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Abstract

Knowledge rests not upon truth alone, but upon

error also.

Carl G. Jung

Game theory is a branch of applied mathematics used to analyze situation where two or more

agents are interacting. Originally it was developed as a model for conflicts and collaborations

between rational and intelligent individuals. Now it finds applications in social sciences, eco-

nomics, biology (particularly evolutionary biology and ecology), engineering, political science,

international relations, computer science, and philosophy.

Networks are an abstract representation of interactions, dependencies or relationships. Net-

works are extensively used in all the fields mentioned above and in many more. Many useful

informations about a system can be discovered by analyzing the current state of a network

representation of such system.

In this work we will apply some of the methods of game theory to populations of agents that

are interconnected. A population is in fact represented by a network of players where one can

only interact with another if there is a connection between them.

In the first part of this work we will show that the structure of the underlying network has a

strong influence on the strategies that the players will decide to adopt to maximize their utility.

We will then introduce a supplementary degree of freedom by allowing the structure of the

population to be modified along the simulations. This modification allows the players to modify

the structure of their environment to optimize the utility that they can obtain.
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Sommario

La conoscenza poggia non solo sulla verità, benśı

anche sull’errore.

Carl G. Jung

La teoria dei giochi è una branca della matematica applicata utilizzata per analizzare la

situazione in cui due o più agenti stanno interagendo. È stata originariamente sviluppata come

un modello per i conflitti e le collaborazioni tra persone razionali e intelligenti; ora trova appli-

cazioni in scienze sociali, economia, biologia (in particolare biologia evoluzionistica ed ecologia),

ingegneria, scienze politiche, relazioni internazionali, informatica e filosofia.

Le reti sono una rappresentazione astratta di interazioni, dipendenze o relazioni e sono ampia-

mente utilizzate in tutti i settori di cui sopra e in molti altri ancora. Molte informazioni utili

su un sistema possono essere carpite analizzando lo stato attuale della rappresentazione sotto

forma di rete di tale sistema.

In questo lavoro applicheremo alcuni dei metodi della teoria dei giochi a una popolazione di

agenti interconnessi, rappresentata da una rete di giocatori dove ognuno può interagire con un

altro agente solo se esiste un collegamento tra di essi.

Nella prima parte di questo lavoro mostreremo che la struttura della rete ha una forte influenza

sulle strategie che i giocatori adottano per massimizzare il loro guadagno.

In seguito introdurremo un ulteriore grado di libertà consentendo alla struttura della popolazione

di essere modificata nel corso delle simulazioni; questo permetterà ai giocatori di agire sulla

struttura del loro ambiente in modo da ottimizzare il guadagno che possono ottenere.
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Synopsis

La connaissance repose non seulement sur la

vérité mais aussi sur l’erreur.

Carl G. Jung

La théorie des jeux est une branche des mathématiques appliquées utilisée pour analyser des

situations où deux ou plusieurs agents interagissent. À l’origine elle a été développée comme

un modèle pour les conflits et les collaborations entre des individus rationnels et intelligents.

Maintenant elle trouve des applications dans les sciences sociales, l’économie, la biologie (en

particulier la biologie évolutive et l’écologie), l’ingénierie, les sciences politiques, les relations

internationales, l’informatique et la philosophie.

Les réseaux sont une représentation abstraite d’interactions, dépendances ou relations. Ils sont

largement utilisés dans tous les domaines mentionnés ci-dessus et dans bien d’autres encore.

Beaucoup d’informations utiles peuvent être découvertes par l’analyse de l’état actuel d’une

représentation sous la forme d’un réseau d’un tel système.

Dans ce travail, nous allons appliquer certaines des méthodes de la théorie des jeux à des

populations d’agents interconnectés. Une population est représentée par un réseau d’acteurs où

un ne peut interagir avec un autre que s’ils sont connectés entre eux.

Dans la première partie de ce travail nous allons montrer que la structure du réseau sous-jacent

a une forte influence sur les stratégies que les joueurs décident d’adopter pour maximiser leur

bénéfice.

Nous allons ensuite introduire un degré supplémentaire de liberté en permettant à la structure

de la population d’être modifiée pendant les simulations. Cette modification permet aux joueurs

d’agir sur la structure de leur environnement afin d’optimiser le bénéfice qu’ils peuvent obtenir.
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Overview of the Thesis

It may be that all games are silly. But then, so

are humans.

Robert Wilson Lynd

This Ph.D. thesis is organized in the form of a collection of articles. Parts II, III, and IV of

this manuscript include seven peer-reviewed articles that have been published in international

specialized journals. All these articles have not been edited, apart for the obvious formatting.

Due to this there is some overlap between some articles and between articles and introductory

parts. Also, for the same reasons, the style of figures and tables, and sometimes some notations

are not coherent over the whole manuscript.

This work consists mainly in an empirical analysis of results obtained through computer

simulations. These results are only presented and commented inside the articles. However,

even if redundant with respect to the articles, an introduction to the methods used in the

articles included in the three parts can be found in chapter 4 at the end of the first part of this

manuscript. This has been done with the purpose of facilitating the reading of the thesis. The

bibliography has been compiled in a unique section at the end of the manuscript, and contains

all the publications cited in this work.

Now for a description of the structure of this work:

• Part I presents the motivations for this work as well as its background and theoretical

foundations. Also, at the end of this part, there is an introduction to the methods used in

the following parts of the dissertation.

• Parts II, III, and IV include the articles presenting the results obtained in these years.

• Finally, in part V general conclusion are drawn and some hints are given on possible

directions for future works.
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Chapter 1

Motivation

I was gratified to be able to answer promptly,

and I did. I said I didn’t know.

Mark Twain

Game theory aims at resolving conflicting situations that appear commonly in socio-economic

settings. However, standard game theory, being based on perfectly rational, payoff-maximizing

agents, has to face agent’s real-world limitations such as bounded rationality and limited com-

putational capabilities.

A first step toward a more realistic model for social interaction using game theory has been

the introduction of Evolutionary Game Theory (EGT) that uses populations of players that

individually have limited capabilities. This assumption and an evolution model inspired by

biological evolution has allowed a great improvement.

More recently, in 1992, Martin Nowak and Robert May [84], made another fundamental

improvement when they introduced an underling structure, a network, to represent the relation-

ships between the players.

In this work we try to understand the role played by characteristics of several kind of networks

in sustaining (or not) the cooperation of agents in a population.

Other than exploring the benefits of the population structure we also take a closer look at

some mechanics that can modify the behavior of the agents and thus change the stable state of

the system and the solutions to the problem.

Here we enumerate the aspects that are covered in this manuscript and our hypothesis about

their effect on the dynamical system we use in this work.

I. We analyzed the effects of different updates rules, the changes introduced by using different

methods to calculate the utility of an agent, and the effects of the timing of the operations.

In our opinion all of these mechanics have a great influence on the amount of cooperation

that can be established and maintained in a population.

II. When deciding on their next strategy, agents often use their wellness and the apparent

wellness of other individuals and try to adapt their strategy to that of the fittest. However

3



4 CHAPTER 1. MOTIVATION

that is not always the case. In some situations other techniques are used by the agents to

improve their place in the society and one of these techniques is conformity, the tendency

of humans to imitate locally common behaviors.

In this work we looked at the effects that the introduction of small amounts of conformism

has on the evolution of a networked society.

III. The structure of the network also plays an important role in the emergence of social norms.

By using several kind of networks, from simple networks to complex social networks, we

hope to discover the role played by the characteristic of the structure on the strategies of the

agents. We believe that the structure of social networks, and in particular the existence of

social groups and communities have a great impact on the quality of the social interactions

in the population.

IV. Finally the network of a social group is, in reality, an evolving complex system. We

hypothesize that the behavior of players can push the structure of dynamical networked

population to evolve from a regular or random topology to a more functional structure to

optimize the wellness of the whole population.

Emergence of Cooperation on Static and Dynamic Networks Enea Pestelacci



Chapter 2

Game theory

God does not play dice with the universe; He

plays an ineffable game of His own devising,

which might be compared, from the perspective

of any of the other players, to being involved in

an obscure and complex version of poker in a

pitch-dark room, with blank cards, for infinite

stakes, with a Dealer who won’t tell you the

rules, and who smiles all the time.

Terry Pratchett

Game theory is a mathematical framework for the analysis of models of conflict and cooper-

ation between rational and intelligent individuals. It provides tools for the analysis of situations

involving two or more agents, where each agent’s actions will influence the welfare of the others.

This field was founded in 1944 with the publication of the book “Theory of Games and Economic

Behavior” by von Neumann and Morgenstern [124]. It was initially developed to analyze situa-

tions where the success of an agent implied the failure of another, also known as zero sum games.

However now “game theory is a sort of umbrella or ’unified field’ theory for the rational side

of social science, where ’social’ is interpreted broadly, to include human as well as non-human

players (computers, animals, plants)” [5]. The development of game theory was extensive during

the 1950s thanks to the contributions of several scholars. In the 1970s the theory was explicitly

applied to biology and its now a recognized and important tool in many fields to the point that

eight games theorists have won the Nobel Prize in Economics.

Many situations where decisions have to be taken in interaction with other parties or in

conflicting situation can be found in everyday life and can be interpreted as “games” using the

tools provided by game theory. Some examples of such situations can be: animals competing

for some resources, driving, paying taxes, playing chess, etc. Clearly the representation used in

game theory does not include all the details and the complexity that many situations involve.

Sometimes the solution proposed by the theory does not correspond to the one suggested by

common-sense. For example when taking a train, one have to chose whether to buy a ticket or

5
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not. If the control is absent (or rare enough) the best solution is to take a free ride. Rationality

is the key to the interpretation of this solution. Rationality that has to be interpreted in the

homo economicus sense, i.e. an individual with very specific goals trying to maximize his utility

at the least possible cost. The english term economic man goes back to John Stuart Mill, in

1836 he defined the economic man as someone who “is concerned with him solely as a being

who desires to possess wealth, and who is capable of judging the comparative efficacy of means

for obtaining that end.” [68]. The latin name is probably due to Pareto [87]. This concept has

been used by Savage, and von Neumann and Morgenstern [105, 124]. According to game theory

all the agents are rationals and intelligent which means that:

• they know the possible choices in a given situation

• they can associate a utility to each choice and to its consequences

• they take decisions aimed to maximise the utility

• they know that every agent is also rational and intelligent (common knowledge of ratio-

nality).

The utility is a numerical value that represents the value of the outcome of every possible

decision, this utility is also often called payoff. As said, a rational agent tries to maximize this

utility, every time an individual is confronted with a decision he choses the strategy that will

lead to the highest possible outcome. If there is uncertainty or incomplete knowledge, the agent

chooses the maximum expected payoff. It’s important to point out that the actual numerical

values are not important, only the ordering of the payoff of the different strategies is taken into

account. Many criticisms have been directed to this approach and to the assumption that an

agent has unbounded rationality: this is obviously not possible in the real world and others

models where players have limited rationality have been proposed, however the standard models

allows the use of exact mathematical formalizations.

