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Abstract
In light of the rapid growth in cities, there is a pressing need to explore how urbanization affects
extreme weather, especially short-duration convective storms that can potentially trigger urban
floods. Here we use a high-resolution Weather Research and Forecasting convection-permitting
model to simulate 23 summer convective storms over the subtropical city of Shanghai, China. We
simulated these events in three different scenarios: present urban, no-urban, and urban-expansion
settings. Results show contradictory findings of urbanization’s influence on convective rainfall,
which is associated with urban-surroundings hydrothermal differences and diurnal cycles. Urban
expansion further intensifies daytime convective rainfall when inhomogeneous temperature and
moisture conditions between the city and its surroundings are present, whereas other conditions
may suppress rainfall intensity. The findings provide the potential mechanisms of rainfall
modification by urban expansion in subtropical cities, offering useful insights for urban planning
and flood management in Shanghai and other rapidly urbanizing cities.

1. Introduction

More than half of the global population, 57% as
of 2022, reside in urban areas, and this percent-
age is projected to increase to 68% by 2050 (United
Nations 2018). Urban expansion has emerged as a
highly significant driver of local climate (Fischer
et al 2021, Liu et al 2022), leading to consider-
able changes in extreme rainfall (Zhang et al 2018,
Georgescu et al 2021, Doan et al 2022) and render-
ing cities particularly vulnerable to flooding (IPCC,
Intergovernmental Panel on Climate Change 2023).
Hence, it is important to better understand how urb-
anization affects the local climate to aid future urban
development in mitigating weather-related hazards.

The impacts of urban areas on rainfall and its
mechanisms (both dynamic and thermodynamic)
have been extensively examined via observational
and modeling research (Qian et al 2022), beginning

from the pioneering Metropolitan Meteorological
Experiment led by Changnon et al (1971). However,
both positive and negative impacts have been found.
Many have observed an increase in rainfall due to the
urban heat island effect (UHI, Oke 1982), i.e. when
the temperature contrast between urban and rural
areas results in a greater convergence of moisture into
cities and enhances convection (Shem and Shepherd
2009, Shepherd et al 2010, Yang et al 2017). Other
mechanisms that support rainfall intensification were
also identified. For example, Niyogi et al (2011) and
Yang et al (2019) showed that urban-induced surface
roughness facilitates convergence and enhances rain-
fall over cities. Furthermore, aerosol concentrations
that operate as cloud condensation nuclei have been
found to enhance the amount of rainfall that falls in
urban areas (Van den Heever and Cotton 2007). A
meta-analysis of 85 quantitative studies revealed that
rainfall intensification could occur over, downwind,
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and/or upwind cities and that there is a variation
across studies about the extent and specific location
of the intensification (Liu and Niyogi 2019). This is
supported by Shen and Yang (2023) in which four
paradigms were developed to explain preferential loc-
ations of rainfall enhancement according to the dom-
inance of urban-induced thermal perturbations and
mechanical turbulence.

Conversely, several studies indicate a weakening
impact of urban areas on rainfall, which is explained
by moisture depression in the urban lower atmo-
sphere (Guo et al 2006, Hand and Shepherd 2009,
Georgescu et al 2012, Wang et al 2018), known as
the urban dry island effect (i.e. UDI, Tapper 1990,
Meili et al 2022, Hao et al 2023). Moreover, Wang
et al (2012) and Zhang et al (2009) showed that an
elevated atmospheric boundary layer over cities may
result in enhanced homogeneity of water vapor in
the lower troposphere, thus reducing the convective
available potential energy and suppressing rainfall.
Others indicated that rainfall could be suppressed due
to urban air pollution, as high-concentration of aero-
sols can slow down the process of cloud-drop coales-
cence and the conversion of cloud water into rainfall
(Givati and Rosenfeld 2004, Rosenfeld et al 2008).

