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Fear of risk provides a rationale for protracted economic down-
turns. We develop a real business cycle model where investors
with decreasing relative risk aversion choose between a risky and a
safe technology that exhibit decreasing returns. Because of a feed-
back effect from the interest rate to risk aversion, two equilibria
can emerge: a standard equilibrium and a “safe” one in which in-
vestors invest in safer assets. We refer to the dynamics of this
second equilibrium as a safety trap because it is self-reinforcing as
investors accumulate more wealth and show it to be consistent with
Japan’s lost decade.

Fear of risk is an oft-mentioned factor to explain protracted economic downturns
such as Japan’s lost decade or the recent financial crisis because it makes investors
seek safer and less profitable investments. The following evidence suggests that
risk aversion may indeed have played an important role during the economic
slowdown faced by Japan in the 1990s. First, anecdotal evidence suggests that
the lost decade made the Japanese more anxious about the future. This fact is
best illustrated by the following excerpt from an article of the New-York Times
(“When consumers cut back: A lesson from Japan”, December 2, 2009, by Hiroko
Tabuchi):

Today, years after the recovery, even well-off Japanese households use
old bath water to do laundry, a popular way to save on utility bills.
[...] Although the family has a comfortable nest egg, Hiroko Takigasaki
carefully rations her vegetables. [...] Her husband has a well-paying
job with the electronics giant Fujitsu, but “I don’t know when the ax
will drop,” she says.

Second, Japanese households invested less and less in risky assets even though
their total assets kept increasing (see Figures 1 and 2).

To account for this evidence, we introduce decreasing relative risk aversion in
a business cycle model and let investors allocate their wealth between more or
less risky assets. In addition to a standard equilibrium, our model can have
a “safe” equilibrium with higher risk aversion and a lower interest rate. This
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equilibrium is characterized by investment in safer assets, which implies a greater
misallocation of capital and thus a weaker production. It arises because of a
feedback effect from risk aversion to the interest rate. On the one hand, with
high risk aversion, investors invest more in safe assets, which decreases the interest
rate. On the other, a low interest rate makes agents more risk averse because it
decreases their safe revenues. To obtain these results, we assume that investors
compare their consumption to a reference level and become more risk averse as
their consumption gets closer to it.

The two equilibria have opposite predictions: the comovement between risky
investment and wealth is positive in the standard equilibrium and negative in
the safe equilibrium. When they become wealthier, investors want to keep a bal-
anced portfolio by increasing their demand for both safe and risky assets. In the
standard equilibrium, the stock of both assets increases. In the safe equilibrium,
however, the return to safe assets decreases so much that it makes investors more
risk-averse and they end up holding a safer portfolio even though their wealth
has increased. As a consequence, when the economy switches from the standard
to the safe equilibrium, its dynamics are characterized by a declining stock of
risky assets and a rising wealth, a situation which we refer to as a safety trap.
In the remainder of the paper, we show that the empirical evidence is consistent
with interpreting Japan’s lost decade as a safety trap. We also find that several
alternative hypotheses fail to explain the same evidence.

Finally, we briefly discuss some policy implications of our model. We show
that the government can crowd out the safe equilibrium by increasing the supply
of bonds or by making transfers to investors. These two policies can reduce the
adverse effect of the interest rate on risk aversion. A larger supply of bonds
increases the interest rate and thus reduces risk aversion. Transfers to investors
help them secure their level of reference consumption and thus make them less
risk averse.

Although we illustrate our model with the lost decade, we believe it to have
broader applications. First, regarding the methodology, we believe we are the first
to show that decreasing relative risk aversion can be a source of multiple equilibria
in a business cycle model. Second, whether the economy is in one equilibrium or
the other is not linked to the fundamentals of the economy but is instead the result
of the coordination between a large number of investors. The spell of this safer
but less productive regime is potentially very long if agents do not coordinate out
of it. Our mechanism could thus explain phenomena characterized by jumps and
persistence that are difficult to reconcile with similar changes in the fundamentals
and in which fear or anxiety are thought to play an important role. In particular,
the prolonged recession in the US following the 2008 crisis is often compared to
the lost decade in Japan.

According to Hayashi and Prescott (2002), the lost decade is mostly the result
of a lower TFP. Our mechanism is consistent with this finding. The safety trap
implies a lower TFP as investors invest increasingly in safer and less productive
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assets. Another explanation for the lost decade which is also consistent with a
lower TFP is the one proposed by Caballero, Hoshi and Kashyap (2008). They
argue that banks kept on lending to unproductive firms – the zombies – during
the lost decade. This prevented more productive firms to enter and decreased
TFP.

Our framework can also be consistent with the liquidity trap view of Japan’s
lost decade (Krugman, Dominquez and Rogoff, 1998). Although our model is a
real model and hence has no room for monetary policy, it provides a possible
explanation for low interest rate situations that lead to liquidity traps.

Preferences with decreasing relative risk aversion have received empirical sup-
port. For example, Carroll (2002) and Calvet, Campbell and Sodini (2009) find
that wealthier investors hold riskier portfolios. Furthermore, our use of a refer-
ence level of consumption in the utility function relates our paper to the habit
formation literature. Standard references in macroeconomics include Jermann
(1998) and Boldrin, Christiano and Fisher (2001).1 A first difference with the
habit formation literature is that it uses a time-varying reference point, whereas
it is constant in our framework. But this difference is only superficial, since
similar results would obtain with sticky enough external habits.2 A second dif-
ference is that we obtain a non-monotonic demand for capital and thus multiple
equilibria. This additional result comes from our choice of using continuous-time
finance methods to solve our model.3 This methodological choice allows us to
derive closed-form solutions without resorting to local approximations.

The paper is organized as follows. Section 1 presents some salient facts of
Japan’s lost decade. Section 2 introduces the model. Section 3 solves for the
equilibrium. Section 4 analyzes the dynamics. Section 5 confronts the model’s
predictions with Japan’s lost decade. Section 6 discusses some policy implications.
Section 7 studies equilibrium stability. Section 8 concludes. All the proofs are in
the Appendix.

I. Japan’s Lost Decade: Salient Facts

In this section, we describe some of the salient facts of Japan between 1981 and
2009. Figure 3 shows GDP. In the 1980s, the annual average growth rate of GDP
is almost 4%. The period afterwards is famous for its much lower growth rate (an
average of 1.5% from 1990 to 2007) and is referred to as the lost decade(s).

As suggested by Hayashi and Prescott (2002), this phenomenon can be consis-
tent with a slowdown in TFP. Figure 4 indeed shows that TFP grows at a rate
of about 2.4% per year before 1990. This rate falls to almost 0 afterwards.

During this slowdown, Figure 5 shows that the Japanese households reduced

1See also Abel (1990) and Constantinides (1990) for early references in the asset pricing literature.
2In fact, extending our framework to habit formation by making the reference point more time-

dependent would enable us to accommodate trend growth, which is absent in our model.
3See Merton (1998) for a presentation of these methods and Kraay et al. (2005), Angeletos and

Panousi (2009), and Benhima (forthcoming) for examples of business cycle models using these methods.
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their consumption growth from 3.4% per year before 1990 to 2.4% in the period
1990-95. Afterwards, this rate falls to almost 0.

Households not only consumed less, they also drastically reduced their hold-
ings of risky assets. Figure 1 shows that prior to 1990 the Japanese households
increased their stock of risky assets at a rate of 15% per year. In the 1990s, they
reduced it at a rate of 1.5% per year. This is all the more striking that during
the same period, Figure 2 shows that their stock of total assets kept increasing
at a rate of 6.4% per year (against 13% before 1990). In the 2000s, they started
to increase again their stock of risky capital until the crisis of 2007.

Finally, it is interesting to note that the declining share of risky assets in the
1990s cannot be explained by an increasing interest rate. Figure 6 shows indeed
a declining interest rate during the 1990s. Nor can it be explained by a greater
risk. Figure 7 shows that although the volatility of the Nikkei peaked in 1990 it
quickly came back to its initial level and remained low afterwards.

To summarize, column 1 of Table 1 presents the correlations between these
variables. We focus on comparing the periods 1981-1989 and 1990-1999 because
they offer the starkest contrast. The salient features of the data are that the
comovement between total and risky assets turns negative in 1990. The same
happens to the comovement between total assets and TFP. By contrast, there
does not appear to be such strong changes when looking at the interest rate and
consumption.

The objective of the remainder of the paper is to build a model consistent with
these comovements.

II. Model

This section builds a business cycle model with decreasing relative risk aversion
and portfolio choice between a risky and a safe technology. The model predicts
that the demand for risky capital can be a hump-shaped function of the interest
rate, which can be a source of multiple equilibria, as we show in the next section.

A. Setup

Time is continuous, infinite, and indexed by t. The economy is populated by a
continuum of investors of length one who allocate their wealth between safe and
risky assets to maximize their utility.

The lifetime utility of investors is given by the expected sum of their consump-
tion stream c discounted at the rate ρ:

(1) Wt = Et

∫ ∞
t

e−ρsu(cs)ds,
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with u being of the form:

(2) u(c) = ln(c− c̃),

where c̃ > 0 is the level of reference consumption. This utility function has
decreasing relative risk aversion. When consumption moves closer to its reference
point, investors become more risk averse.

Investors allocate their wealth ω between risky capital k, safe capital z, and
bonds b:

(3) ωt = kt + zt + bt,

Bonds deliver a return Rbt and are in zero supply.4 The two types of capital k
and z deliver a flow of capital income in units of final good of, respectively,

(4) dkt = (F (kt, l
k
t )− wkt lkt )dt+ σktdvt

and

(5) dzt = (G(zt, l
z
t )− wzt lzt )dt,

where F and G are constant returns to scale functions, and are strictly increasing
and concave in each of their arguments, lk and lz are capital-specific labor, wk
and wz are the costs of labor, and dvt is a macroeconomic shock to the return of
the risky technology, where vt is a standard Wiener process.

