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Abstract

Educational attainment is widely used as a surrogate for socioeconomic status (SES). Low SES 

is a risk factor for hypertension and high blood pressure (BP). To identify novel BP loci, we 

performed multi-ancestry meta-analyses accounting for gene-educational attainment interactions 

using two variables, “Some College” (yes/no) and “Graduated College” (yes/no). Interactions were 

evaluated using both a 1 degree of freedom (DF) interaction term and a 2DF joint test of genetic 

and interaction effects. Analyses were performed for systolic BP, diastolic BP, mean arterial 

pressure, and pulse pressure. We pursued genome-wide interrogation in Stage 1 studies (N=117 

438) and follow-up on promising variants in Stage 2 studies (N=293 787) in five ancestry groups. 

Through combined meta-analyses of Stages 1 and 2, we identified 84 known and 18 novel BP 

loci at genome-wide significance level (P<5×10−8). Two novel loci were identified based on the 

1DF test of interaction with educational attainment, while the remaining 16 loci were identified 

through the 2DF joint test of genetic and interaction effects. Ten novel loci were identified in 

individuals of African ancestry. Several novel loci show strong biological plausibility since they 

involve physiologic systems implicated in BP regulation. They include genes involved in the 

central nervous system-adrenal signaling axis (ZDHHC17, CADPS, PIK3C2G), vascular structure 

and function (GNB3, CDON), and renal function (HAS2 and HAS2-AS1, SLIT3). Collectively, 

these findings suggest a role of educational attainment or SES in further dissection of the genetic 

architecture of BP.

Introduction

Educational attainment is among the most widely used indices of socioeconomic status 

(SES) in epidemiologic studies.1, 2 Multiple studies have demonstrated a step-wise decline 

in all-cause mortality with increasing levels of education.1 Compared with other measures 

of SES, such as income and occupation, the use of educational attainment has several 

advantages: it is stable after young adulthood, simple to capture, has a low non-response 
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rate, and is not affected by poor health in adulthood.1, 3 Furthermore, the relationship 

between educational attainment and cardiovascular disease traits tend to be more consistent 

and stronger.4 Higher educational attainment is related to improved health efficacy (such 

as preventive health behaviors and problem-solving capacity), improved access to health 

care, and more favorable socio-psychological conditions (such as personal control and social 

support).2, 3

Several variables of educational attainment investigated in epidemiologic studies in relation 

to cardiovascular risk traits include continuous variables (such as years of education) and 

various partitions (such as completing high school or completing college degree).5–11 Low 

educational attainment is related to high blood pressure (BP) and increased hypertension 

(HTN) risk as evidenced in a meta-analysis of 51 studies across 20 countries.3 Educational 

attainment is also related to coronary artery disease,12 coronary calcification,13 and other 

cardiovascular risk traits including metabolic syndrome,10 lipid levels,9, 10, 14 smoking 

behavior,12, 15 salt intake,16, 17 and leisure-time physical activity.18 Furthermore, the genetic 

effects on HTN may vary as a function of educational attainment. For example, a heritability 

study of European-ancestry male twins showed higher heritability of HTN at higher 

education levels (h2 = 0.63 with >14 years of education compared to h2 = 0.46 with ≤ 

14 years of education),19 suggesting interactions between genes and educational attainment.

While genome-wide association studies have investigated the genetic contributions to 

educational attainment,6 there has been no comprehensive effort to examine the role 

played by gene-environment interactions in BP using educational attainment as the 

environmental exposure. Within the CHARGE Gene-Lifestyle Interactions Working 

Group,20 we performed genome-wide meta-analysis of systolic BP (SBP), diastolic BP 

(DBP), mean arterial pressure (MAP), and pulse pressure (PP), accounting for gene­

educational attainment interactions. Based on the availability of data across participating 

studies, we considered two educational attainment variables, “Some College” (yes/no, for 

any education beyond high school) and “Graduated College” (yes/no, for completing a 

4-year college degree). Herein we report our findings based on up to 411 225 individuals 

from five ancestry groups.

