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Abstract

Background

Although the polycystic ovary syndrome (PCOS) is the most common endocrine disorder in

women with vast metabolic consequences, its etiology remains unknown and its diagnosis

is still made by exclusion. This study aimed at characterizing a large number of urinary ste-

roid hormone metabolites and enzyme activities in women with and without PCOS in order

to test their value for diagnosing PCOS.

Methods

Comparative steroid profiling of 24h urine collections using an established in-house gas-

chromatography mass spectrometry method. Data were collected mostly prospectively.

Patients were recruited in university hospitals in Switzerland. Participants were 41 women

diagnosed with PCOS according to the current criteria of the Androgen Excess and PCOS

Society Task Force and 66 healthy controls. Steroid profiles of women with PCOS were

compared to healthy controls for absolute metabolite excretion and for substrate to product

conversion ratios. The AUC for over 1.5 million combinations of metabolites was calculated

in order to maximize the diagnostic accuracy in patients with PCOS. Sensitivity, specificity,

PPV, and NPV were indicated for the best combinations containing 2, 3 or 4 steroid

metabolites.
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Results

The best single discriminating steroid was androstanediol. The best combination to diag-

nose PCOS contained four of the forty measured metabolites, namely androstanediol,

estriol, cortisol and 20βDHcortisone with AUC 0.961 (95% CI 0.926 to 0.995), sensitivity

90.2% (95% CI 76.9 to 97.3), specificity 90.8% (95% CI 81.0 to 96.5), PPV 86.0% (95% CI

72.1 to 94.7), and NPV 93.7% (95% CI 84.5 to 98.2).

Conclusion

PCOS shows a specific 24h urinary steroid profile, if neglected metabolites are included in

the analysis and non-conventional data analysis applied. PCOS does not share a profile

with hyperandrogenic forms of congenital adrenal hyperplasias due to single steroid enzyme

deficiencies. Thus PCOS diagnosis by exclusion may no longer be warranted. Whether

these findings also apply to spot urine and serum, remains to be tested as a next step

towards routine clinical applicability.

Introduction

Polycystic ovary syndrome (PCOS) affects about 10% of women and may have major repro-

ductive and metabolic consequences [1,2,3]. PCOS is diagnosed by exclusion mainly because

of lack of knowledge of its complex pathomechanism. Current criteria for diagnosing PCOS

by the Androgen Excess and PCOS Society comprise one, androgen excess by clinical and/or

biochemical means, and two, ovulatory dysfunction and/or polycystic ovaries by morphology,

under the exclusion of other etiologies [1,2]. However, PCOS diagnosis is often delayed and

this affects patients’ well-being negatively [4]. PCOS patients are often insulin resistant and

obese, have often a positive family history, encountered often premature adrenarche, or were

born small for gestational age. Overall, hyperandrogenism seems to play an essential role in

PCOS manifesting clinically as acne, hirsutism, and menstrual disturbances. Biochemically,

elevated serum androgens and increased AMH and LH levels may be found, but to date there

is no reliable diagnostic laboratory test for diagnosing PCOS [1,2]. Unspecific disturbances of

the steroid profile are often observed, but no diagnostic pattern has been identified so far.

Androgens are produced primarily in the gonads and the adrenal cortex. In women about

25% of circulating androgens originate from the adrenals, 25% from the ovaries, and 50%

from peripheral conversion of precursor steroids [5,6]. Normally, plasma testosterone concen-

trations in a 30 year old female are about 10-fold lower compared to an age-matched male, but

may be markedly elevated with PCOS.

The classic androgen biosynthesis pathway in the adrenal cortex zona reticularis (ZR) and

the human ovary is long known and follows the Δ5-pathway from cholesterol to 17-hydroxy-

pregnenolone to dehydroepiandrosterone (DHEA), the first androgen precursor [7]. In the

ZR, the theca cell of the ovary, and in peripheral tissues, DHEA is converted to androstenedi-

one, which is thereafter mainly converted to estrogens and only in little quantities to testoster-

one (T), either in the ovary or in peripheral tissues. Finally, some T may be further converted

to dihydrotestosterone (DHT), the most potent androgen. Recently, an alternative pathway for

androgen biosynthesis has been described first in the tammar wallaby [8], then in humans [9].

In this alternative, backdoor pathway 17-hydroxyprogesterone or 17-hydroxypregnenolone is

driven away from the classic pathway by 5α-3α reducing reactions yielding 17-hydroxy-
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allopregnanolone, which is then converted to androsterone and androstanediol or androstane-

dione before yielding DHT. A role for this alternative pathway has been established for the

human testis [10] and the adrenal cortex [11,12]; and it has been suggested for the human

ovary from immunohistochemical studies [13], and from steroid profiling in PCOS [14]. How-

ever, whether this pathway plays a role for excess androgen production awaits further confir-

mation. It has been reported that in PCOS increased 5α reductase activity converts

androstenedione to androstanedione, which is then converted to DHT [15]. In line with that,

we found increased 5α reductase expression in PCOS ovaries [13]. Furthermore, newer studies

show that the adrenal ZR (and maybe the theca cells) produce 11-OH-androstenedione, which

can be converted to potent androgens such as 11-ketotestosterone [16]. Accordingly, elevated

serum concentrations of 11-oxygenated androgens were measured in women with PCOS [17].

