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Reproductive output and cognitive performance decline in parallel during aging, but it is unknown whether this reflects a shared

genetic architecture or merely the declining force of natural selection acting independently on both traits. We used experimental

evolution in Drosophila melanogaster to test for the presence of genetic variation for slowed cognitive aging, and assess its

independence from that responsible for other traits’ decline with age. Replicate experimental populations experienced either joint

selection on learning and reproduction at old age (Old + Learning), selection on late-life reproduction alone (Old), or a standard

two-week culture regime (Young). Within 20 generations, the Old + Learning populations evolved a slower decline in learning

with age than both the Old and Young populations, revealing genetic variation for cognitive aging. We found little evidence for a

genetic correlation between cognitive and demographic aging: although the Old + Learning populations tended to show higher

late-life fecundity than Old populations, they did not live longer. Likewise, selection for late reproduction alone did not result in

improved late-life learning. Our results demonstrate that Drosophila harbor genetic variation for cognitive aging that is largely

independent from genetic variation for demographic aging and suggest that these two aspects of aging may not necessarily follow

the same trajectories.
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Aging is a progressive intrinsic physiological deterioration of an

organism with age (Rose 1991), which affects nearly all aspects of

its function. In the process of aging, many traits decline in parallel,

which has been interpreted as an indication of a common prox-

imate mechanism (Rose 1991). However, the parallel decline of

different functions does not necessarily imply a single proximate

mechanism, but instead can be a general consequence of the de-

clining force of natural selection with age (Hamilton 1966; Emlen

1970; Rose 1991). Weak selection at old age enables the accumu-

lation of mutations whose deleterious effects are concentrated late

in life (mutation accumulation theory of aging; Medawar 1952;

Wachter et al. 2013) and antagonistically pleiotropic alleles that

are beneficial early in life but deleterious late in life (antagonistic
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pleiotropy; Williams 1957; Hamilton 1966). This is expected to

lead to a parallel decline of many aspects of organismal function

with age, even in the absence of a common proximate mechanism

or shared genetic architecture.

Under the above scenario, the mutations responsible for ag-

ing would be trait- or function-specific (mutation accumulation)

or would operate between early- and late-life performance related

to the same function (antagonistic pleiotropy). In contrast, under

common proximate mechanisms and shared genetic architecture,

the same deleterious mutations would affect diverse aspects of

aging, and antagonistic pleiotropy could link early-life perfor-

mance with respect to one function (e.g., fecundity) with late-life

performance in an unrelated function (e.g., cognition).

Some published studies indicate that cognitive traits (de-

fined as traits involved in perceiving, processing, and acting upon

sensory information; Dukas 2004) and life-history traits have a

shared genetic architecture, but others suggest no such link. For
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GENETIC ARCHITECTURE OF COGNITIVE AGING

instance, selection on improved learning ability and/or memory

in young Drosophila melanogaster resulted in reduced life span

(Burger et al. 2008; Lagasse et al. 2012) and larval competitive

ability (Mery and Kawecki 2003). Similarly, flies selectively bred

for longer life and delayed reproductive senescence evolved a re-

duced learning ability at young age (Burger et al. 2008). Recent

work on Caenorhabditis remanei nematodes revealed sex-specific

genetic correlations between learning, life span, and reproduc-

tion, and demonstrated that selection on learning performance

can result in rapid evolution of sexually dimorphic life histo-

ries (Zwoinska et al. 2013; Zwoinska et al. 2016). In contrast,

a study on a set of D. melanogaster inbred lines did not find

genetic correlations between learning ability and the life-history

traits measured, egg-to-adult survival, and developmental time on

low-quality food (Nepoux et al. 2015), although that study had rel-

atively low power. Also, research on different longevity mutants

in C. elegans revealed that increased life span is not necessar-

ily associated with higher performance in learning and memory

assays (Stein and Murphy 2012).

Our study was motivated by two main questions. First, does

D. melanogaster harbor the genetic capacity to evolve improved

learning performance at old age? Previous studies have shown

that such potential exists for learning performance and memory

expressed at a young age (Mery and Kawecki 2002; Lagasse et al.

2012), but this has not been investigated at old age, nor has the

relationship between early- and late-life learning performance.

