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Abstract

Introduction: Interindividual variations in regional structural properties covary

across the brain, thus forming networks that change as a result of aging and

accompanying neurological conditions. The alterations of superficial white mat-

ter (SWM) in Alzheimer’s disease (AD) are of special interest, since they follow

the AD-specific pattern characterized by the strongest neurodegeneration of the

medial temporal lobe and association cortices. Methods: Here, we present an

SWM network analysis in comparison with SWM topography based on the

myelin content quantified with magnetization transfer ratio (MTR) for 39 areas

in each hemisphere in 15 AD patients and 15 controls. The networks are repre-

sented by graphs, in which nodes correspond to the areas, and edges denote

statistical associations between them. Results: In both groups, the networks

were characterized by asymmetrically distributed edges (predominantly in the

left hemisphere). The AD-related differences were also leftward. The edges lost

due to AD tended to connect nodes in the temporal lobe to other lobes or

nodes within or between the latter lobes. The newly gained edges were mostly

confined to the temporal and paralimbic regions, which manifest demyelination

of SWM already in mild AD. Conclusion: This pattern suggests that the AD

pathological process coordinates SWM demyelination in the temporal and

paralimbic regions, but not elsewhere. A comparison of the MTR maps with

MTR-based networks shows that although, in general, the changes in network

architecture in AD recapitulate the topography of (de)myelination, some

aspects of structural covariance (including the interhemispheric asymmetry of

networks) have no immediate reflection in the myelination pattern.

Introduction

Interindividual variations in regional structural properties

of the cortex including regional volume, thickness, and

surface area covary across the brain (Chen et al. 2008; He

et al. 2008; Mechelli et al. 2005; Wu et al. 2012; Yao et al.

2010; reviewed in Alexander-Bloch et al. 2013a; Evans

2013). This population covariance in structural properties

suggests that some of them are coordinated in groups of

brain structures, that is, that they form networks. Com-

ponents of such networks may be the distributed parts of

functional systems. For instance, the hippocampal volume

strongly covaries with that of the amygdala, and with

those of the entorhinal, perirhinal, orbitofrontal, and

parahippocampal cortices involved in the memory system

(Bohbot et al. 2007). Areas implicated in language func-

tion are another example of a gray matter (GM) network

(Zielinski et al. 2010).

The nature of population covariance in the normal

brain can be partly explained by anatomical and func-

tional connectivity (Gong et al. 2012; Alexander-Bloch

et al. 2013b). The rest of covariance depends on shared

genetic and developmental effects (Schmitt et al. 2008;

Raznahan et al. 2011) and on learning and plasticity (Lv

et al. 2008; Bermudez et al. 2009). Aging and accompany-

ing neurological conditions may lead to changes in the

patterns of structural covariance (Raz et al. 2005; Seeley

et al. 2009). In this context, Alzheimer’s disease (AD) is of
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special interest, since it affects distributed cerebral regions,

which form an AD-specific spatial pattern (Buckner et al.

2005; Seeley et al. 2009; Knyazeva et al. 2010, 2013). As

demonstrated by neurofibrillary pathology and structural

atrophy, it is chiefly defined by the initial damage in

medial temporal lobes, which spreads to the association

cortices as the disease progresses (Braak et al. 2006).

This pattern of degeneration is also reflected in the

demyelination of the brain. Animal models and human

studies show a close association between AD-specific

biomarkers and axonal demyelination (Desai et al. 2010;

Mitew et al. 2010; Stricker et al. 2009: for review see

Bartzokis 2011). Recently, we have demonstrated that

the spread of demyelination in a typical precursor of AD –
amnestic mild cognitive impairment and the demyelina-

tion topography of the superficial white matter (SWM) in

mild AD patients – correspond to the AD-specific configu-

ration (Fornari et al. 2012; Carmeli et al. 2013). The

SWM is mainly composed of short association U-fibers.

These fibers are formed by the axons of pyramids from

layers III and V of the cortex. U-fibers leave the cortex,

follow its folding within the underlying thin layer of the

SWM, and re-enter the cortex at a distance of up to

30 mm (Schuz and Braitenberg 2002). In spite of their

apparent importance as components of cortico-cortical

networks that provide cascading connections between pri-

mary, sensory association, and multimodal areas, there is

only scarce evidence supporting the U-fibers’ involvement

in various functional processes and their changes in psy-

chiatric and neurodegenerative diseases. Recent structural

and diffusion MRI (magnetic resonance imaging) studies

showed their contribution to the plastic reorganization of

neural circuits after early blindness (Park et al. 2007) and

their reduced structural integrity in multiple sclerosis

(Miki et al. 1998), schizophrenia (Phillips et al. 2011;

Nazeri et al. 2013), and autism (Shukla et al. 2011), in

elderly relative to young people (Phillips et al. 2013), and

in age-related impairment of gait (Srikanth et al. 2010).

Importantly, the demyelination of U-fibers detectable

within the layer of SWM is among the early signs of neu-

rodegeneration in AD. Moreover, the SWM demyelina-

tion correlates with cognitive decline even in mild AD

(Fornari et al. 2012), suggesting a nearly immediate

impact on the patient’s state. Its progression forms a

whole-brain AD-specific pattern, suggestive of changes at

the network level. Such changes would be important for

developing demyelination-based biomarkers of AD.

The structural covariance of the SWM has never been

investigated since, as previously mentioned, the network

studies were mostly based on GM properties. Thus, here

we report the first attempt to apply the network theory to a

characterization of the topology of cortical networks based

on the structural properties of the SWM in elderly controls

and AD patients. To this end, we use magnetization trans-

fer imaging (MTI) that provides a myelin-sensitive contrast

(Stanisz et al. 1999; Wozniak and Lim 2006). Indeed, post-

mortem studies show that MTI measurements strongly

correlate with demyelination and axonal loss in the diseases

associated with myelination abnormalities (Schmierer et al.

2007; Gouw et al. 2008). The independence of MTI

from the spatial organization of fibers makes it a valuable

technique for assessment of the SWM with its plentiful

cross-oriented fibers.

The ultimate purpose of this article was to analyze the

nature of SWM network changes in AD and their poten-

tial for understanding the underlying pathological process.

To this end, we investigated how the networks obtained

with graph-theoretical analysis map onto the SWM land-

scape, the latter being defined by the changes in myelin

content in the posterior-to-anterior and left-to-right

(inter-hemispheric) axes of the brain. Since these two lev-

els of analysis are based on the same biological substrate,

a comparison between them has the potential to suggest a

plausible interpretation of the network data or, at least, to

narrow down the search space for it.

Methods

Patients and control subjects

This study is based on the MTI data of 15 patients with

probable AD and 15 control subjects. Previously, this

sample was used for the analysis of demyelination of the

SWM in AD (Fornari et al. 2012) and was a part of a lar-

ger sample, in which the topography of functional cortical

connectivity was studied (Knyazeva et al. 2010). The

patients were recruited from the Memory Clinic of the

Neurology Department (CHUV, Lausanne). For the

details of screening procedures and diagnosis assignment,

see our recent reports (Knyazeva et al. 2010, 2013).

