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Abstract 22 

Blood culture remains the best approach to identify the incriminated microorganisms when a bloodstream 23 

infection (BSI) is suspected, and to guarantee that the antimicrobial treatment is adequate. Major 24 

improvements have been made in the last years to increase the sensitivity and the specificity and to reduce 25 

the time to identification of microorganisms recovered from blood cultures. Among others, the introduction 26 

in clinical microbiology laboratories of the matrix-assisted laser desorption ionization time-of-flight mass 27 

spectrometry (MALDI-TOF MS) technology revolutionized the identification of microorganisms whereas 28 

the introduction of nucleic-acid based methods such as DNA hybridization or POCT-PCR significantly 29 

reduce the time to results. Together with traditional antibiotic susceptibility testing (AST), new rapid 30 

methods for the detection of resistance mechanisms respond to major epidemiological concern such as 31 

MRSA, ESBL or carbapenemases.   32 



Introduction  33 

Bloodstream infections (BSIs) are severe diseases characterized by a high morbidity and mortality, which 34 

is directly related with the delay in the administration of the first adequate anti-infectious agent [1-7]. 35 

Empirical anti-infectious treatments are chosen on the basis of the clinical and epidemiological data and 36 

are started immediately after the sampling of the blood vials; however until microbiological documentation, 37 

their adequacy cannot be guaranteed [8-10]. Microbiological investigations – identification of the causative 38 

agent and antibiotic susceptibility test (AST) - are thus very important: 1) to adjust the anti-infectious 39 

therapy and to avoid inefficient treatment, 2) to reduce the spectrum of the anti-infectious therapy in order 40 

to limit the selection of resistant strains and 3) to limit the toxicity and negative impact on beneficial bacteria 41 

of some broad spectrum molecules or combined therapy. In adults the quantity of microbes present in the 42 

blood during BSIs ranges from 1 to 10 cfu per ml [11-14] to 1x103 and 1x104 [15]. In children the bacterial 43 

load during BSI might be higher. Blood cultures currently represent the main method to determine the 44 

etiology of a BSI because they are highly sensitive and easy to perform. The sensitivity of blood culture is 45 

largely due to the volume of the sample. For adults one blood sampling generally represent up to 20 ml of 46 

blood used to inoculate 2 vials (one aerobic vial and one anaerobic vial).  Before antibacterial treatment 2 47 

to 4 blood cultures, i.e. 40 ml to 80 ml of blood are necessary to detect a causative agent in 80% to 96% of 48 

bacteremia [16, 17].  In clinical practice however, the sampling is often limited to 2 blood cultures. 49 

Nevertheless, approximately 50 % of the BSI remains blood culture negative [18, 19] and further 50 

improvements may be foreseen. 51 

Blood culture sampling and technologies 52 

Standard vials containing rich media have been designed for aerobic and anaerobic growth conditions, 53 

respectively.  They are dedicated for up to 10ml ml of blood. However, because of the difficulty to obtain 54 

large volume of blood, specific pediatric blood vials have been designed for the culture of volume lower 55 



than 3ml. To neutralize antibiotics given prior sampling charcoal or resins have been introduced in specific 56 

vials. Lytic agents added in some growth media promote the recovery and growth of organisms that have 57 

been endocytosed by phagocytes.  Standard incubation time is around 5-7 days which is sufficient for the 58 

recovery of the majority of organisms including HACEK bacteria and Brucella spp. [20, 21]. However, the 59 

incubation time should be increased for slow growing organisms such as fungi and Mycobacteria spp.; the 60 

latter being grown in vials containing Middlebrook 7H9. Modern laboratories rely on automated incubators 61 

(Table 1) including continuous monitoring for positive vials detection which significantly reduces the 62 

incubation time and the contamination rate. Blood culture positivity is generally detected by following CO2 63 

production by growing microorganisms that trigger a pH increase visualised by colour changes, 64 

fluorescence signal or red-ox variations. 65 

Interpretation of positive blood-cultures: contamination versus bloodstream 66 

infection 67 

Contamination that represents up to 1/3 of positive blood cultures can occur when microbes not present in 68 

the bloodstream are introduced in the vial during the blood sampling [22]. Even if blood cultures are drawn 69 

under aseptic conditions, contaminations are often due to organisms of the skin flora such as coagulase 70 

negative staphylococci (CoNS), the 3rd most prevalent microbe identified in positive blood cultures (Figure 71 

