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Cross-Comparison of Inflammatory Skin
Disease Transcriptomics Identifies PTEN as a
Pathogenic Disease Classifier in Cutaneous
Lupus Erythematosus

Brian D. Aevermann1,2,17, Jeremy Di Domizio3,17, Peter Olah4, Fanny Saidoune3, John M. Armstrong5,
Hervé Bachelez6, Jonathan Barker7, Muzlifah Haniffa8, Valerie Julia5, Kasper Juul9,
Jayendra Kumar Krishnaswamy5, Thomas Litman9, Ian Parsons10, Kavita Y. Sarin11, Matthias Schmuth12,
Michael Sierra9, Michael Simpson13, Bernhard Homey4, Christopher E.M. Griffiths14,
Richard H. Scheuermann1,15,16 and Michel Gilliet3
Tissue transcriptomics is used to uncover molecular dysregulations underlying diseases. However, the majority
of transcriptomics studies focus on single diseases with limited relevance for understanding the molecular
relationship between diseases or for identifying disease-specific markers. In this study, we used a normaliza-
tion approach to compare gene expression across nine inflammatory skin diseases. The normalized datasets
were found to retain differential expression signals that allowed unsupervised disease clustering and identi-
fication of disease-specific gene signatures. Using the NS-Forest algorithm, we identified a minimal set of
biomarkers and validated their use as diagnostic disease classifier. Among them, PTEN was identified as being a
specific marker for cutaneous lupus erythematosus and found to be strongly expressed by lesional keratino-
cytes in association with pathogenic type I IFNs. In fact, PTEN facilitated the expression of IFN-b and IFN-k in
keratinocytes by promoting activation and nuclear translocation of IRF3. Thus, cross-comparison of tissue
transcriptomics is a valid strategy to establish a molecular disease classification and to identify pathogenic
disease biomarkers.
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INTRODUCTION
Genomics is revolutionizing the medical sciences, and skin
science has been at the forefront of applied molecular-based
treatments. Such therapies have been successfully applied to
major inflammatory skin diseases, such as psoriasis (Conrad
and Gilliet, 2018; Griffiths et al., 2021), atopic dermatitis
(AD) (Bieber, 2022; Puar et al., 2021), and lupus erythema-
tosus (LE) (Chasset and Francès, 2019; Wenzel, 2019), and
are currently moving to address other skin diseases, including
hidradenitis suppurativa (HS) (Goldburg et al., 2020), alo-
pecia areata (AA) (Wang et al., 2018), and vitiligo (Frisoli
et al., 2020). Despite recent successes, the underlying mo-
lecular mechanisms of many skin diseases are still unknown,
and new, more precise molecular targets are needed for both
diagnostic and therapeutic applications. Tissue tran-
scriptomics has been the leading methodology for investi-
gating the molecular basis of diseases (Banchereau et al.,
2017), including those of the skin. Investigators in skin sci-
ence may have an edge over researchers of other organs
because the skin is easily accessible and routinely biopsied.
As a result, many skin transcriptomics datasets are available
in public repositories for analysis, including the Gene
Expression Omnibus by the National Center for Biotech-
nology Infomation and ArrayExpress by the European Bioin-
formatics Institute.

Although the rate of data generation and investigation of
skin diseases has led to great advances in the field, the
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majority of studies have focused on single diseases and their
controls. Only a few studies have attempted a systematic
molecular comparison between multiple diseases to identify
gene signatures or molecular biomarkers that are disease
specific (Inkeles et al., 2015; Mo et al., 2018; Wang et al.,
2016). We hypothesized that the identification of such
disease-specific molecular markers through a comparative
approach of tissue transcriptomic involving multiple diseases
would provide the basis for molecular classification of skin
diseases as a diagnostic tool and would unravel disease-
specific mechanisms relevant for disease pathogenesis,
which can be further developed as therapeutic targets.

We compared the transcriptional profiles of nine inflam-
matory skin diseases, including psoriasis, AD, LE, rosacea,
vitiligo, AA, acne, HS, and lichen planus (LP), obtained from
independent studies to identify disease-specific gene
expression biomarkers. The obtained biomarkers were further
validated to produce a molecular classification of these dis-
eases using independent datasets. Among the markers, we
identified PTEN as being a cutaneous lupus erythematosus
(CLE) classifier and further investigated its functional impli-
cations in disease pathogenesis. PTEN was strongly expressed
and activated in lesional keratinocytes (KCs) of CLE and was
found to promote pathogenic type I IFN expression by pro-
moting nuclear translocation of phosphorylated IRF3. Thus,
comparison of transcriptional profiles of multiple diseases
from independent studies is a powerful tool to generate a
molecular disease cartography and unravel pathomechanism
through the identification of disease-specific markers.

RESULTS
Normalized transcriptomics data retain differential gene
expression signals and cluster by disease

To compare gene expression across multiple inflammatory
skin diseases and determine their gene expression differ-
ences, we mined public repositories and selected nine
microarray datasets on the basis of the sample size and the
availability of healthy skin control samples: psoriasis
(Fyhrquist et al., 2019), AD (Fyhrquist et al., 2019), LP (Shao
et al., 2019), CLE (Liu et al., 2017), rosacea (Buhl et al.,
2015), vitiligo (Regazzetti et al., 2015), AA (Jabbari et al.,
2016), HS (Blok et al., 2016), and acne vulgaris (acne)
(Kelhälä et al., 2014). When comparing expression patterns
for individual genes between these experiments, both the
disease samples and the control samples showed different
expression ranges between experiments (Figure 1a). For
example, the log2 mean expression of JAK2 in the control
samples in the LP experiment was w0, whereas in the CLE
experiment, the mean expression in the controls was w3.
Consequently, we performed cross-experiment normalization
in a manner similar in concept to batch correction, whereby
each experiment is transformed into a comparable data
range, assuming that gene expression in healthy control
samples is similar across experiments.