The interaction between meteorological elements
and the urban environment generates unique atmo-
spheric conditions in local areas, making it challen-
ging to identify specific components that regulate
urbanmodifications to rainfall. For example, theUHI
intensity in humid climate areas is more noticeable
in comparison with other climates (Zhao et al 2014),
potentially enhancing atmospheric instability and
local convection. In coastal or lakefront cities, local
circulations (i.e. sea/lake breezes) play a significant
role in increasing the temperature gradient and com-
plicating the local UHI effect (Shepherd and Burian
2003, Joseph et al 2008, Li et al 2013). Symmetric and
asymmetric urbanization patterns could also affect
the distribution of UHI intensity (Li et al 2016),
and city shape coupled with inland/coastal environ-
ments led to different conclusions (Zhang et al 2022).
Moreover, rainfall types (Li et al 2021), terrain char-
acteristics (Freitag et al 2018), and pre-stormmeteor-
ological conditions (Shen and Yang 2023) could also
jointly contribute to different urban impacts on rain-
fall magnitude and location.

The urban influence on rainfall is likely to be
correlated with the size of the urban areas (Wang
et al 2015, Han et al 2022). It is reasonable to
hypothesize that cities observing rainfall enhance-
ment should experience a greater degree of intens-
ification with urbanization and urban expansion,
though likely non-linear. However, this has not yet
been confirmed because both contradicting UHI and
moisture depression effects were found to increase
with urban growth (Schmid and Niyogi 2013). For
example in Beijing, Miao et al (2011) found that

rainfall-enhancing effects are dominant when the city
expands to a certain size, while Wang et al (2015)
reached the opposite conclusion. Mixed impacts
on rainfall as a result of urban growth have also
been found in Houston, United States (Buran and
Shepherd 2005), and in the Yangtze River Region,
China (Han et al 2022). Our ability to generalize the
impact of cities under different climates and rainfall
types is far from comprehensive (Lalonde et al 2023).

In light of the gaps discussed above, we here
explore how urban expansion is affecting rainfall
intensities in Shanghai, a mega-city located in a sub-
tropical climate. The frequency and amount of heavy
rainfall in Shanghai have increased significantly due
to urbanization (Liang and Ding 2017, Xu et al 2024).
However, there is limited knowledge of the mech-
anism driving these rainfall changes and the poten-
tial effects of future urbanization on extreme rain-
fall. Using a convection-permitting model, we invest-
igate how summer convective rainfall is affected in
the city of Shanghai in the context of enhanced urb-
anization. We discuss the urbanization impacts on
rainfall amounts and the underlying thermodynamic
mechanisms.

2. Data andmethodology

2.1. Study area
The study area extends around the mega-city of
Shanghai located in the center of the Yangtze River
Delta, China. It is the most populous city in China
and has experienced dramatic urban and economic
development over the past decades (Zhu et al 2016,
Statista Search Department 2024, Zhu and Ling
2024). It has a typical subtropical climate, with a dis-
tinct rainfall season from May to September, influ-
enced by subtropical monsoons, cyclonic storms, and
heavy convective rainfall (Zhuang et al 2022). The
eastern side of Shanghai resides next to the East China
Sea, while a large shallow lake (i.e. Taihu Lake) is situ-
ated to the west. The intricate interaction between the
water bodies and land results in a complex local circu-
lation in this area (Zhong et al 2017, Zhao et al 2020,
He et al 2022), making it challenging to comprehend
the effects of Shanghai and its urbanization on the
local rainfall.

2.2. Model set up
We use the Weather Research and Forecasting model
(WRF, version 4.5, Skamarock et al 2019) coupled
with amulti-layer urban canopymodel (UCM)build-
ing effect parameterization (BEP, Martilli et al 2002).
Initial and lateral boundary conditions for the model
simulations are derived from the 6 hNational Centers
for Global Forecast System NCEP (2000, 2015), GFS,
product, with 1◦ and 0.25◦ resolution in 2008–2014
and 2015–2022 respectively. The MODIS land cover
product at 15 s spatial resolution (Broxton et al 2014)
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Figure 1. (a) Map of the study area and the three WRF simulation domains (DO1, DO2, and DO3). Main Land use and land
cover within the analyzed domain for the (b) No-urban, (c) CTR, and (d) Urban-2 km scenarios.