The budget constraint of investors is given by the following equation:

(6) dωt = dkt + dzt + (Rbtbt − ct)dt.

Finally, the supply of each type of labor is inelastic and equal to one. We
also assume that labor is not supplied by the main character of our story (the
investor) but by a secondary protagonist (the workers) who plays no further
role in our model. The main motivation for doing so is to generate external
decreasing returns to capital in the simplest framework possible.5 The main
advantage is that we do not have to carry around human wealth and this greatly
simplifies both the presentation of the results and the resolution of the model. A
possible interpretation is that workers are hand-to-mouth, that is, they consume
all their labor income. This is a natural equilibrium outcome in a model where the

4Bonds thus play no role in the economy. However, they allow us to characterize the return to safe
assets as the interest rate.

5Labor supply is inelastic in our model, but one might consider what happens with a more elastic
supply. In that case, the external decreasing returns to capital, which are key to our results, will be less
strong. However, one should expect that, as long as labor supply is sufficiently inelastic, our results will
survive.
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entrepreneurs’ revenue is risky while the workers’ revenue is not, and workers face
a no-liability constraint. In such a setting, workers would end up hand-to-mouth
as the result of a low interest rate.6

B. Profit Maximization

Investors choose the amounts of labor lk and lz that maximize Equations (4)
and (5). Labor markets are competitive within each type of capital-specific labor
and investors thus take the wages wk and wz as given. Optimal labor demands
therefore equalize wages and the marginal productivities of labor: wkt = F2(k̂t, 1)

and wzt = G2(ẑt, 1), where k̂ = k/lk and ẑ = z/lz are the capital-labor ratios.
These equations define the optimal capital-labor ratios as functions of wages:
k̂(wkt ) and ẑ(wzt ).

Using the fact that the production functions exhibit constant returns to scale,
we can show that the returns of the safe and risky technologies are linear functions
of capital:

(7) dkt = rtktdt+ σktdvt

(8) dzt = Rtztdt

where rt = F1(k̂(wkt ), 1) and Rt = G1(ẑ(wzt ), 1). These private returns expressions
are derived using the constant returns to scale assumption and the Euler theorem.
They are taken as given by investors.

Arbitrage imposes that the return of bonds is equal to the return of the safe
technology, that is, Rbt = Rt. We can thus refer to R as the interest rate.

The budget constraint of investors therefore boils down to:

(9) dωt = (rtkt +Rt(zt + bt)− ct)dt+ σktdvt.

C. Utility Maximization

At each period t, investors consume ct and allocate their wealth ωt between
bonds bt, risky capital kt, and safe capital zt to maximize their lifetime utility
(1), taking the returns rt and Rt as given and under the constraints (3), (9) and

(10) kt ≥ 0, zt ≥ 0.

The solution to this problem is given by the following Proposition:

PROPOSITION 1: For a given level of wealth ωt and given returns rt and Rt
such that Rt ∈ (c̃/ωt, rt], the solution {ct, kt, zt, bt} to the problem of the investor

6See for example Kiyotaki and Moore (2008).
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is given by Equation (3) and:

(11) ct − c̃ = ρ(ωt − ω̃t),

(12)
kt
ωt

=
∆t

σ2γt
,

where

(13) ω̃t =
c̃

Rt
,

(14) ∆t = rt −Rt.

(15) γt =
−ωt∂2Wt/∂ω

2
t

∂Wt/∂ωt
=

ωt
ωt − ω̃t

,

The presence of reference consumption introduces the notion of reference wealth
ω̃t, defined in Equation (13). ω̃t is the quantity of safe assets necessary to secure
the level of reference consumption c̃. It is decreasing in the interest rate. Indeed,
when Rt is low, entrepreneurs need more safe assets to compensate for their lower
return. We show in the following that this has important implications on savings
and portfolio allocation.

Equation (11) describes the saving behavior. Consumption decreases with ref-
erence wealth and thus increases with the interest rate. In other words, investors
cut on consumption when the interest rate is low in order to compensate for
the lower returns on savings and maintain their reference level of consumption.
Therefore, reference consumption introduces a strong income effect of the interest
rate on savings. This is consistent with Muellbauer and Murata (2011) who doc-
ument a positive correlation between the interest rate and consumption in Japan
after controlling for wealth.

Equation (12) is a standard portfolio allocation rule. It states that the share of
wealth invested in risky capital is increasing with the excess return ∆t, defined
in Equation (14), decreasing with risk σ and with risk aversion γt. Equation (15)
shows that γt decreases with wealth ωt and with the interest rate Rt. Both a
higher wealth and a higher interest rate indeed enable households to better cope
with adverse shocks and secure reference consumption.

The main insight from Equation (12) is that the interest rate Rt has two con-
tradictory effects on the demand for risky capital. The first effect goes through
the excess return ∆t and is negative. This is a standard arbitrage effect in asset
pricing theory. The second effect is positive and goes through risk aversion γt.



8 AMERICAN ECONOMIC JOURNAL MONTH YEAR

As already noted, a higher interest rate makes investors less risk averse and this
increases their demand for risky capital. We show below that the risk aversion
effect dominates for a low interest rate while the excess return effect dominates
for a high interest rate. The demand for risky capital is thus a hump-shaped
function of the interest rate.

Finally, the policy functions expressed in Proposition 1 are well-defined only
if the solution is an interior one, that is if the constraints described in Equation
(10) are satisfied, and if the value function is well-defined, that is, if c > c̃. These
policy functions are therefore valid only if:

(16) Rt ∈ (c̃/ωt, rt].

Equation (11) indeed shows that a lower Rt would violate the constraint c > c̃,
in which case lifetime utility W is not well-defined. Equation (12) further shows
that a higher Rt would violate the constraint k ≥ 0.

D. Equilibrium

Note that entrepreneurs are heterogeneous but their policy functions are linear
in wealth, which implies that the properties of the aggregate variables are the
same as the individual ones described in the previous section. We therefore keep
the same notations, but we refer from now on to the aggregate variables instead
of the individual ones.

The equilibrium is defined as follows:

DEFINITION 1 (Equilibrium): For a given initial aggregate wealth ω0, an equi-
librium is a sequence of wealth {ωt}t≥0 of risk aversion {γt}t≥0, of excess return
{∆t}t≥0, of reference wealth {ω̃t}t≥0, of vector of aggregate quantities {ct, kt, zt, bt, lkt , lzt }t≥0

and of vector of prices {rt, Rt, Rbt , wkt , wzt }t≥0 such that, for each period t ≥ 0:

(i) The excess supply of bonds is equal to zero: bt = 0;

(ii) Workers supply lkt = 1 and lzt = 1;

(iii) For given returns rt and Rt, investors’ aggregate consumption ct, risky capi-
tal kt, safe capital zt, reference wealth ω̃t, excess return ∆t and risk aversion
∆t are such that Equations (3) and (11)-(13)are satisfied and that inequal-
ities (10) and ct > c̃ hold.

(iv) wkt = F2(kt, 1), wzt = G2(zt, 1), Rt = Rbt , rt = F1(kt, l
k
t ) and Rt = G1(zt, l

z
t ).

In what follows, the analysis is split in two steps. We first analyze the period-t
equilibrium: for a given inherited aggregate wealth ωt, we characterize the possible
equilibrium allocations and prices. Second, we solve for the dynamics of ωt, which
will determine the evolution of the economy.
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III. Period-t Equilibrium

This section defines and solves for the period-t equilibrium. We drop the t
index from now on unless confusing.

A. Equilibrium Returns

Labor supply is equal to one for each type of labor. Then, solving for the
equilibrium wages, the equilibrium returns on capital become:

(17) r = r(k)

(18) R = R(z),

where r(k) = F1(k, 1) and R(z) = G1(z, 1). Given the properties of F and G,
these marginal returns r and R are strictly positive and decreasing with, respec-
tively, k and z. Intuitively, a higher demand for capital increases the demand
for labor and, thus, the equilibrium wage. This decreases the equilibrium return
to capital. We further restrict F and G so that r and R satisfy the following
assumption:

ASSUMPTION 1: The functions r and R satisfy the following conditions:

(i) r(k) and R(z) are strictly decreasing, with limk→+∞ r(k) = limz→+∞R(z) =
0, ρ < limk→0 r(k) < +∞ and ρ < limz→0R(z) < +∞;

(ii) r(k) ≥ R(k) for any given k;

(iii) There exists ωmin > 0 such that r(k) = R(ωmin−k) and R(ωmin−k)ωmin = c̃
are both satisfied for some k ≥ 0;

(iv) r(ωmin) < R(0);

(v) r(k)k and R(z)z are strictly increasing, with limk→+∞ r(k)k = limz→+∞R(z)z =
+∞ and limk→0 r(k)k = limz→0R(z)z = 0.

This assumption will guarantee that the problem is well-defined. Condition (i) is
close to the implication of Inada conditions on F and G. The only deviation from
the Inada conditions is that the limit of marginal returns goes to a finite number
when the capital stock goes to zero in (i). This will ensure that the excess return
to risky capital remains finite. Conditions (ii) to (iv) ensure that r and R are well-
behaved. These conditions imply that for ω ≥ ωmin, there is a unique interior
solution to r(k) = R(ω − k), where ωmin defines the minimum level of wealth
that can sustain a level of consumption at least equal to c̃. Finally, condition
(v) imposes some of the Inada conditions on r(k)k and R(z)z, the equilibrium
revenues for entrepreneurs.
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B. The Aggregate Demand for Risky Capital

The next step we take to solve the equilibrium is to replace the equilibrium
returns derived below into the demand for capital given by Equation (12). This
section analyzes the properties of the resulting demand for risky capital.