There are many methods available for microarray experi-
ment normalization, the most common of which is quantile
normalization using Robust Multichip Average (RMA) (e.g., in
the Limma package). However, these normalization strategies
are designed for within-experiment normalization in which
technical noise is estimated across all samples and removed
(Irizarry et al., 2003). In all cases, the publicly available data
had already been processed by one of these within-
experiment normalization methods. To achieve cross-
experiment normalization, we applied RatioA normaliza-
tion to each experiment, subtracting the mean gene expres-
sion level for each gene in all healthy control samples in a
given experiment and applying a log2 transformation, thereby
centering the overall expression distribution in healthy sam-
ples around zero (e.g., for both the LP and CLE experiments)
(Figure 1b). These gene-specific normalization factors are
then applied to both healthy and disease samples to generate
the postnormalized dataset. Importantly, whereas the gene
expression distributions in the control samples were similar
after normalization, the strong JAK2 upregulation in LP
samples and the modest upregulation in CLE samples
observed in the original prenormalized dataset were pre-
served in the postnormalized dataset (Figure 1a).

If done appropriately, cross-experiment normalization
should not affect the original biological signal. To evaluate
the impact of normalization on the gene expression signal,
we performed differential expression (DE) analysis between
samples from individuals with the disease and those from
healthy control on both prenormalization and post-
normalization datasets. DE sets prior to normalization were
compared with the previously published results, and no
major discrepancies were found. After filtering the DE results
to select genes with an adjusted P < 0.05, the intersection of
the DE results was computed as a measure of signal retention
(Figure 1c). Overall, there was high preservation of differen-
tially expressed signal, with a median Jaccard index of 0.84.
The lowest overlap was found with the AA study (GSE68801),
in which the Jaccard index was 0.54. Comparisons were not
performed for vitiligo owing to the low number of differen-
tially expressed genes in the original experiment, which may
reflect a subtle biological signal for vitiligo from biopsies in
nonactive disease.

The data were then fully integrated by merging all eight
normalized gene expression datasets on the basis of the genes
shared between datasets. The final integrated normalized
gene expression dataset contained 478 disease and 365
control samples and 14,673 common genes.

Unsupervised clustering was performed using the inte-
grated dataset and a combination of k means and hierarchical
clustering as implemented in the SC3 package, with optimal
k determined using silhouette scoring (see Materials and
Methods). The disease phenotypes for each sample, obtained
from the sample metadata provided with each experiment,
were enriched in the distinct k-means clusters (Figure 2a).
Cluster #1 contained all the CLE samples, cluster #2 con-
tained rosacea samples, cluster #3 contained AA samples,
cluster #4 contained LP samples, cluster #5 contained vitiligo
samples, cluster #6 contained psoriasis samples, cluster #7
contained AD samples, cluster #8 contained both acne and
HS samples, and cluster #9 contained the vast majority of
control samples. The clustering of control samples from all
experiments into one major cluster, as opposed to the disease
samples from the same experiment, supports the conclusion
that the cross-experiment normalization was a success and
that the difference detected between diseases should not be
due to batch effects. Of the nine sample clusters generated,
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Figure 1. Normalization approach for integrative meta-analysis across microarray disease experiments. (a) As an example, prenormalized expression values

for JAK2 are distributed across different scales in different experiments, reflected by the different CTL sample distributions (left). In contrast, postnormalized JAK2

values show similar distributions in CTL samples in the two experiments while retaining the disease-specific differential expression observed before

normalization (right). Expression levels of JAK2 in healthy (CTL) and lesional skin of patients with LP and CLE were used for illustration. (b) Distribution of

expression data across all genes of the LP (top) and CLE (bottom) samples before (left) and after (right) normalization. (c) Differential expression comparison—the

genes that were found to be differentially expressed by Limma analysis both before or after normalization were compared in the different skin disease groups,

and a Venn diagram showing their overlap is presented. The number of genes before and after normalization; the JI, calculated as a measure of their similarity;

and the P-value of overlap, indicated in parentheses, calculated using a Wilcoxon rank sum statistical test are shown. AD, atopic dermatitis; CLE, cutaneous

lupus erythematosus; CTL, control; JI, Jaccard Index; LP, lichen planus.
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only two clusters had a mixture of sample phenotypes: cluster
#3 contains samples only from the AA experiment but a
number of control samples mixed with the disease samples
(23% of the cluster consists of control samples), potentially
related to a unique transcriptional scalp microenvironment,
and cluster #8 contains the disease samples from both acne
and HS, potentially reflecting the pathogenic similarities with
dominant neutrophilic infiltration.

The hierarchical clustering results are consistent with the k-
means clustering and provide additional insights regarding
the relationships between these inflammatory skin diseases at
the transcriptional level. For example, LP, LE, AA, and vitiligo
share a common cluster branch, indicating that they are more
similar to each other than to other skin diseases. This finding
is in line with the common cytotoxic type I and II
IFNedominated transcriptional profiles with a lichenoid re-
action pattern described for these diseases (Eyerich and
Eyerich, 2018). Psoriasis and AD also share a common
Journal of Investigative Dermatology (2024), Volume 144
branch, reflecting the high degree of genetic overlap of these
diseases, despite distinct clinical phenotypes and opposing
immune mechanisms (Baurecht et al., 2015). Surprisingly,
rosacea appears more transcriptionally related to type I and II
IFNedominated diseases LE and LP than to acne, a finding
potentially related to the recent finding of a role of type I IFNs
in rosacea (Mylonas et al., 2023).

