitope Crosspresented from Soluble Antigen
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(Figure 5A). By contrast, the HLA-B18/NY-ESO-188–96 specific

TCD8+ were not activated by the same cells, unless they were both

IFN-c-treated and rVV-NY-ESO-1 infected (Figure 5A and the

FACS plots in Figure 5B correspond to IFN-c-induced SK-MEL-8

that were either uninfected or infected with rVV-NY-ESO-1 or

rVV-GFP). These data imply that the NY-ESO-188–96 epitope was

processed inefficiently from endogenous antigen and the process-

ing relied on the action of the immunoproteasome rather than the

constitutive proteasome.

NY-ESO-188–96 is Directly Presented by Tumor Cells
Expressing High Level of Immunoproteasome

To exclude the possibility that the above results were the biased

outcome of a single melanoma line SK-MEL-8, we collected four

other HLA-B18 expressing melanoma lines (for detailed HLA class

I typing information, please see Table S1). These lines were again

left untreated or treated with IFN-c to induce both immunopro-

teasome and cell surface class I expression; or after IFN-c-

induction the cells were further infected with rVV-NY-ESO-1 to

either induce or enhance NY-ESO-1 expression. As IFN-c can

induce many changes in gene expression, the changes of the

immunoproteasome in these cell lines were further monitored

functionally by the change of antigen presentation for the HLA-

A2/Melan A26–35 epitope as its presentation was reported

previously to be impaired by the immunoproteasome [15]. As

shown in Figure 6A, although LM-MEL-59, SK-MEL-8 and SK-

MEL-25 all expressed NY-ESO-1 antigen and B*1801, they did

not present NY-ESO-188–96, unless they are both IFN-c-induced

and infected with rVV-NY-ESO-1. This recognition also critically

depends on the high avidity of NY-ESO-188–96-specific T cell line

as a lower avidity line failed to do so (Figure S1A, B). The

recognition is not an artifact of rVV infection as the same tumor

line transiently transfected with pcDNA3-NY-ESO-1 during IFN-

c-induction also presented this epitope (Figure S1C). However,

SK-MEL-44 was not able to present NY-ESO-188–96, even under

the same treatment regime with similar HLA expression level. It is

highly likely that the single AA substitution in B*1803 (Y74D) from

B*1801, which is located on the a1-helixes of the peptide-binding

cleft, had either prevented NY-ESO-188–96 from binding B*1803

or the T cells from recognizing B*1803/NY-ESO-188–96.

Overall, most tested melanoma cell lines expressed detectable

immunoproteasome subunit LMP2 and LMP7 although at

relatively low level (Figure 6B). Interestingly, the cell line LM-

MEL-51 presented NY-ESO-188–96 quite efficiently even when it

was not treated with IFN-c although rVV-NY-ESO-1 infection

did further enhance the presentation. However, this cell line

expressed high level of LMP2 and LMP7 under normal cell

culture conditions and the IFN-c induction did not further induce

such expression significantly (Figure 6B). Of note, the immuno-

proteasome expression level in LM-MEL-51 in the absence of

IFN-c-induction seemed to be even higher than that of other lines

after IFN-c-induction. Importantly, as an internal control the

presentation of Melan A26–35 by the three HLA-A2 positive cell

Figure 3. NY-ESO-188–96 is not naturally presented by melanoma cells. A, NY-ESO-1157–165– and NY-ESO-188–96–specific TCD8+ lines were
expanded from PBMCs collected from the previously reported patient 7 [6] and patient 8 with 18 mer peptides NY-ESO-1157–174 and NY-ESO-179–96

respectively. These T cells were then co-incubated with tumor line (SK-MEL-8) with or without a 48 hr IFN-c induction (see Materials and Methods
for details). The untreated SK-MEL-8 cells were also pulsed with both peptides followed by washing out excessive peptides to serve as a maximum
antigen presentation control. Antigen-specific T cell activation was then revealed by tetramer and IFN-c double staining. Percentage represents
antigen-specific, IFN-c-producing cells amongst total tetramer positive cells (note, the double negative cell population was not included in the
percentage calculation). B, the same TCD8+ lines used in A were also assessed for their affinity by peptide titration. Percentage represents Ag-specific T
cells among total CD8+ T cells. Similar data were obtained from three similar experiments.
doi:10.1371/journal.pone.0044707.g003