Bonds b are in zero supply and thus the whole demand for safe investment is
absorbed by safe assets z = w− k. Using Equation (3), we can also rewrite R(z)
as R(ω − k). We obtain the demand for risky capital D, which only depends on
k, ω, and σ:

(19) D(k, ω, σ) =
∆(k, ω)

σ2γ(k, ω)
ω,

with ∆(k, ω) = r(k)−R(ω − k) and γ(k, ω) = ω
ω−c̃/R(ω−k) . An equilibrium stock

of risky capital k then satisfies:

(20) D(k, ω, σ) = k

In other words, the actual stock of risky capital k should be consistent in equi-
librium with the level of desired risky capital D(k, ω, σ).

To understand formally the behavior of D, we take the derivative of D with
respect to k:

(21) D1(k, ω) =
r′(k) +R′(ω − k)

σ2γ(k, ω)
ω − c̃R′(ω − k)∆(k, ω)

σ2(R(ω − k))2

The two terms summarize the two contradictory effects of k on D. First, a
negative excess return effect through a lower ∆ (first term). The function D
is indeed increasing in the excess return, which is itself reduced by a higher k.
Second, a positive risk aversion effect through a lower γ (second term). The risk
aversion effect is strictly positive if c̃ > 0 and if returns are decreasing (R′ < 0),
which is implied by Assumption 1. A higher stock of risky capital means that
fewer resources are invested in safe assets, which increases the interest rate, makes
investors less risk-averse and thus more willing to hold risky assets. For a high
enough value of k (R close to r), ∆ is close to zero, which implies that the excess
return effect dominates. For a low value of k (R close to c̃/ω), γ goes to infinity, so
the risk aversion effect dominates. The function D is therefore hump-shaped in k,
as represented in Figure 8. Finally, note that for low enough values of c̃, the risk
aversion effect vanishes and the demand for risky capital becomes monotonically
decreasing.

As illustrated in Figure 8, D is equal to zero for two values, k(ω) and k(ω),
where k(ω) is the solution to ∆ = 0, that is:

(22) r(k) = R(ω − k)
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and k(ω) is the solution to γ → +∞, that is:

(23) R(ω − k)ω = c̃

so D is positive only for k(ω) ≤ k ≤ k(ω). If ω decreases, then the range over
which D is positive becomes smaller, as represented by the curve with ω = ω1. We
show that k ∈ (k(ω), k(ω)] is actually a necessary condition for the demand for
risky capital to be well-defined. The conditions on k that ensure a well-behaved
D are summarized in the following Lemma:

LEMMA 1: Define ωmax as the unique ω > ωmin such that k(ω) = 0. Under
Assumption 1:

(i) if ω > ωmin, then k(ω) and k(ω) are uniquely defined, with k(ω) < k(ω);

(ii) if ωmin < ω ≤ ωmax, then k(ω) ≥ 0 and D is well-defined for k ∈ (k(ω), k(ω)];

(iii) if ω > ωmax, then k(ω) < 0 and D is well-defined for k ∈ [0, k(ω)];

This result is derived as follows. For a given ω, the restriction (16) can be
rewritten in equilibrium as R(ω − k) ∈ (c̃/ω, r(k)]. This new restriction can be
rewritten as a range of k ∈ (k(ω), k(ω)]. The demand for risky capital D is only
well defined in this range, which requires that k > 0 and c > c̃. Indeed, these are
the conditions under which the policy functions of Proposition 1 are valid. Lemma
1 tells us that this range is non-trivial for ω > ωmin, that is, if the economy is not
too poor. Besides, if ω is large enough, then this range is wide enough to include
0. This case is illustrated in Figure 9 by the case with ω = ω2. The intuition is
that when the economy is rich, any equilibrium with k ≥ 0 can sustain c > c̃.

C. Multiple Equilibria

An equilibrium stock of risky capital k is a solution to Equation (20). The
following proposition gives the solution:

PROPOSITION 2: Under Assumption 1, for a small σ and ωmin < ω ≤ ωmax:

(i) there are two well-defined solutions to Equation (20), denoted kL(ω, σ) and
kH(ω, σ), with kL(ω, σ) < kH(ω, σ);

(ii) these solutions converge respectively to k(ω) and k(ω) as σ goes to zero.

Let us first describe part (i). If a well-defined equilibrium exists, it must satisfy
(20). This relationship defines implicitly the equilibrium stock of capital as a
function of ω and σ. Because the function D can be hump-shaped, there can
exist up to two non-degenerate equilibria: A standard and a safe one. These
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equilibria are given by the intersection of the 45 degree line and of the demand
curve in Figure 8.7

The standard equilibrium corresponds to the part of the demand curve that is
downward-sloping and where the standard excess return effect dominates. It is
characterized by a relatively large stock of risky capital that we denote kH(ω, σ),
where the superscript H refers to the equilibrium variables associated with the
standard regime.

The safe equilibrium corresponds to the part of the demand curve that is
upward-sloping and where the unconventional risk aversion effect dominates. It
is characterized by a smaller stock of risky capital than the standard equilibrium
that we denote kL, where we use superscript L to denote the equilibrium variables
associated with the safe regime. This implies a lower interest rate, a higher risk
aversion, and a lower consumption than in the standard equilibrium.

The multiplicity of equilibria comes from decreasing risk aversion. Indeed, with
a low c̃, only the standard equilibrium exists. In the limit, when c̃ goes to zero
relative to ω, the risk aversion effect disappears in Equation (21) and the function
D is downward sloping, so the equilibrium is unique. This case is represented by
the grey line in Figure 9 (ω = ω3). By contrast, with a higher c̃ relative to ω,
the demand for risky capital becomes upward sloping for a low k. This case is
represented by the solid and dashed lines in Figure 9 (ω = ω1 or ω2). A second
equilibrium with few risky assets then results from a feedback from risk aversion
to the interest rate. If the interest rate is low, then risk aversion is high and so
is the demand for safe assets, which in turn decreases the interest rate. Finally,
there exists no equilibrium with a positive k if the demand for capital is too low,
for example, because there is too much risk or because wealth is too small. This
case is represented by the dotted line in Figure 9 (ω = ω0).

Part (ii) of Proposition 2 describes the limit case where σ goes to zero, for which
we can obtain closed-form solutions. The standard equilibrium corresponds to the
solution of a standard Ramsey problem. Absent risk, the risky technology has no
excess return. In the safe equilibrium, investors are infinitely risk-averse (which is
implied by ω = ω̃) and only consume their level of reference consumption. They
invest a larger share of their wealth in safe capital, which implies a positive excess
return. Note that this equilibrium is not well-defined, since it implies ω = ω̃ and
c = c̃. However, it is useful to consider it because it can be interpreted as a limit
equilibrium to which the economy converges when σ moves closer to 0. Upper-bar
letters denote variables in the limit standard equilibrium while lower-bar letters
denote variables in the limit safe equilibrium.

7Actually, k = 0 defines a third equilibrium, but this equilibrium is not well-defined since in that case
we would have c ≤ c̃. Indeed, if we abstract from the concern that c must be higher than c̃, an equilibrium
must satisfy k = max{0, D(k, ω, σ)}. The function k → max{0, D(k, ω, σ)} defines a continuous mapping
from the compact [0,+∞] to itself. As expected for this type of fixed point problem, the number of
equilibria is odd: there are three solutions 0, kL(ω, σ) and kH(ω, σ). However, because of the value
function definition problem for c ≤ c̃, our problem only admits two well-defined solutions.
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D. Comparative statics

Before turning to the dynamics, we show analytically in the limit case σ → 0
that our two equilibria have opposite implications regarding the effect of wealth on
the stock of risky capital: it is positive in the standard equilibrium and negative
in the safe equilibrium. This is a key implication of our model because it helps
us discriminate between the two equilibria. We state it formally in the following
proposition:

PROPOSITION 3: Under Assumption 1, for ωmin < ω ≤ ωmax:

(i) k is increasing in ω;

(ii) k/ω is decreasing in ω; k is decreasing in ω in the neighborhood of ωmax.

The intuition of this result is as follows. A lower wealth switches the economy
from the curve D(k, ω2, σ) to the curve D(k, ω1, σ) in Figure 9. A higher wealth
increases the demand for risky capital, everything else equal. In the standard
regime, this increases the equilibrium level of risky capital. In the safe equilib-
rium, paradoxically, the equilibrium level of risky assets decreases when agents
are wealthier. This is because a lower interest rate makes agents even more risk
averse.

We also examine the implied comovements of wealth with consumption, the
interest rate and the misallocation of resources. We define a measure of misal-
locations as y(ω) − y∗(ω), where y∗(ω) is the maximum level of production that
can be technically achieved when aggregate wealth is equal to ω. The following
Proposition shows how these variables comove with ω in the limit standard and
safe equilibria along the transitional dynamics:

PROPOSITION 4: Under Assumption 1, for ωmin < ω ≤ ωmax:

(i) R is decreasing in ω; y = y∗ so y − y∗ is invariant in ω; c is increasing in ω

if c̃ < R2|r′+R′|
|r′R′| ;

(ii) R is decreasing in ω, y < y∗ and y − y∗ is decreasing in ω; c is invariant in
ω in the neighborhood of ωmax.