Subjects and Methods

Participating studies

We performed our analysis in two stages (Figure 1). A total of 42 cohorts including 117 

438 men and women (aged 18–80 years) from European (EUR), African (AFR), Asian 

(ASN), Hispanic (HIS), and Brazilian (BRZ) ancestries contributed to Stage 1 genome-wide 

interaction analyses (Table S1). An additional 49 cohorts including 293 787 individuals 

contributed to Stage 2 analyses of top single nucleotide variants (SNVs, also including 

a small number of insertion and deletion [indels] variants) selected from Stage 1 (Table 

S2). Participating studies are described in the Supplementary Material. Since discoveries 

to date are largely from EUR populations, considerable effort was made to recruit most of 

the available non-EUR cohorts into Stage 1. Each study obtained informed consent from 

participants and approval from the appropriate institutional review boards.
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Phenotype and lifestyle variables

We performed our analysis for SBP, DBP, MAP, and PP. After computing SBP and DBP 

when multiple measurements were available, we adjusted for antihypertensive medication 

use by adding 15 mmHg and 10 mmHg to SBP and DBP, respectively.21 After medication 

adjustment, MAP was computed as (SBP + 2DBP)/3, and PP was computed as SBP minus 

DBP (SBP - DBP). To reduce the influence of possible outliers, Winsorizing was performed 

for each BP value that was more than 6 standard deviations away from the mean. Descriptive 

statistics for these 4 BP traits are presented in Tables S3 and S4. For educational attainment, 

two dichotomous variables were created. The first variable, ‘Some College’ (SomeCol), was 

coded as 1 if the subject received any education beyond high school, including vocational 

school (and as 0 if no education beyond high school). The second variable, ‘Graduated 

College’ (GradCol), was coded as 1 if the subject completed at least a 4-year college degree 

(and as 0 for any education less than a 4-year degree). Subjects with missing data for BP, 

education attainment, or any covariates were excluded from analysis.

Genotype data

Genotyping was performed by each participating study using Illumina (San Diego, CA, 

USA) or Affymetrix (Santa Clara, CA, USA) genotyping arrays. Imputation was performed 

using the 1000 Genomes Project22 Phase I Integrated Release Version 3 Haplotypes (2010–

11 data freeze, 2012–03–14 haplotypes) as a reference panel, in most cohorts. Information 

on genotype and imputation for each study is presented in Tables S5 and S6.

Analysis methods

Each study performed association analyses using the following model:

E Y = β0 + βG G  + βE Educ  + βGE G * Educ  + βC C

where Y is the BP variable (SBP, DBP, MAP, or PP value), Educ is the educational variable 

(SomeCol or GradCol), and G is the dosage of the imputed genetic variant coded additively 

from 0 to 2. C is the vector of covariates, including age, sex, field center (for multi-center 

studies), and principal components. In addition, studies in Stage 1 performed association 

analysis using the following genetic main effect model with education attainment:

E Y = β0 + βG G  + βE Educ  + βC C .

Each study provided the estimated SNV effect (βG), estimated SNV-educational attainment 

interaction effect (βGE), their robust standard errors, and a robust estimate of the covariance 

between βG and βGE. We performed meta-analysis using the 1 degree of freedom (DF) 

test of the interaction effect (βGE) and 2DF test of both SNV (βG) and interaction effects 

(βGE). Inverse-variance weighted meta-analysis was performed for the 1DF test and the 

joint meta-analysis of Manning et al23 for the 2DF test, both using METAL.24 In Stage 

1 EUR, AFR, ASN meta-analyses, variants were included if they were available in more 

than 5 000 samples or at least 3 cohorts (these filters were not applied to BRZ or HIS 

because of the fewness of cohorts included in these meta-analyses). We applied genomic 
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control correction25 twice in Stage 1, first for study-specific GWAS results and again for 

meta-analysis results. Genome-wide significant (P < 5×10−8) and suggestive (P < 1×10−6) 

variants in Stage 1 were taken forward into Stage 2 analysis. Genomic control correction 

was not applied to the Stage 2 results as association test was performed for select variants. 

Results presented reflect meta-analyses combining Stages 1 and 2. Loci were defined by 

physical distance (± 1Mb around the index SNV of the respective locus).

Quality control (QC)

Each participating cohort in Stage 1 excluded variants with minor allele frequency (MAF) 

< 1%. We performed extensive QC using the R package EasyQC26 for all cohort-specific 

and meta-analysis results. For Stages 1 and 2, we excluded all variants with imputation 

quality measure < 0.5. In addition, to remove unstable study-specific results that reflected 

small sample size, low minor allele count (MAC), or low imputation quality, we excluded 

variants for which the minimum of (MAC0, MAC1) x imputation quality < 20, where 

MAC0 and MAC1 are the MAC in the two education strata (Educ = 0 and Educ = 1). 