A CD8+ Epitope Crosspresented from Soluble Antigen
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lines were easily detected and decreased after IFN-c-induction,

confirming their impaired presentation by the immunoproteasome

reported by Morel et al [15] and further implying the induction of

the immunoproteasome by IFN-c treatment. It is not clear why

LM-MEL-51 did not present NY-ESO-1157–165 as well as SK-

MEL-8 although the former expressed higher level of HLA-A2

(Figure 6C and Figure S1B). It is possible that the direct

presentation of NY-ESO-1157–165 requires the activity of the

constitutive proteasome, perhaps even more so than that required

by the Melan A26–35. Taken together, the direct presentation of

NY-ESO-188–96 by melanoma lines requires high level of both

immunoproteasome and NY-ESO-1 expression by tumor lines.

NY-ESO-188–96 is Efficiently Cross-presented by MoDC
Knowing that the HLA-B18/NY-ESO-188–96 response is often

detectable in melanoma patients and that anti-tumor immunity

relies on cross-presentation, we hypothesized that this epitope is

efficiently cross-presented by DCs. Our previous studies have

shown that the antigen formulations influence the efficiency and

the pathways of antigen processing and cross-presentation

[3,21,28]. To investigate the cross-presentation of NY-ESO-188–

96 from full-length antigen, MoDCs expressing both HLA-B*1801

and HLA-A*0201 were incubated overnight in the presence of

different NY-ESO-1 antigen formulations including soluble NY-

ESO-1 protein, NY-ESO-1 ISCOMATRIXTM vaccine and NY-

ESO-1/IC and subsequently co-cultured with TCD8+ lines specific

to either HLA-A2/NY-ESO-1157–165 or HLA-B18/NY-ESO-188–

96. TCD8+ activation was again enumerated with tetramer and

ICS. As shown in Figure 7A, 15 to 30% of NY-ESO-1-specific

TCD8+ were activated by NY-ESO-1/IC and NY-ESO-1 ISCO-

MATRIXTM vaccine, respectively for the two TCD8+ lines,

although the NY-ESO-1157–165 epitope was cross-presented

slightly more efficiently than NY-ESO-188–96. Few T cells of the

TCD8+ line specific to HLA-A2/NY-ESO-1157–165 were activated

by the MoDCs incubated with soluble NY-ESO-1 protein. By

contrast more than 60% of NY-ESO-188–96 specific TCD8+ were

activated by the same MoDCs incubated with the soluble NY-

ESO-1 protein. We further demonstrated that these MoDCs first

took up the soluble NY-ESO-1 protein followed by endogenous

antigen processing to present these epitopes; because under the

same conditions with BFA addition, which prevents the HLA from

Figure 4. IFN-c-induction induces immunoproteasome and
rVV-NY-ESO-1 infection significantly increases NY-ESO-1 ex-
pression in tumor cells. Tumor cell line, SK-MEL-8, was treated with
either IFN-c for 48 hrs or 5-aza-dC for 72 hrs. The cells were then
stained for their surface class I expression (A). The treated cells were
also infected with rVV-NY-ESO-1, or rVV-GFP as a control, for 4 hours.
The infected and uninfected cells were then lysed immediately for
Western analysis (B). Similar data were obtained from three similar
experiments. Note, b-actin was reblotted after stripping the previously
bound anti-NY-ESO-1 antibody.
doi:10.1371/journal.pone.0044707.g004