The interest rate is decreasing in wealth in both regimes. This is not surprising
since investment in the safe technology increases with wealth in both regimes. In
the standard regime, it is optimal to dispatch investment in the two technologies.
In the safe regime, agents invest even more in the safe technology, as they invest
less in the risky technology.

When σ goes to zero, resources are always allocated optimally in the standard
regime, in the sense that, given available resources, the maximal level of produc-
tion is reached. By contrast, in the safe regime, the risky technology has a positive
excess return, which means that a higher production level could be reached by
reallocating capital from the safe to the risky technology. For a given level of
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aggregate wealth, production is therefore lower in the safe regime. In this regime,
resources are more and more misallocated as investors become richer, because
they are more and more unwilling to invest in the risky technology.

In the standard equilibrium, consumption is increasing in wealth, as long as c̃
is not too large. Indeed, if c̃ was too large, then the income effect of the interest
rate would be large and would depress consumption as the interest rate falls with
wealth. In the calibrated version of the model, c̃ is not so large that it would
generate this pathological behavior for consumption in the standard regime. In
the safe regime, consumption is not affected by wealth since investors are stuck
at their reference level in the limit case where σ goes to zero.

IV. Dynamics

The dynamics of the economy is obtained by replacing Equation (11) into Equa-
tion (9). This gives the following expression for the expected growth rate of
wealth:

(24) gω =
ω̇

ω
=
R− ρ
γ

+ ∆
k

ω
.

Wealth grows as the result of two components: an aggregate saving component
(first term) and a saving composition component (second term). The first term
gives the dynamics of wealth in the absence of excess return to capital. It is
positive if the return of savings R is higher than the propensity to consume out
of wealth ρ, and it is lower when wealth is close to its reference level (γ is high),
as agents cut on savings to maintain consumption at its reference level. The
second term represents the additional increase in wealth that comes from the
excess return on risky capital.

Notice that, for a given regime i ∈ {L,H}, gω is entirely determined by the
state variable ω, so we can denote giω(ω). It is useful to define a steady state and
a stable steady state, towards which the economy naturally converges:

DEFINITION 2 (Steady state): For a given regime i ∈ {L,H}, a steady state
is defined by a level of wealth ω such that giω(ω) = 0.

DEFINITION 3 (Stable steady state): For a given regime i ∈ {L,H}, a stable
steady state is defined by a steady-state level of wealth ω such that ∂giω(ω)/∂ω < 0.

We first describe the dynamics of the standard equilibrium and then the dy-
namics of the safe equilibrium, which we refer to as the safety trap.

A. The Standard Dynamics

The dynamics of the standard equilibrium is given by the following proposition:
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PROPOSITION 5: Under Assumption 1 and starting from an initial level of
wealth ω0 > ωmin:

(i) If σ goes to zero, there are two possible steady-state levels of wealth ω∗ and
ωmin. They are the solutions to R(ω) = ρ and R(ω)ω = c̃, respectively. If
ωmin ≥ ω∗, the economy converges to ωmin, which is the only stable steady
state. If ω∗ ≥ ωmin, the economy converges to ω∗, which is the only stable
steady state.

(ii) If σ is small and ω∗ ≥ ωmin, then ω∗ is increasing in σ.

First consider the limit case with no risk. In the standard regime, we have ∆ =
0, so the second term in Equation (24) disappears and wealth is thus exclusively
driven by the saving behavior of agents:

(25) gω =
R− ρ
γ

.

The steady-state ω∗ is the solution to R = ρ. It corresponds to the long-run level
of wealth to which an economy with no reference consumption would converge.
The steady state ωmin is the solution to 1/γ = 0. It corresponds to the case where
agents do not save because they are stuck at their reference consumption.

If ωmin < ω∗, the problem is well defined around ω = ω∗, and the economy
converges to that level. The dynamics is represented in Figure 10 by the solid
lines. The top-left panel represents ḡω as a function of ω. It shows that starting
from ω < ω∗, the growth rate of wealth is positive until the economy reaches
ω∗ and the economy can thus be thought of as moving towards the right. By
contrast, the growth rate of wealth is negative if ω > ω∗. The economy thus
moves towards the left in this region.

We can now infer the dynamics of consumption, the stock of risky assets, and
the interest rate from the three remaining panels, which show how wealth affects
these variables. Starting from a low level of wealth, consumption and the stock of
risky assets increase as wealth increases, while the interest rate decreases at the
same time. This is consistent with the standard view that when investors become
wealthier, they further diversify their portfolio by increasing their holdings of
both safe and risky assets. As the stock of safe assets increases, the interest rate
also decreases because of decreasing returns.

If ω∗ ≤ ωmin, an economy starting from a level of wealth ω ≥ ωmin converges to
ωmin. This happens if c̃ is large or if the two technologies are not very productive.
In that case, the economy is not productive enough to sustain a level of consump-
tion greater than reference consumption in the long run. In the remainder of the
paper, we will discard this case and only consider the situation where ωmin < ω∗.

In the case σ > 0 (not represented), the dynamics is qualitatively very similar
to the case without risk. The only difference is that entrepreneurs accumulate
more wealth in the long-run, which is a standard effect of risk.
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B. The Safety Trap

The dynamics of the safe equilibrium which we refer to as the safety trap is
given by the following proposition:

PROPOSITION 6: Under Assumption 1 and starting from an initial level of
wealth ωmin < ω0 < ωmax:

(i) If σ goes to zero, ωmin and ωmax are the two unique steady-state levels of
wealth in the safe regime. The economy converges to ωmax, which is the
only stable steady state.

(ii) If σ is small, then the economy converges to ωmax, but never reaches ωmax.

Consider the limit case with no risk. In the safe regime, γ is infinite, so the
first term in Equation (24) disappears and the growth rate of wealth is driven
exclusively by the composition of savings:

(26) g
ω

= ∆
k

ω
.

Agents are stuck at their reference consumption and do not save, so wealth in-
creases over time only because of the excess return on capital. The possible steady
states are the solutions to g

ω
= 0, that is, either ∆ = 0, which corresponds to

ωmin, or k = 0, which corresponds to ωmax.
The economy converges to a steady state ωmax if it starts at ω < ωmax. The

dynamics is represented in Figure 10 by the dashed lines. The top-left panel
shows that the growth rate of wealth is always positive. Thus, the economy
moves towards the right along the convergence path.

The three other panels show how wealth affects consumption, the stock of risky
capital, and the interest rate. As wealth increases towards ωmax, consumption
moves closer to c̃, the stock of risky assets falls to 0, and the interest rate de-
creases.8 Investors hold a positive level of risky capital that yields a positive
excess return, and their wealth keeps increasing as long as that level is strictly
positive.

However, the structure of investment changes as wealth increases. The wealth-
ier the economy, the lower their investment in risky capital, as already predicted
by Proposition 3. Here, the entrepreneurs are in a safety trap: they accumu-
late wealth, but this accumulation does not make them less risk-averse. Indeed,
because of decreasing returns in the safe technology, the interest rate decreases
along the convergence path, which compensates for the effect of a higher wealth
on risk aversion. As the level of risky capital decreases, the growth rate of wealth
falls until ω reaches ωmax where k = 0 and ω̇ = 0.

8Here, we represent the limit case where σ goes to 0, which makes the level of consumption look
constant. A case with a higher level of risk would make this curve look more decreasing.
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V. Japan’s Lost Decade: A Safety Trap?

In this section, we argue that Japan’s lost decade resembles a safety trap. We
also show that several alternative shocks on fundamentals are difficult to reconcile
with this episode.

A. Our Story

We confront the stylized facts of Japan’s lost decade with a calibrated version
of our model. We first show that the correlation between aggregate wealth and
investment in risky capital in the safety trap contrasts sharply with the standard
dynamics, as predicted by Proposition 3. This provides us with a simple test
that helps us characterize the lost decade as a safety trap. Further checks are
implemented by considering other variables. Finally, we simulate the transitory
dynamics following a switch from the standard to the safe equilibrium, which
replicates the dynamics observed during the lost decade.

Calibration. — We first describe the calibration that we use for our simulation
exercise. Our objective here is not to obtain realistic quantitative predictions
as our model is far too simple but rather to verify that our story can make
sense for reasonable parameter values. We use as production functions F (k, lk) =
(k + alk)α(lk)1−α and G(z, lz) = (z + alz)α(lz)1−α with α = .3 and a = 0.1.
When a = 0, these production functions are Cobb-Douglas, but do not satisfy
Assumption 1, as the implied r(k) and R(z) go to infinity when k and z go to
zero. We therefore choose a small, but positive a in order to mimic the Cobb-
Douglas technology without violating Assumption 1. We set ρ = .05, which
implies that the interest rate in the standard equilibrium with no risk is 5%. We
also set σ = .02, implying a volatility of 2% which is consistent with the volatility
of output in Japan in the 1980s. The remaining parameter c̃ is matched such
that in the standard equilibrium the ratio of reference consumption to steady-
state consumption is equal to .73. This corresponds to the calibration chosen
by Boldrin, Christiano and Fisher (2001) and implies that investors’ reference
consumption is equal to 73% of their steady-state consumption. This gives us
c̃ = 5.7.

Importantly, we find that ωmin < ω∗ < ωmax. This means that, when the
economy is at the standard steady state, there is the possibility that the investors
coordinate on the safe equilibrium (see Proposition 2).