The AD group included six women and nine men

(Table 1). The control subjects (nine women and six

men) were volunteers (12 community-dwelling aged

adults and three partners of AD patients). The patient

and control groups differed neither in age nor in their

gender. All but one participant in each group were right-

handed. All the patients, caregivers, and control subjects

gave written informed consent. All the applied procedures

conform to the Declaration of Helsinki by the World

Medical Association (2001) concerning human experi-

mentation and were approved by the local Ethics Com-

mittee of Lausanne University.

The clinical diagnosis was made according to the

NINCDS–ADRDA criteria (McKhann et al. 1984) and

confirmed by measuring the total hippocampal volume as

a structural biomarker of AD. Cognitive functions were
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assessed with the Mini Mental State Examination (MMSE)

and with a detailed standardized neuropsychological

assessment scale carried out by the GRECO group for the

French-speaking population (Puel and Hugonot-Diener

1996). The stage of dementia was determined according

to the Dementia Rating Scale (CDR). For this analysis, we

selected patients with mild dementia (CDR 0.5–1). In

addition to the basic neuropsychological assessment, the

severity of memory deficits considered to be typical early

symptoms of AD was examined by means of the Mattis

Dementia Rating Scale (Mattis 1976). Episodic verbal

memory was evaluated using the 16-item test by Grober

and Buschke (Grober and Buschke 1987). Episodic non-

verbal memory was assessed through the shape test from

the “Doors and People” test (Baddeley et al. 1994). Access

to semantic knowledge was tested by means of Lexis test

(De Partz et al. 2002).

Complete laboratory analyses and diagnostic neuroi-

maging (CT or MRI) were performed in order to rule out

cognitive dysfunctions related to the causes other than

AD. The exclusion criteria were severe physical illness,

psychiatric or neurological disorders associated with

potential cognitive dysfunction, other dementia condi-

tions (frontotemporal dementia, dementia associated with

Parkinsonism, Lewy body disease, pure vascular or prion

dementia, etc.), alcohol/drug abuse, and regular use of

neuroleptics, antidepressants with anticholinergic action,

benzodiazepines, stimulants, or b-blockers.
Control subjects underwent a brief clinical interview

and the MMSE, to confirm the absence of cognitive defi-

cits, of the use of psychoactive drugs, and of diseases that

may interfere with cognitive functions. Only individuals

with no cognitive complaints and an MMSE score ≥28
and ≥26 for those with a low level of education (primary

or secondary school without, or with short professional

training) were accepted as controls. All control subjects

underwent a brain MRI.

Following recent recommendations of the National

Institute on Aging and Alzheimer’s Association work-

groups (Jack et al. 2011; McKhann et al. 2011), we

measured the total hippocampal volume of both patients

and controls (Fig. 1), since a smaller hippocampus is a

structural biomarker of AD. In the AD group, the vol-

ume of the hippocampus turned out to be 22% lower

than in control subjects at P < 0.001 (Fig. 1A). A voxel-

based morphometry analysis with SPM8 confirmed this

result. We found two significant (P < 0.05 FWE-cor-

rected at a cluster level) clusters located in the left and

right hippocampi, where in AD patients GM volume was

Table 1. Demographic and clinical characteristics of AD patients and

control subjects.

Feature AD patients

Control

subjects

Statistical

comparison

# of subjects 15 15 –

Gender M/W 6/9 9/6 P > 0.15

Age (years) 67.9 � 10.5 64.5 � 11.5 P > 0.4

MMSE 21.5 � 4.0 28.9 � 1.1 P < 0.001

CDR 0.8 � 0.25 – –

The second and third columns present group characteristics (mean

+/� standard deviation). “W” stands for women, “M” for men. The

fourth column presents P-values for the statistical significance of the

two-sided between-group differences estimated by the Mann–

Whitney-Wilcoxon test and the v2 test for gender.

(A) (B)

Figure 1. Hippocampal volume in AD patients and control subjects. (A) The total (left hemisphere + right hemisphere) volume of the

hippocampus is shown for the control and AD groups. For each group, the estimated individual values are shown with empty black-bordered

circles. The black lines represent the group mean, the light gray boxes represent the interval spanned by the mean � 1 SD, and the dark gray

boxes the mean � 1.96 SD. The between-group contrast (AD < Controls) is significant at P < 0.001 (GLM with total intracranial volume, age,

and gender as covariates). (B) The coronal slice (y = �24) shows the clusters of voxels (yellow) in the hippocampi where we found a loss of gray

matter volume in the AD group (P < 0.05, cluster level FWE-corrected). For presentation purposes, the SPM is overlaid on the T1-weighted image

of the population average (an output of the DARTEL algorithm) translated into the MNI space.
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lower than in control subjects (Fig. 1B; for methods see

Data S1).

Magnetic resonance imaging

All the patients and controls were scanned in a 3 Tesla

Philips Achieva scanner (Philips Medical Systems, Best,

the Netherlands). The protocol included a sagittal T1-

weighted 3D gradient-echo sequence (MPRAGE, 160

slices, 1 mm3, isotropic voxels) as a basis for segmenta-

tion. We performed MTI by running a gradient-echo

sequence (FA 20, TE 10, matrix size 192*192, pixel size
1.3*1.3 mm, 52 slices (thickness 2.5 mm), spatial resolu-

tion of ~4 mm3) twice, first with and then without an

MT saturation pulse. We used a Gaussian MT prepulse

with a duration of 7.68 ms, FA 500, and a frequency off-

set of 1.5 kHz. The entire protocol (for detailed descrip-

tion see Fornari et al. 2012) lasted 22 min.

MTI acquisitions were coregistered on the high-resolu-

tion T1 acquisition without resampling, thus maintaining

the original resolution of each modality. For every intra-

cranial voxel (spatial resolution of ~4 mm3), we calcu-

lated the magnetization transfer ratio (MTR) as follows:

MTR ¼ ðM0 �MSÞ=M0 � 100; (1)

where MS represents the intensity of the signal in a voxel

with saturation, M0 without saturation. The ratio indicates

the percentage loss of signal intensity attributable to the

MT effect. Since this effect mainly depends on the myelin

concentration (Stanisz et al., 1999), a decrease in MTR val-

ues is considered to be a sign of demyelination and/or a

loss of axons. In order to minimize the effect of noise, only

voxels with MTR > 10% were included in the analysis.

Image processing was performed using SPM8 and ad-hoc

routines developed in the Matlab 7.1 environment.

Segmentation of gray matter, white matter, and
superficial white matter

For each subject, the high-resolution anatomical T1

images of the brain were segmented into GM, white mat-

ter (WM), and CSF using the unified segmentation algo-

rithm in SPM8.

