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Abstract: Let {Xi(t), t ≥ 0}, 1 ≤ i ≤ n be independent copies of a self-similar process {X(t), t ≥ 0}. For given

positive constants u, T , define the set of rth conjunctions Cr,T,u := {t ∈ [0, T ], Xr:n(t) ≥ u} with Xr:n(t) the rth

largest order statistics of X1(t), . . . , Xn(t), t ≥ 0. In numerous applications such as brain mapping and digital

communication systems, of interest is the approximation of the probability that the set of conjunctions Cr,T,u is

not empty. In this paper, we obtain, by imposing the Albin’s Conditions on X, an exact asymptotic expansion of

this probability as u tends to infinity as well as the asymptotic tail distributions of the mean sojourn time of Xr:n

over an increasing interval. Further, we explain our results by some examples concerning bi-fractional Brownian

motion, sub-fractional Brownian motion and the generalized skew Gaussian process.
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1. Introduction

Let {X(t), t ≥ 0} be a self-similar process with index κ > 0 and P -continuous sample paths, i.e., the finite-

dimensional distributions (f.d.d.) of X(λt) coincide with those of λκX(t) for all λ > 0. Denote by X1, . . . , Xn, n ∈ N

independent copies of X. The main object of interest in this contribution is the rth order statistics process Xr:n

defined from X1, . . . , Xn in the usual way, i.e., for any t ≥ 0

Xn:n(t) ≤ · · · ≤ X1:n(t).(1)

For a given positive threshold u and a fixed positive constant T define the set of rth conjunction Cr,T,u by

Cr,T,u := {t ∈ [0, T ] : Xr:n(t) ≥ u}

and set

pr,T (u) := P {Cr,T,u 6= φ} = P

{
sup
t∈[0,T ]

Xr:n(t) ≥ u

}
.(2)

Of interest is the calculation of pr,T (u) in various applications, for instance, for the analysis of functional magnetic

resonance imaging (fMRI) data and the surface roughness during all machinery processes. For smooth Gaussian

random fields approximations of pn,T (u) are discussed for instance in [8, 16, 24]; results for non-Gaussian random

fields can be found for instance in [10]. The recent contributions [17, 19] derived asymptotic expansions of pr,T (u)
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considering a stationary (Gaussian) process X. It is well-known that the stationary random field cannot be used to

model phenomena and data sets that exhibit certain non-stationary characteristics such as long-range dependence

(LRD). Such situations arise naturally in limit theorems of random walks and other stochastic processes, and they

have been applied to model various phenomena in a wide range of scientific areas including telecommunications,

internet traffic, image processing and mathematical finance. These processes are always related to self-similar

processes such that the scaling of time is equivalent to an appropriate scaling of space. We refer to the monographs

[23, 20, 11, 12] for complete expositions on theoretical and practical aspects of self-similar processes.

Motivated by [5, 19] and the tractability of self-similar processes, in this paper, we shall investigate the asymptotic

behaviour of pr,T (u) as u → ∞ and T fixed. The main methodology employed here is from Patrik Albin [5].

As mentioned therein, there are no systematic approaches to non-stationary extremes comparable with stationary

theories. Albin’s theory of extremes for self-similar non-stationary processes, concerning checking a couple of

conditions can be developed that performs (at least) as well as stationary counterparts.

The main contributions of this paper are three-folded. The first is the extensional results of the mean sojourn

time of X into those of rth order statistics process Xr:n (see below Propositions 2.1, 2.2). The second is that the

asymptotic results of the survival probability of supt∈[0,1]Xr:n(t) over an increasing interval (see Theorems 3.1–3.4)

holds under some common conditions imposed on X. Finally, several examples, such as Gaussian processes (see,

e.g. bi-fractional Brownian motion, sub-fractional Brownian motion) and non-Gaussian processes (see, e.g., the

generalized self-similar skew-Gaussian process), are considered to utilize our results (see, Theorems 4.1, 4.2).

This paper is organized as follows: In Section 2 we state our main conditions and some preliminary results. In

Section 3, we present the main results following by some examples and an application concerning a generalized

self-similar skew-Gaussian processes. In Section 5 we present all the proofs of our results.

2. Preliminaries and Technical Conditions for Self-similar Processes

In this section, we state first the so-called Conditions A, B, C and C′ imposed on the self-similar process X, which

are extremely useful to formulate the extreme properties of X; see, e.g., [5], and then we establish two asymptotic

preliminaries for the mean sojourn time of Xr:n over an increasing interval, which are new and useful to understand

our main results in Section 3.

Throughout this paper, we consider {X(t), t ≥ 0} to be the self-similar process X with index κ > 0 and P -

continuous sample paths, and the rth order statistics process Xr:n is given as in (1) generated by X, and assume

that the distribution function (df) of X(1), denoted by G, has an infinite right endpoint and continuous at infinity.

