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Abstract: 
Global pandemics call for large and diverse healthcare data to study various risk factors, 
treatment options, and disease progression patterns. Despite the enormous efforts of many 
large data consortium initiatives, the scientific community still lacks a secure and privacy-
preserving infrastructure to support auditable data sharing and facilitate automated and legally 
compliant federated analysis on an international scale. Existing health informatics systems do 
not incorporate the latest progress in modern security and federated machine learning 
algorithms, which are poised to offer solutions. An international group of passionate researchers 
came together with a joint mission to solve the problem with our finest models and tools. The 
SCOR consortium has developed a ready-to-deploy secure infrastructure using world-class 
privacy and security technologies to reconcile the privacy/utility conflicts. We hope our effort will 
make a change and accelerate research in future pandemics with broad and diverse samples 
on an international scale.

Mission
 
A major lesson that the COVID-19 pandemic has already taught the scientific community is that 
timely international data sharing and collaborative data analysis is absolutely vital to navigate 
through policy decisions that have life-or-death consequences. Some of the most pressing 
issues about COVID-19 infections require urgent sharing of high-quality data concerning, for 
example, risk factors that influence infection, prognosis, and predictions of drug response from 
phenotypic, genotypic, and epigenetic data [1]. To generate or test scientific hypotheses, we 
need large-scale and well-characterized patient-level datasets to provide sufficient statistical 
power. Building and sharing massive datasets containing personal health information have 
numerous legal and ethical implications that hinder new discoveries and prevent the scientific 
community from assessing their validity [2]. In this respect, the case of two COVID-19 related 
articles published by The Lancet [3] and The New England Journal of Medicine [4] serves as an 
example. When concerns were raised regarding the veracity of the data used to support the 
conclusions in these articles, the two prestigious journals requested access to the raw data to 
conduct independent reviews. However, the authors could not comply with such a request, as 
granting access to the data would have violated confidentiality requirements, and the two 
journals had no choice but to retract the articles [5,6]. These instances reinforce the need for a 
robust privacy- and confidentiality-compliant data processing and sharing system to address 
these challenges in the era of COVID-19 and future pandemics. 

Numerous data-driven projects have been launched across the globe to combat COVID-19, as 
summarized below. Yet, there is a lack of systematic support to address one of the main 
impediments that prevent and delay broad and sustainable medical data sharing: privacy 
protection. To address privacy protection challenges, researchers make trade-offs on data 
utility. On the one hand, several data-sharing projects on COVID-19 are based on a 
decentralized approach, employing the computation of local statistics (sometimes obfuscated to 
hide small numbers) that are subsequently shared and aggregated through meta-analysis. 
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However, case numbers may sometimes be too low in certain subpopulations and could be 
considered identifiable information, which can make it very challenging for hospitals to even 
share aggregated data. Additionally, the approach only offers limited results and often depends 
on voluntary local analyses with human-in-the-loop approval and execution. On the other hand, 
other projects aim to centralize patient-level data from COVID-19 at a single site and then 
perform the analysis. Yet, that approach does not easily scale to international collaborations due 
to the heterogeneity and potential incompatibility of the various legal frameworks. We believe 
that there are more effective and privacy-congruent solutions to deal with this long-standing 
challenge and that privacy-by-design technology should be developed and is recently available 
for deployment to address the utmost urgency of data sharing by reducing administrative and 
regulatory barriers driven by privacy and security concerns. With this goal in mind, we have 
established an international consortium for Secure COllective Research (SCOR) [7] to deploy 
the next-generation distributed infrastructure and tools for secure data sharing, analysis, and 
mining while respecting patient privacy and maximizing data utility during global disease 
outbreaks like the current COVID-19 pandemic. The list of founding partners for this global 
initiative is provided in Supplement S1. 
 

Short- and long-term goals
SCOR aims to achieve the following goals:
 
●      Short-term: establish a proof-of-concept decentralized and privacy-preserving analytics 
platform, taking advantage of world-class privacy technology for COVID-19 data supporting 
cohort exploration for assessing the feasibility of research study protocols, and facilitating 
speedy patient cohort recruitment.
 
●      Long-term: build a distributed privacy-preserving and sustainable infrastructure for 
federated statistical and machine learning analysis to support multi-center clinical studies of the 
COVID-19 outbreak and future pandemics.