Figure 5. NY-ESO-188–96 is poorly presented directly by tumor
cells. In A and B, Tumor cells were treated as described in Figure 4. The
treated tumor cells were then co-cultured with T cell lines specific for
NY-ESO-1157–174 and NY-ESO-188–96 as described in Figure 3. The purity
of the TCD8+ lines were .70% (data not shown). The antigen
presentation results are shown in A and the FACS plots corresponding
to NY-ESO-188–96 TCD8+ responses to IFN-c treated SK-Mel-8 are shown
in B (shown by the arrow). Similar data were obtained from three similar
experiments.
doi:10.1371/journal.pone.0044707.g005
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Figure 6. NY-ESO-188–96 is directly presented by tumor cells expressing high level of immunoproteasome. Five melanoma lines,
including SK-MEL-8, were left untreated or treated with either IFN-c for 48 hrs or were further infected with rVV.NY-ESO-1 for 5 hrs. The tumor cells
were then co-cultured with T cell lines specific for NY-ESO-1157–174, NY-ESO-188–96 and Melan A26–35 as described in Figure 3. The purity of the TCD8+
lines were 42%, 88% and 68% respectively (data not shown). The antigen presentation results are shown in A and the western blot results for LMP2,
LMP7 and the loading control GAPDH for the corresponding tumor lines and the treatment conditions are shown in B. The FACS analysis results of
the cell surface HLA molecules as Mean Channel Fluorescence intensity (MCF) are shown in C. The MCF values for HLA-A2 and B18 were about 100 for
the FITC-conjugated secondary antibody alone; and those values for the All Class I group for the PE-conjugated secondary antibody alone were about
300. Similar data were obtained from three similar experiments.
doi:10.1371/journal.pone.0044707.g006
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leaving the endoplasm reticulum, cross presentation was abolished

(Figure 7B). This indicated that in our system the NY-ESO-188–96

peptide was generated intracellularly after antigen uptake and not

extracellularly by serum proteases. We attempted incubating NY-

ESO-1+ tumor cell lysates with MoDCs in such assays with no

success (data not shown). We believe that the NY-ESO-1 protein

amount might be too little relative to the total cellular protein

amount in the tumor lysates.

Discussion

In the process of monitoring T cell responses induced by the

NY-ESO-1 ISCOMATRIXTM vaccine, we identified a novel NY-

ESO-188–96 epitope presented by HLA-B18 molecule. The

polyclonal TCD8+ response to this epitope was immunodominant

in PBMC from patient 8 and was clearly boosted by our

vaccination. The NY-ESO-188–96 peptide was efficiently cross-

presented by MoDCs pulsed with soluble, recombinant NY-ESO-

1 protein, which is different to what has been found for other NY-

ESO-1-derived TCD8+ epitopes [3,21,28].

It is well established that direct antigen presentation typically

requires ongoing antigen synthesis and proteasome-mediated

degradation [16,17]. However, cross-presentation does not require

sustained antigen synthesis and degradation in antigen-donating

cells [19]. Given these contrasting requirements between the two

presentation pathways and taking into account the peptide

cleavage preferences for the constitutive proteasome and the

immunoproteasome respectively, there has been surprisingly no

reported example demonstrating differential cross- and direct-

presentation in human APC. Ochsenbein et al [33] showed that,

in an artificial tumor antigen system in mice, there was direct

priming in the absence of detectable cross-priming for the LCMV-

derived GP33 epitope expressed on either fibroblasts or EL-4

thymoma cells. In this system, syngeneic tumor cells were used and

it was not clear whether or not priming relied on cross-

presentation by DCs. Consequently, these authors questioned

the physiological significance of cross-presentation in anti-tumor

and anti-viral immune responses [33]. In an HLA-A2 transgenic

mouse model, Chapatte et al showed that only immunoprotea-

some deficient DCs were able to prime TCD8+ response to a

melanoma differentiation antigen Melan A [34]. However, in this

system DCs were infected with a non-replicative lentivirus

expressing Melan A before being transferred into naı̈ve mice.