The allele frequencies provided by each cohort were compared against those from the 

relevant ancestry-specific 1000 Genomes reference panel. Marker names were harmonized 

to ensure consistency across cohorts. In addition, we visually compared summary statistics 

(e.g., mean, median, standard deviation, inter-quartile range) of all effect estimates, standard 

errors (SEs), and p-values. We examined SE-N plots26 and quantile-quantile (QQ) plots 

to reveal issues with trait transformation or other analytical problems. Any problems 

encountered during QC steps were resolved through communication with the analysts from 

the participating studies. More detailed information about the QC steps, including major QC 

problems encountered and how they were resolved, are described elsewhere.20, 27

Characterization of functional roles

A suite of tools implemented in FUMA GWAS28 were used to identify functional roles for 

the index variants and nearby variants in linkage disequilibrium (LD; r2 ≥ 0.2) in each of 

the novel BP loci. LD information was obtained from the 1000 Genomes Project reference 

genome for the ancestry with the most significant ancestry-specific association. If the most 

significant association was in trans-ancestry analyses, the reference genome for the ancestry 

with the next most significant association was used instead.29 One index insertion/deletion 

locus was not identified in any of the reference genomes by FUMA and therefore not 

detailed. Nearest gene annotations were limited to protein coding, long non-coding RNAs 

(lncRNAs), and non-coding RNAs (ncRNAs) within 10kb of index variants and variants in 

LD (r2 ≥ 0.2) with the index variant.30

For the index and LD variants, we used the RegulomeDB score,31 which reflects a 

summary of annotations with known and predicted regulatory elements such as DNAase 

hypersensitivity, binding sites of transcription factors, and promoter regions, and Combined 

Annotation Dependent Depletion (CADD)32 scores, which predict deleteriousness of 

variants. The 15-core chromatin state (ChromHMM)33, 34 was assessed for 129 epigenomes 

(labeled E001-E129) to identify histone modifications consistent with epigenetic regulation 

of gene expression. Expression quantitative trait loci (eQTLs) were determined using the 

GTEx_v7 database35 for index and LD variants. Using nearest-gene annotations, FUMA 
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GWAS was used to generate tissue-specific gene expression data (GTEx V7 dataset, 53 

tissue types); significance was determined as a Benjamini-Hochberg false discovery rate 

(FDR) < 0.05.

Results

Overview

We performed a meta-analysis of gene-education interactions on SBP, DBP, MAP, and PP 

in two stages (Figure 1). In Stage 1, we pursued genome-wide interrogation in 117 438 

individuals of European (EUR), African (AFR), Asian (ASN), Hispanic (HIS), and Brazilian 

(BRZ) ancestries (summary information, Table 1). After extensive quality control (QC), 

we performed genome-wide meta-analyses at approximately 18.8 million single nucleotide 

variants (SNVs) and a small number of insertion and deletion (indels) variants imputed using 

the 1000 Genomes Project reference panel (QQ plots, Figure S1). Through the 1DF test of 

the interaction effect and the 2DF joint test of the SNV and interaction effects, we identified 

1 481 genome-wide significant (P < 5×10−8) and 3 309 suggestive (P < 1×10−6) variants 

associated with any BP trait in any ancestry and/or in trans-ancestry analysis. All significant 

and suggestive variants were tested for association in 293 787 additional individuals of EUR, 

AFR, ASN, and HISP ancestries in Stage 2.

We performed meta-analyses combining Stages 1 and 2 (Manhattan Plots, Figure S2). We 

identified 84 known BP loci. This includes 82 loci identified through main-effect only 

analyses,36–41 including 18 recently reported by Hoffmann et al,42 Evangelou et al,43 and 

Giri et al;44 and two loci (TFAP2A and PCDH9) recently reported by our consortium 

through gene-smoking and gene-alcohol interaction analyses,27, 45 which suggest the inter­

correlated nature of the various lifestyle traits.