Correlations. — Table 1 gives the correlations between total households’ wealth
and risky assets, TFP, consumption c, and the interest rate R, both in the data
and in our model. Recall that Column (1) gives the empirical correlations in 1981-
1989, which corresponds to the period before the lost decade, and in 1990-1999,
which corresponds to the lost decade period. Column (2) gives the correlations
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obtained for the calibrated model. These correlations correspond to the comove-
ment of variables along the convergence to the steady state. More precisely, the
correlations are computed by simulating a 30-year convergence to the steady state
starting from a level of wealth ω0 equal to 90% of the steady-state level, with-
out aggregate shocks dvt. In that sense, they correspond to the comovements
described in Proposition 3, but for the calibrated version of the model. This col-
umn only presents the signs of the correlations as our model is not rich enough
to produce reliable quantitative results.9

In the pre-lost decade period, risky assets are positively correlated with wealth,
while they are negatively correlated during the lost decade. According to Col-
umn (2), the predictions of Proposition 3 survive in the calibrated model: this
correlation is positive in the standard dynamics, while it is negative in the safety
trap dynamics. The dynamics of risky assets therefore help us identify the lost
decade as a safety trap.

Table 1 also helps us to check whether our model is consistent with the dynam-
ics of other key variables. First, we consider the comovement of TFP and wealth.
TFP is measured as y/(k + z)α, which is how it is measured in practice, that
is under the hypothesis that the aggregate production function is Cobb-Douglas.
Interestingly, the correlation between TFP and wealth changes during the lost
decade: it switches from positive to negative. This is consistent with our cali-
brated model, which predicts that the correlation in the standard equilibrium is
positive and negative in the safe equilibrium. This is because, in the standard
equilibrium, investors become less risk-averse when they become richer, which
makes them invest more in the risky technology. On the opposite, in the safe
equilibrium, they become more risk-averse and less willing to take risks, which
increases the misallocation of resources.

Second, the behavior of the interest rate is also consistent with our hypothesis
since its correlation with wealth is negative in both episodes and in both regimes.

Finally, consider the correlation between consumption and wealth. This time,
the predicted correlation during a safety trap, which is negative, is at odds with
the empirical correlation during the lost decade, which is positive. One possible
reason is that our model is too simple and for example does not distinguish
between the intertemporal elasticity of substitution and the coefficient of risk
aversion as in Epstein and Zin (1989). In the model, as investors become more
risk averse, their intertemporal elasticity of substitution decreases. This makes
the income effect dominant: since the interest rate decreases as wealth increases,
investors cut heavily on consumption. We show in the following that a simpler
way to correct for this is to introduce explicitly the probability to switch from
one regime to the other in the model. In that case, the dynamics of consumption
in each regime is “contaminated” by the other.

We extend our model to allow for the possibility to switch from one regime to

9The signs were robust to alternative values of initial wealth (95% and 80% of the steady-state level)
and to the inclusion of aggregate shocks dvt.
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the other.10 These switches represent changes in the expectations of investors and
can be interpreted as animal spirits or sunspot shocks. Let pL be the probability
to switch from the standard to the safe regime and pH the probability to switch
from the safe to the standard regime. We calibrate pL and pH so that a safety
trap occurs every 50 years and lasts 5 years on average. The resulting correlations
are represented in Column (3). Now, the two equilibria contaminate each other
and the correlation between consumption and wealth is positive in the safe regime
as well, while the signs of the other correlations remain unchanged. The safety
trap now matches all the empirical correlations of Japan’s lost decade presented
in Table 1.

This result is not too sensitive to the calibration of the switching probabilities. If
we increase the average duration of the safety trap by decreasing pH , consumption
becomes less sensitive to wealth because investors expect to stay longer in the safe
equilibrium. We have to make safety traps last more than 20 years on average to
make the comovement between consumption and wealth turn negative. Although
this may look like a reasonable value for Japan’s lost decade, what matters is not
the objective probability but rather the subjective probability used by investors
when making their economic decisions. In the 1990s, it is doubtful that the
Japanese expected this recession to last more than a decade and this is why we
believe our initial calibration makes more sense.

Experiment. — So far, we have examined the correlations of some key variables
with wealth around the safe and standard steady states. Here, we go further and
examine the following hypothesis: the dynamics of the lost decade is the result
of a switch from the standard to the safe equilibrium.

Figure 11 shows the simulations corresponding to this experiment within our
calibrated model with positive switching probabilities. Starting from the standard
steady state, agents coordinate on the safe equilibrium, entering the safety trap.
The simulations show that at this point wealth starts increasing while the stock
of risky capital decreases at the same time. This implies that the demand for
safe assets increases and thus that the interest rate decreases. This reallocation
from risky to safe capital also implies a lower TFP. Finally, we find that consump-
tion increases with wealth on the convergence path, but drops on impact. Note
that these dynamics imply that output falls on impact as TFP drops. However,
as wealth subsequently increases while TFP decreases, production can either in-
crease or decrease, depending on the parameter values. In our parametrization,
it increases along the transition path.11

These simulations are overall consistent with the Figures 1 to 7 described in
Section I. Again, we fail to completely match the behavior of consumption. We

10This extension is presented in more details in a supplementary material, available on request.
11This is due to our conservative parametrization of the relative productivity of the safe and risky

technologies. Namely, the safe technology is as productive as the risky one (F = G). For a sufficiently
higher productivity of the risky technology, output decreases on the transition path, for example when
we set F = 2G.
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get it right along the convergence path but wrong on impact. The initial drop in
consumption occurs because the elasticity of intertemporal substitution falls on
impact, due to the increase in the coefficient of relative risk aversion. In a more
general model where these two coefficients would be distinct, this effect could be
avoided.

B. Alternative Stories

We have shown that Japan’s lost decade can be consistent with a switch from
the standard to the safe equilibrium. In this section, we investigate whether it
could alternatively be consistent with shocks on fundamentals in the standard
equilibrium. We simulate shocks on wealth, the productivity of safe assets, the
productivity of risky assets, and on risk. Although some of these shocks can
generate a negative correlation between wealth and risky assets on impact, this
correlation always becomes positive on the transition path to the new steady-state,
as predicted by Proposition 3. Figure 12 reports the results of these simulations
using the same calibration as the previous section.

The first shock we consider is a negative shock on wealth, which corresponds to
a negative dv in our model. This shock moves the economy away from its steady
state, and induces both risky and safe capital to fall on impact, and the interest
rate to increase. After impact, the variables of the model go back to the initial
steady state, which implies that both total wealth and risky capital increase while
the interest rate decreases. Here, the increase in risky capital on the convergence
path is at odds with the empirical evidence.

We then consider an unexpected permanent increase in the productivity of safe
assets. This makes investors increase their holdings of safe capital and decrease
their investment in risky capital on impact. As a result, the interest rate increases
on impact. In the long run, wealth increases and investors hold more and more
both risky and safe assets. As a consequence, the interest rate decreases. Here, the
increase in risky capital on the convergence path contradicts the actual Japanese
experience during the lost decade.

We next examine a permanent lower productivity of risky assets. Our model
predicts a drop in risky capital and a lower interest rate on impact. In the long
run, investors become poorer which further decreases the stock of risky assets and
increases the interest rate. The decreasing wealth is at odds with the data.

The dynamics generated by a permanent positive shock on risk decreases the
stock of risky capital on impact. As risk increases, risky capital becomes less
attractive and investors allocate more of their wealth to safe assets, which de-
creases the interest rate. They thus start accumulating more wealth because of
the income effect. Thus, the stock of risky capital increases in the long run. To
be reconciled with the data, we would need a steady rise in volatility. This expla-
nation is, however, difficult to reconcile with Figure 7, which shows that although
the volatility of the Nikkei initially increased in 1990, it then quickly faded away.
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VI. Policy Implications

The safety trap mechanism relies on a market failure between agents who co-
ordinate on the safe equilibrium. This section discusses two policies that can
potentially crowd out the safe equilibrium: the supply of bonds and transfers.

The existence of the safe equilibrium relies on the possibility of a low interest
rate since it increases risk aversion. By supplying a sufficient amount of public
bonds bG > 0, the government can sustain a minimum interest rate and hence
crowd out the safe equilibrium, as represented in Figure 13. Indeed, in that
context, the equilibrium investment in the safe technology z is equal to ω − k −
bG, which means that the equilibrium interest rate is at least R(ω − bG). By
maintaining a lower bound on the interest rate, the government prevents risk
aversion from being too high, and therefore crowds out the safe equilibrium. This
policy implication is reminiscent of Woodford (1990) and Holmström and Tirole
(1997)’s conclusion that public liquidity can crowd in investment.

However, this prediction has to be taken with a grain of salt. Our model points
to the need to guarantee minimal returns to investors but does not incorporate
the issue that firms or borrowers would benefit from a lower interest rate. This
trade-off is absent in our framework and would require a more complete model
to be addressed. Besides, this is only a partial equilibrium analysis. In general
equilibrium, the source of financing for government debt would be crucial. If
government debt was financed exclusively through taxes on investors, then the
net effect of government debt would be neutral, because the Ricardian equivalence
would hold in such a model. If it was financed through taxes on both investors
and workers, then government debt, which is held by investors only, could have
real effects.

Another possible policy that would help crowd out the safe equilibrium is to
make transfers to investors. To see that, consider the budget constraint (9), where
we include constant transfers τ from the government:

dωt = (rtkt +Rt(zt + bt)− ĉt)dt+ σktdvt

where ĉt = ct − τ . Instantaneous utility can be rewritten as ln(ĉt − ĉ), with
ĉ = c̃ − τ < c̃. The program of investors is the same as before, but with a lower
apparent reference consumption. This is because part of the actual reference
consumption is guaranteed to households by government transfers. As illustrated
in Figure 13, the government can crowd out the safe equilibrium with sufficient
transfers.