Second, if there is genetic variation for cognitive aging, to what

extent does this variation impact demographic aging? To investi-

gate these questions, we performed a laboratory selection experi-

ment. We subjected three replicate D. melanogaster populations to

concurrent selection on late-life reproduction and late-life learn-

ing, using a mechanical shock learning assay (Mery and Kawecki

2005; Mery et al. 2007) (Old + Learning regime). Another regime

(Old) imposed selection on late-life reproduction alone, with-

out selection for learning, whereas the third regime (Young) was

maintained under a standard two-week culture regime that im-

posed selection only on early-life reproduction. After 20 genera-

tions of selection in the Old and Old + Learning (60 generations

of the Young regime), we assayed evolutionary responses in learn-

ing and reproductive performance early and late in life, as well as

life span of all the evolved populations. We tested the following

specific predictions:

1. If the base population harbored genetic variation for learning

performance at old age, flies from the Old + Learning regime

should have evolved better late-life learning than those from

the Young regime. Further, if this was due to slowed cognitive

aging (rather than an age-independent improvement), no such

superiority of Old + Learning over Young flies should be seen

at young age.

2. If there is a positive genetic correlation between cog-

nitive and demographic aging, populations from the Old

regime should have evolved improved learning perfor-

mance at old age relative to the Young regime, despite

not being directly selected for learning. Alternatively, in

the absence of such a correlation, the late-life learning

of the Old populations should be the same as that of

Young populations and inferior to that of Old + Learning

populations.

3. Similarly, under a positive genetic correlation between cog-

nitive and demographic aging, populations from the Old +
Learning regime should have evolved improved late-life fe-

cundity and life span relative to the Old regime. This is because

the predicted evolutionary response of demographic traits in

the Old + Learning regime would contain a component due to

correlated response to selection on learning at old age, which

was absent in the Old regime.

4. If there is a trade-off between early and late-life learning, popu-

lations evolved in the Old + Learning regime should learn less

well at young age than those from the Old regime. Similarly,

if there is a trade-off between late-life learning and early-life

fecundity, populations from the Old + Learning regime should

show lower levels of early-life reproduction than populations

from the Old regime.

Material and Methods
AVERSIVE OLFACTORY LEARNING ASSAY

To quantify and impose selection on learning performance, we

used an aversive olfactory learning assay, in which flies were

conditioned to associate the smell of either of two odorants with

an aversive mechanical shock (Mery and Kawecki 2005; Mery

et al. 2007). The odorants were 4-methyl-cyclohexanol (MCH;

800 μM) and 3-octanol (OCT; 600 μM) dissolved in paraffin oil.

The assays were performed on single-sex groups of approximately

30 flies. The conditioning consisted of three cycles; during each

cycle flies were first exposed for 30 sec to one of the odors

coupled with mechanical shock (1 sec every 5 sec), followed by

60 sec of humid air, another 30 sec of the other odor without

mechanical shock, and finally 60 sec of humid air. One hour after

the end of the conditioning, the flies were given 60 sec to choose

between the two odors in an elevator maze; flies in each arm of the

maze were subsequently counted. Flies remaining in the center

of the maze were excluded from analyses. The unit of replication

consisted of two groups of 30 flies, one conditioned to avoid

MCH (i.e., experiencing MCH coupled with shock) and the other

conditioned to avoid OCT. A learning score was then calculated

as the difference in the proportion of flies choosing OCT in the

first and second group (Mery and Kawecki 2005; Mery et al.

2007).
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BASE POPULATION AND GENERAL MAINTENANCE

Experimental flies came from the FlyLand population, a large,

outbred population originally derived from round-robin crossing

of 40 inbred lines of the D. melanogaster Genetic Reference

Panel (DGRP) (Huang et al. 2012) and since maintained at a

census size of 800 individuals. Except where noted, all flies were

maintained in standard culture vials using 2% yeast food (water,

agar [Milian CH], brewer’s yeast [Migros CH], cornmeal, sucrose,

and Nipagin [Sigma-Aldrich CH]) at 25°C and 12-h light:12-h

dark cycle. Sorting of flies by sex was done under light CO2

anesthesia.