In order to select the SWM below the cortex, we first

defined its outer surface as the external surface of the

WM mask obtained by thresholding the WM probability

map at P > 0.95. The selected high level of significance

allowed us to minimize the partial volume effect in the

selected voxels. Then, the so-defined WM mask was sub-

jected to an iterative erosion process ending at a depth of

3 mm. The inner surface of the SWM was defined as an

external surface of the eroded WM mask. Therefore, the

volume between the inner and the outer surfaces consti-

tuted the 3-mm-thick layer of WM below the cortex, that

is, the SWM. All these operations were performed by in-

house-made routines in Matlab.

Each hemisphere was then divided into 39 ROIs,

mainly corresponding to Brodmann areas (BA), and the

mean MTR value was calculated for the 3-mm-thick

SWM underneath each ROI by dilating the cortical ROI

towards the SWM until they intersect (for details see For-

nari et al. 2012). All these operations were performed in

the native space for each subject. Mean MTR values for

each group and for each ROI were displayed with the

Caret software (http://neuro.debian.net/pkgs/caret.html)

on a mesh representing the surface of the GM/WM

boundary of a standard MNI (Montreal Neurological

Institute) brain. For additional details of MT imaging,

segmentation, and analysis see (Fornari et al. 2012).

MTR-based parameters and statistics

For each ROI, we computed a laterality score as

(L � R) / (L + R), where L and R stand for the MTR val-

ues of a pair of homotopic areas in the left and right hemi-

spheres, respectively. For statistical inference, we built a

General Linear Model (GLM) with the laterality indices of

the two groups (controls and AD patients) as dependent

variables, and age and gender as nuisance variables. The

distributions of the t-statistics for each contrast of interest

(a one-sample t-test for within-group and a two-sample t-

test for between-group contrasts) were estimated through

10,000 permutations. P-values were corrected for multiple

comparisons through the linear step-up false discovery rate

(FDR) (Benjamini and Hochberg, 1995). We considered an

FDR-corrected P < 0.05 significant.

Graph-theoretical analysis

Network estimation

The MTR data from all the ROIs were embedded in a

graph, where nodes represent the areas, and edges repre-

sent the statistical associations between them. In contrast

to previous studies, which reported a seed-based inference,

namely, the associations between a preselected area and

remaining areas (Mechelli et al. 2005), here we consider

the whole set of associations among the areas of interest.

While providing information about the entire network,

our approach has to cope with a difficult estimation

problem in a statistical setting, where the available num-

ber of samples is much lower than the number of vari-

ables or dimensions. Indeed, the statistical estimation of

associations (i.e., the network model or Gaussian graphi-

cal model) is based on partial linear correlations, whose

traditional estimators are applicable only if the number of
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samples (n) is larger than the number of nodes (k)

(Whittaker 1990). This is not our case, since for each

group we have n = 15 and k = 78. To overcome this

issue, we applied a shrinkage-based estimator of the par-

tial correlation matrix (Schäfer and Strimmer 2005).

Shrinkage is a regularization technique for ill-posed esti-

mation problems. It is based on additional information,

which is not used by standard estimators (e.g., maximum

likelihood). To this end, the shrinkage estimator takes

advantage of a target estimate. In our case, a heterosced-

astic diagonal covariance matrix corresponding to a net-

work/graphical model made of isolated nodes was the

target. In practice, the shrunken covariance matrix is a

weighted average of the standard and target estimates,

which average has a minimum mean squared error, and

is well-conditioned and positive-definite (Schäfer and

Strimmer 2005). Given the two latter properties, the

matrix of partial correlations can be reliably computed

from the inverse of that shrunken covariance matrix.

Using Σ to signify the k 9 k estimated covariance matrix,

the partial correlation matrix is computed as

P ¼ �D�1=2P�1D�1=2 (2)

where D is a diagonal matrix obtained by extracting the

diagonal elements of Σ�1. Note that for good estimation

of partial correlations, a well-conditioned Σ is crucial.

It is important to note that, compared to full correla-

tions, partial correlations allow better distinctions to be

made between direct and indirect associations (Walker

et al. 2010; Jalili and Knyazeva 2011; Smith et al. 2011).

Statistical inference of networks

We used statistical inference to determine the correlation

structure for (1) the AD group and the control group

separately; (2) AD vs. control group; and (3) left vs.

right hemisphere. For i), we modeled the probability of

a partial correlation or edge being null through the local

false discovery rate (lfdr) (Efron 2004; Sch€afer and

Strimmer 2005). The lfdr corresponds to the posterior

probability of an edge to be null given the estimated

pij (an element of the matrix obtained with Eq. 2). In

formulae

lfdrðpijÞ ¼ g0f0ðpijÞ
f ðpijÞ ; (3)

where f0 is the null distribution of the pij provided in

(Hotelling 1953), g0 is the unknown proportion of null

partial correlations, and f is the distribution of the pij.

The distribution f can be modeled as a mixture of two

distributions (Efron 2004), namely

f ðpijÞ ¼ g0f0ðpijÞ þ ð1� g0ÞfaðpijÞ; (4)

where fa is the (unknown) distribution of estimated par-

tial correlations assigned to truly nonnull edges. The

unknown parameters can be estimated from the empirical

distribution of the set of pij, and an efficient estimation

procedure is implemented in the R-package fdrtool

(Strimmer 2008).

The lfdr directly takes into account the multiplicity of

null hypotheses, and warrants a Bayesian approach to

detecting nonnull partial correlations. To this end, partial

correlations with lfdr < 0.2 are deemed highly significant

ones (Klaus and Strimmer 2013). To establish the nonnull

partial correlations, we applied a threshold lfdr < 0.2,

thus obtaining partial correlations with a very high posi-

tive predictive value (>0.9), i.e., very likely reflecting true

associations (Sch€afer and Strimmer 2005). Linear effects

of age and gender were removed by including them in

the computation of Eq. 2 as additional variables (k = 80).

For further analysis, only partial correlations related to

BA-based regions were retained.

To analyze (2) and (3), we applied a Fisher transforma-

tion to the partial correlations, computed z-scores from

the relevant pair of samples, and, finally, calculated lfdr

from the z-scores. In this case f0 (Eqs. 3 and 4) was the

Gaussian distribution. We verified this assumption by

running a Jarque–Bera test (Jarque and Bera 1987) on the

z-scores (P-value > 0.5).

The correlations (edges) between the two groups or

hemispheres associated with lfdr < 0.2 were considered

significantly different.

Network topological properties

The structure of MTI-based networks was analyzed with

two approaches: a macro-network and a conventional

topological one. For the macro-network approach, we

applied a mapping of the 78 nodes across frontal, tempo-

ral, parietal, occipital, and paralimbic lobes (Table 2). To

summarize intra- and inter-lobar associations, we

employed a framework developed in the context of brain

functional integration–segregation theory (Tononi et al.

1994). If N1 is a group of nodes corresponding to a

Table 2. Clusters of ROIs for macro-network mapping.