Therefore, potentially only direct antigen presentation and

priming were assessed, which is likely not the major role DCs

play in anti-tumor immunity [34]. Our results clearly demonstrat-

ed that cross-presentation of tumor antigens, such as NY-ESO-

188–96, occurs readily in cultured MoDCs, especially from soluble

form of NY-ESO-1. We are not aware of any other T cell epitope

that is more efficiently cross-presented from soluble antigen than

complexed antigen forms. This is likely also the case in vivo,

because among the nine melanoma patients screened in our study,

four had detectable HLA-B18/NY-ESO-188–96 responses, while

there was no direct presentation of this epitope by most melanoma

cells tested. The same melanoma cells were able to present NY-

ESO-1157–165 efficiently under the same conditions (Figure 5, 6,

and Figure S1B, C) indicating that the amount of NY-ESO-1

expressed by the tumor lines is physiologically sufficient and the

antigen processing and presentation machinery is normal. Judging

from the NY-ESO-1 amount after rVV-NY-ESO-1 infection

(Figure 4B), with more than 6-fold increase in expression in the

infected SK-MEL-8, it is inconceivable that such level of NY-

ESO-1 expression might be achieved in vivo under physiological

conditions. Therefore, it is difficult to envisage that the HLA-B18/

NY-ESO-188–96 epitope would be ever presented in sufficient level

directly on tumor cell surface unless there was a concomitant

infection in the tumor-bearing host and the infection resulted in

sufficient IFN-c production to induce immunoproteasome in these

cells. Interestingly, one of the melanoma lines tested, LM-MEL-

51, expressed high level of immunoproteasome and directly

presented NY-ESO-188–96 (Figure 6A). However, it is not clear

whether such property was developed in vivo or in vitro. These

results not only indicate that the two NY-ESO-1-derived epitopes

are processed and presented differently by the intracellular antigen

processing and presentation machinery, for both direct- and cross-

presentation; but also provide strong evidence that some of the

epitopes may not serve as direct target on tumor cells.

Figure 7. NY-ESO-188–96 is cross-presented efficiently by DCs
from soluble antigen. In A, MoDCs expressing both HLA-A2 and HLA-
B18 were cultured for 7 days, and then incubated overnight under the
indicated conditions before being co-cultured with the indicated TCD8+
lines for 5 hrs in the presence of BFA. NY-ESO-1 specific TCD8+ activation
was assessed by tetramer and ICS. IFN-c producing cells out of total
antigen-specific (tetramer positive) TCD8+ were converted to percent-
ages of maximum activation induced by the respective minimum
peptide (peptide activation of NY-ESO-1157–174 TCD8+ line and NY-ESO-
179–96 TCD8+ line were both 30% to 45% for all three experiments
conducted, data not shown) and plotted as ‘‘% Maximum activation’’.
After data conversion, mean values and standard deviations were
calculated from data obtained from three similar experiments. In B, one
of the control experiments was shown for APCs that were either pulsed
with the corresponding peptide or soluble NY-ESO-1 for one hour
followed with BFA addition to demonstrate the nature of intracellular
cross-presentation for both TCD8+ epitopes without affecting extracel-
lular peptide presentation. Similar results were obtained twice.
doi:10.1371/journal.pone.0044707.g007
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In patients with such T cell responses, the tumor cells would

therefore behave as natural immune escape mutants, much the

same as those that have down regulated their MHC class I

expression and lost their antigen-presentation capacity [22,35].

However, the key difference here maybe that the antigen is likely

efficiently taken up by tumor stroma cells (including DCs,

macrophages and perhaps others) and the TCD8+ epitopes are

then more efficiently displayed. It is not yet known whether stroma

elimination by such TCD8+ would be beneficial in humans.

However, Spiotto et al. recently demonstrated that murine tumor

cells lacking antigen-presenting MHC molecules were controlled

by TCD8+ specific for antigens expressed by these tumor cells

through the elimination of stroma cells that cross-presented the T

cell epitopes from the same tumor antigens [36]. Tumor stroma

has been known to play a major role to support tumor growth and

sometimes to suppress the immune system [37]. It is therefore

possible that TCD8+ specific for epitopes that are efficiently cross-

presented might actually play an important role, albeit indirect, to

keep tumors in check.

On the other hand, if such TCD8+ responses are immunodo-

minant, such is the case in our patient 8, the subdominant yet

tumor-recognizing TCD8+ responses may not be efficiently

stimulated due to excess expansion of the immunodominant

TCD8+ and, as a result of that, elimination of the cross-presenting

DCs. Therefore, TCD8+ with this specificity will further expand

and prevent other potentially more beneficial, but subdominant

TCD8+ responses from being activated or expanded by the same

DCs, a phenomenon termed as immunodomination [23]. There is

an example in immunity against influenza A virus in C57BL/6

mouse model, in which vaccinating TCD8+ specific to the

immunodominant epitope from acidic polymerase PA224–233

caused delayed viral clearance, because this epitope is only

generated by DCs [38,39] due to its strict immunoproteasome

dependence [13,14].