Let J be an interval such that J ⊆ (−1,∞) with 0 ∈ J , and q = q(u) a non-increasing, positive function such that

Q = 1/ limu→∞ q(u) exists and ã = 1/(2 supu<∞ q(u)) > 0. The function q and the notation Q, ã are depicted in

all conditions and theorems.
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Condition A: (Gumbel MDA and Conditional limit distribution) Assume that G belongs to the Gumbel max-

domain of attraction (MDA), denoted by G ∈ D(Λ), that is, there exists some positive measurable function

w = w(u) such that

lim
u→∞

1−G(u+ x/w)

1−G(u)
= e−x, x ∈ R.(3)

Further, there exists an (R ∪ {−∞,∞})-valued process {ξ(t), t ≥ 0} such that

lim
u→∞

P

{
m⋂
i=1

{
w
(
X(1− qti)− u

)
> xi

}∣∣∣X(1) > u

}
= P

{
m⋂
i=1

{
ξ(ti) > xi

}}
(4)

holds for m ∈ Z+, ti ∈ [0, Q) and continuity points xi ∈ J for the functions P {ξ(ti) > ·} , i = 1, . . . ,m, respectively.

The assumption that G ∈ D(Λ) implies that limu→∞ 1/(uw(u)) = 0 and that w is self-neglecting, i.e., the limit

holds locally uniformly for x ∈ R that (see, e.g., [18])

lim
u→∞

w(u+ x/w(u))

w(u)
= 1.(5)

Condition B: (Short-lasting-exceedance) We have

lim
d→∞

lim sup
u→∞

∫ 1/q

d∧(1/q)
P {X(1− qt) > u|X(1) > u} dt = 0.(6)

Condition B is void ifQ <∞, and if Condition A holds then Condition B can be interpreted as E
(∫ Q

0
I(u,∞)(ξ(t)) dt

)
where IS(·) is the indicator function of a set S. More generally, Proposition 2 in [5] showed that it holds when

β3 > 0 (see (10) for a precise definition). Condition B is developed to be used for establishing the tail asymptotic

of stationary processes under consideration; see, e.g., [13, 2, 3, 7].

Moreover, Propositions 2.1, 2.2 below show that Conditions A, B imposed on X hold also for the order statistics

process Xr:n, which will be utilized to establish the lower bound of extremes; see Theorem 3.1.

To state the two tightness Conditions C and C′ used for establishing the upper bound of extremes, we denote

tua(0) = 1 and

tua(k + 1) = tua(k)
(
1− aq(tua(k)−κu)

)
for k ≤ K ≡ K(a, u) = sup{k ∈ N : tua(k)−κu <∞} where u ∈ R, a ∈ (0, ã] are given.

Condition C: For some choice of σ > 0 and a ∈ (0, ã], we have

v(a, σ) ≡ lim sup
u→∞

P
{

supt∈[0,1]X(t) > u+ σ/w,max0≤k≤K X(tua(k)) ≤ u
}

E (L(u)/q) + P {X(1) > u}
<∞,

with L(u) =
∫ 1

0
I(u,∞)(X(t)) dt, the mean sojourn time of X over the threshold u on [0, 1].

Condition C′: Condition C holds with lima↓0 v(a, σ) = 0 for each σ > 0.

Conditions C and C′ are often verified via Propositions 3–5 in [5], which are basically a few estimates related to

the tail behavior of the one- and two- dimensional distributions of the involved process. For convenience, we state

Proposition 3 (ii) below, denoted by Condition C∗, which is a sufficient condition of Condition C′.
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Condition C∗: Suppose that there exist positive constants λ0, ρ, b,D and d > 1 such that

P
{
X(1− qt) > u+

λ+ v

w
,X(1) ≤ u+

v

w

}
≤ Dtdλ−bP {X(1) > u}

holds for all u large and all 0 < tρ < λ ≤ λ0, v ≥ 0.

In our setting, most results require that the function p(u) = u−1/κq(u) satisfies that the limit p̂(x) given by

p̂(x) = lim
u→∞

p(u+ x/w)

p(u)
(7)

exists and is continuous for x > 0.

In addition, we need another two requirements that there is a ρ ≥ 0 such that

β1 = lim inf
v→∞

inf
u∈[v,∞]

uρp(u)

vρp(v)
> 0,(8)

and that

β2 = lim sup
v→∞

sup
u∈[v,∞]

vw(v)

uw(u)
<∞.(9)

Generally, (7), (8) hold when for instance q is non-increasing and regular varying at infinity. While (9) is natural

since limu→∞ 1/(uw(u)) = 0. Finally, the behaviors of extremes will depend on whether the limits

β3 = lim inf
u→∞

uq(u)w(u) and β4 = lim sup
u→∞

uq(u)w(u)(10)

are finite or infinite; see, e.g., Theorem 3.3 and Theorem 3.4 in Section 3.