We identified 18 novel genome-wide significant loci (P < 5×10−8) located at least 1Mb away 

from any known BP loci (Table 2). Nine loci were identified through the combined analyses 

of Stage 1 and 2; the remaining nine loci were identified in Stage 1 but not available in 

Stage 2 for combined analyses (Table S7). The LocusZoom plots of these novel loci are 

presented in Figure S3. Two loci (SLIT3 and HRH4) were identified through the 1DF test 

of interaction effects. At both loci, the genetic effect on DBP was stronger and beneficial 

in higher education and weaker and detrimental in lower education. For example, at SLIT3, 

the minor allele A was associated with a 4.82 mmHg lower DBP in higher education 

(GradCol=1), whereas it was associated with a 2.25 mmHg higher DBP in GradCol=0. The 

remaining 16 loci were identified through the 2DF joint test of the SNV and interaction 

effects; twelve loci were identified considering ‘Some College’ (SomeCol) and four loci 

were identified considering ‘Graduated College’ (GradCol).

Ancestry-specific and trans-ancestry analyses

Novel loci were identified through separate analyses of AFR (12 loci), EUR (1 locus), 

trans-ancestry (4 loci), and in both AFR and trans-ancestry (1 locus). This highlights 

the importance of including non-EUR populations to identify novel BP loci. By nature, 

AFR populations carry more rare and low-frequency variants that may be very rare or 
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monomorphic in other ancestral groups;22 the MAF for the novel index SNVs range 

from 0.02–0.04 in AFR. The enhanced discovery of novel loci in AFR ancestry may be 

attributable to the relatively higher MAF in this population versus in EUR. For example, 

rs141962517 (CAPDS) with a MAF = 0.02 in AFR was significantly associated with SBP 

(2DF P = 3.07×10−10; 1DF Interaction P = 1.99×10−7); this variant was not present in other 

ancestries after filtering.

Among the 18 novel loci, three loci were identified only through trans-ancestry analyses, 

as none of the ancestry-specific analyses reached genome-wide significance. For example, 

the index SNV (rs189555401) representing the four-variant locus within PIK3C2G was 

suggestively associated with DBP (P = 1.31×10−7) in AFR and not even nominally 

associated in HIS (P = 9.67×10−2). However, in trans-ancestry analysis combining these 

two ancestral groups, the association reached genome-wide significance (P = 4.10×10−8).

Functional annotation and eQTL evidence

To obtain functional annotations for the index variants and nearby variants in LD (r2 ≥ 

0.2), we used FUMA GWAS.28 Among the 18 index variants representing our novel loci, 

two variants were intronic to a non-coding RNA (ncRNA), six variants were intronic, nine 

variants were intergenic, and the remaining variant (rs66907226) was an indel without 

available annotation. Among the 499 variants that include both the index variants and 

nearby variants in LD, there were four exonic, four exonic-ncRNA, 119 intronic, 67 

intronic-ncRNA, two 3’ untranslated region (UTR), seven up/downstream flanking, and 296 

intergenic variants (Table S8). Of the 499 variants, 13 had RegulomeDB31 scores better 

than or equal to 3a, suggesting at least moderate evidence for involvement in transcription 

regulation (Table S9). Thirty-two SNVs have CADD32 scores ≥10, representing the top 10% 

of predicted deleteriousness for SNVs genome-wide. A single SNV (rs112332671) ~20kb 

upstream of HAS2 and 16 kb downstream of the ncRNA HAS2-AS1 had a CADD score of 

20.1, placing it in the top 1% of predicted deleteriousness.

The 15-core chromatin state (ChromHMM)33 was assessed for 127 epigenomes in the 

17 index variants (Table S9). Two had histone chromatin markers in regions flanking 

the transcription start site and one in a region associated with strong transcription in 

relevant tissues including brain. Among all 499 LD variants, 45 had histone chromatin 

markers characteristic of a transcription start site, 64 had markers consistent with strong 

transcription, and 25 were in enhancer regions. One LD variant (rs555713705) was 

identified as cis-acting expression trait loci (eQTLs)46, 47 for heart tissue in the GTEx_v7 

database (FDR p-value ranging from 3.90×10−3).

Biologic plausibility of the new BP loci

Three novel BP loci are related to the central nervous system (CNS)-adrenal signaling axis 

that is critical for BP regulation. A locus (Figure 2A) adjacent to ZDHHC17, identified 

in AFR and in trans-ancestry analyses, encodes a membrane protein that mediates fusion 

of synaptic vesicles to the plasma membrane. CADPS (Figure 2B), identified in AFR, is 

expressed in CNS tissue. Three variants in LD have CADD scores >10, and four SNVs 

have ChromHMM state signals consistent with strong evidence of transcription regulation. 
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PIK3C2G, identified in trans-ancestry analyses, also shows roles in CNS-adrenal signaling. 