All the works included in this manuscript make use of non-cooperative game theory, i.e. the

agents aim is totally selfish and they try to maximize their own utility no matter what. In

the cooperative game theory players are allowed to form coalitions, this has not been taken into

account in these works.

Also the games used here are all one-shot games. Which means that even when two player

have to play together for a second time, they will have no memory of their previous encounters.

When considering iterated or repeated games, players may develop more complex strategies. Both

situations are very common in society; however, we focused our attention on the former.

2.1 Representation of games

Game theory is a mathematical theory, and the games studied are also well-defined mathematical

objects. A finite game Γ has a finite number of players N , a finite set of strategies Si for each

player i ∈ N and utility functions ui :×j∈N Sj → R for all the players j ∈ N .

Emergence of Cooperation on Static and Dynamic Networks Enea Pestelacci



2.1. REPRESENTATION OF GAMES 7

Two forms are used to represent non-cooperative games: the Extensive form and the Strategic

form.

2.1.1 Extensive form

The extensive form is particularly useful when the ordering of the action of the players is

important. The representation of a game in its extensive form requires:

• The set of players N = {0, 1, ..., n} where 0 usually represent Nature.

• For every player, the set of moments in the game where this player has to take an action.

• The possible actions for each player at each choice point she has.

• The information set for each player at each choice point.

• The payoff for each possible outcome, i.e. for each possible combination of moves of the

players.

In this form games can be presented as trees where each vertex is a choice to one of the

players and each branch corresponds to the consequences of that choice. At each leaf of the

tree, where the game ends, there are the corresponding payoff values for each player. Let take

an easy game for an example. In this two-players game, player one will choose first between

two strategies top (T) and bottom (B). After that, player 2 will choose between right (R) and

left (L) without knowing the action of player 1. The extensive form of this game is shown in

figure 2.1.

T

B

L

R

L

R

1

2 2,2

4,0

1,0

3,1

Figure 2.1: Extensive form for the first version of the game. The dashed line around the two
choice points for player 2 represent his unawareness of the situation when is called to chose his
strategy.

The dashed lines represent the information a player has when it is her turn to decide, this is

called information set. Player 1 information set contains only one state because the game is just

beginning and there is only one possible state. On the other hand, as player 2 does not know

the strategy of player 1, she cannot distinguish between the two possible state of the game,

therefor these states are in the same information set. The fact that player 2 cannot distinguish

Emergence of Cooperation on Static and Dynamic Networks Enea Pestelacci
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in which state the game is can be interpreted as a missing information, in this case we will be

describing a game with imperfect information [71], or also the situation where player’s 2 move

is simultaneous to player’s 1. In this situation, player 1 is better off choosing T as she will

be better off whatever player 2 decide. Player 2, knowing the options for player one, has to

choose L in order to obtain a better payoff. When we modify the game by introducing perfect

information the situation changes, as shown in figure 2.2.

T

B

L

R

l

r

1

2t
2,2

4,0

1,0

3,1

2b

Figure 2.2: Extensive form for the second version of the game. In this case player two knows
the action of player 1, so she can distinguish between the two choice points.

In this case player 2 knows what player 1 has done. This is represented by the two different

information sets (2t) and (2b) near the choices for player 2. This development will also change

the strategy for player 1, as she now knows that if she plays B, player 2 will play r to obtain a

better payoff.

This kind of representation can also be used for complex games like chess. Clearly in that

case each player will have a plethora of choices and the tree will practically not be drawable.

2.1.2 Strategic form

The strategic form, also called Normal form, represents a game using fewer elements compared

to the previous form.

Formally a finite game Γ with complete information in the normal form can be specified as

follows:

Γ = (N,Si, ui) ∀i ∈ N.

In this case each strategy includes all the actions a player will take at every choice point she has.

The normal form can be represented as the matrix of the payoffs associated with every possible

combination of strategies. Clearly if more than two players are involved in the game the matrix

representation is not adapted. The normal form is used when the actions are simultaneous or

when players decide their strategy without knowing the action of the others. Otherwise the

extensive form is generally used. The representation of the first of the two games presented in

section 2.1.1, is shown in table 2.1.
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Table 2.1: The normal form for the first version of the game game presented in section 2.1.1.
The two players decide their strategy without knowing what the other will do.

Player 2

L R

P
la

ye
r

1 T (2, 2) (4, 0)

B (1, 0) (3, 1)

Also the second version of this game can be represented in this form. However in this case

the possible strategies for player 2 are not only {L,R}. The strategy set is modified to take into

account the two possible information sets, in this way player 2 will be able to decide his strategy

before knowing the choice of player 1. The new strategy set will be {Ll, Lr,Rl,Rr}, where for

each pair, the first action correspond to the reply for player 1 playing T and the second for her

playing B. The corresponding strategic form representation is in table 2.2.

Table 2.2: The normal form for the second version of the game game presented in section 2.1.1.
Here too the two players decide their strategy without knowing what the other will do, but the
strategy for player 2 includes the reply for each one of the moves for player 1.

Player 2

Ll Lr Rl Rr

P
la

ye
r

1 T (2, 2) (2, 2) (4, 0) (4, 0)

B (1, 0) (3, 1) (1, 0) (3, 1)

2.2 Equilibrium

The equilibria represent the most common solution concept used in game theory. A solution

concept is a formal rule for predicting how the game will be played. The predictions are called

solutions and describe what strategy will be selected by each player that takes part in the game.

A pure strategy si for player i is a complete plan of action that describes what a player will do

every time he can chose between multiple options. The strategy set Si of a player i is the set of

all possible pure strategies that this player can use.

Solution concepts, in most games, will find more than one possible solution. Some of these

solutions use pure strategies, some of them use mixed strategies.
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2.2.1 Mixed strategy

A mixed strategy σi for a player i is a set of probabilities ∆(Si) assigned to each pure strategy

si ∈ Si available to that player. Any strategy si will be selected with a nonnegative probability

σ(si). This allows a player to randomly select one pure strategy. The set of mixed strategies

available to a player is infinite, assuming that that player has at least two possible pure strategies.

The sum of the probabilities in a mixed strategy must be exactly 1:∑
si∈Si

σ(si) = 1.

The probability set of a mixed strategy can be represented as a vector in Rmi where mi is the

cardinality of the set Si. As the sum of the elements of these vectors is one, the set of all

possible vectors can be represented as a simplex, the simplexes for mi = 2 and mi = 3 are shown

in figure 2.3.

mi = 2 mi = 3

Figure 2.3: Unit simplex for mi = 2 and m1 = 3.

Clearly pure strategies are also part of the simplex. A pure strategy sk is a particular case

where σ(sk) = 1 and σ(sj) = 0 ∀j 6= k, i.e. a vertex of the simplex. A strategy profile is a set of

strategies containing one strategy for every player in the game. A strategy profile is a complete

specification of all action of the game. When the strategies are mixed, this profile σ is called

randomized strategy profile.

σ = (σ1, ..., σn), σ ∈ ×
i∈N

,∆(Si)

is a vector of mixed strategies for all players i ∈ N where n is the size of N .

Emergence of Cooperation on Static and Dynamic Networks Enea Pestelacci



2.3. SOME GAMES 11

2.2.2 Nash Equilibrium

The Nash Equilibrium (NE) is the most famous and widely used equilibrium concept. This

solution concept has been proposed by John Forbes Nash in [72].

In order to explain the NE a few more concepts have to be introduced. Let’s define as ui(σ) the

expected payoff of player i when all players choose their strategies independently according to

a strategy profile σ. Let’s also denote with (σ−i, τi) the randomized strategy equal to σ except

for player i that will use strategy τi.

A Nash Equilibrium is a randomized strategy profile σ∗ that verifies:

ui(σ
∗) ≥ ui(σ−i, τi),∀i ∈ N, ∀τi ∈ ∆(Si)

Which means that σ∗ is a Nash Equilibria iff no player could expect an higher payoff with an

unilateral deviation from this profile. J. Nash proved that such an equilibrium exist for every

finite game Γ. The proof of this theorem can be found in [71], page 138, and in [122], page 51.

If we go back to the two variants of the game presented in section 2.1.1, in the first version,

without complete information, the NE is (T, L) with payoff (2, 2). Any deviation from this will

lower the payoff of the the player that changes strategy. In the second version of the game the

NE is (B,Lr) with a payoff of (3, 1). In this case player 2 excludes strategies Rl, Rr and also

Ll because they are less interesting. Knowing that player 2 strategy should be Lr player 1 will

play B to get an higher payoff.

2.2.3 Pareto efficiency

The Pareto efficiency (or Pareto optimality) is an economic concept that finds applications in

other fields. When different possibilities exist for allocating benefits, a change in the allocations

that improves the benefit of one individual without worsening the situation for the others, is

called a Pareto-optimal move, or a Pareto improvement. An allocation is defined as Pareto

efficient when no Pareto improvement is possible anymore, i.e. it is not possible to improve

the payoff of an individual without putting another in a less desirable position. The concept of

Pareto optimality does not take into account the desirability of an allocation.

2.3 Some games

Let’s now illustrate some simple games that have been used in this work. All these two-person,

two strategies games are symmetric, which means that each player has the same strategy set.

The payoff matrix for these games is shown in table 2.3.

2.3.1 Coordination and cooperation

In the games presented in the following sections two concepts will be used: Cooperation and

Coordination. Cooperation is used to identify the action of an agent that is taking some risks

Emergence of Cooperation on Static and Dynamic Networks Enea Pestelacci
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Table 2.3: The normal form of a generic two-person, two-strategies, symmetric game.

s1 s2

s1 (u1, u1) (u2, u3)

s2 (u3, u2) (u4, u4)

and sacrificing the possibility of an higher (or guaranteed) benefit to help his partner(s). Coor-

dination is merely the results of two agents applying the same action at the same type. In some

games, coordination is preferred, as it provides the highest benefits to all agents involved, but

this is not always the case.

In the case of Prisoner’s dilemma, cooperation can be seen, as said previously, as the action of

a altruist player trying to help his opponent and exposing himself to the worse possible outcome.

Coordinating on the cooperative strategy is unstable because both players are tempted by the

highest payoff that could be obtained by defecting and are also “scared” to be betrayed by the

opponent. Coordination on the (s2, s2) is the only stable equilibria because in this way the

player are protected from the betrayal.

In the Stag hunt game, cooperation also means being exposed to the betrayal of the partner,

but in this case the act of cooperation is also enforced by the attempt to obtain the highest

possible benefit. In this game coordination is stable in both cases, however coordination on the

cooperative strategy is Pareto-dominant and thus preferred.

In the Hawk-doves game, cooperation simply means sharing resources with the opponent.

By coordinating on the cooperative strategy both players would obtain a good payoff, however

the possibility of higher gains tends to push the players to bully the opponent.

Finally, on the pure coordination case, the only way for players to obtain a benefit is to

coordinate. There is no possibility of higher gain in deviating from any of the coordination

points and cooperation does have almost any relevance in this setting.