Positioning of SCOR regarding other similar initiatives
SCOR is a new initiative that complements existing multi-centric data-sharing efforts to face the 
COVID-19 pandemic. COVID-19 research moves rapidly with new initiatives announced daily. In 
Table 1 we summarize the major initiatives we are aware of (as of June 2020) and compare 
them to SCOR along the following axes:
-       Type of analyses (cohort exploration vs. meta-analysis vs. distributed analytics vs. 
centralized analytics)
-       Data storage (centralized vs. decentralized)
-       Scope (national vs. international)
-       Type of data transferred (aggregate-level vs. patient-level)
-       Data protection mechanism (local obfuscation, global obfuscation, encryption)
-       Level of automation (manual analysis, semi-automated analysis, fully automated system)
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The approach proposed by SCOR is the only one that (i) provides operational continuity for the 
long run, as it relies on a fully automated software platform for distributed data sharing, (ii) has 
an international scope, and (iii) provides the best data privacy/utility trade-offs, as it enables 
both cohort exploration and distributed analytics under strong privacy guarantees. These 
guarantees are ensured by deploying encryption techniques for distributed secure information 
aggregation across sites, lowering the need for local obfuscation.
 

Clinical research goals 
 
The rapid spread of the COVID-19 epidemic globally has almost overwhelmed health systems 
worldwide and it has already claimed lives in the hundreds of thousands. Starting from Asia, 
followed by Europe and next by the rest of the world, the first wave is now decreasing. No 
treatment has yet been demonstrated to be unequivocally effective and the subpopulation 
stratification of disease risks is still lacking, with multiple facets of presentation and prognosis. In 
particular, the recognized initial respiratory signs, symptoms, and laboratory findings have 
extended to many other settings, including dermatology, neurology, and hematology. Hospitals 
around the world have set up COVID-19 registries to accumulate information on symptoms, 
laboratory, respiratory function, imaging, and treatment to understand the disease. Joining 
forces will increase the number of patients that can be analyzed to address the next wave of the 
pandemic. Data harmonization will be challenging, but ultimately essential. Similarly, the 
proposed secure and distributed data analysis approach will overcome obstacles to information 
sharing which some institutions are often reluctant to do. The SCOR network will serve as a hub 
for bringing together clinical research groups based on shared interests. 
 
To demonstrate the utility of the SCOR approach, we will develop and apply use case scenarios 
(Box 1) that require data aggregation across multiple sites as each site has only a narrow view 
of the required information. This partial view stems from the uniqueness of the population at 
each site and from the difference in research protocols applied at each site.

SCOR requirements and existing data-sharing platforms
 
The aim of SCOR is to provide an ecosystem for privacy-preserving distributed data analysis, 
which addresses all the five dimensions of secure data management, as expressed in the Five 
Safes framework [15] (safe projects, safe people, safe setting, safe data, safe outputs) while 
overcoming the loss of data utility typical of existing decentralized approaches based on study-
level meta-analyses that rely on site-level (i.e., local) obfuscation to protect patients’ privacy. We 
distinguish between (i) safes that must be addressed at the consortium level, i.e., safes that are 
enacted by decisions taken by the SCOR board (representative members from each 
participating institution) to pursue the high-level consortium’s privacy and security goals, and (ii) 
safes that must be addressed at the platform level, i.e., safes that are enacted by technical 
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safeguards featured by the technological infrastructure of the SCOR analysis platform. More 
details about the rational and platform requirements are discussed in Supplementary S0.

Table 2 briefly summarizes the most wide-spread distributed medical data analytics platforms in 
terms of provided functionalities and protection mechanisms to ensure safe settings and safe 
output requirements. We focus our comparison on the public platforms as they allow for an in-
depth analysis. Yet, there exist also proprietary/closed platforms such as TriNetX, InSite, and 
Clinerion that, to the best of our knowledge, only partially address the data protection 
requirements for the SCOR initiative. 

Proposed platform: MedCo
 
Given the SCOR platform requirements, the MedCo analysis platform [16] is the one that best 
addresses them (Figure 1). 

Privacy-preserving technological enablers
Homomorphic encryption
Homomorphic encryption (HE) [17] supports computation on encrypted data (ciphertexts). 
Thanks to this property, homomorphically encrypted data can be safely handed out to third 
parties, who can perform meaningful operations on them without learning anything about their 
content. While fully homomorphic encryption schemes, i.e., schemes that enable arbitrary 
computations on ciphertexts, are still considered non-viable due to the high computational and 
storage overheads they introduce, practical schemes that enable only a limited number of 
computations on ciphertexts, e.g., additions and multiplications, have reached a level of maturity 
that enables their use in real scenarios.
 