1), or to organisms from the environment with low or absence of virulence towards humans such as 72 

Micrococcus spp., Propionibacterium acnes, most Bacillus spp. and most Corynebacterium spp. [22]. 73 

Moreover, an inadequate blood volume increases the rate of contamination.  Interestingly, peripheral 74 

venipuncture, arterial access or central venous accesses are associated with different contamination rates of 75 

36%, 10% and 7% respectively [22]. For venipunture a promising approach to reduce to less than 30% the 76 

contamination rate is named the initial specimen diversion technique (ISDT),  in which the first blood 77 

milliliter potentially containing bacteria not killed by skin surface antisepsis is discarded or used for other 78 

purposes [23, 24]. Nevertheless the specificity of blood culture for the diagnosis of BSI remains high as 79 



most of the top microbes recovered from positive blood cultures are primarily pathogens such as 80 

Escherichia coli, Staphylococcus aureus or Pseudomonas aeruginosa respectively 2nd, 4th and 5th position 81 

(Table 1). 82 

Together with the clinical signs and symptoms, several parameters can help to precise the significance of 83 

positive blood cultures: 1) the number of positive vials, the number of positive blood culture pairs as well 84 

as the proportion of positive cultures [25], 2) the site of sampling - catheter versus venous puncture - and 85 

3) the time to positivity, including the differential time to positivity between pairs collected from different 86 

sampling sites [26]. For this reason, international guidelines recommend drawing several set of blood vials 87 

[27]. Increasing the number of blood cultures increases the sensitivity due to the increased total volume 88 

collected [28]. Blood culture sampling should be repeated since bacteremia often occurs in intermittence. 89 

This is not the case of endocarditis or septic thromboplhebitis, where all the bottles are generally positive 90 

with pyogenic bacteria such as S. aureus and S. pyogenes.  91 

When contamination is excluded, the organism detected and identified in the blood culture is likely present 92 

in the bloodstream at the time of sampling, which defines a bacteremia (or fungemia).  Bacteremia or 93 

fungemia can be transient or sustained. Transient bacteremia correspond to a single episode of positive 94 

blood cultures due to the presence of microorganism during a short time-lapse in the bloodstream (less than 95 

30 min). They are generally caused by the manipulation of contaminated mucosa or invasive respiratory, 96 

gastro-intestinal or urogenital acts [29]. Conversely, multiple positive vials drawn at different time is 97 

synonymous of sustained bacteremia (fungemia). Sustained positive blood cultures are encountered in 98 

presence of endovascular infections such as endocarditis. In such cases a high number of blood cultures 99 

become positive without any difference in the time to positivity for bottles drawn simultaneously from 100 

different sites. In contrast a catheter infection is suspected when blood cultures drawn from a catheter 101 

become positive more than 2 hours before blood culture drawn from a venipuncture. This time to positivity 102 

difference exhibits an overall sensitivity of 91% and a specificity of 94% for the diagnosis of catheter 103 

infection [30]. The catheter can be removed and cultured by plating the catheter tip using the Maki roll-on 104 

semi-quantitative method [31]. Sustained bacteremia should be differentiated from persistent bacteremia 105 



that is defined by the persistence of positive blood cultures despite the introduction of an anti-infectious 106 

treatment. Persistent bacteremia (fungemia) are generally due to organisms resistant to the prescribed 107 

antibiotic, to the presence of a second organism or to antibiotic inaccessibility to the site of infection (e.g. 108 

septic thrombosis). 109 

Identification and antibiotic susceptibility testing from positive blood culture  110 