But albeit all these novel findings, there is still no diagnostic laboratory test for PCOS.

Therefore in this study, we performed comprehensive steroid metabolic profiling of urine

specimens obtained from PCOS women and compared it to healthy, matched controls in

order to find PCOS characteristic changes for diagnostic use. We assessed 40 steroid metabo-

lites and analyzed them for significant differences between groups looking at the level of single

metabolites and at ratios characterizing enzyme activities. We also searched for androgens pro-

duced by alternative pathways. In addition, unbiased data analysis was performed by calculat-

ing systematically combinations of steroid metabolites aiming at finding a diagnostic classifier

that would be able to discriminate PCOS from controls.

Materials and methods

Study design and participants

The study was approved by the ethics commission of the Kanton Bern, Switzerland (study

ID004/07). Participants provided written informed consent. The study was partially retrospec-

tive for the PCOS group and fully prospective for the healthy control group. Study inclusion

was possible for patients with a PCOS diagnosis according to the Androgen Excess and PCOS

Society [1]. Females were postmenarchal (13 to 46 years), without hormonal treatments and

without other disease conditions. A 24h-urine sample collection was mandatory. The matched

control group was recruited in parallel with the Swiss Kidney Project on Genes in Hyperten-

sion (SKIPOGH) study [18,19], means healthy controls participated in both studies and did

not have PCOS. Of the 1128 healthy SKIPOGH participants, 591 are women, 264 were� 46

years at the time of urine sampling. Out of these 264 women, 187 were excluded for medica-

tion intake (e.g. anticonception), 7 for irregular periods, 3 for missing urine steroid measure-

ments, and one for diagnosis of PCOS; leaving 66 eligible control participants.

Sample collection and biochemical measurements

Study participants were instructed to collect 24-hour urine. Samples were stored at�-20˚C

before assessing the steroid profile with an in-house method of gas chromatography, mass

spectrometry (GC-MS) [20]. In brief, the method comprises a pre-extraction on a Sep-Pak

C18 column, an enzymatic hydrolysis following extraction on a Sep-Pak C18 cartridge, deriva-

tization and purification on a Lipidex 5000 column. A gas chromatograph 7890A from Agilent

Technologies (La Jolla, California, USA) coupled to a mass selective detector Hewlett-Packard

5975C providing selected ion monitoring (SIM) was used. Further details about the steroid

compounds and the GC-MS method are reported in [20]. Fasting blood samples were analysed

by standard laboratory methods. The homeostasis model assessment insulin resistance

(HOMA-IR) and beta-cell function (HOMA-β) were used to assess insulin resistance and

beta-cell function [21].
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Statistical analyses

All statistical analyses were performed using R (version 3.2.5; R Foundation for Statistical

Computing, Vienna). All tests were two-sided and a p value<0.05 was considered statistically

significant unless otherwise stated. The shape of the distribution of quantitative urinary steroid

hormone metabolites and of steroid hormone ratios was visualized and transformations were

applied to dependent variables in uni- and multivariable linear regression analyses. Regression

models were graphically validated and revealed no obvious deviations from homoscedasticity

or normality. The accuracy of different classifier to discriminate women into PCOS and

healthy was assessed by the area under the curve (AUC) and its 95% CI of a receiver operating

characteristic (ROC) analysis using the statistical R packages “pROC”, “ROCR”, and “Epi”.

Performance of all 40 steroid metabolites and their ratios including sums and products of log,

square root and square were analysed to find the best classifiers. Combinations of 2 or 3 steroid

metabolites were analysed, thereby investigating far more than one million possible combina-

tions. To increase the AUC under the ROC curve, the best discriminating combinations of 3

classifiers were further optimized by stepwise adding and omitting additional metabolites. Sen-

sitivity-specificity versus classifier plot were created for the best classifiers to indicate the

threshold where sensitivity and specificity are simultaneously maximized using the R package

“OptimalCutpoints”, and the corresponding contingency tables with test characteristics were

produced. Multivariable regression models containing four classifiers were described and visu-

alized using the R package “visreg”.

Results

Baseline characteristics of the study population

Baseline characteristics are listed in S1 Table. The PCOS group was younger compared to controls

with a median age of 27 versus 34 years (range 13–46 versus 18–46 years, p<0.001). BMI was not

significantly different. Resting systolic blood pressure was higher in the PCOS group with a

median of 115 versus 109 mmHg (range 100–140 versus 86–148 mmHg, p<0.01). No difference

was observed for resting diastolic blood pressure. Fasting plasma glucose was similar in both

groups, but serum insulin was higher in PCOS subjects with a median of 16.6 versus 3.2 mU/l

(range 5.2–26.7 versus 1–19 mmHg, p<0.001). Accordingly, both HOMA-IR and HOMA-β were

higher in the PCOS group compared to controls indicating insulin resistance in PCOS.