Next, we establish the following generalizations of Proposition 1 and Theorem 1 in [5] concerning the asymptotic

properties of Lr(u), the mean sojourn time of rth order statistics process Xr:n over threshold u, that is,

Lr(u) ≡ Lr(1;u), Lr(s;u) =

∫ s

0

I(u,∞)(Xr:n(t)) dt, s ∈ [0, 1].(11)

Proposition 2.1. Suppose that G ∈ D(Λ) with the auxiliary function w. Then, the df of Xr:n(1) belongs to the

Gumbel MDA with the auxiliary function wr(u) = rw(u), and

E (Lr(u)) =
1

r

1

κuw
P {Xr:n(1) > u} (1 + o(1)), u→∞.(12)

More generally, we can obtain below the bounds of the asymptotic distribution of Lr(u) if Conditions A, B and (7),

(8) are satisfied by the generated process X. Let therefore {ξr:r(t), t ≥ 0} be the minimum process of r independent

copies ξ1, . . . , ξr of the random process ξ, and with p̂(s) given by (7)

Θr(x) ≡ r
∫ ∞
0

P

{∫ Q

0

I(u,∞)(ξr:r(t)) dt >
x

p̂(s)

}
e−rs ds, x ≥ 0.(13)

Proposition 2.2. Suppose that Condition A and (7) hold for the process X. Then, for each x ≥ 0 we have

lim inf
u→∞

∫ ∞
x

P {Lr(u)/q > y}
E (Lr(u)/q)

dy ≥ Θr(x).

If additionally Condition B and (8) hold, then for each x ≥ 0 we have

lim sup
u→∞

∫ ∞
x

P {Lr(u)/q > y}
E (Lr(u)/q)

dy ≤ Θr(x−).
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Remark 2.3. Note that, in view of Propositions 2.1, 2.2, we have

P

{
sup
t∈[0,1]

Xr:n(t) > u

}
≥ max

(
P {Xr:n(1) > u} , 1

x

∫ x

0

P {Lr(u)/q > y} dy
)

≥ max

(
P {Xr:n(1) > u} , 1−Θr(x−)

x
E (Lr(u)/q)

)
, x > 0.

3. Main Results

In this section, we shall establish our main results which extend those for the self-similar process X. The first

theorem is concerned to the lower bound for P
{

supt∈[0,1]Xr:n(t) > u
}

without knowing the size of uq(u)w(u).

While the remaining three theorems require some knowledge of it.

Theorem 3.1. Suppose that Conditions A and B hold, and that (7) holds. Then we have

lim inf
u→∞

1

E (Lr(u)/q) + P {Xr:n(1) > u}
P

{
sup
t∈[0,1]

Xr:n(t) > u

}
> 0.

Next, we establish the upper bound of extremes, which requires the tightness Condition C and the knowledge that

β3 > 0.

Theorem 3.2. Suppose that Condition C and β3 > 0 are satisfied for the self-similar process X. If further (8)

holds, then we have

lim sup
u→∞

1

E (Lr(u)/q) + P {Xr:n(1) > u}
P

{
sup
t∈[0,1]

Xr:n(t) > u

}
<∞.

From Proposition 2.1 and Theorem 3.1, Theorem 3.2 above, P
{

supt∈[0,1]Xr:n(t) > u
}

could behaves like P {Xr:n(1) > u}

or E (Lr(u)/q), which finally depends on uq(u)w(u). Next, we shall establish the two sharp extremes depends on

that β4 is infinite and finite, respectively.

Theorem 3.3. Suppose that Condition C′ and β3 > 0 are satisfied for the self-similar process X. Assume further

that (8) holds, then we have

β4 =∞ =⇒ lim inf
u→∞

1

P {Xr:n(1) > u}
P

{
sup
t∈[0,1]

Xr:n(t) > u

}
= 1

β3 =∞ =⇒ lim
u→∞

1

P {Xr:n(1) > u}
P

{
sup
t∈[0,1]

Xr:n(t) > u

}
= 1.

Theorem 3.4. Suppose that Conditions A, C′ and β3 > 0 are satisfied for the self-similar process X. Assume

additionally that (7)–(9) and β4 <∞ hold. Then we have

lim
u→∞

1

E (Lr(u)/q)
P

{
sup
t∈[0,1]

Xr:n(t) > u

}
= lim

x↓0

1−Θr(x)

x
:= −Θ′r(0)

exists with Θ′r(0) ∈ (0,∞).
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Corollary 3.5. Theorem 3.4 still hold if Condition C′ and β3 > 0 are replaced by Conditions B and C∗.

Remark 3.6. a) Since Xr:n is self-similar, Theorems 3.1–3.4 can be easily rewritten for pr,T (u).

b) Most of self-similar processes satisfy the conditions required in the above theorems; see for instance the fractional

Brownian motion, totally skewed linear fractional α-stable motion and Rosenblatt process in [5].

c) We can drop the assumption on G ∈ D(Λ) with infinite endpoint to the general cases that G belonging to the

three max-domain of attractions; see, e.g., [3, 5].