Table 1.Model configurations and parameterization schemes.

Physics Scheme

Microphysics Thompson scheme (Hong et al 2004)
Radiation RRTMG (Mlawer et al 1997)
Cumulus parameterization Kain–Fritsch (new Eta) scheme only for D01 (Kain

2004)
Land surface scheme Noah-MP (Niu et al 2011)
Urban canopy model Multilayer urban canopy scheme (BEP) (Martilli et al

2002)
Planetary boundary layer scheme Yonsei University scheme (YSU) scheme (Hong et al

2004)
Surface layer physics Revised MM5 Monin–Obukhov scheme (Chen and

Dudhia 2001)
Nesting options 3 nested domains (9 km, 3 km and 1 km) with one-way

nesting
Surface lake physics LAKE (Gu et al 2015)
Number of vertical layers 45
Spin up time 18 h

is used to define the land-use and land-cover. The
WRF model is configured with 3 one-way nested
domains (figure 1(a)): DO1 with a spatial resolution
of 9 km (194× 185 grids), DO2–3 km (136× 166),
and DO3—1 km (163× 226). DO1 covers southeast-
ern China, while DO3 covers Shanghai city and the
surrounding Taihu Lake. The update frequency of
boundary conditions of the three domains is 6 h.
Vertically, the domains stretch up to 50 hPa with 45
layers. The physics options used in the simulations
are summarized in table 1.Multiple scheme combina-
tionswere examined (see figure S1 in the supplement-
ary material), but we presented only the setup that

showed the highest agreement with the observations.
The first 18 h of spin-up time are not considered in
the analysis.

We first simulate rainfall events with the present
land-use and urban area (‘CTR’ scenario, figure 1(c)).
Then we set two other land-use scenarios to explore
the impacts of urban expansion: a ‘No-urban’ scen-
ario in which the urban area is replaced with crop-
lands (figure 1(b)) and a 2 km urban expansion scen-
ario, where grids within 2 km outside the city bound-
ary are replaced with urban land cover grids (‘Urban-
2 km’ scenario, figure 1(d)). The urban land use in
Urban-2 km scenario is plausible and consistent with
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the projected urban area data published by Chen
et al (2020), under different Shared Socioeconomic
Pathways that consider possible challenges associated
with adaptation to climate change and its mitiga-
tion. It is consistent with the projected city area in
2050 under SSP1 (i.e. low urban development in the
future), or in 2030 under SSP5 (i.e. highly developed
scenario).

2.3. Rainfall and thermodynamic analyses
We simulate 23 heavy convective rainfall events that
occurred during the summer months between 2008
and 2023. All the selected storms advected from west
to east, often with a minor southeast wind compon-
ent, representing the typical trajectories of summer
convective storms in this region (Shen et al 2019,
Li et al 2021b) (detailed in table S1). An illustrat-
ive example of several hourly time steps simulated at
the finer (i.e. 1 km and 1 h) space-time resolution
(domain in figure 1(c)) for the three urban scenarios
is presented in figure S2. We focus on short-duration
events, with a mean duration of around 7 h; 52% of
the events last less than or equal to 6 h, and only one
of the events lasts longer than 12 h. The spatial max-
imum accumulated rainfall of 23 storms varies from
25.8 mm to 339.5 mm, and all events move eastward.
Hourly data from 47 ground gauges (figure 1(c))
provide the basis for the evaluation of the simulations.
Using a point-to-point approach (i.e. comparing the
accumulated rainfall from a rain gauge to the WRF
grid where the rain gauge is positioned), we eval-
uate the overall performance of the CTR-simulated
events (figure S3). The mean absolute error is quite
high (20.4 mm; equivalent to 54% bias), largely due
to a small number of simulated events that overestim-
ate rainfall accumulations (as seen in figure S3 (c)).
However, the CTR simulations are generally in agree-
ment with observations and replicate convective rain-
fall dynamic processes (figure S3 (b)).