Secure multi-party computation
Secure multi-party computation (SMC) [18] protocols allow multiple parties to jointly compute 
functions over their private inputs (e.g., confidential patient-level data) without disclosing to the 
other parties more information about their inputs than what can be inferred from the output of 
the computation. This class of protocols is particularly attractive in privacy-preserving distributed 
analytic platforms due to the great variety of secure computations they enable. However, this 
flexibility often comes with a number of drawbacks that hinder their adoption, including high 
network overhead, and parties required to be online during the computation. HE and SMC can 
be fruitfully employed in combination to mitigate their respective overheads and limitations and 
to provide effective solutions for privacy-preserving distributed analysis on sensitive data.
 
Data obfuscation
Data obfuscation techniques reduce the input data detail to an acceptable minimum and limit 
the information leakage stemming from the disclosure of the results. Indeed, even if data are 
kept private, the results of analyses performed may still reveal information about subjects that 
can be used to infer sensitive properties. Data obfuscation techniques alter data in a 
deterministic manner (e.g., k-anonymity [19], often applied to input data) or statistical manner 
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(e.g., differential privacy [20], often implemented into processing methods to ensure safe 
outputs). For the results to remain useful, the amount of noise introduced by data obfuscation 
has to be carefully calibrated to reach the desired trade-off between utility and privacy. Studies 
show that k-anonymity and differential privacy sometimes give disappointing results when the 
target sample size is small [21,22]. It is not a problem of both mechanisms but the unavoidable 
challenges in maneuvering statistics with limited flexibility. This issue is alleviated when safe 
settings are used to create large (protected) virtual datasets, compared to applying data 
obfuscation to local datasets. 

Operating principles
 
By using MedCo, health professionals and scientists can query data scattered among diverse 
institutions as if it were stored in one single location (virtual collective dataset), but without the 
need of seeing nor moving the data. As such, it facilitates compliance with stringent data 
protection regulations such as the EU GDPR [23] and the US HIPAA [24]. We include details 
about access control and accountability in supplement S7 and SCOR deployment plan in 
Supplement S8.
 

Ethical issues
Ethical issues in data sharing and analysis are on the rise. Our technology provides privacy and 
security safeguards to automate global information exchange, but it might make the direct 
assessment of healthcare disparity harder due to the obfuscation. Fairness, equity, and 
transparency of medical informatics models represent the fundamental considerations for public 
trust and clinical usability. Many seemingly objective models are indeed influenced by their 
design, which can significantly over- or under-estimate the risks on different subpopulations and 
introducing an unjustified basis for discriminating against a subpopulation. Such problems might 
be aggravated in a federated network with strong security protection, if unnoticed, could result in 
significant ethical challenges. As a community, we should take a high standard in addressing 
these problems by-design to consider fairness, equality, and justice to conduct responsible 
medical research.

Conclusion
There are urgent needs for data sharing and analysis in COVID-19, but we should not give up 
privacy in responsible research under pandemics. It is crucial to work together and build a 
robust and scalable infrastructure with state-of-the-art security and privacy technology to enable 
automated federated data analysis to accelerate scientific discoveries to combat the SARS-
CoV-2 outbreak and future pandemics. We are fully committed to establishing this international 
consortium of collective data and knowledge discovery network to support clinical research to 
answer important questions.
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Figure 1. MedCo core technologies. MedCo is a decentralized software system that uses cutting-edge 
privacy-preserving technologies to enable the secure sharing of medical data among health institutions. It 
builds on three core privacy-preserving technologies: homomorphic encryption, secure multi-party 
computation, and data obfuscation. These technologies are used in synergy to combine information owned 
by multiple institutions and reveal otherwise hidden global insights while addressing legal and privacy 
concerns. 
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Figure 2. The SCOR MedCo approach: when an institution queries the virtual collective dataset, it engages in 
a distributed cryptographic protocol with all the other institutions to securely obtain the result of the query. 
MedCo provides end-to-end protection against unauthorized access to data thanks to homomorphic 
encryption, which allows keeping the data in an encrypted state not only at rest and in transit but also during 
computation (safe settings). MedCo also removes the need for a central trusted authority by leveraging 

secure multi-party computation. The result of a query/analysis can be decrypted only through a distributed 
protocol that involves the approval of all the participating institutions. If one or more institutions are 
compromised by a cyberattack, the others can refuse to decrypt the data, thus keeping the data secure.
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Box 1: Demonstrative research study protocols that are planned to be conducted on the SCOR 

secure infrastructure

Use case 1:  Risk stratification for COVID-19 patients

We will collect patient demographics (Sex, Age, Race/Ethnicity), smoking status, vitals and/or their fluctuation over 
time (BMI, oxygen saturation, and blood pressure), comorbidities (Diabetes, Lung Disease, Cancer, 
Immunodeficiency, Heart Disease, Hypertension, Asthma, Kidney Disease, and GI/Liver Disease) and the outcome 
(length of stay in hospital or in ICU, discharge or death) and apply multivariate (non-linear) machine learning 
classifiers to create a personal risk score that accounts for regional differences.