24-hour urine steroid metabolite excretion

Comparison of 24-hour urine steroid metabolite excretion between PCOS and controls by Mann-

Whitney U test, and by uni- and multivariable linear regression analyses is summarized in Table 1

(and S2 Table). The largest increase in median steroid metabolite excretion was found in the

PCOS group for dehydroepiandrosterone (4.9-fold, p<0.001), androstenediol (3.0-fold, p<0.001),

pregnenetriol (2.8-fold, p<0.001), 16α-OH-dehydroepiandrosterone (2.3-fold, p<0.001) and

androstanediol (2.3-fold, p<0.001). Higher excretion was found in controls for pregnanediol

(1.6-fold, p = 0.0019) and estriol (1.4-fold, p = 0.027). In multivariable analyses a higher excretion

was found in PCOS for 14 steroid compounds, including 9 androgens and 4 glucocorticoids.

Lower excretion of pregnanediol and estriol in PCOS persisted even after adjustement for age and

BMI (Table 1). Results of the multivariable analyses are depicted in Fig 1.

Steroid enzyme activities

Steroid enzyme activities were assessed by metabolite ratios as published for diagnosing vari-

ous forms of congenital adrenal hyperplasias [22]. Ratios were compared between PCOS and
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controls by Mann–Whitney U test and by uni- and multivariable regression models (Table 2

and S3 Table). Steroid metabolite substrate to product conversion ratios representing

21-hydroxylase activity were lower in PCOS indicating an increased 21-hydroxylase activity in

PCOS compared to controls. This association persisted in multivariable regression analyses

adjusted for age and BMI. Thus 21-hydroxylase deficiency could be clearly excluded in our

PCOS patients. 3β-hydroxysteroid dehydrogenase (3β-HSD) activity seemed lower in PCOS,

but this association to PCOS disappeared after multivariable adjustment. By contrast, a higher

enzyme activity was found in PCOS for the activities of 11β-hydroxylase, and the Δ4-pathway

activity of 17α-hydroxylase and 17,20-lyase, as well as for the P450 oxidoreductase activity.

For the activity of 17β-hydroxysteroid dehydrogenase multivariable analyses indicated no dif-

ference. Similarly, no clear difference was found for the ratio yielding androgen synthesis

through the backdoor pathway or for 5α reductase activity. A lower activity in PCOS was

found for aromatase after adjusting for age and BMI. A higher 11β-hydroxysteroid dehydroge-

nase (11β-HSD) type 2 and a lower 11β-HSD type 1 activity was found for PCOS for some cal-

culated ratios, whereas other ratios indicated no difference. The activities of 20α- and 20β-

hydroxysteroid dehydrogenases (20α/β-HSD) were both lower in PCOS, while 3α-hydroxys-

teroid dehydrogenase (3α-HSD) activity was higher in PCOS. These results are also depicted

in Fig 1.

Table 1. Steroid hormone excretion in women with the polycystic ovary syndrome (PCOS) compared to healthy control women. The available number of partici-

pants (N) and the distribution described by median and 25th-75th quantile for the PCOS and control group are indicated for each steroid. Between-group differences are

determined by Mann–Whitney U test (MWU) and the corresponding P values are indicated. Univariable and multivariable models were calculated by linear regression.

Univariable models contain the PCOS-/control-group as predictor variable (with controls as reference group). Multivariable models contain in addition the covariables

age and BMI. The dependent variables in the models were transformed as indicated. The β coefficients and the corresponding 95% confidence intervals (CI) are reported

in the transformed scale and the corresponding P values are indicated. Note, only steroid hormones with a significant difference in the amount excreted in 24 hours in

women with PCOS compared to healthy controls are shown here. Results for all 40 steroid hormones measured are displayed in S2 Table.

Steroid hormone, nmol/24h

Dependent variable in Models

Controls PCOS MWU Univariable Models Multivariable Models

N Median 25th-75th N Median 25th-75th P β 95% CI P β 95% CI P
Androgens and metabolites

dehydroepiandrosteronea 66 293 136–853 41 1435 390–3895 <0.001 1.27 0.712;1.83 <0.001 1.03 0.437;1.62 <0.001

16α-OH-dehydroepiandrosteronea 66 676 314–1213 41 1577 701–3321 <0.001 0.740 0.289;1.19 0.0015 0.740 0.289;1.19 0.0015

androstenediola 66 205 125–430 41 622 405–1314 <0.001 1.07 0.705;1.43 <0.001 0.858 0.483;1.23 <0.001

testosteronea 63 34 21–58 33 52 34–84 0.013 0.449 0.106;0.793 0.011 0.427 0.05;0.804 0.027