Three variants in LD in this locus have CADD scores >10, including one with a CADD 

score of 18 that is predicted to reside in an enhancer region in fetal adrenal cells.

Two novel BP loci are related to renal fibrosis and cation exchange. A locus, which includes 

a variant intragenic to SLIT3, showed interaction evidence with educational attainment in 

AFR (rs142385399, P = 2.79×10−8). A locus also identified in AFR includes HAS2 and 

HAS2-AS1, which play roles in renal fibrosis. In addition, we identified two novel BP 

loci related to pathways involved in vascular smooth muscle cell structure and function. A 

locus identified by trans-ancestry analyses included a variant intragenic to CDON, which is 

expressed in vascular smooth muscle cells. A locus identified in AFR includes GNB3, which 

encodes a subunit critical for signal transduction of several vasoactive peptide G protein­

coupled receptors involved in BP regulation. A SNV in this locus shows ChromHMM 

chromatin states consistent with strong transcription regulation in multiple tissues, and three 

SNVs have strong cis-eQTL association with GNB3 expression in nerve, artery and skeletal 

muscle tissue (minimum FDR p-value 1.20×10−43).

Discussion

A relationship between educational attainment and BP has been well demonstrated.48–51 

Furthermore, African-ancestry individuals have been shown to have a higher burden of 

HTN than European-ancestry.52 However, higher-educated African-ancestry individuals 

bear approximately twice the burden of HTN as compared to their European-ancestry 

counterparts,48, 51 demonstrating that educational differences did not fully account for 

this observed racial disparity. Herein, we reported genome-wide meta-analyses for SBP, 

DBP, MAP, and PP accounting for gene-educational attainment interactions across five 

ancestry groups. We pursued a genome-wide interrogation in 117 438 individuals (in Stage 

1) and follow-up analysis at selected variants in 293 787 additional individuals (in Stage 2). 

Through the combined meta-analysis of stages 1 and 2, we identified 84 known and 18 novel 

loci at genome-wide significance. As known loci have been discussed elsewhere, this report 

highlights several novel loci show biologic plausibility by involving physiologic systems 

implicated in BP regulation.

The central nervous system (CNS)-adrenal signaling axis is critical for BP regulation. 

Three novel BP loci (ZDHHC17, CADPS, and PIK3C2G) are related to these pathways. In 

neurons, ZDHHC17 encodes a membrane protein that mediates fusion of synaptic vesicles 

to the plasma membrane, enabling the release of neurotransmitters.53 Murine zdhhc17 
knockout models show impaired hippocampal memory and reduced synaptic plasticity, 

providing potential biological links to working memory and subsequent educational 

attainment.54 Although a biological connection between ZDHHC17 and BP traits is not 

well established, zdhhc17 expression induces neurite outgrowth in a rodent adrenal-derived 

cell line.55 Cadps plays a role in regulating the fusion of neuroendocrine vesicles and 

release of vasoactive catecholamines in calf adrenal and neural tissue.56 Pik3c2g encodes 

a phosphoinositide kinases that is expressed in a sexually dimorphic pattern specifically 

in a zone of the mouse adrenal cortex believed to play a role in steroid sex hormone 

production.57 Furthermore, PIK3C2G is under-expressed in human hypertensive kidneys, 
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providing a potential biological link between the expression of adrenal mineralocorticoid 

hormones and their target organ.58 Among alcohol-preferring rats, pik3c2g expression 

is also increased in the cerebral periaqueductal gray, a region involved in pain, fear, 

and anxiety responses,59 possibly providing a link to drivers of socioeconomic status in 

humans.60 Notably, the loci including ZDHHC17 and CADPS demonstrated some evidence 

of interaction with educational attainment (P = 1.72×10−5 and 1.99×10−7, respectively).

Two new BP loci (HAS2 and HAS2-AS1, SLIT3) show potential roles in renal function. 