The impact of urban expansion on rainfall is
assessed through the analysis of changes in rain-
fall accumulation P [mm] over the urban domain
u (i.e. the area enclosed by the solid black line in
figures 1(b)–(d)). The land and sea areas outside of
the urban domain are referred to as the city’s sur-
roundings s (see figure S4 for a breakdown of the
urban and surrounding grid cells). The accumulated
rainfall over the u urban grid cell i is defined as:

P̂ui =
∑D

t=1
Pui (t) , (1)

where Pui (t) is the simulated rainfall at time step t at
the u urban grid cell i, and D is the total number of
time steps.

Moreover, we examine the differences between
the No-urban and CTR scenarios (defined as ∆Pu1),
as well as between the CTR andUrban-2 km scenarios
(∆Pu2), to analyze the response of the city expansion.

To simplify the comparison, we examine the mean
change in rainfall between scenarios, in the following
way:

δPu1 = 100 ·

(∑n
i=1 P̂

u,CTR
i

n

−
∑n

i=1 P̂
u,U0
i

n

)/∑n
i=1 P̂

u,CTR
i

n
, (2)

and,

δPu2 = 100 ·

(∑n
i=1 P̂

u,U2km
i

n

−
∑n

i=1 P̂
u,CTR
i

n

)/∑n
i=1 P̂

u,CTR
i

n
, (3)

where n is the number of urban grid cells, and CTR,
U0, and U2km refer to the control, No-urban, and
Urban-2 km scenarios respectively.

The thermodynamic conditions that might
explain the rainfall differences between scenarios are
also examined. More specifically, the hourly low-
level (i.e. 6 lowest vertical layers within 540 m above
ground) temperature T [◦C] and water vapor mixing
ratio Q [kg kg−1] are computed for the grid cells in
both the urban domain and its surrounding areas:

T̂u
i (t) =

∑6
z=1T

u
i (t,z)

6
, (4)

where Tu
i (t,z) is the temperature T at the z vertical

layer and hourly time step t located at the u urban grid
cell i. Qu

i (t,z) is computed similarly; for the urban
surroundings, the variables are computed the same
way, except that the notation u is replaced by s.

Additionally, we consider the omega ω [Pa s−1] as
an indication of convection. To that end, we average
only the negative ω values for the 20 lowest vertical
layers (i.e. up to 7.3 km above ground) in each grid
cell:

ω̂u
i (t) =

∑20
z=1ω

u
i (t,z)

N
, (5)

where N is the number of layers with negative ω.
Positive ω values were excluded, as only negative val-
ues indicate upward vertical motion. We multiply
equation (5) by −1, so greater positive ω̂u

i (t) values
will express greater upward vertical motion (and vice
versa). To examine differences in convection between
the scenarios, we use ∆ωu1, ∆ωu2, by replacing the
notation P with ω in equations (2) and (3).

High inhomogeneity of thermodynamic condi-
tions between urban areas and their surroundings
may also lead to increased atmospheric instability and
enhanced local convection. Consequently, we exam-
ine the level of variability in T and Q of all urban
and surrounding grids shown in figure S5 for the CTR
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scenario. To that end, we pool together all urban and
surrounding values of T̂u

i (t) and T̂s
i(t) (according to

equation (4)) for each rainfall event and computed
the mean, 5th, and 95th percentiles (i.e. Tµ, T5, T95

per event).We then average these values for all rainfall
events falling into a given category (i.e. Increased-P
and Decreased-P categories will be mentioned later),
resulting inTµ,T5, andT95 for each category. The dif-
ferences T95 −Tµ and Tµ −T5 are finally computed
and considered as a proxy of the inhomogeneity level
of T distributions contrast between the urban area
and its surroundings during the storms. The same
procedure is followed for Q.