Although coordination and cooperation are close but distinct concepts, in the literature often

the term cooperation is used to mean both; for example in the Stag Hunt game. This is also

the case of the articles appearing in this thesis.

2.3.2 Prisoner’s Dilemma

The prisoner’s dilemma is one of the fundamental problems in game theory and demonstrate

why two personas may not be interested in cooperation even if it’s in their best interest to do

so. A classic example of the prisoner’s dilemma (hereafter PD) is the following:

Two suspects are arrested by the police. The police have insufficient evidence for a conviction, and, having

separated the prisoners, visit each of them to offer the same deal. If one testifies for the prosecution

against the other (defects) and the other remains silent (cooperates), the defector goes free and the silent
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accomplice receives the full 10-year sentence. If both remain silent, both prisoners are sentenced to only

six months in jail for a minor charge. If each betrays the other, each receives a five-year sentence. Each

prisoner must choose to betray the other or to remain silent. Each one is assured that the other would

not know about the betrayal before the end of the investigation. How should the prisoners act?

The payoff matrix for this game is in table 2.4.

Table 2.4: A payoff matrix for the prisoner’s dilemma. The payoff represents the years of
jail-time, C stands for “Cooperate” and D stands for “Defect”.

C D

C (−0.5,−0.5) (−10, 0)

D (0,−10) (−5,−5)

It is in the best interest of both players to cooperate, and get only 6 months of jail-time. However

both player will be tempted to betray the partner and try to go free. The only NE is exactly

(D,D). Each player defects, and they both obtain a bad payoff. A game where the payoff

respect the same ordering u3 > u1 > u4 > u2 is also an example of PD and shares the same

properties.

Many examples of prisoner’s dilemma can be found in real-life. Its wide applicability is the

reason of the interest in this game.

Sports: This dilemma applies to the use or not of performance enhancing drugs. Each athlete

will obtain approximately the same benefit from drugs. So it’s an advantage to everyone that

no athlete take drugs, because drugs have side effects. However if an athlete takes the drugs, he

will gain an advantage over the others, unless all the athletes do the same. When all take the

drugs the advantage is cancelled, but everyone is affected by the side-effects.

Climate change: All countries would benefit from a stable climate, but any country is often

hesitant in enforcing the reduction of the emissions of CO2. The benefit to one country of

maintaining the current behavior is greater than the benefit to everyone if all countries comply

and modify their behavior.

Politics: The arms race between two states can be seen as an example of prisoner’s dilemma.

Both states can agree in reducing weapons or invest in the army. Both states will profit from

increasing the military expenses, no matter what the other does. So both states rationally decide

to invest more in the army, even if the result is apparently irrational.
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2.3.3 Chicken

This game is also often called “Hawks and Doves” or “Snowdrift”. It is another well known

metaphor for conflict that captures some important features of social and geopolitical interaction.

The principle of this game, is that if a player yields to the other he gets an inferior payoff.

However, if neither player yield the outcome is worse for everyone. The game can be described

as follows: two drivers, in two cars, both headed towards a bridge. The first drivers who stops

or swerves leaves the bridge to the other and loses, he is the “chicken”. If neither one yields,

they will both potentially end up in a fatal head-on collision. Theoretically the best thing for

both players is to wait for the other player to yield. The crash is the worse possible outcome

for both players, not yielding when the opponent does is the best outcome. This leads to a

situation where each players try to reach the best possible outcome while risking the worst.

This game has also been compared with nuclear brinkmanship [98]. Two parties engage in a

showdown with nothing to gain, while an uncontrollable risk can lead to a potential disaster.

For this reason this game has been used to describe the mutual assured destruction involved

in the Cuban Missile Crisis [94]. In the Hawks and Doves version it represents two animals,

competing for some resource. If they agree in sharing the good (doves) they obtain a good

outcome. However the best possible payoff is obtained by being a bully (hawk) and scaring the

other (dove). The worst case scenario happens when both animals decide to compete for the

resource and they end up injuring them selves for more than the value of the good itself.

The payoff matrix for this game is in table 2.5.

Table 2.5: A payoff matrix for the Hawks Doves Game.

dove hawk

dove (2, 2) (0, 4)

hawk (4, 0) (−1,−1)

When we formally analyze this game we find three equilibria: (dove, hawk) and (hawk,dove)

are two pure strategy NE, the third equilibrium is a mixed strategy. The mixed strategy equi-

librium can be found in the following way. Let’s suppose that player 2 will play dove with

probability p and hawk with probability 1 − p. In this case the expected payoff for player 1 if

he plays dove will be:

E1[dove] = 2p

and if he plays hawk his payoff will be:

E1[hawk] = 4p− (1− p)
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Player one will be indifferent in playing dove or hawk when E1[dove] = E1[hawk]. Which

means 2p = 4p− (1− p)⇒ 3p = 1⇒ p = 1/3. Assuming that also player 1 also plays dove with

probability q, player 2 will go through the same reasoning and conclude that q = p = 1/3. Thus

the NE for this game is σ∗ = (1/3, 2/3) for both players. This kind of game is also called an

anti-coordination game as it is mutually beneficial for both players to play different strategies.

2.3.4 Stag Hunt

This game describes the conflict between social cooperation and safety. It’s origin is probably

J.J.Rousseau ’Discourse on inequality’. The story is about two hunters, they can try to hunt a

stag (strategy S), which could feed them and their families for several days, but they have to

cooperate to catch one. Or they can hunt for rabbits (strategy R), which is an easier pray and

can be caught by one hunter alone, but provides food for only one day. Clearly if one hunter

decides to go for rabbits and one hunts for a stag the first one will catch something and the

second one will be back empty handed.

The payoff matrix for this game showed is in table 2.6.

Table 2.6: A payoff matrix for the Stag Hunt Game.

S R

S (3, 3) (0, 2)

R (2, 0) (1, 1)

In this game mutual cooperation (S, S) is the best outcome and it’s a NE. This equilibrium

is also Pareto-efficient because the payoff is optimal for both players. (R,R) is also a NE of

the game, this equilibrium is inferior to the other one but it’s risk-dominant as a player is not

exposed to the risk of the other player playing the other strategy. In between these two pure

strategy equilibria, there is a third one in mixed strategy. With the current payoff matrix the

probability to play S is pS = 1/2 for both players. The dilemma lays here in the “fear” that

may lead the players to miss the optimal equilibrium to protect themselves from the other player

selfish behavior.

2.3.5 Pure Coordination

This class of games model many common situations in society. The idea is that cooperating on

a problem will help all parties in realizing a mutual gain. But only making mutually consistent

decisions. A common example is the choice of technological standards.

A common example of the payoff matrix for this class of games, for two-players and two-strategies

is shown in table ??. This table can easily be generalized for the case with n−strategies for each

player by using an n× n payoff matrix with positive values only on its main diagonal.
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Table 2.7: A payoff matrix for a pure coordination game.

1 2

1 (u1, u1) (0, 0)

2 (0, 0) (u2, u2)

A simple example of pure coordination game is the driving game. Roads have two sides, in

some parts of the world people drive on the left side, on some other places they drive on the

right side. Both situations are stable and perfectly fine. There is no reason to prefer one or the

other and some countries got accustomed to drive on one side of the road, and some others on

the other side.

Usually such conventions are stabilized over times, but sometimes are introduced overnight

for some other reason. For example recently, in september 2009, the Samoa government decided

to change to driving on the left side of the road to reduce the price of the cars. As left-hand drives

had to be imported from the Americas while right-hand drives could be cheaply imported from

the closer countries. Moreover the government suggested that samoan expatriates in Australia

and New Zealand could send used and cheapest cars to their relatives in Samoa.

Another famous example is the overnight change to right side driving imposted by the

Swedish government in 1963, against the decision of a 1955 referendum where 83% of the swedish

voted to keep the driving on the left.

It is easily seen that apart from the two pure strategies equilibria, a third NE exist in mixed

strategy. The probabilities depends on the actual payoff matrix, for example p = 1/2 for the

driving game.

Bargaining problems like selling and buying goods are also a coordination game. There

certainly are conflicting interest in play but in final there should be coordination to conclude

the sale.

2.4 Evolutionary game theory

Evolutionary game theory (EGT) introduces a dynamical concept in game theory. In real world

agents can observe their behavior and sometimes also have a perception of the behavior of other

players, and can adapt their strategy to improve their payoffs. Real agents will adapt to their

increasing knowledge of the game and the environment. EGT has originated from the work of

Maynard Smith and Price in 1973 [65, 64], as an application to the mathematical framework of

game theory to biological problems. EGT now has cought the interest of sociologists, anthro-

pologists, philosofers, and economists. Biological evolution, the inspiration for EGT, submit a

population of individuals to a source of variation that should provide diversity and applies a
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selection mechanism to favor fitter variant over individuals who are less adapted to the current

environment. EGT translates these concept in the following elements:

• It uses a large population of players, each player uses a fixed strategy when engaged in a

two-person game.

• Pair of anonymous players are randomly extracted from the population to play the game

and receive the corresponding payoff.

• A selection mechanism ensures that the diffusion on the population of best performing

strategies is increased.

• Players are not rational in the sense proposed in the previous sections. Here they only

need to apply their built-in strategy.

These elements have been formalized in a selection mechanism called replicator dynamics.

2.4.1 Replicator Dynamics

For mathematical convenience replicator dynamics (RD) is applied to an infinite population.

At each time t the population is in a state that corresponds to a vector of n pure strategies

x(t) = (x1(t), ..., xn(t)) where xi(t) is the fraction of the population using strategy i. This

polymorphic population state can also be interpreted as a whole population of players playing

the corresponding mixed strategy. Pairs of agents are randomly selected from the population to

play the game. u(ei, x) is the payoff of the pure strategy i in state x, and u(x, x) is the average

payoff of the population defined as : u(x, x) =
∑n

i=1 xiu(ei, x).

If the payoffs are considered like fitness in biology, i.e. they reflect the amount of offspring

that will inherit the same trait, the frequency of change of a strategy in the population is

proportional to the difference between the average payoff of that strategy and the average payoff

of the whole population. We can write the following equation:

dxi
dt

= ẋi = xi[u(ei, x)− u(x, x)] = xi(ui − ū), i = 1, ..., n

where ū is the average payoff of the population and ui = u(ei, x). This system of differential

equations represents the replicator dynamics. From these equations it’s easily seen that a strat-

egy that does better than average will end up reinforcing its presence in the population. It’s also

clear however that a strategy that is absent in the population, cannot appear as basic replicator

dynamics does not include the concept of mutation.