Biased differential antigen presentation by either the immuno-

proteasome or the constitutive proteasome has been reported for

directly presented, tumor derived epitopes [15,34,40,41]. It has

also been recently shown that human MoDCs were more capable

of presenting T cell epitopes from melanoma antigens when

immunoproteasome expression was knocked down by small

interference RNA (siRNA) [42]. However, the later study

investigated T cell responses in already ‘primed’ melanoma

patients and did not directly address the role of DC’s cross-

presentation in anti-tumor immunity, because the tumor antigens

studied were all introduced into these DCs by RNA transfection

[42]. Our study demonstrated a near ‘black-and-white’ outcome

between direct- and cross-presentation for the NY-ESO-188–96

epitope unless high level immunoproteasome is expressed by

tumor cells. Importantly, our results may indicate the existence of

a whole group of TCD8+ epitopes resulted from differential antigen

processing and presentation between DCs and tumor cells. As NY-

ESO-188–96-specific T cells are naturally primed and immunodo-

minant in the melanoma patient 8 examined in detail in our study,

our findings have important implications for future vaccine design.

For example, it might be desired to avoid priming or boosting such

TCD8+ by using mutated NY-ESO-1. For instance mutating the

anchor residues (89E or 96F) to an Alanine for the NY-ESO-188–96

epitope would abrogate the stimulation of its specific TCD8+.

Alternatively, using an antigen form rather than the soluble one

may minimize the stimulation to these TCD8+ if their expansion

results in immunodomination. Conversely, if these TCD8+ play a

positive role through the elimination of stroma cells, as reported in

the above mentioned murine system, vaccination with either the

soluble form of NY-ESO-1 or the minimal peptide NY-ESO-188–

96 would then be ideal. Therefore, using full-length tumor antigen

as vaccine, although potentially providing broader coverage for T

cell epitopes and HLA polymorphism as it may provide all the

available epitopes, could be an over-simplified strategy due to the

lack of consideration on differential direct- and cross-presentation,

not to mention it does not avoid stimulating potential antigen-

specific regulatory T cells [43].

Materials and Methods

Patients
Melanoma patients (listed in Table 1) were vaccinated by

intramuscular injection with 100 mg NY-ESO-1 ISCOMA-

TRIXTM vaccine from LUD99-008 [6] or LUD2002-013

(ClinicalTrials.gov Identifier: NCT00518206) and LUD2003–

013 [44]. The LUD99-008 study included patients who received

placebo or NY-ESO-1 protein alone and showed that these

cohorts were not effectively vaccinated. All studies were approved

by the Human Research Ethics Committees of Austin Health and

the Peter MacCallum Cancer Center. All patients provided

written informed consent.

Peptides, Antibodies, Tetramers and NY-ESO-1
Formulations

NY-ESO-1 overlapping 18 mers, 9mers (88–96 (LEFYLAMPF)

and 157–165 (SLLMWITQC)) and shorter peptides and Melan

A26–35 (EAAGIGILTV) were synthesized by Auspep (Mel-

bourne, Australia). Monoclonal antibodies to CD8, CD4, IFN-c
and HLA class I (W6/32) were purchased from BD (Franklin

Lakes, NJ) and the anti-HLA-A2 (BB7.2), Bw6 (which recognizes

B18 and a few other HLA-B alleles) were used as hybridoma

culture supernatants. PE-conjugated HLA-B18/NY-ESO-188–96

and HLA-A2/NY-ESO-1157–165 tetramers were synthesized at the

Tetramer Production Facility of the Ludwig Institute for Cancer

Research (Lausanne, Switzerland). Flow cytometry was performed

using a BD FACSCalibur or FACSCanto II instrument, and data

were analyzed using FlowJo software (TreeStar Inc., Ashland,

OR).

Full length recombinant NY-ESO-1 protein was produced in E

coli and purified in the GMP facility of the Ludwig Institute for

Cancer Research at the Memorial Sloan-Kettering Cancer Center

(New York, USA). Endotoxin levels ranged between 3–31 EU/

0.1 mg of protein (limit ,175 EU/0.1 mg protein). ISCOMA-

TRIXTM adjuvant (CSL Limited, Victoria, Australia) formulated

NY-ESO-1 was generated as described [45,46]. Immune com-

plexes (ICs) (NY-ESO-1/IC) were generated by mixing NY-ESO-

1 protein with anti-NY-ESO-1 mAb ES121 at a 1:2 molar ratio in

serum-free RPMI-1640 at 37uC for 30 min as previously described

[3].