4. Examples and Applications

Examples of Gaussian process X Several important examples of Gaussian processes are self-similar processes.

We present below two interesting Gaussian processes (see, e.g., [14, 15]):

Bi-fractional Brownian motion: Consider {Bh,k, t ≥ 0} with h ∈ (0, 1), k ∈ (0, 1] to be a bi-fBm, i.e., a centered

self-similar Gaussian process with covariance function given by

E (Bh,k(t)Bh,k(s)) =
1

2k

((
t2h + s2h

)k − |t− s|2hk ), t, s ≥ 0.

In particular, the bi-fBm Bh,1 is the fBm with Hurst index h. It follows by routine calculations that the Lamperti’s

transformation B̃h,k(t) ≡ e−κtBh,k(et) with κ = hk is a centered stationary Gaussian process with covariance

function satisfying that

E
(
B̃h,k(0)B̃h,k(t)

)
= 1− 2−kt2hk + o(|t|+ |t|2hk), t→ 0.

Sub-fractional Brownian motion: The sub-fBm {Sh(t), t ≥ 0} with h ∈ (0, 1) is a centered self-similar Gaussian

process with covariance given by

E (Sh(t)Sh(s)) = t2h + s2h − 1

2

(
(t+ s)2h + |t− s|2h

)
, t, s ≥ 0.

It follows by routine calculations that the Lamperti’s transformation S̃h(t) ≡ e−κtSh(et) with κ = h is a centered

stationary Gaussian process with covariance function satisfying that

E
(
S̃h(0)S̃h(t)

)
= (2− 22h−1)

(
1− 1

2(2− 22h−1)
t2h + o(|t|+ |t|2h)

)
, t→ 0.

Note that the correlation functions of the above centered stationary Gaussian processes have regular varying tails

at zero. Using the well-known results for stationary Gaussian processes (see, e.g., [21, 6]) and the Lamperti’s

propositions in [5], it is easy to show that the above two self-similar Gaussian processes satisfy the conditions of

Theorems 3.1–3.4; see also Theorems 4.1, 4.2 below.

The generalized self-similar skew-Gaussian processes: Recently, the skew-Gaussian processes have received

a lot of attentions from both theoretical and applicable fields; see, e.g., [1, 9, 19]. Next, we will consider this

non-Gaussian self-similar process and establish the tail asymptotic results by using our theorems in Section 3. The

main methodology used here is to first analyze the Lamperti’s associated stationary process , and then transfer the

results to itself via Propositions 6–9 in [5].
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Let {χ(t), t ≥ 0} be a centered self-similar Gaussian process with index κ > 0 and covariance satisfies

E (χ(1)χ(1 + t)) = 1 + κt−D |t|α + o(|t|+ |t|α), t→ 0(14)

for some constant α ∈ (0, 2] and D > 0. Note that the classes of random processes satisfying (14) are very big,

for instance the bi-fBm and the sub-fBm above. In particular, (14) holds with D = 1/2, κ = α/2 if χ(t) = Z(t), a

standard fBm with Hurst index α/2 ∈ (0, 1] and Cov(Z(s), Z(t)) = 2−1
(
sα + tα − |s− t|α

)
, s, t ≥ 0.

Denote by χi, i ≤ m+ 1,m ∈ N independent copies of χ, then our generalized skew Gaussian process ζm,δ, δ ∈ [0, 1]

is defined as (set |χ(t)| := δ
(∑m

i=1 χ
2
i (t)

)1/2
)

ζm,δ(t) ≡ δ |χ(t)|+
√

1− δ2χm+1(t), t ≥ 0.(15)

Therefore, ζm,δ is associated to the stationary process ζ̃m,δ via the Lamperti’s transformation such that ζ̃m,δ(t) :=

δ |χ̃(t)|+
√

1− δ2χ̃m+1(t), which has independent standardized Gaussian components χ̃i(t), i ≤ m+ 1 drawn from

χ̃(t) = e−κtχ(et) satisfying

E (χ̃(0)χ̃(t)) = 1−D |t|α + o(|t|+ |t|α), t→ 0.(16)

As for the χ-process ζm,1 studied by [5], we need to impose further a bound condition on the covariance function

(14): There exists some h > 0 such that

sup
t∈[ε,h]

e−κtE
(
χ(1)χ(et)

)
< 1 for ε ∈ (0, h].(17)

Note that the stationary Gaussian process satisfying (16) is studied first by [21], and then is extended to the ζ̃m,1

was by [22]. Our results for ζm,δ and the results on its mean sojourn time below are new for m ≥ 1 and δ ∈ (0, 1).

For notational simplicity, let E be a unit exponential random variable (rv) which is independent of the standard

fBm Z with Hurst index α/2 ∈ (0, 1]. And Zi, i ≤ r and Ei, i ≤ r are r independent copies of Z and E, respectively.