Last, we examine the timing and causes of the
rainfall and heat anomalies resulting from continued
urban sprawling. We compute the diurnal disparity
between the urban area and its surroundings for the
temperature difference (∆Tu2) and rainfall anomalies
only in the urban area (δPu2) from the urban expan-
sion scenarios following the samemethodmentioned
above (equation (3)) but for each hour of the day.

3. Results

We begin by examining each storm individually to
determine the effect of urbanization and the expan-
sion of urban areas on rainfall by plotting box plots
that summarize rainfall variability within the urban
domain (figure S5). Considering the mean values of

P̂ui in each box plot, we have found that among the
23 storms, (i) Approximately 35% exhibit a mono-

tonically increasing P̂ui with urbanization—meaning
that rainfall accumulation increases from No-urban
to CTR scenarios and continues to increase from
CTR to Urban-2 km scenarios (termed as ‘Increased-
P’, shown as blue area in figure 2(a)); (ii) about
30% have the consistent decrease with urbanization,
(i.e. ‘Decreased-P’; red area in figure 2(a)); and (iii)
about 35% of storms show a mixed response to
urbanization—with half showing a rise in rainfall
from No-urban to CTR followed by a decrease from
CTR to Urban-2 km scenarios, while the other half
showing the opposite trend (‘Mixed-P’; gray area in
figure 2(a)).

We then investigate whether changes in rainfall
convection are in agreement with the urbanization-
induced rainfall patterns described above by sum-
marizing the change of ω values in urban grids under
different scenarios. We found that the variation of
P̂ui with urbanization is consistent with the change in

ω̂u
i (t) (figure 2(b)). Comparing figures 2(a) and (b),

the points with a positive (negative) P̂ui and ω̂u
i (t)

are mostly located in the same quadrant. A positive
correlation between rainfall enhancement and con-
vection condition is found in the Increased-P group:
on average, δPu1 (change from No-urban to CTR)
increase by 17% and δPu2 (fromCTR to Urban-2 km)

increase by 12%with corresponding increases of 14%
and 6% in δωu1 and δωu2. In the Decreased-P group,
the decrease in δPu1 and δPu2 (by −19% and −15%,
respectively) with urbanization being also associated
with decline in δωu1 and δωu2 but themagnitudemis-
matched (−7%and−12%). Further details of the box
plots for all P̂ui and ω̂u

i (t) in each group can be found
in figure S5.

Next, we investigate the thermodynamic condi-
tions associated with enhancing and suppressing con-
vection and rainfall. In figure 2(c), the inhomogeneity
level of T and Q for the CTR scenario are summar-
ized in a radar plot, using Tµ, T5, and T95 (and the
equivalent Q values, consistent with the mean, 5th,
and 95th percentiles, respectively, as shown in each
box plot in figure S6) as proxies for the two groups.
For the Urban-2 km scenario, the variability is similar
(not shown). As can be seen, events in the Increased-
P group exhibit a higher level of inhomogeneity in
both T and Q compared to those in the Decreased-
P group (i.e. the blue area occupies a larger portion
than the red area in figure 2(c)). Specifically, T95 −T5

is equal to 5.5 ◦C in the Increased-P, which is 2.1
times greater than that in the Decreased-P. Similarly,
the inhomogeneity level of Q is 1.6 times higher in
the Increased-P than Decreased-P. This is because the
events in the Increased-P group have a higher back-
ground air temperature (i.e. over the urban area) than
the events in the Decreased-P group. The urban sens-
ible heat flux in the Increased-P group is acting to
enhance the UHI, resulting in a higher spatial vari-
ability of T between the urban area and its surround-
ings as well. Moreover, the Increased-P events show
a greater urban-surrounding difference in Q values.
The decreased evapotranspiration resulting from the
prevalence of impervious urban land (Huang et al
2022), coupled with enhanced surface atmosphere
heating, leads to the UDI effect that is expressed by
lower Q values over the urban area. In summary, it
appears that convective rainfall events classified as
Increased-P are characterized by strongUHI andUDI
effects that result in a high thermodynamic inhomo-
geneity (i.e. a large contrast between the urban area
and its surroundings, further details can be found in
cross-section analysis in figure S8).