5α-DH-testosteronea 65 36 23–55 33 56 44–88 0.0057 0.477 0.148;0.805 0.0049 0.387 0.029;0.746 0.035

androstanediola 65 108 65–142 41 250 185–350 <0.001 0.930 0.735;1.13 <0.001 0.886 0.68;1.09 <0.001

androsteroneb 57 3983 2651–5433 41 8354 4909–11808 <0.001 24.9 15.7;34 <0.001 14.7 6.31;23 <0.001

11β-OH-androsteroneb 66 1385 1049–2048 41 2210 1618–3263 <0.001 9.80 5.35;14.2 <0.001 8.73 4.2;13.3 <0.001

etiocholanoloneb 61 4075 2823–5709 41 5893 4558–8210 <0.001 13.5 6.3;20.6 <0.001 9.65 2.13;17.2 0.012

Estrogens

estriola 66 29 16–49 41 21 8–34 0.027 -0.444 -0.809;-0.079 0.018 -0.491 -0.877;-0.105 0.013

Glucocorticoids and metabolites

6β-OH-cortisola 66 222 147–348 41 319 189–445 0.025 0.238 -0.012;0.489 0.062 0.256 -0.016;0.529 0.065

18-OH-cortisolb 61 434 301–607 39 676 448–924 <0.001 5.75 3.1;8.39 <0.001 5.89 3.02;8.76 <0.001

TH-cortisolb 59 2770 1926–3439 41 3613 2603–4404 0.0017 8.06 2.85;13.3 0.0028 7.91 2.72;13.1 0.0032

11β-OH-etiocholanoloneb 66 872 410–1196 40 1037 255–1640 0.51 1.87 -2.92;6.67 0.44 5.75 0.837;10.7 0.022

TH-cortisoneb 64 5551 3394–7209 41 8559 5651–13063 <0.001 23.8 14.8;32.9 <0.001 21.2 12;30.4 <0.001

aDependent variable natural log transformed in regression models.
bDependent variable square root transformed in regression models.

https://doi.org/10.1371/journal.pone.0203903.t001

Steroid metabolomics to test for PCOS in women

PLOS ONE | https://doi.org/10.1371/journal.pone.0203903 October 11, 2018 5 / 15

https://doi.org/10.1371/journal.pone.0203903.t001
https://doi.org/10.1371/journal.pone.0203903


Predicting PCOS by steroid metabolome

The diagnostic performance of urinary steroid metabolites in the prediction of PCOS was

assessed. Considering each urinary steroid metabolite separately, the androgen androstanediol

(5α3αdiol) was the best classifier with the highest AUC in the ROC analysis (0.919, 95% CI:

0.867–0.971; Fig 2A). Maximizing the sensitivity and specificity simultaneously in a sensitiv-

ity-specificity-plot (Fig 2B) yielded an optimal threshold for urinary androstanediol at�152

nmol/24 hours for the prediction of PCOS with a sensitivity of 90.2 (95% CI: 76.9–97.3), a

specificity of 81.5 (95% CI: 70.0–90.1), a positive predictive value of 75.5 (95% CI: 61.9–92.3),

and a negative predictive value of 93.0 (95% CI: 82.6–96.5) (Fig 2C).

Performance of urine steroid metabolite ratios for predicting PCOS by systematic calcula-

tions was also assessed. The best ratio combining 2 steroid metabolites comprised androstane-

diol and estriol, and was 5α3αdiol/log(5α3αdiol×estriol) with an AUC of 0.935 (95% CI:

0.889–0.981) under the ROC curve (S1D–S1F Fig). The best combination of 3 urinary steroids

was (5α3αdiol×20βDHE)/(20βDHE+cortisol) with an AUC of 0.949 (95% CI: 0.910–0.989)

under the ROC curve (S1G–S1I Fig). Finally, the best predictive combination of 4 urinary ste-

roids was (androstanediol1.5×20βDHcortisone)/ [20βDHcortisone+(cortisol×log(estriol))]

with an AUC of 0.961 (95% CI: 0.926–0.995) under the ROC curve (Fig 2D–2F) yielding a pos-

itive predictive value of 86.0% and a negative predictive value of 93.7% for the diagnosis of

PCOS at the threshold indicated.

Fig 1. Scheme of alterations in 24-hour urine steroid excretion and steroid enzyme activities in PCOS compared to controls adjusted for age and BMI in

multivariable analyses. Abbreviations: DHEA: dehydroepiandrosterone. An “OH” in enzyme names indicates a hydroxylase. An “OH” in steroid names indicates a

hydroxyl group. DH: dehydro; TH: tetrahydro; HSD: hydroxysteroid dehydrogenase; POR: P450 oxidoreductase; Cyt b5: Cytochrome b5; 5α-R: 5α reductase; 5β-R: 5β
reductase.

https://doi.org/10.1371/journal.pone.0203903.g001
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Table 2. Steroid hormone enzyme activities represented by selected steroid hormone metabolite ratios in women with polycystic ovary syndrome compared to

healthy women. The available number of participants (N) and median and 25th-75th quantile are indicated. Between-group differences are determined by Mann–Whitney

U test (MWU). Univariable and multivariable models are calculated by linear regression with transformed steroid hormone metabolite as dependent variable. Univariable

models contain the PCOS group as predictor variable (with controls as reference group). Multivariable models contain in addition the covariables age and BMI. The β coef-

ficients and the corresponding 95% confidence intervals (CI) are reported on the transformed scale. Note that only significant different ratios are shown here, while the

results for all calculated steroid hormones ratios are displayed in S3 Table.