A locus which includes a variant intragenic to SLIT3 had a significant interaction term 

with educational attainment. SLIT3 encodes a cell-cell adhesion molecule that binds its 

receptor, ROBO4, in human-derived endothelial stem cells directing the formation of 

vascular networks.61 SLIT3 also plays a role in directing neuronal growth in the brain,62, 63 

and in renal and cardiac development.64 A locus including HAS2 and HAS2-AS1 is also of 

interest for roles played in renal fibrosis. HAS2-AS1 is an antisense ncRNA simultaneously 

expressed and thought to stabilize the HAS2 transcript.65

Two new BP loci (GNB3, CDON) have been shown to regulate pathways involved in 

vascular smooth muscle cell structure and function. We identified a locus in GNB3, which 

encodes a G protein-coupled receptor subunit involved in BP regulation. Several candidate 

gene association studies have identified the synonymous GNB3 variant C825T (rs5443), 

resulting in a splice variant of the β3 subunit, as significantly associated with essential 

HTN,66, 67 with BP response to diuretic68 and β-adrenergic receptor blockade,69 and other 

cardiovascular traits.70 Another locus identified by trans-ancestry analyses included a variant 

intragenic to CDON; this gene is expressed in vascular smooth muscle cells,71 and encodes a 

cell-surface receptor complex that regulates myocyte differentiation in rodents.72

This large-scale multi-ancestry study has several limitations. First, the practice of adjusting 

SBP and DBP by adding 15 and 10 mm Hg for antihypertensive use is based on a 

method derived from a European-ancestry cohort.21 While this approach is common 

among GWAS of BP traits,36 we acknowledge that this practice may not be equally 

appropriate and/or justified in all ancestry groups. Second, while the sample sizes in diverse 

ancestries are a strength, resulting in the identification of several novel BP loci particularly 

in African ancestry, several identified loci included low-frequency variants that require 

further validation. Third, main effect only analysis without educational attainment was not 

performed, and this limits our ability to resolve if novel loci identified through the 2DF 

joint test could be found without considering educational attainment. Fourth, the use of 

educational attainment as a proxy for SES can present some challenges. The socioeconomic 

impact of education has changed over time and may differ according to birth cohort, as well 

as in other subgroups defined by gender, ancestry, region, and/or country.1, 49 Even with 

similar levels of educational attainment, social and environmental experiences were different 

between AFR and EUR individuals in United States, especially those educated in the 1960s 

and 1970s, resulting in residual confounding inequities between the ancestral groups.9, 73 

This additional source of heterogeneity may have reduced power for trans-ancestry analyses.

In summary, this multi-ancestry study that used gene-education interactions on BP traits 

identified 18 novel loci and validated 84 known BP loci. Ten novel loci were identified 
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in individuals of African ancestry, demonstrating the need for pursuing genetic studies 

in diverse populations. Several novel loci involve physiologic systems implicated in BP 

regulation including genes involved in CNS-adrenal signaling, vascular structure and 

function, and renal function. Two loci showed interaction evidence with educational 

attainment. These findings may identify a role for educational attainment and SES in further 

dissection of the genetic architecture of BP.
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Figure 1. 
Study design with summary of data included in this study. Educ: education status 

(considering either SomeCol or GradCol status separately); PC: principal component; 

EUR: European; AFR: African; ASN: Asian; HIS: Hispanic; BRZ: Brazilian; SNV: single 

nucleotide variant; TRANS; trans-ancestry (i.e., combining all ancestry groups through 

meta-analysis).
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Figure 2: LocusZoom plots for 2 BP loci related to CNS-adrenal signaling
(A) MAP-associated locus adjacent to ZDHHC17, identified in AFR and in trans-ancestry, 

shows roles in CNS-adrenal signaling. In neurons, ZDHHC17 encodes a membrane protein 

that mediates fusion of synaptic vesicles to the plasma membrane, enabling the release of 

neurotransmitters. Murine zdhhc17 knockout models show impaired hippocampal memory 

and reduced synaptic plasticity, providing potential biological links to working memory and 

subsequent educational attainment.

(B)A locus intragenic to CADPS, identified in AFR, is of potential biologic relevance given 

this gene’s expression in CNS tissue and role in regulating the fusion of neuroendocrine 

vesicles and release of vasoactive catecholamines from both adrenal and neural tissue. Three 

LD SNVs have CADD scores >10, and four LD SNVs have ChromHMM state signals 

consistent with strong evidence of transcription regulation.

SBP, systolic blood pressure; DBP, diastolic blood pressure; MAP, mean arterial 

pressure; PP, pulse pressure. The plots were created using LocusZoom (http://

locuszoom.sph.umich.edu/).
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