SELECTION EXPERIMENT

We established three replicate populations in each of three selec-

tion regimes (Old + Learning, Old, and Young) for nine popula-

tions in total. Each population was founded from 50 males and 50

females from the FlyLand base population (Huang et al. 2012).

Fifty adults of each sex were also used to breed each generation

in the course of selection, as described below.

In the Old + Learning regime, one- to three-day-old flies

were collected each generation from replicate vials established

in the previous generation. These flies were maintained in same-

sex groups of approximately 50 per vial (with multiple vials per

population) for four weeks and provided with fresh food every

three to four days. Learning was then assayed four weeks after

collection of adults as described above (two groups of flies per

direction of conditioning and sex, resulting in two learning score

values per sex). Our data clearly show that by this age learning and

reproductive performance decline, although mortality is still low

(Fig. 2). The breeding individuals (50 males and 50 females) were

obtained at random from the pool of flies choosing correctly in the

learning protocol (i.e., flies choosing the odorant not previously

associated with shock). Flies were allowed to oviposit for two

to three days and then transferred to new vials for two to three

more days to increase offspring yield. The total length of a life

cycle was therefore approximately six weeks each generation.

The populations under the Old regime were subject to the same

protocol, including the learning procedure, except that the 50

breeding individuals of each sex were obtained randomly from the

pool of all flies used in the learning assay (i.e., the flies were not

selected based on learning). The Young regime was maintained

on a two-week life cycle by collecting the necessary number of

one- to three-day-old breeding adults and placing them directly

onto new media for two to three days.

Selection in the two long-lived regimes was carried out for 20

generations, equivalent to 60 generations in the Young regime. Af-

ter these 20 generations, selection on learning performance in the

Old + Learning regime was relaxed for nine generations for logis-

tical reasons (but the populations continued to be bred at the age

corresponding to the respective selection regimes) before the main

assay of the responses to selection took place. For unknown rea-

sons (possibly an infection), one population from the Old regime

was unhealthy during postselection assays. At one week of age

this population showed dramatically reduced fecundity, on aver-

age 10% of the next lowest population’s fecundity, with 20% of

grouped females laying no eggs whatsoever. This population also

showed elevated mortality that was high enough to preclude mea-

surement of fecundity at week 4 and reduce both the number of

replicates and individuals per replicate for our learning measures.

This population was excluded from further analyses. All of the

measures performed after selection are therefore presented for

eight total populations (three Old + Learning, two Old, and three

Young populations). A more detailed description of this aberrant

population, including the limited phenotypic measures that are

available, is included in the Supporting Information.

RESPONSES TO SELECTION

Flies used in the assays of the response to selection were obtained

from eggs laid by parents that were a few days old (irrespective of

the selection regime). These parents were put in vials (15 males

and 15 females per vial) and allowed to mate and lay eggs for

three days before being discarded. To match the details of the

selection regime, where flies had the opportunity to mate before

being separated by sex and aged, we also allowed the adults we

collected at two days of age to be used in our learning, fecundity,

and life span assays to mate early in life by keeping them in

mixed-sex vials for two additional days.

Learning
After selection, learning performance was quantified in all popu-

lations at one and four weeks of age. For one week learning, after

the two days in mixed-sex vials, all flies were sorted into same-

sex groups of 30 individuals and tested for learning performance

three days later. Flies to be tested at four weeks of age were also

allowed to mate and subsequently sorted into same-sex groups in

the same way. All flies were then transferred to new vials every

three days until learning assays were performed at 27–29 days

posteclosion. Per population and sex, we obtained four to seven

replicate learning scores for one-week-old flies and eight to 10

learning scores for four weeks old flies.

Fecundity
We allowed newly eclosed flies from all populations to mate for

two days. Subsequently, flies to be used in week 1 assays were

sorted into same-sex groups of five. Flies for week 4 assays were

first sorted into same-sex groups of around 30 and transferred

to new food every three days. They were further subdivided into

groups of five males or five females four days before the assays.

On the first day of the assay, flies from one male and one female

vial from the same population were placed together into a new
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vial. After 12 h, the flies were transferred into holding vials for

the night. The next morning, which was the second day of the

assay, flies were transferred again to fresh food and allowed to

lay eggs for 12 h. Food coloring was added to fly food to facilitate

egg counting. For each replicate population, we established eight

to 12 vials measured over the two 12-h time windows for both

one- and four-week-old flies.