Identification and validation of disease classifiers

To identify disease-specific molecular markers, we used the
NS-Forest algorithm. As the first approach, we obtained an
extended list of markers that showed a binary expression
pattern (in which a gene is expressed in the targeted disease
while being absent in the other diseases) (Figure 2b and
Supplementary Table S1). For each of the diseases in the
molecular taxonomy, several genes with highly binary
expression patterns were found, many of which have been
previously reported, such as NOS2 (Quaranta et al., 2014),
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Figure 2. Unsupervised hierarchical clustering of skin disease transcriptional profiles. (a) CTL RatioA-normalized gene expression data of the different skin

disease groups, including healthy skin samples (CTL, n ¼ 329) and lesional skin samples of plaque-type psoriasis vulgaris (psoriasis, n ¼ 120), AD (n ¼ 83), LP

(n ¼ 38), CLE (n ¼ 90), HS (n ¼ 17), acne vulgaris (acne, n ¼ 12), rosacea (n ¼ 38), AA (n ¼ 60), and vitiligo (n ¼ 20) were merged on the intersection of shared

genes and then clustered using the SC3 package. Heatmap is colored by the frequency of a sample being within a cluster estimated by the aggregate of

ensembled cluster solutions for that k. (b) Violin expression plots of NS-Forest, version 2.0, minimal markers for each disease group colored by median

expression in lesional samples. (c) Heatmap of extended binary markers for each disease group from NS-Forest colored by median expression in lesional

samples. AA, alopecia areata; AD, atopic dermatitis; CLE, cutaneous lupus erythematosus; CTL, control; HS, hidradenitis suppurativa; LP, lichen planus.
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PLA2G4D (Shao et al., 2021), and VNN3 (Jansen et al., 2009)
in psoriasis. To validate our approach, we took the top five
psoriasis and AD markers from the extended NS-Forest
marker list and tested their ability to classify independent
transcriptomic datasets, generated with a different technol-
ogy (RNA sequencing). F-beta scores were very high
(0.76e1.00) in these independent datasets (Supplementary
Figure S1), indicating that the markers determined from the
microarray-based datasets have high precision and recall in
independent experiments, even using a distinct technological
platform.

We then used the NS-Forest algorithm to find minimal
disease classifiers. The median number of markers per dis-
ease was two (Figure 2c) and included CACNA1D and
PLEKHG5 for AA, MT1E for acne, C1QTNF1 and SUCNR1
for AD, OGG1 and PHTF1 for HS, PTEN and SNORA72 for
CLE, ITM2B for LP, GDA and LUZP2 for psoriasis, ALDH1A1
and HSD17B2 for rosacea, and PEX5 and SEMA4C for viti-
ligo. The use of these minimal markers for classification
showed very high precision with a median F-beta score of
0.96 (range ¼ 0.87e1.00) (Table 1). Thus, these markers are
truly disease specific and are reproducibly diagnostic. Inter-
estingly, the majority of these markers have not been previ-
ously reported as differentially expressed genes in single skin
disease studies.

PTEN is a CLE biomarker that is overexpressed by KCs

Having identified minimal markers that reproducibly classify
inflammatory skin diseases, we next sought to determine
whether they have functional relevance and are part of path-
ogenic mechanisms in the specific diseases. We selected PTEN
(phosphatase and TENsin homolog), a tumor suppressor gene
and negative regulator of phosphatidylinositol 3 kinase (PI3K)/
PIP3 signaling pathway, for an in-depth evaluation. PTEN was
identified as a classifier for CLE (Figure 2b), and its mRNA
expression was significantly higher in CLE lesions than in all
other inflammatory skin diseases or in healthy skin (ANOVA
F ¼ 78, P < 0.0001) (Figure 3a). Immunohistochemistry
revealed that PTEN protein expression was particularly strong
in the epidermis of CLE compared with that in the epidermis of
www.jidonline.org 255
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Table 1. NS-Forest Markers

Disease f-Beta Precision Recall
True

Negative
False

Positive
False

Negative
True

Positive
Marker
Count Marker Gene1 Marker Gene2

AA 0.89 1.00 0.62 418 0 23 37 2 CACNA1D � 0.52 PLEKHG5 � 0.21

Acne 0.96 1.00 0.83 466 0 2 10 1 MT1E � 1.24

AD 0.86 0.98 0.58 394 1 35 48 2 C1QTNF1 � 0.76 SUCNR1 � 0.57

HS 0.88 1.00 0.59 461 0 7 10 2 OGG1 � 0.39 PHTF1 � 0.91

CLE 0.86 0.96 0.61 386 2 35 55 2 PTEN � 0.61 SNORA72 � 0.79

LP 1.00 1.00 1.00 440 0 0 38 1 ITM2B � 0.73

PSO 1.00 1.00 0.98 358 0 2 118 2 GDA � 3.16 LUZP2 � 0.69

Rosacea 0.98 1.00 0.89 440 0 4 34 2 ALDH1A1 � 1.19 HSD17B2 � 2.96

Vitiligo 0.97 1.00 0.85 458 0 3 17 2 PEX5 � 0.52 SEMA4C � 0.44

Abbreviations: AA, alopecia areata; AD, atopic dermatitis; CLE, cutaneous lupus erythematosus; HS, hidradenitis suppurativa; LP, lichen planus; PSO,
psoriasis.

The minimum set of marker genes identified by the NS-Forest algorithm for each of the nine inflammatory skin diseases is listed. The index column includes
the disease abbreviation, marker gene(s), and the expression threshold(s) determined by NS-Forest and used for classification. The F-beta score, true
negative, false positive, false negative, and true positive values across all 478 lesional samples using the combined gene sets are listed. The sum of true
positive and false negative values gives the number of samples evaluated for each skin disease.
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other inflammatory skin diseases or healthy skin (ANOVA F ¼
2.3, P < 0.05) (Figure 3b).

We then sought to determine whether the increased PTEN
expression in CLE has functional activity by negatively
regulating PIP3-dependent processes (De Marco et al., 2017).
Indeed, expression of a subset of PIP3 downstream genes—
ASNS, PSATI, SDSL, and ASS1—was significantly decreased
in CLE lesions compared with the expression in all other in-
flammatory skin diseases or healthy skin, as shown in a
composite score of PIP3-dependent genes (ANOVA F ¼ 41, P
a

c

b

Figure 3. Increased expression and activation of PTEN in keratinocytes of CLE.

using the SSF Bioinformatics Hub. (b) Immunohistochemical staining of PTEN in

in the epidermis (right). Bars ¼ 100 mm. (c) CTL RatioA expression levels of the

cumulative score in healthy (CTL) and lesional skin from the different patients. (a,

followed by Dunnett’s T3 multiple comparisons tests. *P < 0.05, **P < 0.005, ***P

n ¼ 83; CLE, n ¼ 90; HS, n ¼ 17; LP, n ¼ 38; PSO, n ¼ 120; rosacea, n ¼ 38; an

followed by uncorrected Fisher’s LSD comparisons test. *P < 0.05 and **P < 0.00

AD, atopic dermatitis; CLE, cutaneous lupus erythematosus; CTL, control; HS, hid

psoriasis; SSF, Skin Science Foundation.
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< 0.0001) (Figure 3c). Together, these data indicate that the
CLE classifier PTEN is strongly overexpressed in CLE
epidermis and exerts functional activities.