Again, one has to be cautious about this prediction, because it is a partial
equilibrium analysis. For transfers to investors to have a real effect, it would
be important that they are financed at least partially by other sources than in-
vestors themselves. An alternative could be a redistributive tax from rich to poor
investors that would guarantee that their revenues do not go below a certain level.
Such an optimal taxation problem is, however, beyond the scope of this paper.
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VII. Equilibrium Stability

One possible limitation of our model is that only the standard equilibrium is
locally stable under a market process based on Walrasian tâtonnement. We show
in this section, however, that local stability can be obtained with a more general
market process in which the convergence to equilibrium is costly.12 Although
we are able to show that our safe equilibrium can be locally stable under some
conditions, we acknowledge that this may not always be true.

For a given period t, aggregate wealth ωt is fixed. Aggregate investment is
determined through an intra-period market process, starting from an arbitrary
initial value. The stability or instability of a given equilibrium depends on the spe-
cific market process. We first show that in a world with Walrasian tâtonnement,
only the equilibrium kH(ω, σ) is stable. The given initial aggregate level of risky
capital kinit defines the aggregate returns r(kinit) and R(ω − kinit). Agents then
adjust their demand for these given prices until an equilibrium is reached. This
demand then evolves according to:

k̇ + k = D(k)

where D(k) refers to D(k, ω, σ).
When we linearize this dynamic equation around ki(ω, σ), i ∈ {L,H}, we ob-

tain:
˙(k − ki(ω, σ))

k − ki(ω, σ)
= D′(ki(ω, σ))− 1

with D′(kH(ω, σ)) − 1 < 0 and D′(kL(ω, σ)) − 1 > 0, which means that only
kH(ω, σ) is a stable equilibrium. But this dynamics hinges on the hypothesis that
agents incur no cost when they change their plans.

We now assume that agents have a convex disutility both when they do not
satisfy their notional demand and when they adjust it and show that kL(ω, σ)
becomes locally stable under certain conditions. We assume that agent j has the
following intra-period objective:

(27) min
kjs,s>0

∫ ∞
0

[
1

2
(D(ks)− kjs − k̇js)2 + C(k̇js, ks)]ds,

where C(k̇j , k) is strictly convex in k̇j and k, with C12 > 0 and C(0, k) = 0 for
all k, where k refers to the aggregate stock of capital and kj to the individual
stock of capital. The first term corresponds to the disutility agents get from not
satisfying their notional demand D(k), which depends on the aggregate level of
risky capital through prices. The second term C is an external diseconomy of
scale. It can be seen as the result of a matching friction in the market for risky

12See also Graham and Temple (2006).
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capital: when the aggregate demand for capital is large, it becomes more and more
difficult for investors to adjust their capital stock. We discard the discount rate
because the market process takes place within one period. A stationary solution
to this problem must satisfy D(k) = k, which is the case for k = kH(ω, σ) and
k = kL(ω, σ).

We establish the following proposition:

PROPOSITION 7 (Equilibrium stability): Consider the market process that solves
Equation (27):

(i) If C = 0, then k̇ = D(k)− k;

(ii) if C12(0, kL) < D′(kL), then only kH is locally stable;

(iii) if C12(0, kL) > D′(kL), then both kH and kL are locally stable.

Part (i) establishes that the Walrasian tâtonnement is the solution to the house-
holds’ intra-period objective when there is no matching friction. Parts (ii) and
(iii) state that kH is a locally stable equilibrium, independently of the matching
friction, but kL becomes stable if diseconomies of scale are strong enough. How-
ever, kL never exhibits saddle-path stability, and the market dynamics around kL

can be quite complicated, as illustrated in Figure 14. We assume in the paper
that the condition that ensures the stability of kL, that is C12(0, kL) > D′(kL),
is satisfied for all the relevant values of ω.

VIII. Conclusion

In this paper, we study the role of risk aversion as a determinant of poor eco-
nomic performance. Our general mechanism is that risk averse investors invest in
safer and less profitable projects, which generates a lower TFP. We build a busi-
ness cycle model with endogenous risk aversion and portfolio choice and illustrate
it with Japan’s lost decade.

Our model predicts a hump-shaped demand for risky capital. For low interest
rates, investors become very risk averse and thus demand safer assets while for
high interest rates investing in risky capital is not profitable anymore. This
implies that our model can have two equilibria. The first one is standard and
corresponds to the Ramsey solution. In the second equilibrium, the safe one,
investors are more risk-averse and as a consequence consume less and invest in
safer assets. This second equilibrium generates a safety trap because investors
increasingly invest in safe assets even though they become wealthier.

The predictions of the model when the economy is in a safety trap are consistent
with the empirical evidence on Japan’ s lost decade. In a switch from the standard
to the safe equilibrium, consumption, TFP, and the interest rate decrease, and
investors invest a larger share of their wealth in safe assets, the more so, the
higher their wealth.
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More generally, our model provides a framework to think about episodes of
poor economic performance that are difficult to reconcile with parallel changes in
fundamentals and that are thought to be related to fear of risk.

Finally, our mechanism relies on exogenous switches between the two equilibria,
that reflect changes in anticipations and which we could interpret as animal spir-
its. However, we do not provide a more fundamental explanation for why these
switches happen and we believe this could be an interesting avenue for future
research.

50
0

10
00

15
00

20
00

25
00

30
00

1980 1990 2000 2010
Year

Figure 1. Stock of risky assets held by Japanese households

Note: Risky assets include the categories “Shares and other equities” and “Securities other than shares”.
Unit: trillion real yen. Source: Bank of Japan. Real yen are yen adjusted for inflation as measured by
the GDP deflator.
Source: Bank of Japan and WDI.
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Figure 2. Total assets held by Japanese households
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Note: Unit: trillion real yen. Source: Bank of Japan. Real yen are yen adjusted for inflation as measured
by the GDP deflator.
Source: Bank of Japan and WDI.
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Figure 3. GDP of Japan

Note: Unit: trillion real yen. Real yen are yen adjusted for inflation as measured by the GDP deflator.

Source: WDI.
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Figure 4. TFP of Japan

Note: TFP is computed using the formula: ln(TFP)=ln(GDP)-.33ln(K)-.67ln(L), where GDP is in
constant yen; K is derived from the formula Kt+1 = .93Kt + It, where I is the gross capital formation
in constant yen, K1970 = I1970/.07, and L is the total labor force.
Source: WDI.
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Figure 5. Household final consumption expenditure in Japan

Note: Unit: trillion real yen. Real yen are yen adjusted for inflation as measured by the GDP deflator.

Source: WDI.
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Figure 6. Real interest rate in Japan

Note: Unit: %. This is the annual average real interest rate over all the certificates of deposits reported
by banks to the Bank of Japan. The real value is obtained using the GDP deflator.
Source: WDI and Bank of Japan.
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Figure 7. Volatility of the Nikkei

Note: Standard deviation of the Nikkei over the past year.

Source: Yahoo finance.
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k(ω) k̄(ω)kL(ω, σ) kH(ω, σ)

D(k, ω, σ)
45◦ line

Figure 8. The equilibrium stock of risky capital

Note: D(k, ω, σ) is the demand for risky capital k as a function of actual aggregate risky capital k, wealth
ω and risk σ. The equilibrium stock of risky capital are the solutions to k = D(k, ω, σ).
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D(k, ω0, σ)
D(k, ω1, σ)
D(k, ω2, σ)
D(k, ω3, σ)
45◦ line

Figure 9. The demand for risky capital

Note: D(k, ω, σ) is the demand for risky capital k as a function of risk σ and for different values of wealth
ω, with ω0 < ω1 < ω2 < ω3. The equilibrium stock of risky capital are the solutions to k = D(k, ω, σ).
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k

D(k, ω, σ)
D(k, ω, σ) with high bG

D(k, ω, σ) with high τ
45◦ line

Figure 13. Policy analysis

Note: In the “High b” case, D(k, ω, σ) is the demand for risky capital k as a function of wealth ω and
risk σ, when government supplies a positive amount of government bonds bG. In the “High τ” case,
D(k, ω, σ) is the demand for risky capital k as a function of wealth ω and risk σ, with c̃− τ the reference
level of consumption.
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Table 1—Comparing the data and the implications of the model.

(1) (2) (3)
Data Model Model w/ switching

1981-89 1990-99 Standard Safe Standard Safe
Corr(ω, k) .99* -.90* + - + -

Corr(ω, TFP ) .97* -.71* + - + -
Corr(ω,R) -.30 -.92* - - - -
Corr(ω, c) .97* .97* + - + +

Note: * p < 0.05
The model correlations are the correlations over the convergence path, starting from a level of initial
wealth ω0 equal to 90% of the steady-state level. The convergence is simulated over 30 years. ω refers
to the log of the total assets held by Japanese households in real yen. k refers to the logarithm of the
stock of risky assets held by Japanese households in real yen. Risky assets include the categories “Shares
and other equities” and “Securities other than shares”. R refers to the annual real interest rate of Japan
in %. It is the annual real average interest rate over all the certificates of deposits reported by banks
to the Bank of Japan. c refers to the the log of the household final consumption expenditure in Japan
in real yen. Real values are adjusted for inflation as measured by the GDP deflator. TFP is computed
using the formula: TFP=ln(GDP)-.33ln(K)-.67ln(L), where GDP is in real yen; K is derived from the
formula Kt+1 = .93Kt + It, where I is the gross capital formation in real yen, K1970 = I1970/.07, and
L is the total labor force.
Source: Bank of Japan and WDI.
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*

Appendix: Proofs

Proof of Proposition 1

Let W (ω,R, r) be the value function of the agent. R and r evolve according
to ∂R = µR(t)∂t + σR(t)∂dv and ∂r = µr(t)∂t + σr(t)∂dv. The parameters
µR(t), µr(t), σR(t) and σR(t) might depend on the equilibrium values for k and
z but the agents are infinitesimal so they do not take this into account for their
maximization problem.