Region/Lobe Brodmann areas

Frontal 4, 6, 8, 9, 10, 13, 44, 45, 46

Parietal 1+2+3, 5, 7, 39 40, 43

Paralimbic 11, 23, 24 + 33, 25, 27, 28,

29+30, 31, 32, 34, 35, 36, 38, 47

Temporal 20, 21, 22, 37, 41, 42

Occipital 17, 18, 19, Cuneus
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certain ROI, the amount of association or correlation in

that region is computed through Gaussian entropy

HN1 ¼ � 1

2
logðdetðPN1ÞÞ; (5)

where PN1 denotes the partial correlation matrix com-

puted with Eq. 2, restricted to the nodes in N1. HN1 pro-

vides the measure of the distance from zero correlation.

The amount of correlation between two regions N1 and

N2 is computed through their mutual information, namely

MN1[N2 ¼ HN1[N2 �HN1 �HN2 (6)

To adapt graphical representations for this analysis and

to allow a comparison between AD patients and controls,

we ranked the intra- and inter-lobar associations into

three levels (weak, medium, and strong) via a K-means

algorithm.

In the conventional topological approach, we studied

various metrics introduced in the complex network field

including node centrality, global efficiency, local effi-

ciency, and modularity (Boccaletti et al. 2006; Bullmore

and Sporns 2009). Let us denote by A = {aij} the adja-

cency matrix of a binary undirected network G, where an

element aij is nonnull, if an edge between nodes i and j

exists. The degree of a node i is defined as

ki ¼
X
jeV

aij (7)

where V is the set of all nodes of G. The degree of a node

is considered a measure of node centrality. Nodes with a

centrality value lying in the upper quartile of the inte-

grated (see below for details) node degree distribution

were defined as hubs (Sporns et al. 2007).

Global efficiency is equivalent to the inverse of the har-

monic mean of the length of the shortest paths in each

pair of nodes in the network, whereas local efficiency is

restricted to the topological first neighbors. In other

words, global efficiency is related to global interconnec-

tedness, whereas local efficiency is related to local inter-

connectedness (Latora and Marchiori 2001). In formulae,

efficiency is defined as

EðGÞ ¼ 1

NV ðNV � 1Þ
X
ieV

X
j6¼ieV

d�1
ij (8)

where NV is the number of the nodes of network G,

and dij is the length of the shortest path between nodes

i and j. The definitions of global and local efficiency

follow as

GEðGÞ ¼ EðGÞ
LEðGÞ ¼ 1=NV

X
ieV

EðGiÞ (9)

where Gi is the sub-network composed of the first-order

(topological) neighborhood of node i.

A module is defined as a group of nodes connected by

a larger number of within-group edges than between-

group edges (i.e., connecting the group with the rest of

the node groups). The Q index quantifies the degree of

modularity of G and is calculated as in (Newman 2006).

Q ¼
X
m

eii �
X
jem

eij

 !2" #
(10)

where m is the predetermined set of modules with nonov-

erlapping nodes, and eij stands for the proportion of all

links connecting nodes in module i with those in module

j. Q quantifies the degree of a modular structure with m

modules, in which the larger the Q, the more modular

the network.

We investigated these four metrics over a range of densi-

ties chosen according to the lfdr statistics such that

0.2 < lfdr < 0.5 (see section Statistical inference of

networks). To this end, the partial correlation matrix com-

puted with Eq. 2 was thresholded in that lfdr range. As for-

mulated in (Klaus and Strimmer 2013), lfdr = 0.5

represents a principled (in a Bayesian sense) estimation of

the boundary between the null hypothesis and the alterna-

tive hypothesis. Practically, partial correlations associ-

ated with lfdr < 0.5 are considered significant nonnull

correlations, while those with lfdr < 0.2 are deemed highly

significant.

In particular, we applied density integration, recently

proposed by (Ginestet et al. 2011). To this end, the met-

rics were computed at a chosen range of densities and

then integrated over the range. This amounted to an aver-

aging since we assumed that the different densities were

equally likely. Numerical computations of the network

metrics were performed with the BCT toolbox (https://

sites.google.com/site/bctnet/).

To compare the metrics GE, LE, and Q between AD

patients and control subjects, without being able to assume

a distribution of the three metrics, we applied a non-para-

metric permutation technique. Namely, the individual val-

ues for GE, LE, and Q were randomly shuffled 10,000

times. At each shuffle, we computed partial correlations

and the three network metrics for each density, and inte-

grated over densities. The absolute value (two-sided test) of

each difference from the permuted data was then compared

to the respective difference from the original data (AD

patients vs. control subjects), and P-value was estimated as

the fraction of permutations showing a larger difference.

We also compared the three metrics in a different way.

As in (Achard and Bullmore 2007; van Wijk et al. 2010;

Joudaki et al. 2012), we constrained the two networks so
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as to give them the same density (i.e., the same percent-

age of nonnull edges) and binarized them by assigning 0

to null edges and 1 to nonnull edges. The metrics of the

two networks were then compared density-wise for the

chosen ranges. While this approach avoids comparing

networks with an unbalanced number of edges and disen-

tangles the effect of topology from the effect of difference

in edge density, it requires a correction for multiple

comparisons.

Results

Intra- and inter-hemispheric MTR landscapes
in elderly controls and AD patients

By “MTR landscape”, we mean the SWM map with its

distinct regional features manifested through regional

MTR values. The intra-hemispheric landscapes showed a

tendency of posterior-to-anterior increase in MTR values

in the control and AD groups (Fig. 2A). To estimate it,

we contrasted the mean lobar values of MTR across the

frontal, parietal, temporal, and occipital lobes (Fig. 2B,

Table 2). Although the contrasts did not survive FDR

correction, occipital MTR showed a tendency to be lower

than frontal MTR (P < 0.05, uncorrected) in both

groups.

The interhemispheric asymmetry in controls was signif-

icant for the anterior prefrontal cortex (BA 10) at

P < 0.05 (FDR-corrected) with the higher MTR values in

the right hemisphere (Fig. 2C). Similar trends were char-

acteristic for the frontal eye field (BA 8), the dorsolateral

prefrontal cortex (BA 9), and the anterior cingulate (BA

32) at P < 0.05 (uncorrected). In AD patients a rightward

asymmetry of the prefrontal SWM was significant in the

frontal eye field (BA 8) and the dorsolateral prefrontal

cortex (BA 46) at P < 0.05 (FDR-corrected), but did not

survive correction for multiple comparisons in BA 9. The

postcentral ROIs showed an asymmetry of SWM only in

the AD group. Specifically, we found widely spread left-

ward asymmetry in the parietal and occipital areas (BAs

5, 7, 17, 18, 31) at P < 0.05 (FDR-corrected). A similar

tendency (P < 0.05, uncorrected) could be seen in the

posterior temporal and medial occipital regions (BAs 19,

28–30, 37, 39–40, and the cuneus). However, in the

(A) (B) (C)