Last, we investigate the timing of the rainfall and
heat anomalies caused by further urban expansion
in the future, focusing on the difference between the
present urban area (CTR) and future urban growth
(Urban-2 km). We found that 82% of the rainfall in
the Increased-P group occurs during the day, whereas
65% of the rainfall in the Decreased-P group occurs
at night (figure 3). The diurnal pattern of δPu2 and
∆Tu2 seems to agree; thus, we examine this relation-
ship in more detail. Urban growth leads to a con-
sistent rise in the daytime temperature within the
urban area, as evident by ∆Tu2 being positive from
08:00 to 23:00 LST and negative between 23:00 and
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Figure 2. (a) A scatter plot of the differences in urban rainfall for the 23 simulated storms between No-urban and CTR (δPu1) and
CTR and Urban-2 km (δPu2) scenarios. (b) Similar scatter plot as in (a) but for ω. (c) A radar plot of the 5–95th percentile
differences from the mean temperature T and water vapor mixing ratio Q in the Increased-P (blue area) and Decreased-P (red
area) groups in the CTR scenario. The detailed information in panel (c)—All pooled values of T̂u

i (t) and T̂
s
i(t), and of Q̂

u
i (t) and

Q̂s
i(t), for the CTR scenario are shown in the box plots in figure S6; the non-pooled data for all scenarios are presented as box

plots in figure S7.

Figure 3. The diurnal pattern of urban-surrounding temperature difference (∆Tu2) and relative rainfall anomalies (δPu2) from
CTR to Urban-2 km scenarios. The red line represents the average hourly∆Tu2 obtained from all simulated events (the colored
area is the 5–95th percentile range). The dots represent hourly δPu2 of simulated events, divided into the Increased-P,
Decreased-P, and Mixed-P groups. Daytime in Shanghai is from 8:00 to 20:00 LST.

07:00 LST. The likelihood of δPu2 being positive is
also higher during the daytime, particularly in the
afternoon (13:00–18:00 LST), and reaches its greatest
increase at 15:00 LST. Conversely, during the night,
the probability of δPu2 being negative increases, peak-
ing at midnight. This implies that extended urbaniz-
ation positively impacts rainfall from noon through
late afternoon but has a negative impact at night. Yet
we note that urban relative humidity tends to increase
in the early morning (03:00–07:00 LST; figure S9).
This is because the city’s temperature is not as high
as it is during the day, which leads to less dew accu-
mulation compared to the surrounding area, caus-
ing excess moisture that forms a distinct ‘moisture
island’ within the city (see also Chow and Chang
1984). This additional moisture tends to favor intense
rainfall over the city, as indicated by some data points

above the zero-line from03:00 to 07:00 LST in figure 3
and also an increasing percentage of positive δPu2 in
figure S10.

4. Urban thermodynamic processes

Based on the results of our numerical experiment,
we attempt to interpret the mechanisms controlling
urban expansion’s impact on short-duration con-
vective rainfall in Shanghai. A schematic representa-
tion of these thermodynamicmechanisms is provided
in figure 4, which summarizes our interpretation of
urbanization-induced rainfall processes for a sub-
tropical city. Daytime rainfall (especially in the after-
noon from 13:00 to 18:00 LST) is impacted by urban
temperature increases (UHI effect) and water vapor
mixing ratio depressions (UDI effect), which cause