Enzyme activities and

corresponding ratios

Controls PCOS MWU Univariable Models Multivariable Models

N Median 25th-75th N Median 25th-75th P β 95% CI P β 95% CI P
21-Hydroxylase

PTO/THEa 64 0.005 0.004–

0.008

41 0.003 0.003–

0.007

0.0045 -0.368 -0.656;-0.08 0.013 -0.378 -0.689;-

0.068

0.017

3β-hydroxysteroid dehydrogenase

5PT/THEb 64 0.060 0.031–

0.097

41 0.087 0.046–

0.158

0.025 0.056 0.005;0.107 0.031 0.020 -0.032;0.072 0.45

11β-hydroxylase

THS/THEa 64 0.023 0.018–

0.031

41 0.015 0.011–

0.019

<0.001 -0.426 -0.622;-0.23 <0.001 -0.352 -0.559;-

0.145

0.0011

CYP17 global (17α-hydroxylase and 17,20-lyase)

PD/(AT+ET)a 51 0.147 0.073–

0.384

41 0.056 0.038–

0.069

<0.001 -1.17 -1.56;-0.777 <0.001 -0.943 -1.35;-0.535 <0.001

17α-hydroxylase global

THA+THB+5αTHB/THEb 64 0.221 0.176–

0.279

41 0.157 0.11–0.211 <0.001 -0.068 -0.1;-0.036 <0.001 -0.062 -0.097;-

0.027

<0.001

17α-hydroxylase Δ4-pathway

PD/17HPa 62 4.77 2.88–7.84 41 2.42 1.43–4.1 <0.001 -0.635 -0.927;-

0.343

<0.001 -0.540 -0.854;-

0.227

<0.001

17,20-lyase global

(AT+ET)/THEb 52 1.60 1.1–2.17 41 1.48 0.999–2.68 0.77 0.032 -0.119;0.183 0.67 -0.045 -0.2;0.111 0.57

17,20-lyase Δ5-pathway

5PT/(DHEA+16OHDHEA)a 66 0.230 0.146–0.57 41 0.234 0.12–0.394 0.32 -0.084 -0.45;0.282 0.65 -0.164 -0.56;0.231 0.41

17,20-lyase Δ4-pathway

17HP/(AT+ET)a 52 0.030 0.02–0.066 41 0.023 0.013–

0.032

0.0038 -0.538 -0.864;-

0.212

0.0015 -0.423 -0.772;-

0.074

0.018

CYP17 global Δ4- vs. Δ5-pathway

11βOHAT/(DHEA+16OHDHEA

+Δ5diol)a
66 1.14 0.554–1.95 41 0.464 0.304–1.26 0.0017 -0.669 -1.04;-0.295 <0.001 -0.470 -0.863;-

0.077

0.020

17β-hydroxysteroid dehydrogenase

(ET+AT)/(THE+THF+5αTHF)a 48 0.834 0.624–1.24 41 0.893 0.563–1.46 0.40 0.087 -0.156;0.33 0.48 -0.050 -0.296;0.196 0.69

5α-reductase

ET/ATa 53 1.09 0.899–1.36 41 0.798 0.561–1.15 0.0035 -0.282 -0.463;-

0.101

0.0026 -0.114 -0.288;0.06 0.20

Aromatase (CYP19A1)

testosterone/17β-estradiola 63 2.8 1.64–7.56 33 8.21 3.63–15.7 0.0012 0.725 0.271;1.18 0.0020 0.565 0.087;1.04 0.021

11β-hydrosteroid dehydrogenase type 2

(F+E)/(THF+5αTHF+THE)c 58 0.812 0.757–

0.858

41 0.837 0.797–

0.882

0.099 0.053 -0.009;0.115 0.092 0.085 0.018;0.151 0.013

11β-hydrosteroid dehydrogenase type 1

THE/(THF+5αTHF)a 58 1.08 0.946–1.41 41 1.47 1.19–1.82 <0.001 0.278 0.151;0.404 <0.001 0.272 0.133;0.41 <0.001

20α-hydrosteroid dehydrogenase

(THF+5αTHF+THE)/(αC+αCl)a 57 1.66 1.28–1.93 41 1.85 1.5–2.32 0.011 0.240 0.089;0.392 0.0022 0.362 0.21;0.515 <0.001

20β-hydrosteroid dehydrogenase

(THF+5αTHF+THE)/βC+βCla 59 2.56 1.97–3.26 41 3.04 2.54–4.19 0.0065 0.230 0.08;0.38 0.0030 0.332 0.177;0.486 <0.001

20α-hydrosteroid dehydrogenase vs. 20β-hydrosteroid dehydrogenase

(Continued)
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Table 2. (Continued)