Upon blood culture positivity, the first step is to perform a Gram staining with a blood culture aliquot. This 111 

is a mandatory analysis to confirm the presence of bacteria/fungi in the blood vial. If microbes are present, 112 

the morphotype provides a first hint on the etiology of the infection. Then microbes identification can be 113 

achieved: 1) starting from a subculture, 2) directly from the positive blood culture using nucleic acid-based 114 

methods such as hybridization and microarray or, 3) after a bacterial enrichment and purification step to 115 

obtain a “bacterial pellet”, suitable for a variety of approaches including matrix-assisted laser desorption 116 

ionization time-of-flight mass spectrometry (MALDI-TOF MS) (Figure 2).  117 

Identification approaches requiring a pure subculture 118 

After the Gram staining examination, the positive blood culture can be plated to insure pure culture (isolated 119 

colonies) that can be analyzed using conventional biochemical methods, MALDI-TOF MS and/or nucleic-120 

acid based methods such as PCR and gene sequencing (Figure 2). A 12 to 24h incubation period is generally 121 

required to obtain enough isolated colonies for biochemical characterization whereas relatively short 122 

incubation (<6 hours) are often long enough for MALDI-TOF MS identification, the current best method 123 

for rapid bacterial identification. AST performed directly from a positive blood vial without a pellet 124 

preparation or a subculture is not recommended. Different AST methods can be applied from isolated 125 

colonies. Automated methods such as Vitek (BioMerieux) allow the testing of a high number of molecules 126 

at the same time. The interpretation of the result is automated and internal expert systems are able to detect 127 



specific resistance mechanisms such as ESBL and carbapenemases. However, they do not give an exact 128 

MIC in contrast to E-test.  129 

Nucleic-acid based methods that can be used directly on positive blood cultures   130 

Molecular methods are generally faster than phenotypic approaches because they are culture independent. 131 

However, the use amplification-based nucleic acid methods such as PCR have to face several limitations 132 

associated with a blood sample: 1) presence of PCR inhibitors 2) presence of a high quantity of non-133 

microbial nucleic acids 3) presence of contaminant DNA and 4) persistence of DNA from dead microbes 134 

(Opota et al 2015 on the same issue). Probes hybridization and microarrays that are non amplification-based 135 

nucleic acid methods are less influenced by inhibitors and less prone to contamination but they require a 136 

high bacterial or fungal load. Hence these methods are used downstream positive blood cultures in which 137 

the bacterial load can reaches 1.106 to 2.108 for Gram-positive cocci and 2.107 to 1.109 for Gram-negative 138 

bacilli (Figure 2) [32, 33] (Opota et al 2015 on the same issue). 139 

Fluorescent in situ hybridization (FISH) that consists in the specific binding of fluorescent nucleic acid 140 

probes on complementary pathogens DNA sequences - 16S rRNA for bacteria and 18S rRNA for fungi - 141 

can be performed directly from the positive blood culture. The specific binding is observed using a 142 

fluorescent microscope. The choice of the probe is dependent on the Gram staining: staphylococci probes 143 

(S. aureus/CoNS), enterococci probes (E. faecalis/E. faecium), Gram negative probes (E. coli/P. 144 

aeruginosa/K. pneumoniae), yeast probes (C. albicans/C. glabrata/C. parapsilosis/C. krusei) for instance. 145 

The commercial solutions PNA-FISH and Quick-FISH (AdvanDx, USA) display a time to result of about 146 

1.5 to 3 hours with a sensitivity and specificity of 97-100 % and 90-100 % respectively (Table 2)[34-39]. 147 

The AccuProbe system (Gen-Probe, San Diego, California) is based on DNA probe that can detect S aureus, 148 

Streptococcus pneumoniae, Enterococci spp., and group A and B streptococci . The sensistivity and 149 

specificity are above 97% at the exception of the S. aureus probes that demonstrate a sensitivity of 99.8% 150 

and a specificity of 80.8% [40, 41].  151 



Microarrays allow the detection of a limited number of species which cover 90 to 95% of all the pathogens 152 

causing BSI. The turn-around time is about 2.5 to 4 hours with sensitivity ranging from 10 to 105 CFU/ml 153 