We first assume that c > c̃ so the value function is well-defined and that the
non-negativity constraint on k is satisfied. Using Ito’s Lemma, we can derive the
following Bellman equation:

ρW (ω,R, r) = max
c,k

{
ln(c− c̃) +

∂W

∂ω
(rk +R(ω − k)− c) +

∂W

∂R
µg(t) +

∂W

∂r
µf (t)

+
∂2W

∂ω∂R
σσRk +

∂2W

∂ω∂r
σσrk +

∂2W

∂ω2

σ2k2

2
+
∂2W

∂R2

σ2
R

2
+
∂2W

∂r2

σ2
r

2

}
The first-order conditions with respect to c and k associated with this Bellman

equation are:
1

c− c̃
=
∂W

∂ω

∂W

∂ω
(r −R) +

∂2W

∂ω∂R
σσR +

∂2W

∂ω2
σ2k = 0

An educated guess of the general form of the value function is:

W = α ln(ω − ω̃) + β(R, r),

The parameters α and ω̃, along with Equations (11) and (12), are found by
substituting the value function into the first-order conditions:

α = 1/ρ,

ω̃ = c̃/R.

Second, we examine whether the value function is well-defined over a relevant
set of prices. If R > c̃/ω, then ω > ω̃, which implies that the value-function is
well-defined and that c > c̃. Besides, ω > ω̃ implies that the demand for capital is
of the same sign as r−R. Therefore, if r ≥ R, then k ≥ 0, which means that the
non-negativity constraint on k is satisfied. As a result, R ∈ (c̃/ω, r] ensures that
the solution is interior and therefore that the policy functions are well-defined.
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Proof of Lemma 1

Proof of (i)Consider ω > ωmin.
First, according to Assumption 1, r(k)−R(ω−k) is strictly decreasing on [0, ω],

with r(k)−R(ω− k) strictly negative for k = 0 and strictly positive for k = ω/2.
There is therefore a unique k(ω) > 0 that satisfies r(k(ω))−R(ω − k(ω)) = 0.

Second, since, according to Assumption 1, R is strictly decreasing, then R(ω−
k(ω))ω − c̃ = 0 defines k(ω) uniquely as ω −R−1′(c̃/ω).

We now prove k(ω) > k(ω). Since r(k(ω)) = R(ω−k(ω)), then R(ω−k(ω))ω =
r(k(ω))k(ω) +R(ω−k(ω))(ω−k(ω)). Given that r(k)k and R(z)z are increasing
functions, and that k(ω) and ω − k(ω) are both increasing in ω, this implies
that R(ω − k(ω))ω is increasing in ω. Therefore, R(ω − k(ω))ω > R(ωmin −
k(ωmin))ωmin. Using the definition of ωmin given in Assumption 1, we derive:
R(ωmin − k(ωmin))ωmin = c̃. As a result, we have R(ω − k(ω))ω > c̃. Besides,
by definition of k(ω), c̃ = R(ω− k(ω))ω. Consequently, we have R(ω− k(ω))ω >
R(ω−k(ω))ω, which is equivalent to R(ω−k(ω)) > R(ω−k(ω)). Since, according
to Assumption 1, R is a strictly decreasing function, this implies that k(ω) > k(ω).

Proof of (ii) and (iii)We first have to prove that there exists a unique ωmax
such that k(ωmax) = 0 and that ωmax > ωmin. k(ωmax) = 0 is equivalent to
R(ωmax)ωmax = c̃. According to Assumption 1, R(ω)ω is a strictly increasing
function with values between 0 and +∞, so there exists a unique ωmax satisfying
k(ωmax) = 0.

We now prove that ωmax > ωmin. ωmin must satisfy R(ωmin−k(ωmin))ωmin = c̃.
Besides, according to Assumption 1, and given that k(ωmin) is uniquely de-
fined, we have k(ωmin) ≥ 0. Since R is a decreasing function, this implies
R(ωmin)ωmin < R(ωmin−k(ωmin))ωmin. Finally, since R(ωmin−k(ωmin))ωmin =
c̃ = R(ωmax)ωmax, then we have R(ωmin)ωmin < R(ωmax)ωmax, which imposes
ωmax > ωmin.

Now, we show that k ∈ [0, k(ω)]
⋂

(k(ω), k(ω)] is a necessary condition for
D to be well-defined, that is, for the condition R(ω − k) ∈ (c̃/ω, r(k)] to be
satisfied. k(ω) is the solution to r(k) − R(ω − k) = 0, with r(k) − R(ω − k)
strictly decreasing in k. Therefore, r(k) ≥ R(ω − k) imposes k ≤ k(ω). k(ω) is
the solution to R(ω − k)ω − c̃ = 0, with R(ω − k)ω − c̃ strictly increasing in k.
Therefore, R(ω − k)ω > c̃ imposes k > k(ω). The condition k ≥ 0 that D is
therefore well-defined for k ∈ [0, k(ω)]

⋂
(k(ω), k(ω)].

Finally, we have ∂k/∂ω(ωmax) = 1 − εz(ωmax), where εz(z) = R(z)/|R′(z)z|.
Since R(z)z is increasing in z according to Assumption 1, we should have R(z) +
R′(z)z > 0, which implies that εz > 1, so ∂k/∂ω(ωmax) < 0. By continuity, since
ωmax is the only solution to k(ω) = 0, a level of ω > ωmax would then imply
k(ω) < 0. Conversely, ω < ωmax would imply k(ω) > 0. Therefore, k ≥ 0 that D
is well-defined for k ∈ [0, k(ω)]

⋂
(k(ω), k(ω)] = (k(ω), k(ω)] when ω < ωmax and

for k ∈ [0, k(ω)]
⋂

(k(ω), k(ω)] = [0, k(ω)] when ω ≥ ωmax.
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Proof of Proposition 2

Proof of (ii)The limit solutions when σ goes to zero must be the solutions to
D(k, ω, 0) = k, which, according to Equation (19), is equivalent to ∆(k, ω)/γ(k, ω)ω =
σ2k = 0. Since ω > ωmin ≥ 0, they should be the solutions to ∆(k, ω)/γ(k, ω) = 0.
k(ω) and k(ω) correspond respectively to ∆(k) = 0 and 1/γ(k) = 0. Besides, ac-
cording to Lemma 1, k(ω) and k(ω) are uniquely defined for ω > ωmin. If,
additionally, ω ≤ ωmax, then k(ω) satisfies the non-negativity constraint (see
Lemma 1).

Proof of (i)Equation (20) is equivalent to:

(A1) σ2k =

(
r(k)−R(ω − k)

)(
ω − c̃

R(ω − k)

)
.

According to (i), for a given ω ∈ (ωmin, ωmax], the two limit solutions when σ
goes to zero are k(ω) and k(ω). Given that r(k) − R(ω − k) is decreasing in k
and that ω − c̃

R(ω−k) is increasing in k, the right-hand side of Equation (A1) is

strictly positive if and only if k(ω) < k < k(ω), where, according to Lemma 1,
the demand for k is well-defined. By continuity, for a small enough σ, there exist
two interior solutions within (k(ω), k(ω)).

Proof of Proposition 3

Proof of (i)Differentiating Equation (22) with respect to ω yields ∂k/∂ω =
R′/(r′ +R′) > 0. This proves (i).

Proof of (ii)Differentiating (23), we obtain ∂k/∂ω = 1 + R(z)/ωR′(z) = 1 −
εz(z)z/ω, with εz(z) = R(z)/|R′(z)z| > 1. First, it implies that:

∂(k/ω)

∂ω
=
∂k/∂ω

ω
− k

ω2
= − 1

ω
(εz(z)− 1)

( z
ω

)
< 0

Second, since, k(ωmax) = 0, it implies that ∂k(ωmax)/∂ω = 1 − εz(ωmax) < 0.
This proves (ii).

Proof of Proposition 4

Proof of (i)First, we have shown in the proof of Proposition 3 that ∂k/∂ω =
R′/(r′+R′) > 0, which implies that ∂z/∂ω = r′/(r′+R′) > 0. z is then increasing
in ω. Since R = R(z) is a decreasing function of z, then R is increasing in ω.
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Second, using ∂z/∂ω = r′/(r′ + R′), we get ∂c/∂ω = ρ
(

1 + c̃
z

r′R′

(r′+R′)R2

)
=

ρ
(

1− c̃
z
|r′R′|

|r′+R′|R2

)
. Therefore, c is increasing in ω if c̃ < R2|r′+R′|

|r′R′| .

Third, by definition, we have r = R, which means that f ′(k) = g′(ω − k).
This means that k(ω) and z(ω) = ω − z(ω) maximize aggregate production for
ω. We therefore have y∗(ω) = f(k(ω)) + g(z(ω)) = y(ω), and y − y∗ = 0, which
is independent of ω.

Proof of (ii)First, ∂z/∂ω = 1 − ∂k/∂ω. According to Proposition 3, we have
∂k/∂ω < 0 in the neighborhood of ωmax, so ∂z/∂ω > 0.