Theorem 4.1. Let {ζm,δ(t), t ≥ 0} be defined by (1) satisfying (14) and (17) with α ∈ (0, 1]. Let Xr:n be generated

by ζm,δ, δ ∈ [0, 1]. Then Propositions 2.1, 2.2 and Corollary 3.5 hold with w(u) = (1∨u)−1, q(u) = (1∨u)−2/α and

P {Xr:n(1) > u} = n!/(r!(n− r)!)
(
P {ζm,δ(1) > u}

)r
(1 + o(1)), and (set m := 1, 00 := 1 if δ = 0)

P {ζm,δ(1) > u} = δm−1
21−m/2

Γ(m/2)
um−2 exp

(
−u

2

2

)
(1 + o(1)),

Θr(x) = P
{∫ ∞

0

I(u,∞)( min
1≤i≤r

(
√

2Zi(D
1/αt)−Dtα + Ei − β4κt)) dt > x

}
,

where β4 = 1 if α = 1, and 0 otherwise.

Theorem 4.2. Let {ζm,δ(t), t ≥ 0} be defined by (1) to be satisfied by (14) with α ∈ (1, 2]. Let Xr:n be generated by

ζm,δ, δ ∈ [0, 1]. Then Propositions 2.1, 2.2 and Corollary 3.5 hold where w(u) = (1∨u)−1, q(u) = (1∨u)−2,Θr(x) =

e−κrx and P {Xr:n(1) > u} is the same as in Theorem 4.1.
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5. Proofs

In this section, we will first give, by verifying Conditions A, B imposed on X holds with the order statistics Xr:n,

respectively, the proofs of Propositions 2.1, 2.2. Then our main results (Theorems 3.1–3.4, Corollary 3.5) follow

mainly by the verifications of the tightness Conditions C, C′ and C∗. We end this section with the proofs of

Theorems 4.1, 4.2 concerning the generalized self-similar skew-Gaussian process.

In what follows, we write
d
= for the equality in distributions and

d→ for the convergence in distribution (or the

convergence of finite-dimensional distribution if both sides of it are random processes).

Proof of Proposition 2.1: Note that {Xr:n(t), t ≥ 0} is a self-similar process with index κ, and further as u→∞

P {Xr:n(s) > u}
P {Xr:n(1) > u}

=

(
P {X(s) > u}
P {X(1) > u}

)r
(1 + o(1))(18)

holds uniformly for s ∈ (0, 1). It follows that the marginal distribution Gr(x) = P {Xr:n(1) > x} belongs to the

Gumbel MDA with auxiliary function rw. Further since Xr:n is a self-similar process with index κ, in view of

Proposition 1 in [5], the claim follows. We complete the proof. �

Proof of Proposition 2.2: It follows from Proposition 2.1 that

p̂r(x) = lim
u→∞

p(u+ x/wr(u))

p(u)
= p̂(x/r)

exists and continuous for x > 0. Further, it follows from Lemma 2 in [5] that P {ξ(t) > x} is continuous at x = 0

for each t ∈ (0, Q). Thus, in view of Theorem 1 in [5], the lower bound follows if we verify that (4) holds for the

order statistics process Xr:n by taking the limit process ξr:r at xi = 0.

Indeed, (4) follows for r = n and m ∈ N, since

P
{
Xn:n(1− qti) > u, i ≤ m

∣∣∣Xn:n(1) > u
}

=
P {Xn:n(1− qti) > u, i ≤ m,Xn:n(1) > u}

P {Xn:n(1) > u}

→ P
{

min
1≤j≤n

ξj(ti) > 0, i ≤ m
}
, u→∞.(19)

Similarly, (4) holds for all r < n if we show that,

P
{
Xr:n(1− qti) > u, i ≤ m

∣∣∣Xr:n(1) > u
}

=
P {Xr:n(1− qti) > u, i ≤ m,Xr:n(1) > u}

P {Xr:n(1) > u}

=
P {min1≤j≤rXj(1− qti) > u, i ≤ m,min1≤j≤rXj(1) > u}

P {min1≤j≤rXj(1) > u}
(1 + Υr(u)),(20)

where Υr(u)→ 0 holds uniformly for m ∈ N, ti ∈ (0, Q) as u→∞.

In the following, we only present the proof for the case that r = n− 1 and m = 1, the other cases follow by similar

arguments. Note that we have by Lemma 3.1 in [19]

P
{
X(n−1):n(1) > u

}
= nP

{
X(n−1):(n−1)(1) > u

}
(1 + o(1))
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and

P
{
X(n−1):n(1− qt1) > u,X(n−1):n(1) > u

}
= P

{
X(n−1):n(1− qt1) > u > Xn:n(1− qt1), Xn:n(1) > u

}
+P
{
Xn:n(1− qt1) > u,X(n−1):n(1) > u > Xn:n(1)

}
+P
{
X(n−1):n(1− qt1) > u > Xn:n(1− qt1), X(n−1):n(1) > u > Xn:n(1)

}
+P {Xn:n(1− qt1) > u,Xn:n(1) > u}

=: I1u + I2u + I3u + I4u.