PTEN promotes nuclear IRF3 translocation in KCs with
induction of pathogenic type I IFNs in CLE

LE, including CLE, is a type I IFNedriven disease
(Banchereau et al., 2016; Blanco et al., 2001; Garcia-Romo
et al., 2011; Lande et al., 2011; Rönnblom et al., 2003;
Vallin et al., 1999), as recently evidenced by the therapeutic
(a) CTL RatioA expression level of PTEN in the different skin disease groups

skin sections from the different patients (left) and quantification of its intensity

PTEN-inhibited target genes ASNS, PSAT1, SDSL, and ASS1 as well as a

c) Data were statistically analyzed using BrowneForsythe and Welch ANOVA

< 0.0005, and ****P < 0.0001. CTL, n ¼ 329; AA, n ¼ 60; acne, n ¼ 12; AD,

d vitiligo, n ¼ 20. (b) Data were statistically analyzed using one-way ANOVA

5. Error bars are SEM. CLE, n ¼ 4; other diseases, n ¼ 3. AA, alopecia areata;

radenitis suppurativa; LP, lichen planus; LSD, least significant difference; PSO,
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efficacy of anti-IFNAR antibodies (Morand et al., 2020).
Accordingly, we observed a strong type I IFN signature with
expression of several IFN-stimulated genes in CLE, whereas
other skin diseases showed either weak expression (psoriasis
and LP) (Nestle et al., 2005) or no expression at all
(Figure 4a). We then plotted the type I IFN signature in CLE
against the expression of PTEN mRNA and found a highly
significant correlation (Pearson r ¼ 0.56, P < 0.0001)
(Figure 4b), suggesting that the PTEN overexpression in CLE
may be linked to the induction of pathogenic type I IFNs.

Although plasmacytoid dendritic cells (pDCs) represent the
principal IFN-a producers in CLE (Farkas et al., 2001), recent
studies point to KCs as another major source of type I IFNs in
a

d

f g

Figure 4. PTEN drives pathogenic type I IFN in CLE. (a) Heatmap showing contro

skin of the different patients. Color intensity represents the level of normalized g

calculated as the mean expression of the IFN-induced genes, and the expression

represents a single patient. (c) Quantification of IFN-b fluorescence intensity at

specimen. (d) Confocal microscopy images of a representative lesional CLE skin

(blue). The dashed line delineates the dermoeepidermal junction. Bars ¼ 100 mm

single-cell level is shown (n ¼ 177 and n ¼ 100, respectively) (right). (e) Confocal

stained for IRF3 (red) and DNA (blue). The dashed line delineates the dermoeepid

of MX1 in NHEKs stimulated with empty liposomes (e) or liposomes containing

Representative confocal microscopy images of NHEK (left) stimulated as in d and

Quantification of nuclear p-IRF3 fluorescence intensities at the single-cell level is

statistical significance are provided. (c) Bars represent the mean � SEM. Data w

Representative data from one of four independent experiments are shown. Bars

one-way ANOVA followed by Tukey’s multiple comparisons test. *P < 0.05, ***P

hidradenitis suppurativa; CLE, cutaneous lupus erythematosus; NHEK, normal hu

PSO, psoriasis.
CLE through the production of IFN-b and the KC-specific
IFN-k (Sarkar et al., 2018; Scholtissek et al., 2017). In fact,
immunofluorescence staining revealed a strong expression of
both IFN-b and IFN-k in CLE skin lesions with a predominant
expression by KCs (unpaired t-test, h2 ¼ 0.55, P < 0.0001)
(Figure 4c and Supplementary Figures S2 and S3). The IFN-b
and IFN-k expression by KCs directly correlated with
epidermal PTEN protein expression (Pearson r ¼ 0.65 and
0.73 respectively, P < 0.0001) (Figure 4d), supporting the
hypothesis that PTEN overexpression may drive type I IFN
production in CLE KCs.

During viral infections, PTEN has been linked to antiviral
type I IFN responses in monocytes by promoting the
e

b c

l RatioA-normalized expression of selected IFN-response genes in the lesional

ene expression. (b) Correlation between the IFN-induced genes scores,

level of PTEN in healthy and lesional skin of patients with CLE. Each dot

the single-cell level in epidermal and dermal cells of a lesional CLE skin

(left) stained for PTEN (green), IFN-b (top) or IFN-k (bottom) (red), and DNA

. Correlation between PTEN and IFN-b or IFN-k fluorescence intensities at the

microscopy images of representative healthy (left) and CLE lesional skin (right)

ermal junction. Bars ¼ 50 mm. (f) Production of IFN-b and relative expression

poly(I:C) in the presence or absence of the PTEN inhibitor bpV(pic). (g)

stained for p-IRF3 (green). Dashed lines delineate the nuclei. Bars ¼ 20 mm.

shown (n ¼ 650) (right). (b, d) Pearson correlation coefficient and a two-tailed

ere statistically analyzed using unpaired t-test. ****P < 0.0001. (e, f)

represent the means of four replicates. Data were statistically analyzed using

< 0.001, and ****P < 0.0001. AA, alopecia areata; AD, atopic dermatitis; HS,

man epidermal keratinocyte; LP, lichen planus; p-IRF3, phosphorylated IRF3;
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phosphorylation and nuclear translocation of IRF3 (Li et al.,
2016). In CLE, epidermal type I IFN responses are also
likely to involve IRF3 because it represents the master
signaling molecule downstream of cytosolic nucleic acid
sensors, such as RIG-I/MAVS and STING (Scholtissek et al.,
2017). Immunofluorescence staining of CLE sections indeed
revealed strong IRF3 staining with predominant nuclear
localization in KCs, indicating that IRF3 was phosphorylated
and translocated into the nucleus, leading to IFN responses in
CLE KCs (Figure 4e and Supplementary Figure S4).