The next step will be to find if this selection mechanism allows the emergence of stable states

in the population state and the differences between these states and the NE found by means

of classic game theory. The general result is that, among the stationary states of the dynamics

one usually finds the Nash equilibria of the corresponding static game. For details the reader is

referred to [122].
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2.4.2 Evolutionary stable strategy

Evolutionary stable strategies (ESS) have been introduces by Maynard Smith and Price in

1973 [65, 64]. A strategy x is an ESS in a population if a small number of individuals playing an

alternative strategy y are unable to invade the population and eventually replace x. This notion

is simple yet elegant and it is also very close to the concept of the NE. More formally, let’s

say that all the individuals of a population act according to strategy x and a second strategy

y ∈ ∆(Si) is used by the few invaders. The payoff for strategy x when played against y as

u(x, y). Let’s also define ε ∈ (0, 1) as the share of mutants in the population. As the pairs

of players are drawn uniformly from the population the probability that an y player will be

engaged in a match is ε, the corresponding probability for an x player is 1− ε. This is equivalent

in playing the mixed strategy w = εy + (1− ε)x. The payoff of the “old” strategy x against the

new strategy w is thus u(x,w) and the payoff of the mutant strategy y is u(y, w). Strategy x is

an ESS if:

u[x, εy + (1− ε)x] > u[y, εy + (1− ε)x],∀y ∈ (Si), x 6= y,

and the share ε of mutants is small enough.

A second formulation for this same concept can highlight its relationship with the NE;

strategy x is an ESS if:

u(x, x) ≥ u(y, x) ∀y,

or if

u(x, x) = u(y, x)⇒ u(x, y) > u(y, y) ∀y 6= x

The first condition is equivalent to the NE for the underlying game. The second condition

refines this formulation by stating that an ESS is not only at least as good against itself then

any other invading strategy, but that the original strategy performs better against the invader

than the mutant strategy performs against other mutants. Finally the ESS concept can be seen

as a refinement of the NE and ∆ESS ⊂ ∆NE , which means that some NE are not ESS, this

concept can thus help reduce the number of solutions of a given game. For further details the

reader is again referred to [122].

As an example we can look at the Hawks-Dove game presented in section 2.3.3. Let’s

assume a population of only Hawks. If a few Doves appear in the population, as the result of a

mutation or an error, the invaders will perform well against the original players, and in the rare

encounters with other doves. Given that the ratio ε of doves is small, encounters between doves

are really rare. However as u(D,H) ≥ u(H,H) the ratio of doves will increase in the population.

Emergence of Cooperation on Static and Dynamic Networks Enea Pestelacci



2.5. STRUCTURED POPULATIONS 19

consequently (H,H) is not an ESS. The same reasoning can be applied to a population of only

doves with a few mutant haws. The outcome will be that also (D,D) is evolutionary unstable.

With this process we discarded two NE as not evolutionary stable. The third mixed strategy

equilibrium is thus the only NE that can be “translated” in a ESS. The stable state is reached

when the proportion p of doves in the population is equal to the probability to play D in the

mixed strategy NE for the corresponding payoff matrix.

2.5 Structured populations

Standard game theory is about a limited number of players, engaged in an instance of a game.

It predicts what a completely rational individual will do to maximize his benefit at the end of

the game.

Evolutionary game theory extends this to an infinite number of players, randomly matched

to play infinite matches of a game always against a new random opponent. In this case we

apply the biological concept of natural selection to refine the solutions found using standard GT

and remove those that are unstable. Despite it’s advantages, EGT fails to explain the levels of

cooperation found on populations of living creatures.

Let’s look at the assumptions made by these two theories and compare them to real societies:

more specifically, in reality, individuals are not completely rational, their knowledge is limited,

population size is limited, and encounters are not random. The first two observations have

been addressed with EGT as, in that case agents act on the basis of their traits and not their

rationality.

To have a more realistic population, in term of size and possible interactions, in 1992 Nowak

and May [84] introduced the use of networks as the underlying structure for the population. In

their pioneering work they empirically showed that in a population of PD players placed in the

nodes of a regular two-dimensional lattice and only interacting with their Moore neighborhood

(the eight closest neighbors, see figure 2.4) cooperation can be maintained.

Although this structure is a quite simple one, the structure and the absence of random

mixing seems to enable the formation of clusters of cooperators. The presence of such clusters

help the cooperators to improve their wellness as encounters with exploiting defectors are less

likely, and also help the cooperative strategy to be spread trough imitation to the agents close

to the cluster as they are able to perceive the better performance of that strategy and they

are thus pushed by selection to change strategy. These first results on structured population

were really promising, however to acquire a better understanding of the role of the population

structure, more complex structures such as complex networks have to be studied. As networks

will be used to represent and analyze the structure of the populations used in this work, the

next chapter will introduce some aspect of networks and their characteristics.
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Figure 2.4: In a two-dimentional lattice sigh as the one pictured here, the Moore neighborhood
of the central black node, correspond to the eight white nodes around him.
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Chapter 3

Networks

i have a friend request from some stranger on

facebook and i delete it without looking at the

profile because that doesn’t seem natural. ’cause

friendship should not be as easy as that. it’s like

people believe all you need to do is like the same

bands in order to be soulmates. or books. omg...

U like the outsiders 2... it’s like we’re the same

person! no we’re not. it’s like we have the same

english teacher. there’s a difference.

David Levithan

Networks can be found everywhere. Some networks are well apparent, like roads or power

lines. In some other cases networks are just an abstract representation of relationships or

dependancies: for example we can build the network of the commercial exchanges between

nations or the network of the interaction between a community of chimpanzees. Many objects

in many fields like social sciences, physics, and biology can be represented using a network.

These networks can provide useful information about the system they represent and allow the

study of the system itself and its dynamics.

In mathematics, a graph is an abstract representation of a set of vertices or nodes that are

connected by edges or links (Figure 3.1(a)). A network is special case of a graph where links

represents relationships and nodes represents “personas”. In this work both terms network and

graph will be used to indicate the same concept of interconnected system of things. The links in

a network can be undirected when the relationship is reciprocal or directed, to represent one-way

relations (Figure 3.1(b)). A network composed by directed edges is a directed network, one with

undirected links is an undirected network.

When a graph is used to represent a real system, this representation generally require a great

simplification as many details that characterize the real system will be lost in the process. In the

end, even if so much information disappears, what’s left often allows the discovery or a better

understanding of several phenomena.

As a relatively new science, Network Science, is recently gathering much interest. This field
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is aimed to the discovery of the common phenomena than characterize the behavior of networks

and is defined by the National Research Council as ”the study of network representations of

physical, biological, and social phenomena leading to predictive models of these phenomena.”

The first known study about networks is ”Seven Bridges of Königsberg” written by Leonhard

Euler in 1736; in this writing Euler present his solution for crossing every bridge that links

the islands of the city of Königsberg representing the island as nodes and the bridges as edges.

The definitions and analysis of the swiss mathematician are the foundation of graph theory and

lead to the introduction of the concept of topology. In this work the concepts of structure and

topology referred to networks are used with the same meaning, however in their mathematical

sense they represent two different concepts.

(a) (b)

Figure 3.1: Example of undirected (a) and directed (b) networks.

As a example of a network of social interactions we can look at Facebook. In this case each

link represents a friendship relationship, both users have to agree to create one link, therefore

Facebook is an undirected network. This network represents a notable simplification in regard to

a real acquaintance network. It’s obvious that, in real-life, someone cannot have an interaction

with another person if this second person does not also have an interaction with the first one.

However there directed interactions can have a different intensity. This difference can be included

in the model as a numerical value attached to the link, in which case we will say that the edge

is weighted. This weight (or strength) can be an abstract representation of the importance

of a friendship or the number of times this relation has been exploited. If we want to add

another degree of complexity we can use inhomogeneous networks. A network is labeled as

inhomogeneous when links and/or nodes represent different kind of relationship respectively

personas. For example a model for geographic localization of acquaintances will include two

kind of nodes: locations and people; and several kind of relationships between these entities like:

“friendship” undirected, between people; “knowing someone” directed between people; “home

address” between people and locations; and “road” between two locations, etc.
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3.1 Definitions

In the previous section we briefly presented the basic concepts that define a network. Now

we will introduce a few mathematical tools that will allow a characterization of such networks

and a better understanding of the properties, the similarities, and the differences of different

topologies. A more extensive presentation of graph properties can be found in the book of

Newman [78].

3.1.1 Graph

A graph G is an ordered pair G(V,E) where V is a set of N vertices and E is a set of binary

relationships between two elements of V . If G is an undirected, respectively directed, graph any

pair of vertex i and j elements of E is an unordered, respectively ordered, pair. When an edge

(i, j) exist in the graph, the vertices connected by this links are called neighbors.

A path between two vertices i and j is a sequence of links that should be traversed to reach

j when starting from i with no edge traversed more than once. The length of such path is the

number of edges in it. The shortest path between i and j is the shortest possible sequence and

the distance between i and j is the number of edges in the shortest path between i and j. The

characteristic path length L of a network is the average of the shortest distances between the

nodes of the network.

A graph is connected when a path exist between each pair of nodes i, j ∈ V . An undirected

graph is completely connected when ∀i, j ∈ V,∃(i, j) ∈ E. The total number of nodes of a

complete graph is |E| = N(N − 1)/2. A sparse graph is a graph where |E| � N(N − 1)/2. A

completely connected subgraph with M < N vertices is called an M -clique.

The neighborhood of a node i in graph G is normally denoted as NG(i) (or simply N (i)) and

represents all the nodes that are connected to i with a link: NG(i) = {j ∈ V |(i, j) ∈ E}. That

is also the set of nodes that are at distance one from i.

The degree k of a node i is the number of edges departing from this node; it’s equivalent

to the number of neighbors of i. In the case of a directed graph every node has two distinct

degrees: kin and kout that represent the number of links arriving, respectively departing, from

that node. The average degree k̄ (or 〈k〉) is the mean value of all the vertex degree of a graph

G. In the case of a directed graph note that k̄ = k̄in = k̄out

A regular graph is a graph where all the nodes share the same degree k. In this case the

average degree k̄ of the graph is equal to the degree k of every node and is often simply noted

degree of the graph K = k̄.

The degree distribution of a graph is the probability distribution of the degrees P (k) of the

whole network. It represents the probability for a vertex i to have a particular degree k. The

cumulative degree distribution represent instead the probability for a node k to have at least a

degree k.

The assortativity represents the preference for the nodes of a networks to be attached to

other nodes that are similar (or different) in some way. Usually, assortativity in networks is
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mesured through neighbors degree, in this case the assortativity will represent the correlation

between the degree of the nodes. A networks is assortative when the highly connected nodes

tend to be connected to other high degree nodes or disassortative when highly connected nodes

are mainly linked low degree nodes [74, 78].

3.1.2 Clustering Coefficient

The clustering coefficient is a measure of how much the nodes of the graph are clustered together.

In other words it represent the probability of two neighbors of a node u to be connected. The

clustering coefficient Ci of a single node i is defined as the ratio of existing edges Ei between the

neighbors of i and the total number of edges that could exist:

Ci =
2Ei

k(k − 1)

because in an undirected graph, k(k− 1)/2 links can exist between the neighbors of a node with

degree k.

The clustering coefficient of a graph, often simply called clustering coefficient, is the average

value of Ci for all the nodes i ∈ V :

C =

∑N
i=1 Ci
N

The value of the clustering coefficient is in general quite high in real world network and especially

social networks because “the friends of someone tend to also be friends”.