Since (4) implies that as u→∞

P {Xn(1− qt1) < u,Xn(1) > u} = P
{
Xn(1− qt1) < u

∣∣∣Xn(1) > u
}
P {Xn(1) > u} = o(1),

holds uniformly with t1 ∈ (0, Q), we have

I1u = nP
{

min
1≤j≤n−1

Xj(1− qt1) > u, min
1≤j≤n−1

Xj(1) > u

}
P {Xn(1− qt1) < u,Xn(1) > u}

= nP
{

min
1≤j≤n−1

Xj(1− qt1) > u, min
1≤j≤n−1

Xj(1) > u

}
o(1).

Similarly, I2u = nP {min1≤j≤n−1Xj(1− qt1) > u,min1≤j≤n−1Xj(1) > u} o(1). Using further the fact that

P {Xn(1− qt1) < u,Xn(1) < u} = 1 + o(1) holds uniformly with t1 ∈ (0, Q) as u→∞, we have

I3u =
∑

i,i′=1,...,n

P
{

min
1≤j≤n,j 6=i

Xj(1− qt1) > u,Xi(1− qt1) < u, min
1≤j′≤n,j′ 6=i′

Xj′(1) > u,Xi′(1) < u

}

= nP
{

min
1≤j≤n−1

Xj(1− qt1) > u, min
1≤j′≤n−1

Xj′(1) > u

}
P {Xn(1− qt1) < u,Xn(1) < u}

+
n(n− 1)

2
P
{

min
1≤j≤n−2

Xj(1− qt1) > u, min
1≤j′≤n−2

Xj′(1) > u

}
×P {Xn−1(1− qt1) < u,Xn−1(1) > u}P {Xn(1− qt1) > u,Xn(1) < u}

= nP
{

min
1≤j≤n−1

Xj(1− qt1) > u, min
1≤j′≤n−1

Xj′(1) > u

}
(1 + o(1)).

Moreover, since (19) implies that as u→∞

P
{

min
1≤j≤n−k

Xj(1− qt1) > u, min
1≤j′≤n−k

Xj′(1) > u

}
=
(
P {X(1) > u}

)n−k
O(1), k = 0, 1, 2,

the claim (20) follows for r = n− 1 and m = 1. Thus, we complete the proof of the lower bound.

Next, we consider the upper bound. In view of Theorem 1 in [5], it suffices to show that, for sufficiently large u

and some D > 0

P {Xr:n(1− qt) > u|Xr:n(0) > u} ≤ DP {X(1− qt) > u|X(0) > u}

holds locally uniformly with t ∈ (0, Q). Indeed, for r = n, we have

P {Xn:n(1− qt) > u|Xn:n(1) > u} =
(
P {X(1− qt) > u|X(1) > u}

)n
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and for r < n, similar arguments as for (20) yield that

P
{
Xr:n(1− qt) > u

∣∣∣Xr:n(1) > u
}

=
(
P
{
X(1− qt) > u

∣∣∣X(1) > u
})r

(1 + Υr(u))

≤ D
(
P
{
X(1− qt) > u

∣∣∣X(1) > u
})r

, for large u

holds uniformly for t ∈ (0, Q) and some positive constant D. Therefore, Condition B holds for the order statistics

process Xr:n. Consequently, the upper bound follows from Theorem 1 in [5]. We complete the proof. �

Proof of Theorem 3.1: In view of Theorem 2 in [5] (note: there was an error that Condition B should be

Conditions A, B), it suffices to verify that Conditions A,B are satisfied by Xr:n, which are already shown in the

proof of Proposition 2.2. We conclude the result. �

Proof of Theorem 3.2: In view of Theorem 3 in [5], it suffices to show the tightness Condition C holds for the

order statistics Xr:n, i.e., for given σ > 0 and a ∈ (0, ã], that

vr(a, σ) ≡ lim sup
u→∞

P
{

supt∈[0,1]Xr:n(t) > u+ σ/w,max0≤k≤K Xr:n(tua(k)) ≤ u
}

E (Lr(u)/q) + P {Xr:n(1) > u}
<∞.(21)

Letting ũ = u+ σ/w(u) and q̃ = q(ũ), note that the auxiliary function w is self-neglecting (cf. (5)) and (8) holds.