Figure 2. Landscapes of myelination of superficial white matter in elderly controls and AD patients. (A) The mean areal MTR values are shown

with 3D rendering in the lateral and medial views of the two hemispheres. The color-bars represent the raw MTR values, gray represents regions

where BA are not defined. Rendering and display of the maps have been obtained with Caret software (http://www.nitrc.org/projects/caret/). (B)

The lobar MTR values (left hemisphere + right hemisphere) are shown for controls (top) and AD patients (bottom). For each group, the individual

values are shown with empty black-bordered circles. The black lines represent the group mean, the light gray boxes the mean � 1 SD, and the

dark gray boxes the mean � 1.96 SD. (C) The interhemispheric asymmetry of MTR values is color-coded in controls (top) and AD patients

(bottom) according to the value of laterality index. Note that for presentation purposes, we show only regions with a nonzero laterality index

(P < 0.05, uncorrected). Gray regions refer to insignificant interhemispheric differences in MTR values (P > 0.05, uncorrected). Both controls and

AD patients demonstrate a rightward asymmetry in the prefrontal regions. The parietal and occipital ROIs show an asymmetry of SWM only in

the AD group.
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between-group comparison, only the inferior temporal

gyrus and the anterior part of the fusiform gyrus (BA 37)

showed a propensity for higher laterality scores in the AD

group (P < 0.05, uncorrected).

MTR-based networks in elderly controls and
AD patients

General characteristics

The network inferred for the control subjects shows 107

(~3.6% of total number edges) significant edges

(lfdr < 0.2) that mostly connect the nodes of the left

hemisphere (Fig. 3A; Table 3). The network deduced for

AD patients includes 42 (~1.4% of total number of edges)

edges (lfdr < 0.2), also located largely in the left hemi-

sphere. In both groups, about 90% of edges are positive

correlations between nodes.

Statistical analysis of partial correlations showed that,

compared to controls, AD patients demonstrate both

increased and decreased inter-areal correlations. Specifi-

cally, AD networks lost 20 and gained 10 edges (Fig. 3B,

Table 4). Nearly all of them represent edges connecting

the left temporal nodes. However, the lost edges (2/3 of

all changed correlations) predominantly reflect alteration

in covariance between temporal areas and relatively dis-

tant regions located in the frontal and parietal lobes and

in the opposite hemisphere, whereas the new edges are

concentrated within the temporal lobe, where they show

strengthened covariance among areas located in the para-

hippocampal and fusiform gyri, and among the lateral

temporal areas.

Analysis of the interhemispheric asymmetry of edges

provided 26 significantly different edges (LH > RH for 23

and LH < RH for 3 of them) in the control group, and

16 edges (LH > RH for 13 and LH < RH for 3) in the

AD group (Table 5). In controls, the LH > RH edges

were distributed in the temporal, parietal and frontal

lobes, while in AD patients they were mostly localized in

the temporal lobe (Fig. 4).

Topological properties

With macro-network mapping, we categorized correla-

tions into relatively short-range (mostly intra-lobar) and

long-range (inter-lobar and inter-hemispheric) connec-

tions (Table 2). As can be seen from Fig. 5, intralobar

connections are predominantly symmetric with the excep-

tion of the frontal lobe in the control group and the tem-

poral lobe in the AD group. All but one (temporal) ROI

lose their internal covariance in AD; this is especially

noticeable in the paralimbic regions of both hemispheres

and the left frontal lobe, which show the strongest

intracorrelations in the control subjects. In agreement

with Fig. 4, both macro-networks show leftward asymme-

try, which emerges mainly at a level of interlobar connec-

tions. Remarkably, the right hemisphere ROIs correlate

(A)

(B)

Figure 3. The MTR-based covariance networks in controls and AD

patients. (A) The networks are rendered on the 3D smoothed brain of

the ICBM152 template with the BrainNet Viewer (http://

www.nitrc.org/projects/bnv/). They are presented in the left lateral,

top, and the right lateral views of the brain for controls (top row) and

AD patients (bottom row). Nodes are designated as gray circles

located at the centers of mass of each ROI. Significant edges

(lfdr < 0.2) are drawn in red for positive partial correlations and in

blue for negative partial correlations. (B) The edges significantly

different between elderly controls and AD patients (lfdr < 0.2) are

rendered as in Fig. 3A. A node size corresponds to the degree of

difference (i.e., to the number of edges significantly different in the

AD compared to the control group). The nodes labeled with the

associated Brodmann area number in white have degrees larger than

two. The blue edges are present in controls, but not in AD patients

(top row), while the red edges are present in AD patients, but not in

controls (bottom row).
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with the homo- and hetero-topic regions of the left hemi-

sphere rather than intrahemispherically. Most of interlo-

bar correlations are weakened in the AD group, except

those connecting paralimbic regions of the opposite hemi-

spheres. This loss is especially pronounced for the con-

nections of the left frontal and parietal areas, the

strongest in the control group.

In the controls, we found 11 hubs in the left hemisphere

and eight hubs in the right hemisphere (Fig. 6). Out of the

total number of hubs, eight are located in the prefrontal

areas, seven hubs in the paralimbic and temporal regions,

and four hubs in the primary motor, somatosensory, gus-

tatory, and visual areas (Table 6). AD patients have 10

hubs in the left and nine hubs in the right hemisphere, but

only seven of them are the same as in the controls, includ-

ing posterior cingulate, parahippocampal, and some tem-

poral hubs. The AD group lost 12 hubs, the majority of

which (seven) belong to the frontal lobe. Remarkably, all

four hubs located in the primary cortical areas are also

absent in the patients. Among the hubs acquired by AD

group, there are five posterior hubs (all in the left hemi-

sphere), four prefrontal, and three temporal.

The analysis of network topology showed that mild AD

patients tended to have a decreased local efficiency (LE)

at P < 0.05 (uncorrected) for several density ranges, while

there were virtually no significant between-group differ-

ences in the modularity (Q) and global efficiency (GE)

(Fig. 7). Within the framework of the integrated-density

approach, these three metrics did not show significant

differences between the controls and the AD group

(P > 0.05).

Discussion

Here, we report our results at two levels of analysis, namely

(1) SWM myelination maps based on regional MTR values

and (2) the structural networks that they form in elderly

people and AD patients. The largest network changes due

to AD are concentrated in the left hemisphere, which is

characterized by the most significant reduction in myelin

content of SWM (Fornari et al. 2012). These changes

include both lost edges, which tend to connect temporal

areas to remote intra- and inter-hemispheric regions or

areas within lobes other than the temporal ones, and newly

gained edges, which are predominantly limited to the tem-

poral and paralimbic regions already affected by neurode-

generation in mild AD. Another finding is a striking

Table 4. Differences in edges between controls and AD patients.

Comparison

Left

intrahemispheric

Right

intrahemispheric Interhemispheric

AD < Controls 12 edges 1 edge 7 edges

AD > Controls 7 edges 0 edge 3 edges

The number of significant edges (lfdr < 0.2) different between control

and AD groups is shown. The differences refer to the edges that are

present in one group but not in the other independently from the

sign of partial correlation. The differences are reported separately for

intra- and inter-hemispheric edges.