Life span
Freshly eclosed flies used to establish the life span assay were

allowed to mate for two days, after which time they were sorted

into same-sex groups and transferred to 1 L demography cages in

groups of 100 (three replicate cages per population). Two cages

were excluded due to fly escape during the experiment. Food was

changed every three days by replacing plastic tubes attached to

each cage. Dead flies were counted and removed with an aspirator

every day until all flies had died.

STATISTICAL ANALYSIS

All statistical analyses were performed in R software (R Core

Team, version R 3.2.2). We used mixed-effect models in package

lme4 for analyses of learning and median life span (Bates et al.

2015) or glmmADMB for analyses of fecundity using negative

binomial mixed-effect models (Skaug et al. 2015). To test for the

significance of main effects and interactions, we used type III

Wald chi-square tests from the package car and function analysis

of variance (ANOVA) (Fox and Weisberg 2010). For the multiple

comparisons of means, we employed package multcomp and func-

tion glht using multiple comparisons of means with user-defined

contrasts (Hothorn et al. 2008).

First, we investigated the evolution of learning over the period

of selection with a linear mixed-effects model (package lme4).

For this, we modeled learning scores obtained in the course of

selection using the following model:

learningscore = regime + generation + regime × generation

+population (regime),

where regime is a fixed effect, generation is a continuous effect,

and the regime × generation interaction is a term allowing for a

difference in slopes between selection regimes. Population nested

within regime is a random effect that accounts for covariance

between measurements obtained from the same population (i.e.,

repeated measures) over the course of experimental evolution.

We also fit a random slopes model by including a population

(regime) × generation interaction, but the inclusion of this effect

did not sufficiently improve the fit of the model as judged by AIC

(Akaike information criterion), so we removed this term.

To analyze learning scores across ages after selection, we

used a similar approach. We used the following model:

learningscore = regime + age + regime × age

+ population (regime) + day,

where regime and age are fixed effects and the regime × age

interaction models differences between regimes in the effect of

age on learning scores. Population nested within regime and day

(when an assay took place) are random effects. We initially also

included a sex effect in the model, but there was no evidence

for a difference between male and female learning scores and we

therefore dropped this term.

We analyzed reproductive output with a generalized mixed-

effect linear model with a negative binomial error distribution

and a log link function to account for overdispersion (package

glmmADMB). Our model was otherwise parameterized similar to

the preceding models:

eggs = regime + age + regime × age + population (regime),

where regime and age are fixed effects and the regime × age

interaction models differences between regimes in the effect of

age on fecundity. Population nested within regime is included as

a random effect.

Median life span was analyzed using linear mixed-effect

models (package lme4) of the form:

lifespan = regime + population (regime) + cage,

where regime is a fixed effect and population nested within regime

is a random effect. Cage (the demography cage shared by sets of

flies) is also included as a random effect. To determine whether

there was any signal of differentiation between any populations

measured in the life span model, we fit another, simpler model

with replicate population as a fixed effect and replicate cage as a

random effect, removing the effect of regime. We also analyzed

life span using Cox proportional hazard models with Gaussian

random effects using the package coxme (Therneau 2015).

Results
LEARNING PERFORMANCE

Over the course of the selection experiment, late-life learning im-

proved in both Old and Old + Learning populations (generation:

χ2 = 51.41, df = 1, P < 0.001). Although at the end of selection

all Old + Learning populations had higher learning scores than the

Old populations (Fig. 1), the interaction between selection regime

and generation was not significant in the model that considered

the entire course of evolution (selection regime: χ2 = 16.53,

df = 1, P < 0.001; selection regime × generation: χ2 = 0.38,
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Figure 1. Changes in learning scores (means ± SEM) of Old (blue

lines) and Old + Learning (pink lines) regimes over 20 genera-

tions of selection. Different shapes indicate replicate populations

within selection regimes. Learning performance was assayed at

four weeks of age. Mean learning scores were taken over two

sexes and three replicates per each sex. A learning score of 0 in-

dicates no learning. An aberrant Old population, excluded from

further analyses due to low viability in postselection assays, is

indicated with gray squares.