6
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Figure 4. A schematic illustration of urbanization effect on short-duration convective rainfall in a subtropical city. ‘CTR’ in (a)
and (b) refers to the reference city, while ‘Urban-2 km’ in (c) and (d) refers to the urban expansion of the reference city by 2 km.
Values of T (air temperature, from 2 m up to a height of 1.5 km), Q (water vapor mixing ratio at 2 m), and PBL (planetary
boundary layer height) are conceptualized based on the analysis of 23 rainfall events presented in section 2.1. The cross-section
coordinates are in figure S8(e).

thermodynamic disturbances in air pressure, intensi-
fying vertical movements at the edge of the urban
area, and making the atmosphere more unstable
(figure 4(a)). At night, the land-atmospheric coupling
is usually weaker compared to during the day, hence,
the urban influence on rainfall is less pronounced.
Consequently, the temperature and moisture are
observed to be uniformly distributed among the city
and its surroundings (figure 4(b)), resulting in less
convection development and rainfall.

With urban expansion (Urban-2 km simula-
tions), UHI and UDI intensify throughout daytime,
and as a result, urban areas experience even higher
temperatures than the surrounding area and larger
humidity depression (figure 4(c)). This leads to an
elevated planetary boundary layer (PBL) (see also
Wang et al 2015, Hu et al 2022) that increases the
horizontal moisture convergence (Zhang et al 2019).
Coupled with stronger thermally induced circula-
tions (in agreement with Zhang et al 2014), this
enhances cloud development and increases rainfall
amounts.

On the contrary, the city expansion leads to
even more homogeneous temperature and mois-
ture distribution at night (in comparison with the

reference city), thereby increasing the atmospheric
stability (figure 4(d)). The urbanization-induced sur-
face moisture depression and consequently vertical
motion decrease are the primary reasons for rainfall
reduction during the night, which is consistent with
the findings of Zhang et al (2009).

5. Discussion

In a few events, changes in P̂ui with urbanization did
not follow ω̂u

i in (figure 2). For example, Event 1 (table
S1) in the Increased-P group has a ‘mixed’ ω̂u

i . This
event is the longest we simulate (i.e. 15 h), and the
urbanization scenarios triggered an earlier onset and
a later cessation of the urban rainfall, thus affecting
the statistical analysis. Rainfall starts earlier because
of the increased sensible heat flux, which triggers
the development of convective clouds in the urban-
ized area (Zhang et al 2017). Furthermore, increased
urban roughness may slow down the propagation
of the storms, prolong rainfall duration, and further
facilitate the enhancement of rainfall in urban areas
(Bornstein and Lin 2000, Thielen et al 2000, Wan
and Zhong 2014, Yu and Liu 2015). Events 5 and 9
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in the Decreased-P group (table S1) are also associ-
ated with a ‘mixed’ ω̂u

i but occur at night (23:00 LST),
a time which is associated with a weak UHI effect
(see figure S8). For these events, decreased rainfall is
mainly attributed to depression in relative humidity.

Although we only discuss the urbanization effect
on the intensification of rainfall amounts here, some
events also exhibit greater spatial variability as urban
expansion increases (not shown here), which is con-
sistentwith our previous studies in Shanghai (Zhuang
et al 2022) and also in Mumbai, India, as reported by
Paul et al (2018). It sheds light on how urbanization
influences rainfall spatial patterns.

Urbanization and urban expansion impacts on
rainfall can be more diversified in coastal cities or cit-
ies close to water bodies with an abundance of mois-
ture supply from the environment (Shepherd et al
2010, Theeuwes et al 2013, Yang et al 2014, Xing et al
2019). Also in our case study, localized water vapor
depression is observed in the low-level atmosphere
(see cross-section in figures S8(c) and (d)), while
overall higher water vapor is evident in the entire
Shanghai domain (see box plots comparingmean val-
ues between Q̂u

i (t) and Q̂
s
i(t) in figures S7(c) and (d)).