To investigate the involvement of PTEN, we stimulated
normal human epidermal KCs with the poly(I:C), a RIG-I/
MAVS agonist in KCs (Min et al., 2022) that triggers IRF3
activation and type I IFN responses with or without the
addition of the PTEN inhibitor bpV(pic) (Schmid et al., 2004).
RIG-I/MAVS activation of KCs induced the production of IFN-
b and expression of the IFN-stimulated gene MXA, which
were largely abrogated in the presence of the PTEN inhibitor
(ANOVA F ¼ 27 and 62, respectively, P < 0.0001) (Figure 4f).
RIG-I/MAVS activation also induced cytosolic marked nu-
clear translocation of IRF3, a process that was strongly
inhibited in the presence of the PTEN inhibitor (ANOVA F ¼
975, P < 0.0001) (Figure 4g). To confirm these data, we also
performed small interfering RNA (siRNA)emediated transient
PTEN knockdown in KC and showed inhibition of IRF3 nu-
clear translocation in response to poly(I:C) stimulation
(Supplementary Figure S5).

Taken together, these data indicate that the CLE classifier
PTEN drives IRF3 signaling in CLE KCs, leading to pathogenic
type I IFN responses by its ability to promote IRF3 phos-
phorylation and nuclear translocation. These data also
demonstrate that our disease-specific biomarker identifica-
tion approach through a comparison of multiple diseases is a
powerful tool to identify unique pathomechanisms underly-
ing the specific disease.

DISCUSSION
Databases for the dissemination of experimental data have
been established by the bioinformatics community to facili-
tate data reuse and reanalysis, including the Gene Expression
Omnibus by the National Center for Biotechnology Infor-
mation and ArrayExpress by the European Bioinformatics
Institute for experimental transcriptomics data. One of the
biggest challenges that have limited the reuse of these data is
that differences in expression data distributions due to tech-
nical differences in experimental methodologies make it
difficult to perform true meta-analysis without the use of
methods for cross-experiment data normalization. However,
cross-experiment normalization approaches also run the risk
of erasing true biological differences. In this study, we
show that cross-comparison of different inflammatory skin
disease transcriptomic studies using a unique bioinfor-
matics normalization approach—control RatioA—identified
disease-specific markers that were not obviously apparent in
the evaluation of individual diseases in single experiments. In
fact, many of the differentially expressed genes found in in-
dividual experiments reflect common inflammatory re-
sponses rather than disease-specific biomarkers. Importantly,
this cross-experiment meta-analysis not only appears to
provide biomarkers as a basis for a molecular skin disease
Journal of Investigative Dermatology (2024), Volume 144
classification but also reveals core pathogenic events, which
can be further developed as therapeutic targets.

The control RatioA normalization approach used in this
study differs from the RMA/frozen RMA approach used in two
previously published meta-analyses of overlapping sets of
skin diseases (Inkeles et al., 2015; Wong et al., 2012). RMA
and frozen RMA are global normalization approaches that
are designed to produce similar expression distributions
across all samples, regardless of whether the sample is
lesional or control, which is a reasonable approach if most
genes are unaffected by the disease state. However, for some
diseases evaluated in our studies, the number of genes that
showed DE before normalization was relatively large
(>22,000 for AD and >17,000 for psoriasis [Figure 1]), and
so global normalization by RMA/frozen RMA runs the risk of
normalizing away true disease-specific biological signal. By
deriving gene-specific normalization factors on control
samples alone, the control RatioA approach used in this study
avoids this problem. Indeed, we show that the set of disease-
specific, differentially expressed genes is largely retained af-
ter control RatioA normalization, which was not evaluated in
the previous studies using RMA/frozen RMA normalization.

In dermatology, some 3,000 varieties of skin diseases have
been described (Bickers et al., 2006), mostly defined by their
morphological features and supported by histologic analysis
that recognizes a limited number of anatomical patterns. The
possibility to analyze 20,000 genes with the unbiased iden-
tification of molecular transcriptional abnormalities that
define the disease would have tremendous diagnostic value
in clinical practice as targets for immunohistochemistry
evaluation of tissue biopsies or serum proteomics analysis.
Indeed, the NS-Forest analysis identified minimum sets of
marker genes that produce optimal classification accuracy
that could be used for various diagnostic applications, which
were validated in separate transcriptomics experiments using
a different assay technology (RNA sequencing) and in
protein-targeting immunohistochemical experiments.

In addition to the minimum set of diagnostic biomarkers
whose combined expression pattern provides optimal clas-
sification, NS-Forest also produces an extended set of
disease-specific, differentially expressed binary genes. For
example, for psoriasis, the minimum marker gene classifier
includes GDA and LUZP2, whose combined expression
provides a classification accuracy >0.99. The association of
these marker genes with psoriasis has not been previously
reported, and little is known about their function in the
pathogenesis of psoriasis. The extended NS-Forest binary
gene list for psoriasis also includes NOS2 (Quaranta et al.,
2014), PLA2G4D (Shao et al., 2021), and VNN3 (Jansen
et al., 2009), which are well-known markers of psoriasis
validating the overall analysis approach.