Use case 2: Efficient treatments for COVID-19 patients

We will collect candidate medications assembled manually curated by the Bar-Ilan University in Israel from trials and 
studies [8] and study their effectiveness in treating COVID-19 patients. Using doubly robust methods that integrate 
standardization and inverse probability weighting techniques [9] (considering time-dependent treatments, left-
truncation, interventions like ventilators and Extracorporeal Membrane Oxygenation (ECMO), demographics, smoking 
status, and comorbidities), we will study averaged treatment effects on the treated (ATT) and conduct time-to-event 
analysis on mortality, respiratory failure, ICU admission, and length of hospitalization. 

Use case 3: Hospital readmission risk factors and prediction of post-hospitalization COVID-19 patients

Despite COVID-19 can cause severe respiratory failure and death, the majority of patients hospitalized for COVID-19 
are discharged alive, amounting to 50% in China and 80% in the US [10] [11]. Whether COVID-19 discharged 
patients are at increased risk of hospital readmission remains unknown as there is no available data regarding the 
readmission rate of COVID-19 inpatients at 30 days yet. Similarly, the impact of COVID-19 pandemic on hospital 
readmission of non-COVID-19 patients is unknown. We aim at assessing readmission risk during coronavirus 
outbreak in medically hospitalized patients and whether COVID-19 inpatients are at increased risk of readmission 
compared to non-COVID-19 inpatients. This information can be used as a proxy for the quality of health care systems 
and will provide crucial information on the capacity of different health systems to respond to a global sanitary 
problem, whether linked to a subsequent wave of COVID-19 infection or any future pandemic.

Use case 4: Changes in the characteristics of COVID-19 over time 

It is a common observation in the western hospitals that COVID-19 patients are not the same in May as they were at 
the beginning of the pandemic in March. The severity of the hospitalized patients is decreasing, while some 
complications, such as venous thromboembolism [12–14], might be increasing due to increased medical awareness. 
Making use of claims data first and registry data next, we may be able to use a multivariate and machine learning 
approach to model this particular phenomenon with many implications for health organizations and decision-makers.

Use case 5: Host genetics in previously healthy COVID-19 life-threatening patients 

The clinical presentation of COVID-19 ranges from mild respiratory symptoms to severe progressive pneumonia, 
multiorgan failure, and death. A variety of risk factors have been associated with severe COVID-19, but extremely 
severe clinical presentations of COVID-19 are also observed in young patients with no comorbidity. The identification 
and characterization of rare genetic variants responsible for the most severe forms of SARS-CoV-2 infection in 
otherwise healthy individuals will help uncover the genes and pathways that play a crucial role in viral pathogenesis 
and in antiviral response, which will inform drug and vaccine development.
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Table 1. Comparison of SCOR with similar data-sharing initiatives. (*) Comparison of fully automated 
systems for COVID-19 data sharing is reported in Table 2 below. 

Initiative Type of 
analysis

Data storage Scope Type of data 
transferred

Data protection 
mechanism

Level of 
automation

4CE meta-analysis decentralized international aggregate-level local obfuscation manual 
analysis

ACT 
Network

cohort 
exploration

decentralized national 
(USA)

aggregate-level local obfuscation fully 
automated 
system 
(SHRINE*)

LEOSS centralized 
analytics

centralized international 
(only EU)

patient-level anonymization manual 
analysis

OHDSI meta-analysis decentralized international aggregate-level local obfuscation manual 
analysis

PCORNet 
CDRNs

meta-analysis decentralized national 
(USA)

aggregate-level local obfuscation manual 
analysis

N3C centralized 
analytics

centralized national 
(USA)

patient-level anonymization manual 
analysis

SCOR cohort 
exploration & 
decentralized 
analytics

decentralized international aggregate-level encryption & 
global obfuscation

fully 
automated 
system 
(MedCO*)
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Table 2. Comparison between available medical distributed analysis platforms.

Functionalities Safe settings Safe output

Platform Cohort 
exploration

Distributed 
analytics

Secure 
Aggregation

Local 
obfuscation 

Global 
obfuscation

SHRINE ⚫ ⚫

Medical Informatics 
Platform

⚫ ⚫

DataShield ⚫ ⚫ ⚫

MedCo ⚫ ⚫ ⚫ ⚫ ⚫
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