3.1.3 Communities

Another characteristic of a network can be the existence of a community structure. A community

is a subgraph G′ within G with an high density of links between the nodes of G′ and only few

links between the elements of G′ and the rest of the graph. It’s not possible to find a community

structure in all networks, but many real-world network have one.

The interest in communities stems from the fact that knowing the community structure of

a given network can provide useful insight about the functioning of the network and how the

topology influences it. For example, the community structure that can be found on Zachary’s

“karate club” network [130](Fig. 3.2), predicts almost exactly the communities formed by the

members of the club after part of them left the original club to found a second one.

Finding communities within an arbitrary network is a quite difficult task because the number

and size of the communities cannot be know in advance. Moreover, the size of the communities

of a network is often very different and these communities present a different density.

Modularity is a measure of the quality of a division of a network into communities [77], the

value of the modularity Q ∈ [−1, 1]. The higher this value the better is the division. A value of

Q > 0 qualifies a structure where the number of edges between the nodes of a group is greater
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Figure 3.2: The communities on Zachary’s Karate Club graph.

than the number expected on the basis of chance.

3.2 Network Topologies

3.2.1 Regular networks

Regular networks have a constant degree K for all the nodes, and, in the case of lattices, an high

characteristic path length. Community structure is absent but the clustering coefficient can be

high. The most common regular networks are probably one-dimensional and two-dimensional

lattices, commonly known as rings and grids respectively. A ring can have different values of

connectivity, in figure 3.3 an example with of K = 2 and K = 4 is shown. Grids can also have

different degrees K the most common are 4 and 8.

In order to have a completely regular grid, the structure should be wrapped around on itself

to form a three-dimensional ring, called torus. In practice the nodes on the first row have to be

connected to the nodes on the last row, and the nodes on the first column should be connected

to the nodes on the last column (see figure 3.4).

This kind of network is commonly used in mathematical models because of their regular

properties. However real world networks often present structures that are not of a regular type.

3.2.2 Random graph

Another common structure is the Random graph. In this networks pairs of edges are connected

at random. The most common model for these networks is the one created by Erdös-Rényi [27].
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(a) (b)

Figure 3.3: One-dimensional lattices with K = 2 (a), and K = 4 (b) respectively.

(a) (b)

(c)

Figure 3.4: Two-dimensional lattices with K = 4. In (a) the degree is not constant. To have a
homogeneous degree the links in (b) should be added. A three-dimensional representation of a
two-dimensional lattice is a torus like the one in figure (c).

In this model the probability p of creating a link between each possible pair of node is given.

A family of graphs G with N nodes and probability p is defined as G(N, p); this graph has

|E| = p(N(N − 1)/2) links. A second variation of this model also exist. In this second version

instead of defining the probability of a link we decide how many links in total will be present in
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the network. This model is defined as G(N,m), where m is the total number of links. As m = |E|
it’s easy do calculate the probability p for this graph. This second variation is especially useful

when generating small graphs when the stochastic of the process generate a variable number of

links at each try. The clustering coefficient of a random network is close to p. The average path

length is short compared to that of regular networks.
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Figure 3.5: (a) A random graph and an example of binomial distribution (b).

The degree distribution of a random graph is a binomial distribution with the average degree

k̄ = p(N − 1) of the graph as the center of the characteristic bell.

Another variant of random graph are regular random graphs. These graphs have a constant

degree K but the the neighborhood is random. These structures maintain the clustering coef-

ficient C = p, and a short average path length like the other random graphs, but the degree of

the nodes is now constant like in more regular networks.

3.2.3 Complex networks

When looking at real networks in several fields like economy, biology, engineering, sociology, etc.

one can see that these networks are not regular nor random. The study of complex networks is

still young and its largely inspired by the increasing amount of empirical data on technological

and social networks.

Complex networks display non-trivial properties that are not found in regular or in random

graphs. These properties are for example, a community structure, high clustering coefficient,

fat-tailed degree distribution, (dis)assortativity, etc.

It’s a Small-World: In a short story published in the 1929, Frigyes Karinthy, an hungarian

author, proposed the concept of the six-degrees of separation. The idea is that everyone can

reach any other person in the world through a chain of friends of friends of maximal length 6.

This concept was at the base of an experiment conducted by the american social psychologist

Stanley Milgram, an published in 1967 [67]. Milgram’s experiment consisted in confiding to
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randomly chosen persons, a letter addressed to someone in a distant social and geographical

situation. The letter could only be given to a known person in the aim of approaching the

selected target. Most of the chains where interrupted but the average length of the chains that

arrived at destination was 5.5. This result was a probably the first demonstration of the small

world problem, i.e. that even in a large network such as the US citizenes, short path existed

between complete and distant strangers.

Small-world networks are networks that mimic this property: the average path length is

relatively short. Watts and Strogatz proposed a simple procedure to a particular class of small-

world networks in [127]. These networks are constructed starting with a regular one-dimensional

lattice and then replacing with a probability pr a current link with a new one between one of

the two old nodes and a new random one.

This algorithm allows a transition between a regular lattice with pr = 0 and a random graph

when pr = 1. When 0 < pr < 1, or more precisely for a small interval of values of pr between

0 and 1, the rewiring process allows the creation of graphs that have at the same time a small

average path length and an high clustering coefficient (see figure 3.6).

pr = 0 0 < pr < 1 pr = 1
(a) (b) (c)

Figure 3.6: The regular lattice (a) and the random graph (c) are the extreme cases for a Watts-
Strogatz small-world graph. A regular small-world graph with the typical short-paths (b).

Scale-free networks: A scale-free network is characterized by it’s degree distribution. The

networks of this class have a non-negligible number of highly connected nodes, called hubs

and many nodes with a low degree. The resulting degree distribution P (k) has a heavy tail

and follows a power-law distribution: P (k) ∼ k−γ , normally the constant γ ∈ [2, 3] but it is

sometimes outside these bounds. This class of complex networks is important because many

real world networks have a fat-tailed distribution including protein networks, citation networks,

neural networks, and some social networks. The interest in scale-free networks emerged in 1999

when Barabási et al. [2] mapped a portion of the Web and showed that a small portion of the

pages, the hubs, have many more connections than the rest and the degree distribution follows

a power-law. Barabási et al. [3] proposed an interesting mechanism to explain the emergence of
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networks with a power-law distribution called preferential attachment. The idea is inspired by

the evolution of the World Wide Web and lays on the idea that when new pages is created this

pages will, with high probability, have links to well know, and thus well connected, pages.

The Barabási-Albert’s algorithm progressively builds a graph starting from a clique with

m � N nodes, and then adding one-by-one the other N −m nodes. When a node is inserted

in the networks m new links are created starting from this new nodes and are attached to m

existing nodes selected with a probability proportional to the degree they already have. This

model allows the creation of networks with an exponent γ ≈ 3. An example of a small network

build using this algorithm can be seen in figure 3.7.

Figure 3.7: An example of a small scale-free graph. The size of the nodes is proportional to the
degree: the big vertices are the hubs of this network.

Another popular way to build scale-free networks is the configuration model. In this case

the distribution is decided and the degree assigned to the node before creating any link. Then

the algorithm matches the nodes in order to create the links, while avoiding self-loops, and

multiple-links between the same nodes. With this method one can create scale-free graphs with

exponent γ 6= 3.The configuration model has the advantage of avoiding the correlations between

the nodes degrees introduced by the Barabási–Albert model, however establishing the links and

avoid the deadlock is often too time consuming.

Social networks: Social network are not characterized by a precise mathematical property or

a precise set of properties. They are simply structures where the nodes are individuals and the

ties represents a relationship such as kinship, friendship, common interest, sexual relationship,

economic exchange, scientific co-authorship, and so on. The first example of such networks have

been constructed ”on the field” by direct observation, like the karate club network in figure

3.2; by mean of interviews and questionnaires; or using archives or third-party records, like the
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co-autorship network shown in figure 3.8.

Social networks are indeed very varied: both by simple networks characteristics like size,

average degree, etc. but also by the kind of social structure they represent. Despite all their

differences these networks have also many similarities from a statistical point of vie: like the

small-world property; a fat-tailed degree distribution, even if often this distribution is not power-

law but rather an exponentially truncated or stretched exponential; they also present a high

clustering coefficient and a strong community structure. Moreover they often show positive

assortativity, which means that highly connected agents tend to associate with other highly

connected individuals. A famous example of social network is the Zachary’s “karate club” [130],

this network is pictured in figure 3.2. This network was constructed by direct observation

and represents the pattern of friendship between the members of a karate club in an american

university. It’s a small structure with 34 agents but gathering the data by direct observation took

about two years of work. The network in figure 3.8 [117] represents the scientific collaboration in

the relatively young community of the scientists working on Genetic Programming. The image

represents the giant component of the network and include ∼ 1000 authors. Nowadays online

services like Facebook can provide data on huge networks with thousands of agents.

Model social networks: Social networks are, as said in the previous paragraph, representa-

tion of the social interaction of individuals. In this thesis, we also make use of “model social

networks”, the nature of which we explain as follows. Model social networks are networks gener-

ated by means of an algorithm, that display characteristics close to social networks collected by

empirical study. To differentiate these two classes of networks we often use the terms “real social

networks” and “model social networks”. An example of a model for creating social networks is

presented in the next chapter, in section 4.5.

3.2.4 Dynamic networks

Networks exist all around us, however these networks are not frozen, they are in constant

evolution. Agents may join or leave a networks, new bonds can be established and old ones

can disappear, the strength of a link may change, etc. When we analyze a real network we

in fact take a picture of this network and use this static image. This kind of procedure will

lead to accurate results especially if the network evolution is rather slow, as is the case for a

network of scientific co-authorship or for the air transportation network. For an example we

can look at the evolution over 20 years of the GP co-authorship network [115] (in figure 3.9).

The changes are pretty obvious, and in particular in the time frame between 1991 and 1997 the

network undergoes profound transformations due to the increasing interest in the topic and a

snapshot of the network in this specific time frame will not be representative of the previous and

successive state of the network. However the current characteristics of the network are evolving

slowly and for this reason working with a snap shot can provide useful insight on the properties

of this graph.
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Figure 3.8: An example of a social network: the co-authorship network of the Genetic Program-
ming community in 2007 (W.B.Langdon, http://www.cs.bham.ac.uk/∼wbl/biblio/).
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Figure 3.9: The evolution of the network of co-authorship of the Genetic Programming com-
munity (W.B.Langdon, http://www.cs.bham.ac.uk/∼wbl/biblio/). (a) shows the number of
authors and collaborations within the community, (b) represent the evolution of the average
degree of the nodes of the network. (c) reports the values for the average clustering coefficient
and (d) shows the average path length of the network.

On the other hand, networks for other phenomena show a faster evolution. For example the

analysis by Kossinets and Watts in [54] of the network of e-mail exchanges within the ∼ 40000

members of the community of a large US university, shows that the properties of this kind of

structure are highly variable.