Enzyme activities and

corresponding ratios

Controls PCOS MWU Univariable Models Multivariable Models

N Median 25th-75th N Median 25th-75th P β 95% CI P β 95% CI P
(αC+αCl)/(βC+βCl)a 61 1.64 1.37–2.07 41 1.54 1.34–2.05 0.85 -0.004 -0.126;0.119 0.95 -0.033 -0.165;0.1 0.62

3α-hydroxysteroid dehydrogenase

20αDHF/(THF+5αTHF)a 59 0.025 0.017–0.04 40 0.020 0.01–0.032 0.042 -0.365 -0.652;-

0.077

0.014 -0.391 -0.701;-

0.081

0.014

Abbreviations used for steroid compounds: 17HP: 17-OH-pregnanolone, PT: Pregnanetriol, 5PT: Pregnenetriol, PTO: Pregnanetriolone, PD: Pregnanediol, DHEA:

Dehydroepiandrosterone, 16OHDHEA: 16α-OH-dehydroepiandrosterone, Δ5-diol: Androstenediol, 5α3αdiol: Androstanediol, AT: Androsterone, 11βOHAT: 11β-

OH-androsterone, ET: Etiocholanolone, THA: 11-dehydro-TH-corticosterone, THB: TH-corticosterone, 5αTHB: Allo-TH-corticosterone, THS: TH-11-deoxycortisol,

F: Cortisol, 20αDHF: 20α-DH-cortisol, THF: TH-cortisol, αC: α-Cortol, βC: β-Cortol, 11βOHET: 11β-OH-etiocholanolone, 5αTHF: Allo-TH-cortisol, E: Cortisone,

THE: TH-cortisone, αCl: α-Cortolone, βCl: β-Cortolone.
aDependent variable natural log transformed in the models.
bDependent variable square root transformed in the models.
cDependent variable quartic (x4) transformed in the models.

https://doi.org/10.1371/journal.pone.0203903.t002

Fig 2. Diagnostic performance of urinary steroid metabolites in the prediction of PCOS. ROC curves for different classifiers of urinary steroid metabolites are shown

on the left side, the corresponding plots of sensitivity-specificity versus the classifier are shown in the middle, and corresponding contingency tables on the right hand

side. Dashed lines around the ROC curves indicate the 95% CI of the sensitivity at the given specificity. The AUC and its 95% CI is indicated. The dashed vertical lines in

the sensitivity-specificity versus classifier plots indicate the threshold where sensitivity and specificity are simultaneously maximized. The main diagnostic performance

parameters corresponding to this threshold are indicated. A-C. Classifier androstanediol. D-F. Classifier: (androstanediol1.5×20β-DH-cortisone)/(20β-DH-cortisone

+[cortisol× log(estriol)]) represents the best combination of 4 steroid metabolites. Abbreviations: 5α3αdiol: androstanediol, F: cortisol, 20βDHE: 20β-DH-cortisone,

PPV: positive predictive value, NPV: negative predictive value, log: natural logarithm.

https://doi.org/10.1371/journal.pone.0203903.g002
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To explore if age and BMI influence these predictors, a multivariable analysis was per-

formed. BMI showed a positive association with all predictors in both PCOS and healthy

women (S4 Table and S2 Fig), indicating that body weight increases the tests’ sensitivity while

decreasing specificity. For only two predictors age had a different effect on PCOS and healthy

controls (S2C and S2D Fig). While in PCOS no age-effect was observed, healthy controls

showed decreasing ratios with increasing age suggesting that both tests’ sensitivity and speci-

ficity are improving with age.

Finally for proof of principal, we tested the identified diagnostic classifiers on 12 urinary

steroid profiles that were recently analyzed in our GC-MS laboratory: 10 urines were from sus-

pected PCOS women and sent for excluding 21-hydroxylase deficiency, 2 samples originated

from subjects with 21-hydroxylase deficiency. Results were compared to study controls and

PCOS, and are shown in Fig 3. The 2 samples from subjects with genetically confirmed

CYP21A2 mutations showed an increased ratio for 17-OH-prenalonone/TH-cortisone con-

firming CYP21A2 deficiency (Fig 3A). Among the other 10 samples, 9 samples classified for

PCOS according to androstanediol levels (Fig 3B), while 6 of 10 samples qualified for PCOS

according to the more complex best ratio calculation including four metabolites (Fig 3C).

Discussion

Our pilot study suggests that it is possible to specifically diagnose PCOS from urine metabolo-

mics, and not only exclude hyperandrogenic variants of non-classic CAH. Therefore, it

appears that PCOS may no longer be diagnosed by exclusion only. Androgen excess is the

most characteristic finding in women with PCOS [2]. Nevertheless, no diagnostic test for

PCOS based on androgens had been identified so far, although enormous efforts have been

undertaken. Reasons for this shortcoming are manifold and include the following: PCOS is a

complex disorder likely representing the phenotypical endpoint of multiple underlying

Fig 3. Prospective evaluation of PCOS classifiers. Black points scattered within the boxplots represent study participants. The ten not-filled point symbols between the

boxplots represent urine profiles from suspected PCOS women, which were sent to our lab for excluding hyperandrogenism due to 21-hydroxylase deficiency, while the

two black-filled point symbols represent urine profiles from women with genetically confirmed 21-hydroxylase deficiency. The dashed horizontal lines indicate the

diagnostic thresholds of PCOS classifiers. A. 21-hydroxylase activity. A higher ratio of 17-OH-pregnanolone/TH-cortisone indicates a lower 21-hydroxylase activity. B.