df = 1, P = 0.54). This was possibly due to environmental vari-

ation, such as seasonal effects related to air pressure (Steinberg

et al. 1992) that shifted all populations downwards for several

generations beginning in generation 4 and made the overall re-

sponse to selection nonlinear. Furthermore, because the learn-

ing performance of Young populations was not measured in the

course of the selection experiment, the results in Figure 1 do

not allow us to attribute the apparent increase in the late-life

learning performance of the Old population to an evolutionary

change rather than some environmental change that occurred

during the experiment. Therefore, the assays performed on all

populations after 20 generations of selection (and several gener-

ations with relaxed selection that removed any parental effects

due to the selection regime) are a more reliable measure of the

response.

In those postselection assays of learning performance, we

found a marginally significant interaction between fly age and

selection regime (selection regime × age: χ2 = 5.64, df = 2, P =
0.060, selection regime: χ2 = 1.92, df = 2, P = 0.38, age: χ2 =
22.57, df = 1, P < 0.001; Fig. 2A). Four-week-old flies from

the Old + Learning regime learned significantly better than those

from the Old (contrast z = 2.035, P = 0.042) and (marginally) the

Young regimes (z = 1.93, P = 0.054). Learning performance of the

Old regime was indistinguishable from that of the Young regime

(z = 0.29, P = 0.77), implying that selection for reproduction at

old age on its own did not result in improved late-life learning.

Selection regime had no detectable effect on learning of one-

week-old flies as none of the treatments differed significantly

from each other (Old + Learning vs. Old: z = 0.28, P = 0.78,

Old + Learning vs. Young: z = 0.22, P = 0.83, Young vs. Old:

z = 0.076, P = 0.94). Accordingly, the adverse effect of age on

learning was significantly smaller in the Old + Learning regime

than in both the Old regime (interaction contrast, z = 2.07, P =
0.038) and the Young regime (z = 1.96, P = 0.050). The learning

performance of Old and Young populations declined significantly

with age, which was not the case for Old + Learning populations

(Old: z = 3.90, P < 0.001, Young: z = 4.026, P < 0.001, Old +
Learning regime: z = 1.70, P = 0.090).

FECUNDITY

The effect of age on fecundity varied between selection regimes

as indicated by a significant interaction between selection regime

and age (selection regime × age: χ2 = 24.85, df = 2, P < 0.001,

age: χ2 = 512.36, df = 1, P < 0.001, selection regime: χ2 =
9.064, df = 2, P = 0.011; Fig. 2B). Analyzing this interaction, we

confirmed that reproductive output at one week of age for flies

from the Old regime was significantly higher than reproductive

output of Old + Learning (z = 3.09, P = 0.0020) and Young

regimes (z = 2.33, P = 0.020). The reproductive output of Old +
Learning and Young regimes did not differ (z = 0.76, P = 0.45).

At four weeks of age, both Old + Learning and Old regimes

had significantly higher reproductive output than Young controls

(respectively, z = 3.20, P = 0.001 and z = 2.034, P = 0.042);

the Old + Learning regime was marginally superior to the Old

regime (z = 1.92, P = 0.055).

LIFE SPAN

Median life span did not significantly differ among the selection

regimes (χ2 = 0.24, df = 2, P = 0.89) (Fig. 2C) nor among the

replicate populations in a model where a replicate population was

a fixed effect (χ2 = 5.82, df = 7, P = 0.56). Similarly, there was

no difference in the risk of death between the selection regimes

when data were analyzed using Cox proportional hazard models

(Old + Learning vs. Old: z = 0.089, P = 0.93, Old + Learning

vs. Young: z = 0.010, P = 0.99, Young vs. Old: z = 0.082, P =
0.94) (Fig. 2D).