It follows from Proposition 1 and Theorem 3 in [5] that

lim sup
u→∞

P
{

supt∈[0,1]X(t) > ũ
}

E (L(u)/q) + P {X(1) > u}
≤ lim sup

u→∞

P
{

supt∈[0,1]X(t) > ũ
}

E (L(ũ)/q̃) + P {X(1) > ũ}

× lim sup
u→∞

E (L(ũ)/q̃) + P {X(1) > ũ}
E (L(u)/q) + P {X(1) > u}

≤
(

2

β1
+ 1

)
D,

where D is some constant (which may change line by line below). Using further (12), β3 > 0 and the inequality

that (a+ b)n ≤ 2n(an + bn), a, b > 0, we have, for r = n

P

{
sup
t∈[0,1]

Xn:n(t) > ũ, max
0≤k≤K

Xn:n(tua(k)) ≤ u

}

≤ P

{
sup
t∈[0,1]

Xj(t) > ũ, j ≤ n,
n⋃
i=1

{ max
0≤k≤K

Xi(t
u
a(k)) ≤ u}

}

≤
n∑
i=1

P

{
sup
t∈[0,1]

Xi(t) > ũ, max
0≤k≤K

Xi(t
u
a(k)) ≤ u

}(
P

{
sup
t∈[0,1]

X(t) > u+ σ/w

})n−1

≤ Dv(a, σ)

(
E (L(u)/q) + P {X(1) > u}

)n
≤ D

(
(E (L(u)/q))n + (P {X(1) > u})n

)
v(a, σ)

≤ D
(
E (Ln(u)/q) + P {Xn:n(1) > u}

)
v(a, σ) for sufficiently large u.
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Next, we present only the proof for r = n− 1, the other cases follows by similar arguments. Since v(a, σ) is finite,

P

{
sup
t∈[0,1]

X(n−1):n(t) > ũ, max
0≤k≤K

X(n−1):n(tua(k)) ≤ u

}

≤ nP

{
sup
t∈[0,1]

Xj(t) > ũ, j ≤ n− 1,∪i,j=1,...,n{ max
0≤k≤K

Xi(t
u
a(k)) ≤ u, max

0≤k≤K
Xj(t

u
a(k)) ≤ u}

}

≤ n
∑

i,j=1,...,n−1
P

{
sup
t∈[0,1]

Xi(t) > ũ, max
0≤k≤K

Xi(t
u
a(k)) ≤ u

}

×P

{
sup
t∈[0,1]

Xj(t) > ũ, max
0≤k≤K

Xj(t
u
a(k)) ≤ u

}(
P

{
sup
t∈[0,1]

X(t) > ũ

})n−3

+2n
∑

i=1,...,n−1,j=n
P

{
sup
t∈[0,1]

Xi(t) > u+ σ/w, max
0≤k≤K

Xi(t
u
a(k)) ≤ u

}(
P

{
sup
t∈[0,1]

X(t) > ũ

})n−2

≤ Dn
(
cn−1,2v

2(a, σ) + 2(n− 1)v(a, σ)
)(

E (L(u)/q) + P {X(1) > u}

)n−1 (
set cn,l =

n!

l!(n− l)!

)
≤ D

(
E (Ln−1(u)/q) + P

{
X(n−1):n(1) > u

})
v(a, σ).

Thus, we obtain that (21) holds for r = n− 1. We complete the proof. �

Proof of Theorem 3.3: In view of Theorem 4 in [5], it suffices to show that the tightness Condition C′ holds for

the order statistics Xr:n, i.e., for each σ > 0

lim
a↓0
vr(a, σ) = 0.(22)

In fact, it follows from the similar arguments as for (21) that if v(a, σ) is bounded uniformly for a ∈ (0, ã] and

σ > 0, then vr(a, σ) ≤ Dv(a, σ) with some constant D > 0 not depending on a. Consequently, it follows that (22)

holds and we then finish the proof. �

Proof of Theorem 3.4: In view of Proposition 2 in [5], the fact that the df of Xr:n(1) belongs to D(Λ) and β3 > 0

imply that Condition B holds for the order process Xr:n. Further, the proved (20) and (22) show that Conditions

A and C′ hold for the order process Xr:n. Therefore, in view of Theorems 5, 6 in [5], we have

lim sup
u→∞

1

E (Lr(u)/q)
P

{
sup
t∈[0,1]

Xr:n(t) > u

}
≤ lim inf

x↓0

1−Θr(x)

x

≤ lim sup
x↓0

1−Θr(x)

x
≤ lim inf

u→∞

1

E (Lr(u)/q)
P

{
sup
t∈[0,1]

Xr:n(t) > u

}
,

where

Θr(x) =

∫ ∞
0

P

{∫ Q

0

I(u,∞)(ξr:r(t)) dt >
x

p̂(s/r)

}
e−s ds, x ≥ 0.

Further, Theorem 3.1 and Theorem 3.2 show that the limit is positive and finite. �

Proof of Corollary 3.5: Since in view of Proposition 3 (ii) in [5], Condition C∗ implies that Condition C′ holds

for the self-similar process X, it suffices to verify that Condition C∗ holds for the order statistics process Xr:n, i.e.,

P
{
Xr:n(1− qt) > u+

λ+ v

w
,Xr:n(1) ≤ u+

v

w

}
≤ D∗tdλ−bP {Xr:n(1) > u}



12 ENKELEJD HASHORVA, LANPENG JI, AND CHENGXIU LING

for all u large and all 0 < tρ ≤ λ ≤ λ0, v ≥ 0, D∗ > 0.