Table 5. Edge asymmetry in controls and AD patients.

Group/Comparison LH > RH LH < RH

Controls 23 edges 3 edges

AD patients 13 edges 3 edges

The table shows the number of significant edges (lfdr < 0.2) that dif-

fer between the left (LH) and right (RH) hemispheres in the control

and AD groups. The interhemispheric difference was computed inde-

pendently from the sign of partial correlations.

Figure 4. Interhemispheric network asymmetry in elderly controls

and AD patients. The edges significantly different (lfdr < 0.2) between

the left (LH) and right (RH) hemispheres are rendered as in Fig. 2. The

edges are drawn in the LH, if corresponding partial correlation values

are higher in the LH, and in the RH, if the opposite is true.

Table 3. Characterization of inferred networks: edges.

Group/Location

Left

Hemisphere

Right

Hemisphere Interhemispheric

Controls (#positive/

#negative)

67 edges/

7 edges

17 edges/

0 edges

10 edges/

6 edges

AD (#positive/

#negative)

26 edges/

3 edges

9 edges/

0 edges

3 edges/

1 edge

The table shows the number of significant edges (lfdr < 0.2) for con-

trol and AD groups according to their gross topology, namely con-

necting nodes within the left or right hemispheres only, or connecting

nodes of different hemispheres. Finally, the number of edges associ-

ated with positive or negative partial correlation is reported. The aver-

age strength of edges was about 0.109 for controls and 0.120 for

AD. There were disconnected nodes in both populations: 35 in con-

trols (six in the left hemisphere and 29 in the right hemisphere) and

54 in AD (22 in the left hemisphere and 32 in the right hemisphere).
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leftward asymmetry of the intrahemispheric patterns of

MTR-based regional covariance in healthy elderly subjects

and AD patients not mirrored by an interhemispheric

asymmetry of SWM maps. Indeed, the topography of

SWM myelination in both groups is characterized by a

weak rightward prefrontal asymmetry, supplemented in

AD patients by a leftward posterior asymmetry. In the fol-

lowing discussion we consider the probable nature of the

network level changes by comparing them with the spatial

pattern of (de)myelination. We begin with a discussion of

the advantages and limitations of the novel statistical tech-

nique that we applied here.

Shrinkage estimator in clinical neuroscience

Recent advances in data acquisition techniques have led

to the generation of massive datasets in many fields of

science. These datasets (e.g., MRI data in neuroscience)

are often characterized by high dimensionality and a rela-

tively low number of samples (subjects), which hinders an

application of classical statistical tools. In particular,

widely used standard covariance and correlation estima-

tors are not suitable for such datasets. For instance, maxi-

mum likelihood estimators are optimal only for a very

large number of samples (Schäfer and Strimmer 2005).

In this study, to mitigate the effect of a small sample

size while estimating a high-dimensional covariance, we

applied the shrinkage technique introduced in (Schäfer

and Strimmer 2005). This shrinkage covariance estimator

provides well-conditioned and positive-definite covari-

ances, thus allowing an estimation of Gaussian graphical

models through inverse covariances (Whittaker 1990).

Applied to simulated data, this estimator was shown to

perform better than competing shrinkage techniques (e.g.,

penalized regression) in terms of sensitivity and positive-

predictive value. Notably, it provides inference of Gauss-

ian graphical models with very high positive-predictive

value (Schäfer and Strimmer 2005). Due to the latter fea-

ture, any edge detected as significant corresponds to a

true edge with very high probability. However, as

Figure 5. Macro-networks in elderly subjects and AD patients. The networks including the frontal (blue), paralimbic (orange), temporal (green),

parietal (purple), and occipital (yellow) regions are drawn for controls and AD patients. Nodes represent intraregional connectivity (correlation).

The empty nodes stand for insignificant intraregional correlation, while colored nodes correspond to significant intraregional correlations. In so

doing, the radius of a colored node corresponds to an intracorrelation level (weak, medium, or strong). Edges represent interregional connectivity

(correlations) and their thickness matches one of the three levels described for the nodes.

Figure 6. Network hubs in AD and control subjects. Hubs in control

and AD subjects (top and bottom row, respectively) are drawn as

large circles. They correspond to the nodes with an integrated node

degree value lying in the upper quartile of the distribution. The

numbers denote the Brodmann areas where corresponding nodes are

located. Hubs common to the control and AD subjects are designated

with red numbers, while group-specific hubs are designated with

black numbers.
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expected, those statistical properties of the estimator fade

away, when the ratio n/k (n samples and k dimensions,

see Section Network estimation) becomes too small.

Below, we discuss some properties of SWM covariance

networks and their differences between AD patients and

controls and between the hemispheres obtained by means

of the shrinkage estimator applied to relatively small sam-

ples. Yet we refrain from inferring whether the networks

in these populations have a random or meaningful (i.e.,

small-world or scale-free) topology (Evans 2013). To

address this question one needs to overcome two limita-

tions inherent to the sample analyzed in this work: the

small number of nodes (here, brain regions) and of sam-

ples (here, subjects). It is difficult to test small-worldness

or scale-freeness if there are less than a few hundred

nodes, since, in this case, inferred topological properties

may depend on poor spatial sampling (Bialonski et al.

2010) and, thus, be biased. Increasing the number of

nodes in the same number of subjects (due to the natural

limitations of clinical samples) would result in decreasing

the n/k ratio, so lowering or even fully losing the power

of inference (Schäfer and Strimmer 2005).

SWM maps and networks in elderly normals
and AD patients

Early MTI studies, which analyzed regional WM including

its deep and superficial components, reported the highest

MTR values in the corpus callosum, followed by the

association fibers of the neocortex, and further followed

by the subcortical structures with myelinated fibers (Me-

hta et al. 1995; Silver et al. 1997). A more recent study

(Armstrong et al. 2004) demonstrated a similar descend-

ing order of regional MTR values: the corpus callosum,

cingulate, deep WM, brain stem, subcortical nuclei, and

cerebellum. Moreover, in the prefrontal lobe, MTRs were

higher than in the posterior frontal lobe, as well as in the

lateral aspect of the temporal lobe compared to its medial

aspect (Armstrong et al. 2004). Combined with the poster-

ior/inferior-to-anterior/superior gradient of the WM mat-

uration (Colby et al. 2011), such a distribution of the

MTR values suggests that prolonged development of the

WM in the anterior/superior regions results in their

greater myelination, emphasizing the role of myelination

in life-long plasticity.

Here we made an attempt to estimate whether a similar

gradient exists for the SWM. The SWM is predominantly

composed of short association fibers (U-fibers) connect-

ing locations within the same area and/or adjacent gyri

(Schuz and Braitenberg 2002; Oishi et al. 2011; Catani

et al. 2012). They leave the cortex but follow its folding

within the underlying thin layer and then reenter the cor-

tex at a distance of up to 30 mm. In normal middle-aged

individuals, the SWM is virtually free of lesions due to

being vascularized with both deep and cortical arteries

(Wen and Sachdev 2004). Yet, with age, healthy adults

show reduced integrity of the SWM, varying from pro-

nounced in the prefrontal regions to faintly detectable in

the posterior and ventral regions of the hemispheres

(Phillips et al. 2013).