[42]. In contrast to FISH, microarrays generally contain probes for the detection of resistance genes such 154 

as mecA, vanA/vanB and blaKPC. For example, the Verigene system (Nanosphere, Northbrook, IL, USA) 155 

consists in two distinct kits for the detection of 12 Gram positive and 9 Gram negative bacterial species 156 

with a sensitivity ranging from 81 to 100% and a specificity higher than 98% [43, 44]. The Prove-it Sepsis 157 

assay (Mobidiag, Finland) combine a PCR with a microarray for a turnaround time of 3.5 hours, 95% of 158 

sensitivity and 99% of specificity (Table 2) [45].  159 

POCT-PCR systems that allow the detection and identification of methicillin sensitive Staphylococcus 160 

aureus (MSSA) and methicillin resistant Staphylococcus aureus (MRSA) have been dedicated to blood 161 

cultures because of the clinical impact and the epidemiological concern of this pathogen [46, 47]. 162 

MSSA/MRSA detection POCT such as, GeneXpert MRSA/SA BC Assay (Cepheid, Sunnyvale, CA) [48, 163 

49]  and the StaphSR assay (BD GeneOhm, San Diego, CA) [50, 51] are based on multiplex real-time PCR 164 

to detect S. aureus and the presence of the mecA gene.  The results are obtained in approximately 1.5 h. The 165 

FilmArray (Idaho Technology, Salt Lake City, UT, USA) is a multiplex PCR-based system designed to 166 

detect 25 microbes (90 to 95% of the pathogens involved in blood cultures) and the resistance genes mecA, 167 

vanA and vanB and blaKPC [52]. 168 

Subculture independent approaches: identification and antibiotic susceptibility 169 

testing using a blood-culture microbial pellet.  170 

The use of matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) 171 

technology for the identification of microorganisms is among the major revolution in clinical microbiology 172 

laboratory of the last years. Microbial identification using MALDI-TOF MS is based on the comparison of 173 

a protein profile obtained by mass-spectrometry from a bacterial or fungal sample with a database of profile 174 

obtained from characterized microbes [53, 54]. MALDI-TOF MS is an accurate and fast approach, which 175 



performance largely depends on microorganism’s purity and quantity. Therefore, bacterial enrichment and 176 

purification procedures are required from positive blood cultures which contain high concentration of non 177 

microbial material that may interfere with MALDI-TOF MS identification and AST. Several in-house and 178 

commercial methods have been developed to isolate and concentrate microorganisms from positive blood 179 

cultures including lysis centrifugation methods [55-57], saponin or equivalent mild detergent methods [58, 180 

59], serum separator method [60] and the commercial MALDI Sepsityper Kit (Bruker Daltonics Inc., 181 

Billerica, MA)  [61].  These pellet preparation protocols may not only be used for MALDI-TOF MS 182 

identification but also provide enough starting material for other downstream applications including Gram 183 

staining, AST [62] and POCT PCR [49]. 184 

MALDI-TOF MS on positive blood-culture pellet 185 

The main MALDI-TOF MS systems commercially available, the Autoflex II mass spectrometer (Bruker 186 

Daltonik) and Axima Assurance system (Shimadzu Corporation) display similar performances [53, 54, 63, 187 

64]. The performances of MALDI-TOF MS identification vary according to the enrichment and purification 188 

method (Table 2). In the study performed by Prod’hom et al., a 78.7% correct identification by MALDI-189 

TOF MS was obtained from blood culture pellets. Among samples giving no reliable identification by 190 

MALDI-TOF MS, 81% were blood culture positive for gram positive bacteria including mainly 191 

streptococci and coagulase-negative staphylococci [55]. Using a differential centrifugation protocol, 192 

March-Rossello et al. correctly identified 97.3% of Gram negative bacteria and 98.4% of Gram-positive 193 

bacteria [65]. Poor MALDI-TOF MS identifications from blood culture preparation are mainly observed 194 

with difficult-to-lyse bacteria (e.g. Klebsiella pneumoniae), closely related bacterial species (e.g 195 

Streptococcus mitis group) and bacteria such as anaerobes that are poorly represented in the MALDI-TOF 196 