Classifier androstanediol. C. Classifier (androstanediol1.5×20β-DH-cortisone)/(20β-DH-cortisone+[cortisol× log(estriol)]).

https://doi.org/10.1371/journal.pone.0203903.g003
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disorders leading to androgen excess through several pathways [1,2]. Studies measuring andro-

gens in PCOS lack standardization with respect to preanalytical as well as analytical items and

are therefore not comparable. Although in most clinical studies androgens are measured in

blood, timing of sampling and specific androgens measured differ. In addition, methods of

measurements vary and most immunoassays perform poorly with respect to specificity, avail-

ability of normative data as well as standardization across laboratories. Therefore, the scientific

community has recommended chromatographic, mass spectrometric techniques for steroid

and androgen measurements specifically.

We measured 40 steroid metabolites in 24h-urine specimens from PCOS women and com-

pared them to controls using an established in-house GC-MS method [20]. In the past 5–10

years several studies have measured androgens in serum of PCOS women using either GC-MS

or LC-MSMS techniques [14,17,23,24], but we found only one recent study assessing the ste-

roids from urine samples [25]. Not surprisingly, all studies (ours included) found elevated

androgens of all kinds in PCOS. However, there was no common pattern, and no study sug-

gested a diagnostic marker or formula for discriminating PCOS from healthy controls. Never-

theless, for certain androgens (e.g. total T/DHT [23] or T and androstenedione [24]) a

predictive value was reported regarding adverse metabolic outcome in PCOS. Notably, the

most recent studies describe involvement of alternative routes for androgen excess in PCOS.

Saito et al [14] report a role of the alternative backdoor pathway for androgen overproduction

in PCOS. O’Reilly et al [17] found increased 11-oxygenated androgens in PCOS. We found 14/

40 urinary steroid metabolites increased in PCOS, among them 9 androgens and 4 glucocorti-

coids (Fig 1). Highest increase was found for DHEA, the precursor androgen for both adrenal

and ovarian androgen production indicating a pathomechanism that targets both organs and/

or overall steroidogenesis. Increased androgen metabolites in PCOS were not only comprised

in the classic pathway, but also in the alternative backdoor pathway (e.g. androsterone, andros-

tanediol), and they were products of 11-oxygenated androgens (e.g. 11β-hydroxy-androster-

one). Thus our data confirm a role of the alternative backdoor pathway and of 11-oxygenated

androgens in PCOS. As these pathways of androgen production have been neglected in clinical

assessment of PCOS so far, future studies including these metabolites may help in better

describing the androgen profile of PCOS and using it as a diagnostic tool. In accordance with

that, our calculations revealed androstanediol (a metabolite of the backdoor pathway) as the

best single metabolite predictor to discriminate PCOS from controls.

PCOS is defined as not being overlapping with androgen excess due to CAH, mostly

21-hydroxylase deficiency [1,2]. Some studies of ovarian steroidogenesis suggest that in PCOS

activities of HSD3B2 and CYP17-17,20 lyase are enhanced [26]. However, studies looking at

steroid enzyme activities assessed by calculating steroid conversion ratios reveal ambiguous

results. Increased 5α reductase activity in PCOS has been suggested from clinical studies

[15,25], and was also suggested from immunohistochemical studies looking at ovarian tissues

[13]. In our study, we found an increase in 21-hydroxylase, 11β-hydroxylase, 17α-hydroxylase/

17,20 lyase (Δ4) as well as 3α-HSD activity in PCOS (Fig 1). By contrast, we found no clear dif-

ference for 3β-HSD activity. Overall, these findings in PCOS do not fit a pattern for a specific

steroid biosynthesis disorder, but they indicate overall enhanced steroidogenesis and towards

androgens specifically. Thus PCOS clearly separates from CAH.

Similar to the urine steroid profiling study by Blumenfeld [25], we found increased andro-

gen and glucocorticoid metabolites in PCOS. In both studies, 5α reductase activity seemed

increased when looking at its activity within the backdoor pathway (11βOHET/11βOHAT),

but not with respect to its activity in the degradation of mineralocorticoids (THB/5αTHB) and

glucocorticoids (THF/5αTHF). However, this effect seemed associated with BMI in both stud-

ies. As 5α reductase activity is essential to yield androgen precursor metabolites for DHT

Steroid metabolomics to test for PCOS in women
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production, this indicates that in PCOS an increase in BMI will enhance 5α-dependent andro-

gen production. In line with that, clinical studies unambiguously show an improvement of

hyperandrogenism in PCOS women with weight loss [2].