Discussion
In this study, we used experimental evolution to investigate the

genetic architecture of cognitive aging and its relation to demo-

graphic aging. Cognitive aging was operationally defined as the
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Figure 2. (A) Learning scores (means ± SEM) of Young (green), Old (blue), and Old + Learning (pink) populations assayed after

selection was discontinued (see Material and Methods). Different shapes indicate replicate populations within selection regimes. Learning

performance was assayed at one and four weeks of age. (+P < 0.1, ∗P < 0.05, ∗∗P < 0.01, ∗∗∗P < 0.001.) P values come from multiple

comparisons of means + stands for P = 0.054. (B) Reproductive performance of Young (green), Old (blue), and Old + Learning (pink)

populations. Different shapes indicate replicate populations within selection regimes. Reproductive performance was assayed at one and

four weeks of age as the number of eggs laid. (+P < 0.1, ∗P < 0.05, ∗∗P < 0.01, ∗∗∗P < 0.001.) P values come from multiple comparisons

of means. + stands for P = 0.055. (C) Median life span and 0.95 CI of Young (green), Old (blue), and Old + Learning (pink) populations.

Different shapes indicate replicate populations within selection regimes. (D) Survival curves of Young (green lines), Old (blue lines), and

Old + Learning (pink lines) populations.

decline of aversive learning performance with age. The results

confirmed some but not all our predictions.

Our first goal was to determine whether Drosophila popu-

lations harbor genetic variation responsible for the trajectory of

cognitive aging. In accordance with our first prediction, we found

that flies from populations that evolved in the Old + Learning

regime, which experienced selection for late-life reproduction and

late-life learning, showed improved learning at old age as com-

pared to flies from populations that were maintained on a standard

two-week schedule. Interestingly, improved late-life learning of
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Old + Learning flies did not translate into improved learning in

early-life compared to the Young regime. This indicates that the

observed differences in late-life learning performance between

the Old + Learning and Young regimes resulted from slower cog-

nitive aging rather than an age-independent improvement. Recent

research on humans showed that some genetic variants with pro-

tective effects on late-life (in this case postreproductive) cognitive

performance do not affect cognitive performance in earlier ages

(Liu and Jiang 2016; Schwarz et al. 2016; Springer et al. 2016).

Therefore, although cognitive performance across life span may

show substantial stability, as in the case of human intelligence

(Deary et al., 2000, 2012; Gow et al. 2011), many genetic variants

affecting cognitive traits can have age-limited effects. Our study

is, to our knowledge, the first to show that such variants may

be sufficiently common to allow evolution of improved late-life

learning within a short evolutionary time frame.

We next asked about the relation between cognitive and de-

mographic aging by examining patterns of fecundity and life span

in the experimental populations. Contrary to our prediction 2, the

Old populations did not evolve improved late-life learning com-

pared to the Young populations. Also, contrary to our prediction

3, the Old + Learning populations did not evolve longer life span

than the Old populations. However, the life span of the Old pop-

ulations was not longer than that of the Young populations either,

suggesting that even selection for late-life reproduction did not

result in a detectable increase in life span. On the other hand, in

apparent agreement with prediction 3, the Old + Learning regime

tended to show a marginally better fecundity than the Old regime

at old age, but the effect, if any, was small. Our results thus offer

little support for the hypothesis that cognitive and demographic

aging are positively genetically correlated. This would parallel

the results of dietary restriction experiments in Drosophila: even

though reduction in dietary protein robustly extends life span, it

does not seem to promote improved learning at old age (Burger

et al. 2010) nor in other aspects of late-life behavioral perfor-

mance (Bhandari et al. 2007). Altogether, these results suggest

that both natural genetic variation and ecologically relevant envi-

ronmental factors modulate demographic and cognitive aging via

largely nonoverlapping mechanisms.

We also examined whether there was any evidence for trade-

offs by examining the differences between the Old + Learning and

Old regimes (prediction 4). Populations from the Old + Learn-

ing regime exhibited higher late-life learning, but there was no

cost for this in terms of early-life learning, which did not differ

between the regimes. The Old + Learning populations did show

reduced early-life fecundity, though, and late-life learning ability

may therefore trade-off with early-life reproductive output. This

interpretation would fit with evolutionary explanations for aging

rooted in antagonistic pleiotropy. However, the difference between

Old + Learning and Old populations in early-life fecundity should

be interpreted cautiously due to the loss of one experimental pop-

ulation and the relatively large difference between the remaining

two populations.