Although the use of NS-Forest for marker gene selection has
been extensively validated and compared with other alterna-
tive approaches on multiple datasets (Aevermann et al., 2021),
other methods may still be useful for specific use cases.
Therefore, we also provide complete lists of differentially
expressed genes specific to each of the inflammatory skin
diseases (Supplementary Table S2), providing a more
comprehensive view of the specific and distinct molecular
pathways of each of these distinct inflammatory diseases.
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The work described in this study is complementary to a
recent study reporting the transcriptomic analysis of CD45þ

inflammatory cells from AD and psoriasis skin samples using
single-cell RNA sequencing (Liu et al., 2022). Integration of
these single-cell expressions into our bulk transcriptomics
profiles could allow us to connect the expression of disease-
specific markers with specific cell types either from the in-
flammatory infiltrate or from the resident skin cells. A pre-
liminary comparison between the NS-Foresteextended
binary marker gene list and the differentially expressed genes
reported for the CD45þ inflammatory cells in psoriasis
(Swindell et al., 2013) shows no overlap (data not shown),
suggesting that the predominant gene expression signal found
in skin biopsy samples is derived from resident skin cells
rather than from inflammatory infiltrate.

Our study provides evidence that the comparative multi-
disease approach is a powerful tool to unravel disease path-
omechanisms. In fact, we found that the specific CLE
classifier PTEN is also a key molecule in the pathogenesis of
CLE by its ability to promote type I IFNs. PTEN is a tumor
suppressor gene that dephosphorylates PIP3 and thereby in-
hibits PI3Keprotein kinase B (Akt) signaling. Loss of PTEN
leads to uncontrolled PI3KeAkt signaling, with cell survival
and cell growth in cancer (Lee et al., 2018), but the conse-
quences of increased PTEN activity, as we observed in CLE,
have not been described. In the context of viral infections,
PTEN promotes type I IFN production in monocytes inde-
pendently of PI3K/Akt but through dephosphorylation of IRF3
at Ser97, resulting in the release of IRF3 for nuclear import
and activation (Li et al., 2016; Xu et al., 2021). Our study
now identifies a similar PTEN-dependent IRF3 nuclear
translocation in KCs and shows a link between the increased
PTEN expression in CLE KCs and the aberrant IRF3 activation
with pathogenic IFN-b and IFN-k production.

Type I IFNs are key cytokines in the pathogenesis of CLE.
Blocking type I IFN signaling with the anti-IFNAR antibody
anifrolumab (Morand et al., 2020) has demonstrated efficacy
in the treatment of CLE (Blum et al., 2022; Trentin et al.,
2023). The principal sources of IFN-a in lupus are pDCs,
specialized nucleic acid sensing through toll-like receptor 7/
9 that infiltrate the dermis of CLE lesions (Farkas et al., 2001;
Lande et al., 2011). Treatment of patients with CLE with the
pDC-specific anti-BDCA2 antibody litifilimab has indeed
shown therapeutic efficacy (Werth et al., 2022). However,
several studies also point to KCs as an important source of
pathogenic type I IFNs in CLE. KCs in CLE may be activated
by double-stranded RNA products released during UV injury
(a major driver of CLE) through the double-stranded RNA
sensors toll-like receptor 3 or RIG-I/MAVS and produce IFN-b
and the KC-specific IFN-k (Sarkar et al., 2018; Scholtissek
et al., 2017). It has been postulated that IFN-k plays a crit-
ical role in the development of CLE lesions by enhancing UV-
mediated KC apoptosis and increasing their responsiveness to
pDC-derived IFN-a (Sarkar et al., 2018). Because increased
PTEN expression drives cell apoptosis by antagonizing the
PI3KeAkt signaling, it is possible that PTEN also participates
directly in driving KC death, which may then release self-
nucleic acids that trigger the subsequent activation of pDC.

The mechanisms underlying increased PTEN expression by
CLE KCs are unknown. Interestingly, during viral infection, a
long noncoding RNA induced by nucleic acid sensing or
exposure to type I IFNs enhances PTEN expression and pro-
motes IRF3 activation by releasing the inhibitory effect of hsa-
miR-107 (Xu et al., 2021). Because an increased expression
of a long noncoding RNA regulating PTEN in PBMCs has
been linked to the risk of developing systemic LE (Liu et al.,
2021), it is possible that similar mechanisms for PTEN upre-
gulation occur in CLE KCs.

Our study warrants the evaluation of PTEN inhibitors for
the treatment of CLE. Because both PI3K/Akt inhibition as
well as IRF3 translocation are mediated by the phosphatase
activity of PTEN, inhibitors need to target this domain. PTEN’s
risky profile as a tumor suppressor has to be considered. In
this sense, potent inhibitors that allow selective, short-term
PTEN inhibition preferably in a tissue-specific manner may
be an optimal therapeutic approach for CLE.

In summary, we show that comparison of transcriptional
profiles of multiple diseases from independent studies is a
powerful tool to generate a molecular disease classification
and unravel pathomechanism and potential therapeutic tar-
gets through the identification of disease-specific markers. All
of the primary and derived data reported in this study have
been made available through a public resource—the Skin
Science Foundation Bioinformatics Hub—for use by the
broader skin science community (https://biohub.
skinsciencefoundation.org).

MATERIALS AND METHODS
Human samples and data sets

Studies were approved by the institutional review boards and the

local ethics committee of the Lausanne University Hospital (CHUV)

(Lausanne, Switzerland), in accordance with the Helsinki Declara-

tion and were reviewed by the ethical committee board of the

canton of Vaud, Switzerland (CER-VD 2020-02204). Biobanked

formalin-fixed, paraffin-embedded skin tissues stored in the Swiss

Biobanking Platformeaccredited dermatology biobank were ob-

tained from patients who provided written, informed consent for

research use.

Landscape analysis

To begin building a knowledge resource about inflammatory skin

diseases for the skin science community, we conducted a cross-

comparison landscape meta-analysis of publicly available human-

derived omics datasets. Publicly available candidate transcriptomic

datasets were identified by searching Gene Expression Omnibus

(https://www.ncbi.nlm.nih.gov/geo/) and ArrayExpress (https://www.

ebi.ac.uk/arrayexpress/) for human inflammatory skin diseases of

interest, such as psoriasis, AD, LP, CLE, rosacea, vitiligo, AA, HS, and

acne vulgaris (acne). In total, 200 candidate datasets were found in

Gene Expression Omnibus and ArrayExpress, with the majority (128

datasets) profiling either psoriasis or AD. The remaining 72 profiled a

mixture of the other diseases of interest.