This is because urbanization leads to enhanced lower-
level convergence, promoting the transportation of
water vapor from the surroundings to urban areas.
Besides, Shanghai, because of its location between
the East China Sea and Taihu Lake, facilitates the
convergence of water vapor from both the west and
east sides of the city, resulting in increased Q across
the city’s boundary. This mechanism also triggers
enhanced vertical movement of water vapor, enhan-
cing the atmospheric circulation between the urban
and surrounding areas, and intensifying rainfall as a
result. Therefore, coastal or lakeside urban settings
would mitigate urbanization-induced moisture defi-
cit effect in the lower atmosphere to a certain extent,
by enhancingmoist convection, which was also found
in Xiong’an, China (Xing et al 2019), Milwaukee,
United States (Yang et al 2014), and Tokyo, Japan
(Inoue and Kimura 2004).

Sea breezes are expected to play a significant role
in coastal urban areas. Overall, however, the contri-
bution of sea-breeze is not clear in our cases, as we
have limited samples (i.e. 5 storms) with sea-breeze
occurring and the changes in the sea breeze strength
are not considerably different between the Increased-
P and Decreased-P groups. Several studies emphas-
ized that urban-induced rainfall anomalies could dif-
fer in coastal and inland cities in the same climate
region due to interactions between urban-rural circu-
lation and sea breeze (Zhang et al 2022, Lalonde et al
2023, Lu et al 2024). Hence, we would suggest treating
the transferability of our findings between cities with
care.Our findingswill likely be valid in other subtrop-
ical coastal cities that share similar climate character-
istics with Shanghai, such as cities in the Southeast
Coast of China (Jia et al 2023), Miami and Houston

in theUnited States (Buran and Shepherd 2005,Misra
et al 2018), among others.

Moreover, we have not examined the potential
impacts of changes in aerosol amounts and compos-
ition following urbanization on rainfall, as we only
focus on the thermal-dynamic effects. Future studies
should include a comprehensive analysis of the con-
sideration of aerosols (Persad 2023) and anthropo-
genic heat emissions (Marelle et al 2020) impact on
urban rainfall.

6. Conclusions

We utilized a convection-permitting model to
examine the potential effects of urbanization on
heavy short-duration summer convective storms
in Shanghai, China. The simulation of 23 storms
with varying durations and timing under three urban
setup scenarios indicated that an increase in urban
extent does not necessarily lead to an increase in
storm intensity. Our results highlight the import-
ance of urban-surrounding hydrothermal differences,
especially during the day when land-atmosphere
coupling is strong. Urban expansion amplifies tem-
perature and moisture differences between the city
and its surrounding areas during daytime, enhancing
the convection and rainfall. Conversely, with more
uniform temperature and moisture distribution at
night, urbanization suppresses convection initiation
and consequently rainfall intensity. These findings
contribute to the understanding of the thermody-
namic processes behind the contradictory response
of convective rainfall to city expansion that can be
expected in subtropical regions that share similar
climate characteristics. While presenting a mixed
response to urban expansion in terms of convect-
ive storms, we emphasize that as a result of growth
in subtropical cities, an overall intensification of con-
vective rainfall is likely, since most convective activity
occurs during the day.

Data availability statement

WRF model outputs (P̂i(t), T̂i(t), Q̂i(t), and ω̂i(t)) of
the 23 simulated rainfall for the three urban scenarios
over the domain presented in figure 1(c), are available
at https://zenodo.org/records/10931297 (Zhuang and
Koukoula 2024). Observations from rain gauges
were obtained from the Shanghai Water Planning
and Design Research Institute in China—access to
these data, which were used under license, is subject
to certain restrictions. The NCEP GFS 0.25 Degree
Global Forecast dataset is available at https://doi.
org/10.5065/D65D8PWK. The NCEP FNL (Final)
Operational Global Analysis dataset is available at
https://doi.org/10.5065/D6M043C6. The MODIS
data can be downloaded at https://www2.mmm.ucar.
edu/wrf/users/download/get_sources_wps_geog.
html.
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