Figure 7. Network topology in AD and control subjects. The curves show the global efficiency GE (left panel), local efficiency LE (middle panel), and

modularity index Q (right panel) as a function of density (percentage of nonnull edges) in AD patients (black) and controls (gray). Red stars show cost

values, for which there is a significant difference between the AD and the control groups (P < 0.05, uncorrected for multiple comparisons).

Table 6. Hub topography.

Group Left hemisphere Right hemisphere

Controls 1-2-3, 4, 6, 9, 17, 20, 21, 31, 43, 45, 47 9, 20, 23, 25, 31, 35, 44, 45

AD patients 6, 7, 8, 18, 19, 21, 28, 32, 40, Cuneus 6, 8, 10, 23, 27, 31, 36, 41, 44

The table shows the numbers of Brodmann areas identified as hubs, that is, the nodes with degree values belonging to the upper quartile of node

degree distribution (for AD and Control subjects, respectively).
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We could demonstrate a trend of the myelination

gradient only with the anterior MTR values higher than

the posterior MTR values in both groups. The highest

susceptibility of prefrontal SWM to the effects of aging

can account for the nonsignificant posterior-to-anterior

gradient.

In mild AD patients, as we showed recently (Fornari

et al. 2012), MTR-based SWM maps clearly demonstrate

an AD-specific pattern of demyelination, with the left med-

ial temporal lobe (MTL) as the most affected region. More-

over, regional MTR values correlate with MMSE, language,

and memory tests, suggesting a crucial role of short associa-

tion fibers in AD-related decline of cognitive performance.

Therefore, being one of the earliest events in the AD pro-

gression, demyelination might add to the factors that

change covariance networks. Note that, by breaking down

structural connectivity (in the absence of other factors, e.g.,

long-range connectivity, pathological processes coordinated

across distributed brain regions, etc.) demyelination per se

can lead only to a decrease in structural covariance. Consid-

ering the range of distance covered by U-fibers, a decrease

in intra-lobar covariance can be expected.

This decrease is indeed what we have found here and

illustrate with Fig. 3. However, the lost connections mani-

fest both short-range (intralobar) and long-range (interlo-

bar) covariance in all the ROIs except for the left

temporal lobe. They likely indicate reduced mutual influ-

ences between distributed regions and/or independent pro-

cesses of local degeneration within frontal and parietal lobes

and/or population variants of AD with different topogra-

phies of degeneration. The newly gained connections are

confined to the temporal and paralimbic regions. Similar

changes were recently reported for VBM-based GM net-

works in mild-to-moderate1 AD patients (Yao et al.

2010). Such topography allows one to suggest that this

hyper-covariance is due to a common AD-related patho-

logical process, which strongly affects these areas already

in early AD. Alternatively, the increase in the number of

edges can be explained with remyelination. Indeed, the

increased density of oligodendrocytes accompanies myelin

loss in AD (Ihara et al. 2010). Remyelination processes

may also underlie the AD-related increase in brain iron

(Bartzokis 2011).

In our healthy elderly subjects, SWM hubs are predomi-

nantly distributed in the prefrontal, temporal, and poster-

ior cingulate regions. In contrast to the GM networks

(Buckner et al. 2009) and deep WM networks (Hagmann

et al. 2008; van den Heuvel and Sporns 2011) with their

hubs widely scattered across the association areas, we

found no hubs in heteromodal parietal areas, but four

hubs in the primary areas, which abound in short associa-

tion fibers (Catani et al. 2012). Intriguingly, all the latter

hubs together with many prefrontal ones were displaced in

the mild AD patients. This fact might reflect that, while

the primary areas are the last ones in the AD neurodegen-

eration sequence, their isolation from neighboring cortices

is significant already in mild AD. The dramatically changed

topography of the prefrontal hubs is consistent with the

worsening of sustained attention, working memory, and

executive functions in AD. Although the precise functions

of the prefrontal U-fibers are yet to be clarified, their sig-

nificant role in integrating the activity of local networks

necessary for these functions is supported by their topogra-

phy (Catani et al. 2012). In particular, the loss of hubs in

BA 45 and 47 (reported here) against the background of

significantly reduced myelin content (Fornari et al. 2012)

might produce disturbance in semantic and memory func-

tions due to the disconnection of these areas from the

insula (Catani et al. 2012). The new hubs manifested by

the AD group are mostly concentrated in the posterior

areas of the left hemisphere and in the anterior and tempo-

ral areas of the right hemisphere. Since these changes in

hub topography are not accompanied by an increase in

edges in the corresponding regions (cf. Figs. 3 and 6), such

a distribution can be explained by the relative preservation

of SWM connections rather than by a compensatory

response of the brain.

The topological properties of the MTR-based networks

are only slightly changed, including a trend of a decreased

clustering coefficient. This result is similar to the findings

based on resting-state fMRI (Supekar et al. 2008) and

MEG (Stam et al. 2009) networks in AD. Yet, in contrast

to our finding, GM networks in AD show higher than

normal clustering (He et al. 2008; Yao et al. 2010). The

reason for this inconsistency may be different trajectories

of degeneration of WM vs. GM in both mild AD and its

likely precursor, amnesic MCI (Agosta et al. 2011; Carme-

li et al. 2013). While such patients demonstrate widely

distributed WM degeneration, their GM atrophy is mostly

limited to the MTL.

Furthermore, GM networks show neither a significant

interhemispheric asymmetry in healthy people (Mechelli

et al. 2005), nor asymmetric involvement in the AD-

related pathological process in patients (He et al. 2008;

Yao et al. 2010).

Interhemispheric asymmetry of SWM maps
and networks in elderly controls and AD
patients

A few MTI studies analyzed the interhemispheric asym-

metry of the WM. Silver and colleagues did not find

1In their AD group MMSE was 22.41 � 3.40 vs. 28.89 � 1.13 in
the control group (Z. Yao, pers. comm.).
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significant asymmetry of the regional WM, although

MTR values in the left hemisphere were usually higher

than in the homotopical regions of the right hemisphere

(Silver et al. 1997). The results of Armstrong and col-

leagues (Armstrong et al. 2004) were less ambiguous: they

reported a leftward MTR asymmetry for the whole hemi-

sphere and regionally in the frontal and temporal lobes.

Here we present the first attempt to show the interhemi-

spheric differences in the SWM. In both groups we have

found a rightward MTR asymmetry in the prefrontal

regions and a leftward asymmetry in the posterior regions

of AD patients, reminiscent of counter-clockwise cerebral

torque (also known as “Yakovlevian”), which results from

a combination of left-posterior and right-anterior hemi-

spheric protrusions typical for a normal brain (Yakovlev

and Rakic 1966; Good et al. 2001; Lancaster et al. 2003).