Concerning 11β-hydroxysteroid dehydrogenase activities, we found an increased type 2

and decreased type 1 activity, but no change in absolute cortisol excretion. Blumenfeld sug-

gested a decrease in type 1 activity from one calculated ratio [25]. Diminished HSD11B1 activ-

ity has been previously reported in PCOS [27,28,29,30] and may result in a shift of

steroidogenesis towards the more active glucocorticoid products associated with hypercortiso-

lemic adverse effects often manifesting as the metabolic syndrome. Finally, other studies found

an increase in 20α-HSD activity (lower ratio of THF+αTHF+THE/αC+αCl) [25,28], while our

study revealed diminished 20αHSD and 20β-HSD activities, but an increase in 3α-HSD activ-

ity assessed by the conversion of αTHF and THF to 20αDHF. 20α-HSD activity is mainly pro-

moted by AKR1C1, but may also be promoted by any other member of the AKR1C

superfamily of aldo/keto reductases, which are also known as 3αHSDs. Generally, 3αHSDs

enzymes are expressed tissue specific and are important for the metabolism of glucocorticoids,

progesterones, prostaglandins, and bile acid precursors [7]. Concerning steroidogenesis,

3αHSD activity is highly promoted by AKR1C4 and AKR1C2. In the gonads and the adrenals

3αHSD catalyzes the conversion of 5α-androstanedione to androsterone and from 17α-OH-

dihydro-progesterone to 17α-OH-allopregnanolone in the backdoor pathway [9]. Similarly, it

catalyzes the conversion of highly active DHT to almost inactive androstanediol in the pros-

tate. In previous studies, we have shown that mutations in AKR1C2/4 cause 46,XY undermas-

culinization [10], and that in ovarian tissues from PCOS women expression of AKR1C2/4

seemed enhanced [13]. Thus increased 3αHSD activity might be characteristic for hyperandro-

genic PCOS similar to increased 17α-hydroxylase/17,20 lyase activity and 5α reductase activ-

ity. Excess activity of all these enzymes in concert might explain why androstanediol

accumulates with PCOS.

Our search for a diagnostic marker from urine steroid profiling using AUC/ROC curve

analysis yielded androstanediol as the best single metabolite for classifying PCOS against con-

trols. This metabolite is comprised in the backdoor steroid path and may be easily converted

to the most active steroid DHT by oxidative 3αHSD, which is likely promoted by RODH in

steroid organs [7]. In fact, RODH expression was found rather increased in PCOS ovarian tis-

sues [13]. Taken together a role of the backdoor pathway for excess androgen production in

PCOS seems likely.

To predict PCOS, the best combination including up to four steroids was a ratio comprising

androstanediol, estriol, 20βDHcortisone and cortisol. This ratio was significantly increased in

PCOS compared to controls at a threshold value of�435. Taking ratios for steroid analysis

bears the advantage that they are less influenced by different laboratory methods than quanti-

tative steroid excretion values. Thus, such diagnostic ratios should allow comparison of data

between laboratories as has been shown for normative values of steroid enzyme activities [22].

Applying these diagnostic tools to some preliminary data sets of suspected PCOS women avail-

able from our lab, we found that PCOS diagnosis could be supported in 9/10 subjects using

androstanediol as single classifier and in 6/10 subjects using the best ratio comprising of 4 ste-

roid metabolites. Importantly, two steroid profiles originating from suboptimal treated

patients with 21-hydroxylase CAH clearly discriminated from both controls and PCOS when

looking at the 21-hydroxylase activity and at the newly developed PCOS activity ratios. In

comparison to the classifier androstanediol, the use of the ratio comprising of 4 steroid metab-

olites reduces the number of false positives for PCOS.

Limitations of our study are the relative small sample number and the relatively poor clini-

cal characterization of the PCOS subjects. However, compared to the study of Blumenfeld
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[25], in which only 13 samples were studied, we studied 41 PCOS samples and 66 controls.

Clinical characterization of PCOS subjects is rather difficult as the phenotypical spectrum is

broad. Thus finding a biochemical classifier that discriminates PCOS from non-PCOS is of

great clinical interest. Of course, better metabolic characterization of PCOS samples in future

studies may allow to correlate the steroid data with adverse metabolic outcome, which impacts

treatment decisions. Another disadvantage of our study for practicability is maybe that we per-

formed steroid profiling from 24h-urine samples and not spot urines or serum. However, it

should be feasible to test within short time, whether the identified PCOS classifiers may also be

used on timed spot urines or serum samples.

In conclusion, our urinary steroid profiling study reveals androstanediol, estriol,

20βDHcortisone, and cortisol as promising diagnostic markers for PCOS. These so far unsus-

pected steroids in the diagnostic workup of PCOS were identified using novel, unbiased

approaches for data analysis. Future studies will aim at confirming their diagnostic use in spot

urine and serum specimen as well as testing their predictive value for adverse metabolic

outcome.
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