Cell Lines, MoDCs, T Cell Culture and Media
All cell lines are maintained in complete medium RF-10

consisting of RPMI-1640 supplemented with 2 mM Glutamax,

antibiotics, 10 mM HEPES (Invitrogen, Carlsbad, CA), 1% non-

essential amino acids and 10% fetal calf serum (FCS, Thermo

Trace, Melbourne, Australia). The SK-MEL-8, SK-MEL-25 [47]

and SK-MEL-44 [48] melanoma lines were obtained from the

Memorial Sloan-Kettering Cancer Center. LM-MEL-51 and LM-

MEL-59 melanoma cell lines were established in our laboratory

from melanoma biopsies. Epstein-Barr virus (EBV) transformed,

homozygous LCL 9010, 9063 and 9039 were made available from

the 10th International HLA Workshop (New York). PBMCs were

prepared from whole blood by Ficoll-Paque centrifugation. T cell

lines were generated using RF-10 containing 25 U/ml interleukin-
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2 (IL-2, Cetus, Emeryville, CA). PBMC from melanoma patients

expressing HLA-A2 and HLA-B18 and previously vaccinated with

NY-ESO-1 ISCOMATRIXTM vaccine were stimulated with

18 mers NY-ESO-179–96 (GARGPESRLLEFYLAMPF contain-

ing NY-ESO-188–96) and NY-ESO-1157–174

(SLLMWITQCFLPVFLAQP containing NY-ESO-1157–165) at

561026 M for 1 hour at room temperature [49]. T cell lines

were used at least 12 days after culture. In some cases, tetramer

enriched antigen-specific T cells were further expanded by PHA

and allogeneic feeders. T cell specificity was confirmed by tetramer

staining. For the 18 mer screen, PBMC from patient 8, post-

vaccination (70 days) with NY-ESO-1 ISCOMATRIXTM vaccine,

were cultured for 13 days with pooled overlapping NY-ESO-1

18 mer peptides (3 or 4 peptides per pool) and then tested for

responsiveness to individual 18 mer peptide within the pool by

ICS for IFN-c [50]. Pre- and post-vaccination PBMCs from

patients who received NY-ESO-1 ISCOMATRIXTM vaccine

were also tested in parallel to determine whether the B18-

restricted, NY-ESO-188–96-specific response was vaccinated or

occurred naturally. MoDC were generated from CD14+ mono-

cytes enriched by MACS beads (Miltenyi Biotec, Auburn, CA) in

the presence of 10 ng/mL IL-4 and 20 ng/mL GM-CSF for 6

days [3].

IFN-c and 5-aza-2-deoxycytidine Treatment of Tumor Cell
Line

The melanoma cell line was cultured in either RF-10 or RF-10

plus 50 ng/ml recombinant human IFN-c (PeproTech) for 48 hrs

before being used as APCs. 5-aza-2-deoxycytidine (5-aza-dC) was

purchased from Sigma-Aldrich. Melanoma cells were pulsed with

0.5 mM 5-aza-dC every 24 h for 3 days as previously described

[32], then used for the indicated experiments and for FACS

assessment of their surface Class I molecules using mouse

monoclonal antibodies (as hybridoma culture supernatants)

BB7.2 (HLA-A2), Bw6 (B18) and W6/32 (pan-class I molecules).

FITC conjugated secondary antibody was used for BB7.2 and Bw6

and PE-conjugated secondary antibody was used for W6/32

readout.

Antigen Pulsing and Recombinant Vaccinia Virus
Infections

For peptide pulsing, cells were incubated with 1026 M peptide

for 1 hour at room temperature, washed extensively before being

incubated with specific TCD8+. Recombinant vaccinia virus (rVV)

encoding NY-ESO-1 (rVV-NY-ESO-1) or Green Fluorescent

Protein (rVV-GFP) were gifts from Dr. Lloyd Old (Ludwig

Institute for Cancer Research, New York, USA) and Drs Jonathan

Yewdell and Jack Bennink (National Institute of Health, Bethesda,

Maryland, USA), respectively. Cells were incubated with rVV at a

multiplicity of infection (MOI) of 10 for 4 hours at 37uC. Infected

cells were then incubated with TCD8+ lines for antigen presentation

readout.