MS database [53].  197 

Antibiotic susceptibility testing (AST) on positive blood-culture pellet 198 

Automated microbial systems cards and manual disk diffusion assays were directly used to perform AST 199 

from purified and/or enriched microbial samples obtained from positive blood culture. Machen et al. 200 



performed a same day AST by directly inoculating the AST automated microbial system (VITEK 2) with 201 

filtered microorganims from positive blood cultures.  A 93.5 % category agreement with tested antibiotics 202 

was obtained with only 1.7 % major error (ME) and 1.3 % very major error (VME) according to definitions 203 

given by the FDA for interpretive agreement results [66]. Similar results were observed when the VITEK 204 

2  was inoculated with bacterial pellets obtained by ammonium chloride lysis centrifugation [62] or when 205 

the BD Phoenix (BD Diagnostics) system was inoculated with bacteria harvested using serum separator 206 

tubes [67]. However, some antibiotics known to present frequent discrepancies compared to conventional 207 

approaches need to be confirmed by disk diffusion assays and/or E-test directly performed from the same 208 

blood culture bacterial preparations [62]. 209 

The emergence of broad spectrum antibiotic resistance mechanisms triggered the development of methods 210 

allowing rapid detection of ESBL and Carbapenemase activities on blood cultures positive for Gram 211 

negative bacteria. Using a Triton lysis-centrifugation method, ESBL activities can be directly and rapidly 212 

(less than 1 hour) detected from spiked blood culture using the ESBL NP test with 100% sensitivity and 213 

specificity [68]. Interestingly, the ESBL NP test applied on blood culture pellets showed a higher 214 

performance compared to the same test performed on bacteria grown on agar plates which exhibited a 100% 215 

specificity; the decreased sensitivity (92.6%) is due to the poor performance of the test (25% sensitivity) 216 

for the detection of non-CTX-M ESBLs producers. The higher performance observed with this test applied 217 

on blood culture samples is likely explained by the very high bacterial inoculum recovered from positive 218 

blood culture. Another approach to detect ESBLs from positive blood cultures is the chromogenic 219 

cephalosporin HMRZ-86 LACTA test (BioRad) exhibiting a 100% sensitivity and specificity following a 220 

2 hours subculture in tryptone soya broth (TSB) to prevent inhibition of the test by lysed blood [69]. Thus 221 

in Lausanne, we applied it on purified bacterial pellets with accurate results (Prod’hom et al. submitted). 222 

The detection of carbapenemase activity from positive blood cultures can be performed with the Carba NP 223 

with 97.9 % sensitivity and 100% specificity test following a 3 hours selective enrichment in brain-heart 224 

infusion (BHI) containing imipenem [70]. A lower detection sensitivity (91.3%) was observed with OXA-225 

48 producers whereas 100% of sensitivity was obtained with other classes of carbapenemases. 226 



POCT PCR on positive blood-culture pellet 227 

Rapid PCR-based test such as the GeneXpert MRSA/SA BC Assay (Cepheid, Sunnyvale, CA) can be 228 

applied on both native and microbial purified and enriched fraction of positive blood cultures (Figure 2). 229 

The GeneXpert MRSA/SA test was applied on Staphylococcus aureus blood culture bacterial pellets 230 

identified by MALDI-TOF MS and showed 99% of sensitivity and 100% of specificity, allowing a 231 

significant reduction of anti-MRSA antibiotics misuse from 26.1% to 8.1% [49]. 232 

 233 

Conclusions 234 

New technologies and new methods for the diagnostic of positive blood cultures allow a significant 235 

reduction of the TAT for both identification and AST, with a positive impact on the management of patients 236 

suffering from bloodstream infections. 237 

Some of these approaches such as microbial enrichment via centrifugation require significant hands on time 238 

and experienced lab technician, which may hinder their implementation in laboratories that process large 239 

volumes of positive blood cultures and/or that have limited human resources. Thus, the emergence of new 240 

laboratory methodologies and new laboratory automated  technologies, should help the implementation of 241 

these new diagnostic approaches. 242 

The example of recent development for the diagnosis of bloodstream infections highlight the importance 243 

of a dynamic R&D process in diagnostic laboratories that promote innovation and implementation of the 244 

most recent technologies for the benefit of patients care, while keeping an acceptable cost per test ratio.  245 
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 535 