Because of the importance of the dynamics of the network, we included this aspect in the

second part of this work.
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Figure 3.10: The evolving characteristics of the networks of email exchanges analyzed in [54].
The dashed line represent a smoothing window of τ = 30 days, for the continuos line τ = 60 days
and for the dotted line τ = 90 days. Image (A) represent the average degree of the network, (B)
the fractional size of the largest component, (C) the average path length in the giant component,
and (D) the clustering coefficient. This image has been redrawn from [54].
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Chapter 4

Games on networks

Today the network of relationships linking the

human race to itself and to the rest of the

biosphere is so complex that all aspects affect all

others to an extraordinary degree. Someone

should be studying the whole system, however

crudely that has to be done, because no gluing

together of partial studies of a complex nonlinear

system can give a good idea of the behavior of

the whole.

Murray Gell-Mann

In part II, III, and IV of this manuscript we will present part of the results we obtained in

the last few years in the form of the articles published in some specialized international journals.

In the three articles included in part II we will deal with several kinds of static networks

and see how the topology of these networks and some different update mechanism effects the

cooperation between the agents.

In the two articles included in part III we will look at the behavior of the agents when they

can not only adapt their strategy to their neighbors, but also modify their neighborhood.

In the last two articles, in part IV we will deal with a particular family of games: coordination

games, both from the static and the dynamic points of view, in this case there is no social pressure

to prefer one strategy to the other but where only coordination leads to a positive benefit.

4.1 How simulations work

It can be useful to introduce some additional nomenclature and definitions and to explain how

the simulations used to collect the empirical datas in this works are made. To simulate the

evolution of a strategy in a population we run a computer program that requires a few elements.

First of all a population of players is represented by an undirected graph G(V,E), where the set V

of vertices represents the agents, and the set E of edges, represent their undirected interaction
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between pair of agents ∈ V . We also recall that the neighbors of a player i ∈ V is a set

N (i) = {j ∈ V,∃ (i, j) ∈ E} (see Section 3.1).

The payoff of an agent i is noted Πi and it is obtained by combining the individual utilities u

obtained by i when interacting with his neighbors N (i).

An algorithm to generate the network topology: this can generate a model network,

like a Barábasi-Albert scale-free network using a few parameters, or simply read a file containing

a pre-defined, precise topology.

A game: which is defined by its payoff matrix. In this work we use two-person, two-strategies

symmetric games, thus to define a game we have to define four payoff values.

An update rule: that will be used by the agents to decide how to update their strategy when

a decision to update has been taken.

The initial strategy of every player in the network is also to be defined before starting a

simulation. Generally half of the agents are randomly selected to use strategy 1 and the other

half will use strategy 2, but to analyze the performance of a strategy in a particular situation

sometimes the initial ratio is different.

The timing of the interactions between players is also an important aspect in these simula-

tions. In section 4.4 we explain this factor in more detail.

Once that these elements have been defined, the simulation proceeds to generate a network,

initialize the strategy of the players in the network, and then allow the agents to interact (play the

game) with their neighbors and update their strategy using the update rule. This process goes

on until the population reaches a pseudo-equilibrium. We use the notion of pseudo-equilibria

to indicate a situation where the population is not completely frozen but small fluctuations

continue to occur with no effect on the global trend of the population in the long-term.

To obtain usable statistical measures of the behavior of the agents these simulations are

repeated many times using the same or different parameters and generally for several different

payoff values.

In the following sections there is a brief description of the update rules used in this part of

the manuscript.

4.1.1 Limitations

It is clear that this kind of model is not able to completely capture the complexity of a real social

system. On the other hand, a simplification may help the isolation of important factors and key

mechanisms that allow cooperation to be sustained and also to grow in certain situations.

For example, the assumption that an individual is using only one strategy for all his inter-

actions in a given time step, represents a great limitation when compared to reality, where for

every interaction an agent can use a different strategy in order to improve to a maximum his

benefit. By using this simplification we of course loose some details, but we simplify the model,
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which is important both from an analytical and from a computational point of view. Moreover,

we are interested in phenomena that allows cooperation to be sustained in the whole population,

and not to maximizing the benefit of single players.

Another limitation of the present model is the fact that the global behavior is seen as the

sum of pairwise interactions between players. This is a common approximation and most work

in the field uses it [113, 101, 96, 32]. However, there is also a lot of interest in n−person games,

especially in studies about the provision of public good games [122, 40, 18]. In this thesis we

have limited ourselves to two-person games only.

4.2 Update rules

An update rule allows an agent to select her new strategy by looking at some feature of the

current population. Most of the update rules used here are based on the utility of the agents.

Local replicator dynamics: This update rule has already been explained in section 2.4.1,

but the algorithm used in the local version is slightly different. In a networked population the

agent i will randomly choose one of her neighbors j and compare her fitness Πi with the fitness

of this neighbor Πj . Player i will keep her current strategy if Πi ≥ Πj otherwise she will adopt

the strategy of player j with a probability pj→i = Φ(Πj − Πi)/N , where N is a normalization

factor and Φ is a monotone increasing function. In practice i can only imitate the strategy of a

fittest player, moreover the better this player is, the more probable it will be for i to adopt her

strategy.

The normalization factor N depends on the function used to calculate the utility of a player,

and is needed in order to obtain a probability pj→i ∈ [0, 1].

Imitate the best: This update rule is simpler. When it is used an agent i will select her fittest

neighbor j and adopt j’s strategy if Πj > Πi. When this update rule is applied the decisions

taken by an agent are completely deterministic. In case of a tie, eighter the agent retains her

strategy or will switch with probability equal to 0.5.

Conformism: This update rule has been used in the third paper of this collection (article C)

and does not take into account the utility of players. In this case a player i simply takes one of

her’s neighbors as a cultural model and adopts the strategy of this neighbor if this is the same

strategy used by the majority of i neighbors. This update rule has been introduced because

humans do not only tend to imitate the fittest individual, but they also have a tendency to

comply to the behavior of the majority [16].

Myopic best-response: When this rule is applied, a player is able to decide wether her

current strategy is optimal or not. If the strategy is not optimal the player, with a probability

p, will decide the optimal strategy for her next move on the basis of how her neighbors have
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acted on the last interaction. This rule has been used in the last two articles of this collection.

If the strategy has to be updated, agent i choses the strategy si that will maximize her payoff

Πi, under the assumption the the neighbors will not change their strategy. This rules assumes

that players are able to decide if their strategy is optimal and also that they have the cognitive

abilities needed to select the best strategy amongst the possible ones. This rule also allows the

emergence of strategies that are possible but not present in the population as the evolution does

not rely on imitation.

The rule is myopic as the agent do not consider the effect of her eventual change of strategy on

the evolution of the game.

Other update rules: Other updates rule are for example the Fermi rule [113] and the Death-

Birth rule [81].

Under the Death-Birth rule a player imitate the strategy of one of her neighbors (or her strategy)

with a probability proportional to the payoff; when this rule is used a player i can imitate an

agent that is currently obtaining a payoff lower then i herself.

The Fermi rule is based on the Fermi distribution. With this rule, a neighbor j is randomly

selected and player i will imitate his with a probability depending on the difference between j

and i payoffs and on a fixed parameter β that controls the intensity of selection. The probability

for player i to imitate the strategy of j on the next activation is:

pj→i =
1

1 + exp(−β(Πj −Πi))
.

These last rules have not been analyzed in the works presented here.

4.3 Utility calculation

The utility calculation also has an important role in the success of a strategy. Two particular

examples are accumulated payoff and average payoff. The former consists in summing all the

payoffs obtained by agent i in the encounters with all her neighbors, in this case the payoff of a

player i would be:

ΠACC
i =

∑
j∈Ni

πij ,

where j is a neighbor of i and πij is the payoff obtained by i when playing with j. The

average payoff instead is the average value of the payoffs obtained by i when interacting with

her neighbors:

ΠAV
i =

∑
j∈Ni

πij

ki
,

where ki is the degree of i, i.e. the number of neighbors |Ni|.
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Using a different way to calculate the utility of an agent may introduce several changes in

the behavior of the players. For an example, when considering degree heterogenous networks, a

lousy player with many neighbors may have a greater accumulated payoff than a more efficient

player with only a few neighbors. In the opposite case, when using average payoff, there is almost

no difference in having few or many neighbors; on the contrary, having few good neighbors is

probably better than to have many average neighbors. As some strategy update rules rely on

the utility of the players to decide who to imitate and whether to switch to another strategy,

the way this utility is calculated can introduce great differences in the system.

In article A we look at the different results obtained when these two utility calculation

function are used and we also try to combine them. Moreover we show that when using the

accumulated payoff, the behavior of the agents is no longer only dependent on the order of

the payoff values since an affine transformation of the payoff matrix can completely change the

quasi-stable states of a game (when using replicator dynamics).

In [61] we fully analyze this behavior and propose a different utility calculation function that

preserve the invariance of a game under affine transformation of its payoff matrix and retain

part of the advantages of the accumulated payoff (when replicator dynamics is used).

4.4 Timing

Basically, two different timing policies can be used. In the synchronous case, the interaction and

the update of the behavior of the players are synchronized, and all (virtually) happens at the

same time. This assumption insures that every agent is treated equally in term of number of

times she is able to revise her strategy.

The opposite update timing is the fully asynchronous update. In this case, at each time step an

agent is randomly chosen with uniform probability, she will then interact with her neighbors,

collect a utility, apply her strategy update and decide if she wants to revise her strategy or not.

A third update mode, called semi-synchronous, is used in the articles of part III and consist in

randomly choosing m agents in the population, where m � N , and updating this agents in a

synchronous way. Obviously when m = N we recover the fully synchronous case, while when

m = 1 we are back to the fully asynchronous one.

4.5 Network topologies

In these simulations we used several network topologies. Random graphs, regular lattices, and

Barábasi-Albert scale-free networks have already been presented in chapter 3, we also used the

real social network of the GP coauthors, also presented in chapter 3.

However to better compare the results obtained on these populations with what could be

expected from a real society we also used a model to generate social-like networks proposed by

Toivonen et al. in 2006 [114].
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Toivonen model

This model has been conceived to generate a graph with most of the features of a real social

network. The generated networks are assortative, have an high clustering coefficient and also

have community structure. The degree distribution is also long-tailed and presents a finite cutoff.

This algorithm incrementally grows a network, starting from a seed of m0 randomly con-

nected nodes. This is how the topology evolves at each successive time step:

• On average mr ≥ 1 are choosed to be initial contacts

• On average ms ≥ 0 of each initial contact are selected to be secondary contacts.

• A new vertex v is added to the network and connected to all the initial and secondary

contacts determined in the previous steps.

This process is repeated until the network reaches the desired size.

The network growing process is completed before the simulation begins, thus the network used

in the actual simulation is static.

4.6 Dynamic networks

In part III and in the second article of part IV, we introduce and use dynamic networks to try

to better understand how the profit and the behavior of agents may influence the evolution of

the structure of the population.

This new aspect has been introduced because in reality, networks structures are not static but

evolve over time and are indeed influenced by their environment, as explained in Section 3.2.4.