Second, when k = k, we have c = c̃, which is independent of ω.
Third, when k = k, we have ∂(y−y∗)/∂ω = (r−R)∂k/∂ω+ (R−R), where we

have used the fact that y∗ = y and r = R. We know that r−R > 0 and we have
shown in Proposition 3 that ∂k/∂ω < 0 in the neighborhood of ωmax, so the first
term is strictly negative. Similarly, k > k, so z < z and R > R. As a result, the
second term is negative as well. Therefore, ∂(y−y∗)/∂ω < 0 in the neighborhood
of ωmax.

Proof of Proposition 5

Proof of (i)We first show that ωmin is the unique steady state such that R(ω)ω =
c̃. Since r(ω) = R(ω), we have R(ω)ω = r(ω)k(ω) +R(ω)z(ω). Given that r(k)k
and R(z)z are increasing functions, this implies that R(ω)ω = r(k(ω))k(ω) +
R(z(ω))z(ω) is increasing in ω. Besides, for ω = 0, the non-negativity constraint
on k and z implies that k = z = 0, so R(0)0 = f(k(0))k(0) + g(z(0))z(0) = 0.
Since k ≥ 0 and R is decreasing, we can write R(ω)ω = R(ω − k(ω))w ≥ R(ω)ω,
which goes to +∞ when ω goes to +∞. Therefore, R(ω)ω goes to infinity as well.
To summarize, R(ω)ω is increasing with values between 0 and +∞ for ω between
0 and +∞, so ωmin is the unique steady state such that R(ω)ω = c̃.

Second, R(ω) = R(z(ω)) is decreasing with value between 0 and ∞. Therefore,
there exists a unique steady state ω∗ such that R(ω∗) = ρ.

If ω∗ ≥ ωmin, ωmin and ω∗ are the two steady states and only ω∗ is stable.
Indeed, for ωmin < ω < ω∗, R(ω)ω > c̃ and R(ω) > ρ, so ω̇ > 0. For ω > ω∗,
we still have R(ω)ω > c̃ but R(ω) < ρ, so ω̇ < 0. If ω∗ < ωmin, ωmin is the
unique well-defined steady state. This steady state is stable since R(ω)ω > c̃ and
R(ω) < ρ for ω > ωmin.

Finally, we check whether the following transversality condition is satisfied:

(A2) lim
t→∞

Etωtu
′(ct)e

−ρt = 0

In the standard regime, when the steady state is w∗, ct converges to a level
that is strictly higher than c̃, so the marginal utility converges to a finite level,



42 AMERICAN ECONOMIC JOURNAL MONTH YEAR

which ensures that the transversality condition is satisfied. When the steady
state is ωmin, c converges to c̃. For the transversality condition to be satisfied,
the marginal utility must diverge to infinity at a lower rate than ρ. In order to
infer the growth rate of marginal utility, consider the Euler equation with respect
to safe capital:

(A3)
Et∂u

′(ct)/∂t

u′(ct)
= ρ−Rt

Since z is finite and strictly positive in steady state, R is strictly positive. There-
fore, the convergence rate of marginal utility is strictly lower than ρ. This ensures
that the transversality condition holds in the long-run.

Proof of (ii)Differentiating Equation (24) with respect to σ2, we get the follow-
ing:
(A4)

∂ω̇

∂σ2
=

∂k

∂σ2

(
r(k)−R(ω − k) + r′(k)k +R′(ω − k)(ω − k) +

ρc̃R′(ω − k)

R(ω − k)2

)
In the standard regime, for σ close to 0, we have r(k) = R(ω−k), so this simplifies
to:

∂ω̇

∂σ2
=

∂k

∂σ2

(
r′(k)k +R′(ω − k)(ω − k) +

ρc̃R′(ω − k)

R(ω − k)2

)
> 0

The fact that the steady-state wealth ω∗ is increasing in σ when ω∗ > ωmin then
derives from the fact that ω̇ is increasing in σ and that ω∗ is a stable steady state
according to (i). This proves (ii).

A similar argument as in (i) proves that the transversality condition is satisfied.

Proof of Proposition 6

Proof of (i)A first possible steady-state is the solution to ∆(ω) = 0. This implies
R(ω)ω = c̃, the solution of which is ωmin. The second possible steady-state is the
solution to k(ω) = 0, which is ωmax. These are the two unique steady states.

We have k(ω) > 0 and ∆(ω) ≥ 0 for all ω ∈ [ωmin, ωmax] (see Lemma 1).
Therefore, ωmax is stable while ωmin is not.

Proof of (ii)We first prove that ωmax is still a steady state for σ > 0. In the
safe regime, we cannot derive the sign of the derivative in Equation (A4) for all
ω > ωmin. However, for ω = ωmax, ∂k/∂σ2 = 0, so ∂ω̇/∂σ2 = 0. This proves the
first part of (ii). Next, we prove that ωmax is an inaccessible boundary in the safe
regime. In the neighborhood of ω = ωmax, using ωmax− ω̃(ωmax) = k(ωmax) = 0,
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the following approximation holds:

∂ω =

[
(R(ωmax)− ρ)

(
1− c̃R′(ωmax)

(R(ωmax))2

)
+(r(0)−R(ωmax))

(
1 +

c̃

ω2
maxR

′(ωmax)

)]
(ω − ωmax)∂t

+ σ

(
1 +

c̃

ω2
maxR

′(ωmax)

)
(ω − ωmax)∂v

Using:

εz(ωmax) = −R(ωmax)/ωmaxR
′(ωmax) = −R(ωmax)2/c̃R′(ωmax) = −c̃/ω2

maxR
′(ωmax),

we derive:

∂ω =

[
(R(ωmax)− ρ)

(
1 +

1

εz(ωmax)

)
+ (r(0)−R(ωmax)) (1− εz(ωmax))

]
(ω−ωmax)∂t

+ σ (1− εz(ωmax)) (ω − ωmax)∂v.

Since εz(ωmax) > 1, we can write:

∂ω = γ(ω − ωmax)∂t+ σκ(ω − ωmax)∂v

where γ and κ are strictly positive constants. This implies:

∂x = γ∂t+ σκ∂v

with x = log(ωmax − ω) defined on (−∞, log(ωmin)). Cox and Miller (2001) have
shown that such a process with γ > 0 has a non-degenerate steady state and that
−∞ is an inaccessible boundary. Since x = log(ωmax−ω), this implies that ωmax
is an inaccessible boundary for ω. This proves the second part of (ii).

In the safe regime, consumption converges to c̃, which implies that the marginal
utility goes to infinity. For the transversality condition to be satisfied, the marginal
utility must diverge to infinity at a lower rate than ρ. The dynamics of ωt is of
the form:

∂ω = R(ωt)ωt∂t+ [r(ωt)−R(ωt)]k(ωt) + σk(ωt)∂v

Using the Euler equation and Ito’s Lemma, we can show that the dynamics of
u′(ct) is the following:

∂u′(ct) = (ρ−Rt)u′(ct)∂t+ σk(ωt)ρ

(
1 +

c̃R′(z(ωt))

R(z(ωt))2

)
∂v
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Using Ito’s Lemma, we can show that:

∂ωtu
′(ct)

ωtu′(ct)
=
R(ωt)

ωt
+ ρ−Rt + σ2k2

t ρ

(
1 +

c̃R′(z(ωt))

R(z(ωt))2

)
When ωt goes to ωmax, since k(ωmax) = 0 and R(ωmax) = 0, the growth rate of
ωtu
′(ct) converges to ρ − Rt, which is strictly lower than ρ. The transversality

condition is therefore satisfied.

Proof of Proposition 7

Consider first the case where there are no adjustment costs, that is C = 0. The
optimality condition for households’ intra-period objective is the following:13

D(k)− k = k̇D′(k)− k̈

The initial demand kinit is given and the following “transversality” condition must
be satisfied:

lim
s→∞

[D(ks)− ks − k̇s] = 0

The market process of k follows a second-order differential equation with an initial
and a terminal condition. It has therefore a unique solution. We can check that
the Walrasian tâtonnement, which is characterized by k̇ = D(k) − k, satisfies
both the optimality and the transversality conditions. This process is locally
stable only for kH . This proves (i).

Consider now the case where there are adjustment costs. C(k̇j , k) is positive
and strictly convex in k̇j and k, with C12 > 0 and C(0, k) = 0 for all k. The
optimality condition for households is now:

D(k)− k = k̇[D′(k)− C12(k̇, k)]− k̈[1 + C11(k̇, k)]

The initial demand kinit is given and the following “transversality” condition must
be satisfied:

lim
s→∞

[D(ks)− ks − k̇s − C1(k̇s, ks)] = 0

This second-order differential equation in k can be rewritten as system of two
first-order differential equations in k and x, where x = k̇:

ẋ =
D′(k)− C12(k̇, k)

1 + C11(k̇, k)
x− [D(k)− k](A5)

k̇ = x(A6)

13See Howitt and McAfee (1988).



VOL. VOL NO. ISSUE SAFETY TRAPS 45

A linear approximation of this system around (x, k) = (0, ki), i ∈ {L,H} yields
the following linear dynamic system:(

ẋ

k̇

)
=

(
D′(ki)−C12(0,ki)

1+C11(0,ki)
−[D′(ki)− 1]

1 0

)(
x
k

)

The roots (λ1, λ2) of this dynamic system must satisfy:

λ1 + λ2 =
D′(ki)− C12(0, ki)

1 + C11(0, ki)

λ1λ2 = D′(ki)− 1

Saddle-stability occurs if and only if there are two real roots with opposite signs,
that is if λ1λ2 < 0. This is the case only if i = H. This means that for i = L, the
equilibrium is not a saddle point. However, it will be locally stable if λ1 +λ2 < 0,
which is equivalent to D′(ki) < C12(0, ki).