For each disease of interest, one representative dataset was

selected on the basis of the following criteria: samples were sourced

from skin biopsies, healthy controls with or without nonlesional

samples were included in addition to the lesional samples, and the

dataset was associated with at least one peer-reviewed publication.

Given that many disease types did not have publicly available RNA-

sequencing data at the time, all datasets selected were generated

using a microarray platform. In cases where more than one dataset
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met the above criteria, the dataset with the most samples was

selected. As a result, eight datasets representing nine skin diseases

interrogating w47,000 transcripts were selected for the cross-

comparison landscape meta-analysis (Supplementary Table S3) and

can be found at the Skin Science Bioinformatics Hub: https://biohub.

skinsciencefoundation.org.

Data normalization for cross-experiment integration using
control RatioA

Given that the experiments were conducted on different platforms

by different research groups, the range of expression values was

different in each of the different experiments (Figure 1a and b). Thus,

to integrate all eight experiments selected for meta-analysis, the

expression data were normalized using a modification of the RatioA

approach under the assumption that the expression level of any

given gene should be the same in the control samples across all

experiments, that is, control RatioA:

Yi ¼ log2ðXi =mean½Xi control�Þ

For each gene (Yi), the mean expression across all healthy control

samples was calculated (mean [Xi control]) for each experiment

independently. This experiment-specific mean expression of control

samples was then used as an experiment-specific normalization

factor by dividing it into every expression value (Xi) for that gene in

every sample, including healthy, lesional, and nonlesional, for that

experiment. Log2 transformation of this ratio results in a relatively

symmetric distribution of normalized expression values for control

samples centered around 0 in every experiment (Supplementary

Figure S2) while retaining better DE in test samples (Figure 1c) in

comparison with other normalization methods.

To determine whether the normalization approach had any effect

on the underlying biological relationships captured in the experi-

ment, DE analysis was performed both before (pre) and after (post)

normalization for each experiment using a standard pairwise DE

analysis (Limma) (Ritchie et al., 2015) comparing the disease and

control samples (Figure 1c).

Transcriptome-based sample clustering

Unsupervised clustering was performed on the control RatioA-

normalized gene expression matrix using the R package SC3

(Kiselev et al., 2017) (Figure 2a). SC3 uses a consensus clustering

approach, in which many different parameters and methods are

explored, and a final solution is determined from the consensus

result. In this study, we used the default consensus parameters while

generating solutions for 3e15 (k) clusters. The value of k was

determined as the maximum average silhouette score for each of the

clusters (as described in Kiselev et al., 2017), a measure of separa-

tion and distinction, ranging from �1 to 1, with the highest score of

0.72 obtained with k¼ 9. In addition to k-means clustering, SC3 also

hierarchically clusters each k-means solution. The hierarchical

dendrogram corresponding to the best k-means solution was then

considered as capturing the taxonomic relationships among skin

diseases on the basis of their transcriptional profiles.

Disease-specific gene expression signature determination

DE analysis between diseases was performed on the resulting SC3

taxonomy using Limma. First, all healthy control samples were

removed from the taxonomy because we were primarily interested

in finding gene signatures that distinguished between the different

disease samples rather than between disease samples and healthy

controls. Next, DE was computed by comparing each node of
Journal of Investigative Dermatology (2024), Volume 144
interest in the taxonomy with all other samples that were not in that

node (a one-versus-all approach). DE results were filtered by

positive-only fold change and an adjusted P < 0.05 (Bonferroni

correction). Positive fold-change results were chosen because when

comparing a disease with other diseases, the genes with negative

fold-change values were found to be the positively associated genes

for the other diseases.

Pathway analysis was conducted using the DE findings, gene

ontology annotations, and the DAVID (Database for Annotation,

Visualization and Integrated Discovery) resource (Huang da et al.,

2009a, 2009b) (https://david.abcc.ncifcrf.gov/); additional pathway

enrichment analysis was performed using the Reactome resource

(Jassal et al., 2020) (https://reactome.org/).

Marker gene determination

Marker gene combinations were identified using NS-Forest, version

2.0 (Aevermann et al., 2021) (https://github.com/JCVenterInstitute/

NSForest). NS-Forest uses random forest classification model con-

struction and feature selection to determine two sets of markers of a

given class—in this case, disease type with (i) the minimum set of

most discriminatory gene combinations and (ii) an extended set of

binary markers available for a given class. NS-Forest has been

extensively validated using real and simulated datasets and favorably

compares with alternative marker selection methods (Aevermann

et al., 2021). NS-Forest was run using default parameters on the

control RatioA-normalized gene expression data.

KC stimulation

Normal human epidermal KCs (Sigma-Aldrich, St. Louis, MO)

cultured in KC serum-free medium containing antibiotics (1%

penicillin/streptomycin) supplemented with human recombinant

epidermal GF and bovine pituitary extract (Gibco, Thermo Fisher

Scientific, Waltham, MA) were used. KCs were pretreated or not

with the PTEN inhibitor bpV(pic) (5 mM, Sigma-Aldrich) for 1 hour,

followed by stimulation with liposomes containing poly(I:C) (2 mg/
ml, InvivoGen, San Diego, CA). Cells were harvested 4 hours later

for immunofluorescence staining or 24 hours later for RT-qPCR

analysis. For RNA-silencing experiments, HaCaT cells cultured in

DMEM 10% fetal bovine serum were treated with liposomes con-

taining 1 mg of siRNA control (SignalSilence Control siRNA #6568,

Cell Signaling Technology, Danvers, MA) or siRNA targeting PTEN

(SignalSilence PTEN siRNA I #6251, Cell Signaling Technology) for 2

days. PTEN expression silencing was assessed by RT-qPCR and

immunofluorescence staining, and siRNA-treated cells were further

stimulated as discussed earlier.