4.6.1 Our dynamic network model

This model used has been developed with an eye on how social interactions work. Here we

report a brief description of this model, a more detailed explanation can be found in section D.3

of the first article in part III.

Underground network structure: In this model the original undirected graph G′ that

defines who interacts with whom, is coupled with a directed graph G. All undirected links in G′

(figure 4.1(a)) are projected in G’s into pairs of directed and weighted links (figure 4.1(b)). In

this new graph the weights or forces fij and fji represent respectively the “trust” player i has

in j and the trust player j has in i. These forces are represented by numerical values ∈ [0, 1],

they have a value of 0.5 at the beginning of the simulation, and they evolve independently based

on the quality on the interactions between i and j, each agent here modifies the trust of her

outgoing links based only on her perceptions, thus the forces model her subjective view of her

neighbors.
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i j
fij

fji

i j

(a) (b)

Figure 4.1: The link between i and j in the undirected graph G′ (a) and the same link once
projected in the directed graph G (b).

When the players interact and update their strategy they only use the information embedded

in the undirected network G′. Each encounter has the same value for an agent and each neighbor

has the same influence when a player is looking to update her strategy.

Updating the trusts: The interactions influence the trust the players have in each other.

The trusts between two agents i and j, represented by fij and fji are modified to represent the

perception of each agent of the interaction that just happened. To update this trust a player

considers the difference between the payoff πij he just obtained and the payoff π̄ij she could

have obtained if player j had played the opposite strategy, this value is normalized by taking in

to account the maximal and minimal utility an agent cam obtain from a single interaction and

the number of neighbors agent i has. The formula for thus trust update is the following:

fij(t+ 1) = fij(t) +
πij − π̄ij

ki(πmax − πmin)
.

Given that fij have to be ∈ [0, 1] if the updated value is outside this range, the final updated

trust is set at the closest bound of the interval. The number of neighbors of an agent has an

impact on the speed at which the trust varies: the higher the number of neighbors and the slower

is the trust variation. We chose this option to represent the attention an agent is capable to

pay to her relationships. When there is only few neighbors, it’s of great importance to be more

selective, maintain the good partners and try to replace the bad ones as soon as possible. On

the other hand, when an agent has many ties, it’s more difficult to invest the necessary energy

in every relationship, for this reason they are condemned to evolve more slowly.

Updating agent behavior: When a player is called to update her behavior she can either

decide to update her strategy or to try to replace a bad relationship with a better one. The

choice between these two possibilities is regulated by a parameter q ∈ [0, 1] that represents the

probability for an agent to update his neighborhood. The case q = 0 represents a static network,

and the case where q = 1 is that of a society where agents cannot update their strategy but only

theirs relationships.
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Network evolution: If an agent i decides to update her neighborhood, she will first pick

one of his neighbors j with a probability proportional to 1 − fij , thus an untrusted neighbor

has a higher probability to be selected. Depending on the game played, an interaction can be

bad for a player and good for the other one, because of this, agent j can try to maintain her

relationship with i. The probability of finally removing the link is represented by a number

equal to 1− (fij + fji)/2 where both trusts are taken into account.

If the link is cut, both directed links (i, j) and (j, i) disappear. Now player i will create a new

link to replace the lost one. To do so she will ask a neighbor k chosen this time proportionally

to fik to introduce her to one of his neighbors. Player k will then select a neighbor l also

proportionally to fkl and i will try to create a new link (i, l) (and the sibling link (l, i)) with

l. If this link already exist, i will continue and ask l for a possible match. If also this second

try fails, i will select a random agent in the network and establish a relationship with her (see

figure 4.2). The forces on this new links are initialized with the value 0.5.

i

j

k

l

fik
fkl

fil

Figure 4.2: Illustration of the rewiring of link (i, j) to (i, l). Agent k is chosen by i and introduces
player i to l (see text). To avoid cluttering the figure, only one of the two directed links between
the agents is represented in the picture.

At the end of this process j generally ends up loosing a link and will not have the opportunity

to create a new link to replace this one. The only exception to this is the case where j ends

up without any connection. In this case, the next time she will be selected for update, she will

simply establish a relationship with a random agent selected among the whole population.

4.6.2 Model Justifications

In this brief section we will try to explain and justify some choices we had to make when the

model was conceived. We will also try to address some question that may arise after reading

the description of the model.

Trust, memory and repeated games: The attentive reader would have noticed that the

trust that evolves between two agents contains some sort of memory of their past encounters.
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This is indeed the case, as the trust is dictated by the quality and thus strategies used in these

encounters. However, this value only vaguely represent the quality of the interaction as an

agent is unable to extract precise strategic information, such as the pattern of the moves of

the opponent, a possible mutation in the strategy of the partner or even the number of past

encounters. This value can for example lead to the termination of the interaction with an agent

that recently switched to a more useful strategy or to the protection of a link with agent that

has suddenly became a bad influence.

For these reasons the game played by our agent is not a repeated game in the sense of game

theory. Moreover, this trust is only used by an heuristic that tries to remove the bad links, and

never help a decision concerning a strategy update.

Rupture and creation of links: The link rupture is a bilateral, two-ways process, we apply

this method to represent the embedded cost for an agent to dismiss one of her relationships. In

particular, by using the average value of the trusts between the agents, we intend to capture

the simplicity of breaking a relationship that is bilaterally identified as bad, but also the more

difficult task that is the rupture of an interaction that is profitable by the other partner.

The link creation process is clearly biased and tends to create triangles if the quality of the

interactions is good. However, this is based on reality, since interaction are often established

with “friends of friends”. This is a unilateral, one-way process but the social interpretation of

the algorithm relies on a common neighbor of the two “newly connected” agents that is charged

to introduce the agents and to facilitate the creation of the new link.

It’s also important to say that the link rupture and creation process is not a strategic move aimed

to improve without doubt the benefit of an agent, but merely an heuristic that an individual

is able to apply in the attempt to improve his wellness. In this way, the present heuristic

fundamentally differs from rigorous models of strategic, i.e. game-theoretic, network formation

processes found in economics (e.g. see[123, 49]).

4.7 Community structure

Introduced in Section 3.1.3, communities represent an important characteristic of social net-

works. The presence of communities in a networked population can affect the speed of diffusion

of strategies. As an example, a sub-optimal strategy σ can coexist with a more efficient one if

the agents using σ represent the majority of the agents in a community. The high connectivity

within the community and the low connectivity toward the rest of the network can protect this

minority and allow the existence of some diversity in the population.

To detect communities in networks in this work we used the algorithm based on edge be-

tweenness proposed by Girvan and Newman in [31].

Betweenness is a centrality measure for the nodes of a network. The betweenness of a node

i represents how many shortest paths between pair of nodes run through i. Edge betweenness is

an extension to this definition that characterizes an edge with a number corresponding to how
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many shortest path between pair of nodes run through it.

We analyzed the community structure of static networks in B and in F to understand how the

underlying structure of the network can affect the quasi-stable state reached with simulations.

In dynamic networks we analyzed the communities in paper G at several points during the

simulations to monitor the evolution of the networks and understand how the behavior of players

affects the evolution of the topology.
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Abstract

In this paper we extend the investigation of cooperation in some classical evolutionary games on

populations were the network of interactions among individuals is of the scale-free type. We show

that the update rule, the payoff computation and, to some extent the timing of the operations,

have a marked influence on the transient dynamics and on the amount of cooperation that can

be established at equilibrium. We also study the dynamical behavior of the populations and

their evolutionary stability.

A.1 Introduction and Previous Work

The object of game theory is the analysis of situations where the different social actors have

conflicting requirements and individual decisions will have a mutual influence on each other[71].

In this framework, and due to their importance as simplified models of many common important

socio-economic situations, the Prisoner’s Dilemma (PD) and the Snowdrift (SD) games have

received much attention in the literature. According to game theory, the PD and the SD are

paradigmatic examples of games in which cooperative attitude should vanish in the PD, and

should be limited to a given fraction in the SD. This is also the case when large populations

of individuals play the game pairwise in a random manner and anonimously, as prescribed
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by evolutionary game theory [128]. In spite of this, numerical simulations of the PD have

convincingly shown that, when the population of players possesses a spatial structure, a certain

amount of cooperation can emerge and remain stable. Nowak and May [84] were the first to

empirically show this using a population structured as a square lattice where each site is a player.

Standard evolutionary game theory is based on an infinite (or very large) population model, and

on the random pairing of two players at each time step. This amounts to a mean-field spatially

homogeneous model. The square grid is also spatially homogeneous but the absence of random

mixing enables the formation of clusters of cooperators, which allows for more frequent positive

encounters between cooperators than would be possible in the mean-field case. More recently, it

has become apparent that many real networks are neither regular nor random graphs; instead,

they have short diameters, like random graphs, but much higher clustering coefficients than the

latter, i.e. they have more local structure. These networks are collectively called small-world

networks (see [75] for a recent review). Many technological, social, and biological networks

are now known to be of this kind. Social networks, in addition, show recognizable community

structure [79, 35]. Since evolutionary PD or SD games are metaphors for conflicting social

interactions, the research attention has recently shifted from random graphs and regular lattices

towards better models of social interaction structures [1, 47, 101, 116].

Recently, Santos and Pacheco [101] presented a numerical study of the evolution of coop-

eration on (static) scale-free (SF) networks for the PD and the SD games. Their main result

was that, in contrast with what one observes in mixing populations or on regular lattices, much

higher levels of cooperation are sustainable on this kind of graphs, both for the PD as well as the

SD. These results are obviously interesting and encouraging for cooperation but they prompt a

number of questions. First of all, Barábasi–Albert or correlationless configuration SF graphs [3]

that were used in [101] are not faithful representations of most typical social networks. In fact,

although social interaction networks where the degree distribution can be well described by a

power-law have been found [56, 34], several recent studies show that social networks in general

do not have a pure power-law degree distribution function, as they often show signs of exponen-

tial decay of the tail of the distribution [4, 73]. In addition, they usually have more clustering

than pure scale-free graphs [75]. Nevertheless, model SF networks are a useful bounding case to

study as they are closer to typical social networks than other more artificial kind of graphs, such

as Watts–Strogatz small worlds [127]. A second aspect of social networks that is not captured

by fixed graph structures is that they are not static; rather, the number of vertices and the links

between them continuously evolve as social actors come and go, and relationships are created

or abandoned. Dynamical features such as these have been introduced in evolutionary games,

among others, in [132, 131, 13, 59, 103]. However, in this paper we only focus on the static

aspects of the interaction networks. In other words, we make the hypothesis that the network is

at equilibrium and that network dynamics are either absent, or their time scale is longer (slower)

with respect to the strategy-change dynamics. This proves to be a useful approach, especially

for social acquaintance networks.

In the following we present a brief introduction to the games studied. This is followed by a
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discussion of the population model and of individual’s payoff calculation scheme for the players

in a complex network. Next we describe the numerical simulations and their results, including

a study of evolutionary stability. We finally present our conclusions.