Western Blotting
Cells were lysed in 1% Triton-X (Sigma-Aldrich), and SDS-

PAGE analyses were performed. The proteins were transferred

electrophoretically to a polyvinylidene difluoride membrane

(Millipore). Separate Western blots were performed for NY-

ESO-1, LMP2, LMP7 and MECL-1 expression. All blots used

either b-actin or GAPDH as loading control. After transfer, the

membranes were incubated with the primary anti-b-actin or

GAPDH (abcam) plus anti-NY-ESO-1 mAb (ES121, [50]), or the

anti-LMP2 polyclonal rabbit anti-serum (abcam), or the anti-

LMP7 polyclonal rabbit anti-serum (abcam), or the anti-MECL-1

polyclonal rabbit anti-serum (BIOMOL) at 4uC overnight. All

anti-sera were used at 1:2000 dilutions. The membranes were

washed in PBS, peroxidase-labeled sheep anti-rabbit immuno-

globulins or sheep anti-mouse immunoglobulins for NY-ESO-1

(Silenus Labs) were added at a 1/2500 dilution in PBS with 0.05%

Tween 20. After further washing, the proteins were visualized

radiographically using an electrochemiluminescence (ECL Plus)

substrate (Amersham Biosciences) using a STORM phosphoima-

ger.

T Cell Function Assay
ICS was used in combination with tetramer staining as

previously reported by our group [30]. Briefly, cultured T cells

were re-stimulated with peptides for 4 hours in the presence of

10 mg/mL Brefeldin A (BFA, Sigma-Aldrich). The cells were then

stained with tetramer, anti-CD4 and anti-CD8, fixed with 1%

paraformaldehyde (ProSciTech, Queensland, Australia) and fur-

ther stained with anti-IFN-c in the presence of 0.2% saponin

(Sigma-Aldrich). Up to 30,000 events were recorded on a FACS

instrument and analyzed using FlowJo software.

For peptide titrations, 105 cultured T cells were incubated for 4

hours in the presence of 10 mg/mL BFA and serial dilutions of

peptide followed by ICS readout. In direct presentation assays,

105 T cells were co-cultured with 56104 tumor cells for 4 hours in

the presence of 10 mg/mL BFA followed by ICS readout. For cross

presentation, MoDCs were incubated overnight with 2 mg NY-

ESO-1 protein, NY-ESO-1 ISCOMATRIXTM vaccine or NY-

ESO-1/IC with 1 mg/mL CD40L-trimer (a kind gift from Amgen)

[3,28], in the presence or absence of 5 mg/mL BFA. Tetramer and

IFN-c double positive cells were used to calculate the percentages

of activated, antigen-specific TCD8+. Cells pulsed for 1 hour with

NY-ESO-188–96 peptide and washed before incubation with T

cells served as positive controls. For assessing TCR Vb usage of

peptide-specific TCD8+, peptide-expanded T cells from patient 8

were first activated with NY-ESO-188–96 peptide, then split into

multiple wells and stained with anti-CD8 and a panel of antibodies

specific to various TCR Vb families separately followed with ICS

for IFN-c.

Supporting Information

Figure S1 TCD8+ line from patient 102 is of lower avidity
and extra NY-ESO-1 expression via transfection also
enhances NY-ESO-188–96 presentation. T cell lines were

established using PBMC samples from Patient 8 or 102 under

similar conditions. The early cultures were then enriched through

tetramer-guided sorting and further expanded using PHA non-

specific stimulation. Various tumor lines were either untreated, or

treated for 48 hrs with IFN-c alone, rVV-NY-ESO-1 infected for

5 hrs, or doubly treated with IFN-c followed by rVV-NY-ESO-1

infection before being used as APC to stimulate T cell lines either

specific for A2/NY-ESO-1157–165 or B18/NY-ESO-188–96. In A,

peptide titration assay was performed by ICS without tetramer

staining. The purity of the T cell lines were: patient 8 NY-ESO-

188–96 line 88%; patient 102 NY-ESO-188–96 line 42%; and the

NY-ESO-1157–165 line 66%. B, for the direct presentation, ICS

combined with specific tetramer staining was conducted simulta-

neously as the titration assay shown in A. In C, SK-MEL-8 cells

were either untreated, or induce with IFN-c, or transiently

transfected (without selection) with pc3DNA-NY-ESO-1, 5 hrs

later induced with IFN-c for 48 hrs before being used as APC.

This was conducted on the same day using the same patient 8 NY-
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ESO-188–96 T cell line as that in A and B. Similar results were

obtained twice.

(TIF)

Table S1 Melanoma line HLA typing.
(DOC)
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