Immunohistochemistry analysis

Formalin-fixed, paraffin-embedded skin blocks from different patients

with inflammatory skin diseases were cut into 6-mm sections and

placed on slides. Sections were first deparaffinized and rehydrated,

and then heat-induced epitope retrieval was performed, and sections

were permeabilized with PBS 0.01% Triton. Samples were stained

with rabbit anti-human PTEN (recombinant rabbit monoclonal

#EPR9941-2, Abcam, Cambridge, United Kingdom; 1/50) for 2 hours

at room temperature. Sections were then stained with ImmPRESS

horse radish peroxide horse anti-rabbit IgG (ready to use, Vector

Laboratories, Newark, CA) followed by 3,30-diaminobenzidine

staining and Mayer counterstaining. Slides were digitalized using the

PANNORAMIC 250 Flash digital scanner (3DHISTECH, Budapest,

Hungary), and staining intensity was quantified using ImageJ software

(National Institutes of Health, Bethesda, MD).
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Immunofluorescence analysis

Normal human epidermal KCs were cultured onto poly-L-lysinee-

pretreated Teflon slides and stimulated as discussed earlier. Cells

were then fixed with Intracellular Fixation Buffer and stained with

antiphosphorylated IRF3 (1/200, Cell Signaling Technology) for 1

hour at room temperature. Cells were then stained with A488-

labeled mouse anti-rabbit IgG antibodies (1/500, Thermo Fisher

Scientific) for 30 minutes at room temperature. For immunofluores-

cence analysis of CLE skin sections, formalin-fixed, paraffin-

embedded skin blocks were prepared as discussed earlier and

stained with mouse anti-human PTEN (clone 1B8, 1/100, Invitrogen,

Waltham, MA) and rabbit anti-human IFN-b (1/1,000, Invitrogen)

followed by A488-labeled donkey anti-mouse IgG (1/500) and

A546-labeled donkey anti-rabbit IgG (1/500) antibodies (Thermo

Fisher Scientific) or with rabbit anti-human PTEN (recombinant

rabbit monoclonal #EPR9941-2, 1/50, Abcam) and mouse anti-

human IFN-k (monoclonal mouse IgG2A clone #1009725, 1/100,

R&D Systems, Minneapolis, MN) followed by A488-labeled donkey

anti-rabbit IgG (1/500) and A546-labeled donkey anti-mouse IgG (1/

500) antibodies (Thermo Fisher Scientific). Images of the different

stained cells or skin sections were acquired with a Zeiss LSM 700

confocal microscope and analyzed with the Fiji software. Multicolor

images were first split into the different fluorescence channels to

generate images of each marker, and selection areas were drawn for

each individual cell (or each individual nucleus) using the multi-

color image and saved to the region of interest manager to further

apply these regions of interests to the fluorescence channel to be

quantified. Fluorescence intensities were then measured for each

region of interest, and correlation analysis between markers was

performed in GraphPad Prism 9 (GraphPad Software, San Diego,

CA).
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Supplementary Figure S1. Validation

of NS-Forest binary markers with

RNA-seq datasets. Validation of the

PSO- and AD-associated NS-Forest

binary markers using the independent

GSE54456 and GSE121212 bulk

RNA-seq datasets is shown.

Classification accuracy using

expression of single marker genes

between lesional and healthy control

samples as quantified by F-beta score

is shown. AD, atopic dermatitis; PSO,

psoriasis; RNA-seq, RNA sequencing.
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Supplementary Figure S2. PTEN expression correlates with type I IFN production by keratinocytes in CLE. (a) Quantification of IFN-b fluorescence intensity at

the single-cell level in epidermal and dermal cells of four different lesional CLE skin specimens. Bars represent the mean � SEM. Data were statistically analyzed

using unpaired t-test. ****P < 0.0001. (b, c) Correlation between PTEN and (b) IFN-b or (c) IFN-k fluorescence intensities of four different lesional CLE skin

specimens at the single-cell level is shown. Pearson correlation coefficient and a two-tailed statistical significance are given. AA, alopecia areata; AD, atopic

dermatitis; AU, arbitrary unit; CLE, cutaneous lupus erythematosus; HD, healthy donor; HS, hidradenitis suppurativa; LP, lichen planus.
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Supplementary Figure S3. Increased expression of PTEN in keratinocytes of CLE. (a) Immunofluorescence staining of PTEN in skin sections from the different

patients and (b) quantification of its intensity in the epidermis. Bars ¼ 100 mm. Data were statistically analyzed using one-way ANOVA followed by Dunnett’s

multiple comparisons test. CLE was used as a reference. **P < 0.005 and *P < 0.05. CLE, n ¼ 5; other diseases, n ¼ 3. CLE, cutaneous lupus erythematosus.
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a b

Supplementary Figure S4. IRF3 is present in the nuclei of keratinocytes in CLE skin lesions. (a) Representative immunofluorescence stainings of IRF3 in skin

sections from healthy donors (top, n ¼ 5) and patients with CLE (bottom, n ¼ 5). The dashed line delineates the dermoeepidermal junction. Bars ¼ 50 mm.

(b) Percentages of keratinocytes with nuclear IRF3 in healthy (CTL) and CLE skin from images in a. Data were statistically analyzed using two-tailed

unpaired t-test. *P < 0.05. CLE, cutaneous lupus erythematosus; CTL, control.

a b c

Supplementary Figure S5. PTEN controls type I IFN production in keratinocytes. (a) PTEN mRNA expression in HaCaT cells treated with siPTEN or siCTL. (b)

Immunofluorescence staining of PTEN in HaCaT cells treated as in a (left) and quantification of the fluorescence intensity at the single-cell level (right). Bars ¼
50 mm. (c) Production of IFN-b by HaCaT cells pretreated with siRNAs and stimulated with empty liposomes (�) or liposomes containing poly(I:C). (a, b)

Data were statistically analyzed using unpaired t-test. ****P < 0.0001. (c) Data were statistically analyzed using a two-way ANOVA followed by Sidak’s multiple

comparisons test. siCTL, control-targeted small interfering RNA; siPTEN, PTEN-targeted small interfering RNA; siRNA, small interfering RNA.
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