According to Seldon’s “balloon model”, the torque repre-

sents a broadening of the cortex in the right prefrontal

cortex relative to the left, and in the left occipito–parieto–
temporal cortex relative to the right, both due to a greater

intracortical myelination, which moves cortical minicol-

umns apart, thereby stretching the cortex tangentially to

the head surface (Seldon 2005). Our results suggest that

indeed an asymmetry of myelination could be involved:

at least U-fibers in these regions are asymmetrically mye-

linated as predicted by the hypothesis. Moreover, recently

we found higher regional EEG synchronization in the left

occipital and the right frontal locations relative to their

interhemispheric counterparts – a finding also predicted

by the “balloon model” (Jalili et al. 2010).

At a network level, we have found that normal elderly

subjects demonstrate the strikingly asymmetric intrahemi-

spheric patterns of regional covariance, with the strongly

interconnected left hemisphere SWM accompanied by rel-

atively low interhemispheric covariance. Previous studies

of structural GM covariance mostly showed symmetric

networks (e.g., Mechelli et al. 2005; Wu et al. 2012).

Furthermore, the pattern of SWM network lateralization

is dissimilar from the pattern of interhemispheric MTR

differences in our subjects. In contrast, Kang et al. (2011)

found leftward perisylvian asymmetries in fractional

anisotropy (FA) and MTR of the SWM in young healthy

subjects. Phillips et al. (2013), working with a population

of 18- to 74–year-old subjects, observed widely distributed

leftward FA asymmetry of SWM in all the brain lobes and

averaged across each hemisphere. Considering that sub-

jects in our sample were older than those in cited papers,

a discrepancy between these findings suggests a reduction

in interhemispheric SWM asymmetry late in life. It seems

to be supported by behavioral, fMRI activation, and fMRI

connectivity studies, which repeatedly showed an asym-

metry decline in elderly people (Cabeza 2002; Li et al.

2009), although significant age-by-asymmetry effects were

not observed for the SWM in a recent study (Phillips

et al. 2013).

What are the factors that cause the network asymmetry

found here? These might be special features of U-fibers in

the left hemisphere, e.g., their relatively long length or

dense branching compared to the opposite hemisphere.

Although we failed to find any postmortem observations

on asymmetry of human U-fibers in the literature, there

do exist data about the asymmetry of intracortical con-

nectivity (Galuske et al. 2000). These authors studied the

interhemispheric differences in the intrinsic microcircuitry

of BA 22 (Vernicke’s area in the left hemisphere) and

found that tangential connections ranging several milli-

meters are about 20% longer in the left hemisphere.

Another likely factor for increased structural covariance

in the left hemisphere could be asymmetries in the deep

WM fibers, which implement experience-dependent inter-

regional influences through functional coupling of distrib-

uted areas, propagate metabolites, etc. Indeed, many

studies showed leftward lateralization of the arcuate fas-

ciculus that connects the posterior temporal and the infe-

rior frontal cortices (Concha et al. 2012, Nucifora et al.

2005; Takao et al. 2011a). A significantly higher FA for

most parts of the left cingulum, a prominent fiber tract

connecting parts of the paralimbic system, is also well

documented (Gong et al. 2005, Takao et al. 2011a).

Moreover, an analysis with tract-based spatial statistics of

the WM in 857 normal subjects aged between 24 and

85 years showed stable leftward asymmetry of FA (Takao

et al. 2011b).

Conclusion

A comparison of the MTR-based myelination maps and

MTR-based networks in healthy aged people and mild

AD patients suggests that some network properties can be

explained through the myelination topography and its

changes in AD. Specifically, the distribution of lost edges

and changed hub locations generally recapitulate the

topography of demyelination in AD. At the same time,

there are network properties that cannot be clarified by

the myelination maps or their changes and allow us to

suggest some new features of the pathological process.

First, in early AD, coordinated degeneration is character-

istic for the MTL and paralimbic regions, whereas other

association areas show discoordinated degenerative pro-

cesses. Alternatively, this finding might point to the vari-

ants of AD that are implicitly present in our AD group,

e.g., early-onset and late-onset AD. Second, the inter-

hemispheric asymmetry of structural covariance seems to

have no reflection in the interhemispheric asymmetry of

myelination in either group. This asymmetry also differ-

entiates SWM networks from mostly symmetrical GM
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networks, thus suggesting specific developmental and/or

plasticity factors that affect only the SWM. Therefore, the

first attempt of a graph analysis of SWM networks has

resulted in new and partially intriguing findings, which

are of interest for clinical application while requiring rep-

lication in a larger subject group.
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E. Pérez-Fernández. 2010. Inferring networks from

multivariate symbolic time series to unravel behavioural

interactions among animals. Anim. Behav. 79:351–359.

Wen, W., and P. Sachdev. 2004. The topography of white

matter hyperintensities on brain MRI in healthy 60- to

64-year-old individuals. Neuroimage 22:144–154.

Whittaker, J. 1990. Graphical models in applied multivariate

statistics. John Wiley & Sons Ltd, Chichester.

van Wijk, B. C. M., C. J. Stam, and A. Daffertshofer. 2010.

Comparing Brain Networks of Different Size and

Connectivity Density Using Graph Theory. PLoS ONE 5:

e13701. doi:10.1371/journal.pone.0013701.

World Medical Association. 2001. World Medical Association

Declaration of Helsinki. Ethical principles for medical

research involving human subjects. Bull. World Health

Organ. 79:373–374.

Wozniak, J. R., and K. O. Lim. 2006. Advances in white

matter imaging: a review of in vivo magnetic resonance

methodologies and their applicability to the study of devel-

opment and aging. Neurosci. Biobehav. Rev. 30:762–774.

Wu, K., Y. Taki, K. Sato, S. Kinomura, R. Goto, K. Okada,

et al. 2012. Age-related changes in topological organization

of structural brain networks in healthy individuals. Hum.

Brain Mapp. 33:552–568.

Yakovlev, P. I., and P. Rakic. 1966. Patterns of decussation of

bulbar pyramids and distribution of pyramidal tracts on

two sides of the spinal cord. Trans. Am. Neurol. Assoc.

91:366–367.

Yao, Z., Y. Zhang, L. Lin, Y. Zhou, C. Xu, T. Jiang, et al.

2010. Abnormal cortical networks in mild cognitive

impairment and Alzheimer’s disease. PLoS Comput. Biol. 6:

e1001006.

Zielinski, B. A., E. D. Gennatas, J. Zhou, and W. W. Seeley.

2010. Network-level structural covariance in the developing

brain. Proc. Natl Acad. Sci. USA 107:18191–18196.

Supporting Information

Additional Supporting Information may be found in the

online version of this article:

Data S1. Computation of the hippocampal volume.

ª 2014 The Authors. Brain and Behavior published by Wiley Periodicals, Inc. 737

C. Carmeli et al. Structural Networks in AD