Note that since the process X is self-similar,

P {X(1− qt) > u+ (λ+ v)/w} ≤ P {X(1) > u}

holds uniformly for 1− qt ∈ (0, 1). We have, with the involved constants given as in Condition C∗, for r = n

P
{
Xn:n(1− qt) > u+

λ+ v

w
,Xn:n(1) ≤ u+

v

w

}

= P

Xi(1− qt) > u+
λ+ v

w
, i ≤ n,

⋃
j=1,...,n

{Xj ≤ u+
v

w
}


≤ nP

{
X(1− qt) > u+

λ+ v

w
,X(1) ≤ u+

v

w

}(
P
{
X(1− qt) > u+

λ+ v

w

})n−1
≤ nDtdλ−b (P {X(1) > u})n .

While for r < n, we show only the proof for r = n− 1 and the other cases follow by the similar arguments.

P
{
X(n−1):n(1− qt) > u+

λ+ v

w
,X(n−1):n(1) ≤ u+

v

w

}

= nP

Xi(1− qt) > u+
λ+ v

w
, i ≤ n− 1,

⋃
i,j=1,...,n

{Xi ≤ u+
v

w
,Xj ≤ u+

v

w
}


≤ n

∑
i,j=1,...,n−1

(
P
{
X(1− qt) > u+

λ+ v

w
,X(1) ≤ u+

v

w

})2(
P
{
X(1− qt) > u+

λ+ v

w

})n−3

+2n
∑

i=1,...,n−1,j=n
P
{
Xi(1− qt) > u+

λ+ v

w
,Xi(1) ≤ u+

v

w

}(
P
{
X(1− qt) > u+

λ+ v

w

})n−2
≤ n

(
cn−1,2 + 2(n− 1)

)
Dtdλ−b (P {X(1) > u})n−1 ≤ D∗tdλ−bP

{
X(n−1):n(1) > u

}
holds for large u and all 0 < tρ ≤ λ ≤ λ0, v ≥ 0, D∗ a positive constant.

Consequently, by Corollary 1 in [5], the desired result follows. �

Proof of Theorem 4.1: Without loss of generality, we assume that D = 1. In view of Lemma 3.4 in [19], we obtain

that the marginal distribution G ∈ D(Λ) with auxiliary function w(u) = (1∨u), and (7)–(10) holds with β3 = β4 = 1

if α = 1, 0 otherwise. Further, Lemma 3.5 in [19] shows that the f.d.d. of {w(ζ̃m,δ(−qt) − u)
∣∣∣(ζ̃m,δ(−qt) > u)

converges to those of
√

2Z(t) − tα + E. Thus, in view of Proposition 9 (ii) in [5], Condition A holds with ξ(t)
d
=

√
2Z(t)− tα + E − β4κt.

Further, it follows from Lemma 3.6 in [19] that there exists some positive constant Kp and p > m such that

P
{
ζ̃m,δ(qt) > u

∣∣∣ζ̃m,δ(0) > u
}
≤

 Kpt
−αp/2, qt ∈ (0, ε],

Kpu
m−1−p, qt ∈ (ε, T ],

which together with Proposition 7 in [5] implies that Condition B holds.

In view of Lemma 3.7 in [19], there exist some positve constants D∗, p, λ0 and d > 1 such that

P
{
ζ̃m,δ(qt) > u+

λ

w
, ζ̃m,δ(0) ≤ u

}
≤ D∗tdλ−pP

{
ζ̃m,δ(0) > u

}
(23)
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for 0 < tα/2 < λ < λ0 and large u. Thus, it follows from Proposition 2 in [4] and Proposition 8 in [5] that Condition

C′ is satisfied for the generalized self-similar skew-Gaussian process ζm,δ. Therefore, we complete the proof. �

Proof of Theorem 4.2: Since α > 1 and q(u) = (1∨u)−2, Lemma 3.5 in [19] shows that the f.d.d. of {w(ζ̃m,δ(−qt)−

u)
∣∣∣(ζ̃m,δ(0) > u) converges to those of E. Thus, in view of Proposition 9 (ii) in [5], Condition A holds with

ξ(t)
d
= E − κt.

We obtain using (14) that E (χ̃(0)χ̃(t)) ≥ 1− 2 |t| for small t. It further follows from the arguments for Lemma 3.7

in [19] that (23) holds, and thus in view of Proposition 7 in [5] that Condition C′ hold. Moreover, since β3 = 1 > 0,

Condition B follows from Proposition 2 in [5].

Consequently, the desired result follows by a routine calculation giving that Θr(x) = e−κrx, x > 0. �
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