Although we identified a directional evolutionary change in

learning performance and reproductive output, we found no clear

pattern when examining life span of mated females. In multiple

previous evolution experiments, selection for late-life reproduc-

tion resulted in increased life span, although the effects on late-

and early-life reproduction varied among the studies (Luckinbill

et al. 1984; Rose 1984; Kirkwood and Rose 1991; Partridge and

Prowse 1999). Possibly, the age at which the flies in the Old and

Old + Learning regimes reproduced (about 30 days) was not old

enough to strongly select for extended life span. However, de-

tection of life span effects in our study was hampered by large

variation among replicate experimental cages, which reduced the

power to detect life span differences among the selection regimes

and the replicate populations. Another unexpected result is the

higher early-life fecundity in the Old than in the Young pop-

ulations. In previous studies, a common correlated response to

selection for late-life reproduction was a decline in early-life fe-

cundity (Luckinbill et al. 1984; Rose 1984; Kirkwood and Rose

1991; Partridge and Prowse 1999). Possibly, the Young selection

regime has favored other aspects of early-life performance that

traded-off with fecundity. It seems that allowing the flies to re-

produce only at an old age selected in general for an increase in

fecundity, possibly at the expense of some other aspect of perfor-

mance, such as developmental time (which we did not measure,

but which would be under relaxed direct selection under the Old

and Old + Learning regimes). Also, because of their shorter gen-

eration time, the Young populations went through three times as

many generations as those subject to the other selection regimes,

which could have led to a greater degree of inbreeding. Although

we cannot offer a convincing explanation for this pattern, it is im-

portant to note that the key comparison for the effect of selection

on late-life learning is that between the Old and Old + Learn-

ing populations. This comparison isolates the effect of gains in

late-life learning from those associated with selection for late-life

reproduction, which was matched in the Old and Old + Learning

populations, allowing for our tests of shared genetic architecture.

It should be kept in mind that differences in performance

in our aversive shock–odor, the learning assay could reflect dif-

ferences in odor perception acuity, salience of the shock, rate

of learning, and/or the durability of memory (Rescorla 1988).

Thus, we cannot attribute them specifically to learning ability

(i.e., the rate with which the odor–shock association in the fly’s

brain is formed or its maximum strength). However, these pro-

cesses, from odor perception to memory, all fall in the realm of

cognition—defined as the perception, processing, storage, and use

of information (Dukas 2004)—which makes changes in scores in

the aversive learning assay across age, a meaningful measure of
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cognitive aging. Furthermore, in another selection experiment on

aversive learning ability, improvement in learning performance

was shown to be mediated by the evolution of faster learning

and better memory, and not greater sensory acuity (Mery and

Kawecki 2002). Performance in our learning assay may, however,

not be representative of how other aspects of cognition decline

with age. On one hand, in another evolution experiment, im-

proved performance in this assay evolved as a correlated response

to selection for the ability to avoid an oviposition substrate that

previously had bitter taste (Mery and Kawecki 2002; Mery et al.

2007; Kawecki et al. 2012). This indicates that this assay may be

quite a representative readout for aversive learning. On the other

hand, different cognitive traits can follow different age-related

trajectories. For instance, in nematodes and fruit flies, long-term

memory declines faster than other forms of memory (Mery 2007;

Kauffman et al. 2010). At the same time, some other aspects of

cognition in Drosophila, such as electric shock avoidance or con-

ditioned courtship, seem not to decline with age (Grotewiel et al.

2005). Such differences in the dynamics of aging between dif-

ferent cognitive traits may indicate partially independent genetic

architecture.

In conclusion, the evolutionary change observed in our ex-

perimental populations confirms the existence of genetic variation

tied to the rate of cognitive aging in Drosophila. The fact that pop-

ulations selected for late-life reproduction alone did not exhibit

improved late-life learning, combined with the lack of life span

advantages for the populations that were directly selected for late-

life learning, indicates that the genetic foundations of cognitive

and demographic aging patterns are to a large degree independent

of one another. In a broader perspective, our results add to the

current debate about the relationship between “healthspan” (de-

fined as a period of optimal health) and lifespan (Bansal et al.

2015; Hansen and Kennedy 2016) by showing that the two can

be decoupled from one another and suggesting the need for more

nuanced approaches to the study of healthy aging.
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