Figure legends 536 

 537 

Figure 1: Top 20 of the microbes identified from positive BC during 1 year. Data from our 1000-bed 538 

tertiary care university hospital during the year 2013. The pie chart represents the distribution per 539 

morphotypes of all the microorganisms (total = 16682 identifications). 540 

 541 
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Figure 2: Methods to identify microorganisms from positive blood cultures. A) Directly from positive 543 

blood culture, B) via a subculture step and C) using a purified bacterial. 544 

 545 
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Table 1: Main automated blood culture incubation systems currently commercially available. 548 

 549 
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Table 2: Characteristics of the commercially available systems for the identification of microbes from 551 

positive blood culture  552 

 553 

 554 

 555 

 556 

 557 

System Methods Time to 

result 

Microorganisms 

coverage 

Resistance and 

virulence 

markers 

Sensitivity 

Specificity 

Correlation 

with 

conventional 

methods (%) 

Comments References 

PNA FISH and  

QuickFISH 

(AdvanDx, Wolburn, 

MA)  

FISH  <1-3 hours  4 Gram positive  

4 Gram negative  

5 Fungi  

0  97-100  

90-100  

96-99  

+ : rapid, sensitive and specific  

-  : dependent on the choice of the 

probes to be tested, no resistance 

marker 

[34, 37, 38, 

71-76] 

 

AccuProbe 

(Gen-Probe, San Diego, 
CA, USA)  

FISH  <1 hour  S. aureus 

Enterococcus spp. 
S. sneumoniae  

Streptococcus group A 

Streptococcus group B  

0  80.8-100 

98.7-100 
nr  

+ : high specificity 

-  : variable sensitivity, no resistance 
marker, limited number of 

publications 

[40, 41]  

Verigene 

(Nanosphere, 

Northbrook, IL, USA)  

Microarray  2.5 hours  12 Gram positive  

 9 Gram negative  

mecA, vanA/B, 

KPC, NDM, 

CTX-
M,VIM,IMP,OX

A12  

81-100  

98-100  

nr  

+ : detection of resistance markers, 

good specificity 

-  : variable sensitivity, narrow range 
of pathogens detected 

[43, 77-85] 

Prove-it Sepsis  
(Mobidiag, Finland)  

Microarray  3.5 hours  60 bacteria  
13 fungi  

 mecA  95 %  
99 % 

nr  

+ : sensitive and specific  
-  : limited number of publications 

[45] 

FilmArray 

(Idaho Technology, Salt 

Lake City, UT, USA)  

Multiplex 
PCR  

1 hour 8 Gram positive  
11 Gram negative  

5 Fungi  

mecA, vanA/B, 
KPC 

97-95  
91-98  

nr  

+ : rapid, sensitive and specific 
-  : narrow range of pathogens 

detected 

[52, 86-88] 

Xpert MRSA/SA BC 

( Cepheid, Sunnyvale, 

CA, USA)  

Real-time 
PCR  

1 hour  S. aureus  mecA  100  
99-100  

nr  

+ : rapid, sensitive and specific 
-  : expensive 

[48, 49, 89-
91] 

StaphSR assay 

(BD GeneOhm, San 

Diego, CA, USA)  

Multiplex 
PCR  

1-2 hours  S. aureus  mecA  96-100  
95-98  

nr  

+ : rapid, sensitive and specific 
-  : expensive 

[92, 93] 

StaphPlex 

(Genaco Biomedical 

Products, Huntsville, 

AL, USA) 

Multiplex 
PCR + 

Microarray  

5 hours  S. aureus  mecA (+ PVL)  100  
95-100  

92  

-  : limited number of publications [94] 

MALDI-TOF MS 

Brucker  Daltonics 

(Bremen, Germany)  
bioMérieux (Marcy 

l’Etoile, France)  

Mass-

spectrometry  

<1 hour  <1000* not in routine -  

-  

76-99  

+ : rapid, sensitive and specific 

-  : significant hands on time for 

bacterial enrichement 

[32, 35, 53, 

55, 56, 62, 

65] 

nr=non reported 
*dependant on the mass-

spectrum database  

    
   

 