A.2 Two Social Dilemmas

Let us first recall a few elementary notions on the PD and the SD. These are two-person,

symmetric games in which each player has two possible strategies: cooperate (C) or defect (D).

In strategic form, also known as normal form, these games have the following payoff bi-matrix:

C D

C (R,R) (S,T)
D (T,S) (P,P)

In this matrix, R stands for the reward the two players receive if they both cooperate, P is

the punishment for bilateral defection, and T is the temptation, i.e. the payoff that a player

receives if it defects, while the other cooperates. In this latter case, the cooperator gets the

sucker’s payoff S. For the PD, the payoff values are ordered numerically in the following way:

T > R > P > S, while in the SD game T > R > S > P . Defection is always the best rational

individual choice in the PD – (D,D) is the unique Nash equilibrium and also an evolutionary

stable strategy (ESS). Mutual cooperation would be preferable but it is a strongly dominated

strategy. Thus the dilemma is caused by the “selfishness” of the actors.

In the SD, when both players defect they each get the lowest payoff; (C,D) and (D,C)

are Nash equilibria of the game in pure strategies, and there is a third equilibrium in mixed

strategies where strategy D is played with probability 1/(2β−1), and strategy C with probability

1 − 1/(2β − 1), where β is another name for the temptation T , used in biological circles. The

dilemma in this game is caused by “greed”, i.e. players have a strong incentive to “bully” their

opponent by playing D, which is harmful for both parties if the outcome produced is (D,D).

A.3 Numerical Simulations

The two games were simulated in [101] on Barabási-Albert (BA) [3] and configuration model

[75] scale-free networks of size 104 over 104 time steps, using a discrete analogue of replicator

dynamics equations [128, 41]. The customary rescaling of the payoff values was used such that

there is only one independent parameter. For the PD, setting R = 1, P = S = 0, leaves

T = b > 1 to be the only parameter (temptation). For the SD, T is set equal to β > 1,

R = β−1/2, S = β−1, and P = 0, which makes the cost-to-benefit ratio of mutual cooperation

r = 1/(2β−1) the only parameter. For the sake of comparison, our simulations were done under

the same conditions as in [101] (104 players and 104 time steps).
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However, replicator dynamics is not the only possibility for updating the agents’ strategies

in discrete, finite populations of players using hard-wired strategies. Moreover, in small non

degree-homogeneous populations, the mathematical requirements behind the replicator dynam-

ics, strictly speaking, are not satisfied [85]. Thus, we extended the investigation by simulating

an imitate the best evolution rule according to which an individual i will adopt the strategy of

the player with the highest payoff among its neighbors and itself. If a tie occurs, the winner is

chosen uniformly at random between the best. This rule is deterministic and was the original

rule used in [84].

Concerning the calculation of an individual’s payoff, there are several possibilities. A player’s

payoff may be defined as the sum (accumulated payoff ) of all pair interactions with its nearest

neighbors, which is the form used for instance in [101]. Another possibility consists in using

average payoff, which is the accumulated payoff divided by the number of interactions. Accumu-

lated and average payoff give the same results when considering degree-homogenous networks

such as lattices. Accumulated payoff seems more logical in degree-heterogeneous networks such

as scale-free graphs since it reflects the very fact that players may have different numbers of

neighbors in the network. Average payoff, on the other hand, smooths out the possible differ-

ences although it might be justified in terms of number of interactions that a player may sustain

in a given time. For instance, an individual with many connections is likely to interact less often

with each of its neighbors than another that has a lower number of connections. Also, if there is

a cost to maintain a relationship, average payoff will roughly capture this fact, while it will be

hidden if one uses accumulated payoff. For the sake of comparing the two extreme views, here

we use both accumulated and average payoff.

Under discrete replicator dynamics rule with accumulated payoff, and using synchronous

update, Santos and Pacheco [101] found that, when compared to regular lattices, SF networks

lead to high levels of cooperation for all values of the parameters b (for PD) and r (for SD). These

results have been reproduced by us and are shown in the upper half of figure A.1. Cooperation

is also much higher in SF graphs than what has been obtained for Watts–Strogatz small-world

graphs [1, 116]. When using the “imitation of the best” strategy-switching rule with synchronous

update and accumulated payoff the results are similar, as one can see in the lower part of figure

A.1, although there is a marked fall in the high-b and high-r region with respect to replicator

dynamics. However, when one lingers on the standard deviations (represented as error bars in

the figure), one sees that the results for the imitate the best rule are noisy, with quite large

fluctuations. Deviations are smaller for the replicator dynamics, see figure A.1. The reason

for the instability and the large fluctuations can be traced to the step function nature of the

update rule, as can be seen in figure A.3 (a), in which 40 individual PD runs are plotted, all with

b = 1.8. In all runs cooperation falls at the beginning, the cooperators then often recover but

not always, as there are several runs (about 1/5 for the data used here) in which cooperation

never recovers. On the other hand, when using replicator dynamics, there is still a systematic

drop of cooperation at the beginning (figure A.3 (c)), nevertheless it tends to rise again in the

long run, although this may happen very late in the simulation (see figure A.3 (b)). To better
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observe this phenomenon, we have doubled the number of time steps (2× 104).

We thus see that the results on BA SF graphs depend on the update rule, although the

level of cooperation is still higher than what is found on regular, Watts–Strogatz, and random

graphs [41, 116]. However, we wish to point out that if we use an asynchronous update policy
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Figure A.1: Fraction of cooperators on SF BA networks of size 104 and average degree k̄ = 4
with accumulated payoff and synchronous dynamics. Mean values over 50 runs. Upper figures:
replicator dynamics; lower figures: imitation of the best.

1 with the “imitate the best” rule instead of the usual synchronous one, the result is a higher

level of cooperation with far less fluctuations than the synchronous case (compare lower parts

of figures A.1 and A.2). One might reason that the combination of synchronous update and

of “imitate the best” is fully deterministic, which implies that particular chains of events, such

as cascades of defection, will be amplified. Introducing stochasticity through asynchrony in the

update sequence strongly mitigates the likelihood of such series of events. On the other hand,

when using replicator dynamics, the lack of stochasticity in synchronous update is somehow

compensated for by the probabilistic strategy change rule, which could explain the similarity of

the results in this latter case (compare the upper parts of figures A.1 and A.2 respectively).

To illustrate the influence of timing when “imitate the best” is the rule used for strategy

update, suppose that a defector occupies the most highly connected node in the graph and that

it is surrounded by cooperators exclusively. Then, at the next time step in synchronous update,

all those cooperators will turn into defectors. From there, a wave of defection could quickly

propagate through the network, leading to a state whereby cooperation cannot be recovered.

On the other hand, when players are updated in random order, only a fraction of the neighbors

1We use the standard uniform random choice (with replacement) of players in the population, which is a
discrete approximation of a Poisson process.
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will imitate the defector, at the same time lowering the payoff of the central defector, and

thus making it less attractive to be imitated in future encounters. This kind of process limits

the propagation of defection and allows cooperation to establish itself and be stable. This

highlights some shortcomings of synchronous dynamics, which is unrealistic and may give rise

to spurious effects [48]. Our conclusion is that, although there is often no significant difference

between synchronous and asynchronous update in evolutionary games, as it is the case here

under replicator dynamics, the latter is to be preferred for reasons of generality and reliability.

However, for the sake of comparison with previous results, in the rest of the paper we use

synchronous update.
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Figure A.2: Fraction of cooperators on SF BA networks of size 104 and average degree k̄ = 4
with accumulated payoff and asynchronous dynamics. Mean values over 50 runs. Upper figures:
replicator dynamics; lower figures: imitation of the best.

Now we turn our attention to the assumption that a player’s utility is the sum, i.e. the

accumulated payoff of all pair interactions with its nearest neighbors. Although this appears

to be a logical step to follow, we shall show that it may cause both conceptual and technical

problems. Obviously, one would assume that if an individual has more links to cooperators, and

that the payoffs are positive quantities, she should earn more than another player with fewer

cooperating neighbors. However, this begs the question of how the network got there in the

first place. BA SF graphs are incrementally built by using linear preferential attachment [3]. In

this model there is no cost associated to the formation of a new link. However, although this

model may be adequate for citation networks or, to some extent, the Web, it is well known that

this cannot be the case in most other instances. Thus, other models have been proposed that

take into account cost and other factors in network formation [75]. In our case, it is as if the

population would be “injected” on an already full-grown, topology-favorable network, while the
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Figure A.3: PD time series with b = 1.8; (a) imitation of the best; (b) replicator dynamics; (c)
replicator dynamics (first 70 steps).

rules of the game and other considerations necessarily should play a role in the network formation

and dynamics. The same remarks also hold for the “configuration” SF graphs, although these

networks are built starting from the degree distribution and a fixed number of nodes, rather than

incrementally. Furthermore, a technical problem arises when combining replicator dynamics with

accumulated payoff. In infinite mixing populations, classical evolutionary game theory states

that replicator dynamics is invariant under positive affine transformations of payoffs with merely

a possible change of time scale [128]. This invariance still holds in finite degree-homogenous

populations. However, when different individuals start having different degrees, things are not

quite the same. Let Πi denote a player i’s aggregated payoff. Furthermore, let φ(Πj − Πi) =

(Πj −Πi)/(Dk>) be the probability function according to which i adopts neighbor j’s strategy,

with D = max{T,R, P, S} − min{T,R, P, S} and k> = max{ki, kj}, where kx represents the

degree of player x [101]. If we now apply a positive affine transformation of the payoff matrix,

this leads to the new aggregated payoff Π′i = αΠi + βki and hence φ(Π′j − Π′i) = (αΠj + βkj −
αΠi−βki)/(αDk>) = φ(Πj−Πi)+(kj−ki)/(αDk>). One can clearly see that using accumulated

payoff does not lead to an invariance of the replicator dynamics under shifts of the payoff matrix.

As an illustration of the violation of this invariance, figure A.4 shows cooperation curves for the

PD when applying such payoff transformations.

This has several implications such as limiting the results obtained in [101] strictly to the

studied values of b and r, and to an impossibility to rescale the payoff matrix. In a more recent
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Figure A.4: Fraction of cooperation for the PD game using replicator dynamics and accumulated
payoff. A translation of the payoff matrix can produce a fall in cooperation (shift of −1) as well
as unpredictable behaviors (shift of +5) with some runs containing high levels of cooperation and
others ending up with massive defection. Standard deviations are not plotted here to improve
readability.

study [104] Santos et al. investigated the same games in a wider parameter space, but still using

accumulated payoff, which again makes the results non-invariant with respect to a positive affine

transformation. Therefore, we repeated the numerical simulations with average payoff, i.e. the
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Figure A.5: Fraction of cooperators on SF BA networks of size 104 with average degree k̄ = 4
using average payoff and synchronous dynamics. Mean values over 50 runs. Upper figures:
replicator dynamics; lower figures: imitation of the best.

aggregated payoff obtained by one player divided by the number of links the player has to nearest

neighbors, which, along with the shortcomings described above, has the advantage of leaving

the replicator dynamics invariant under positive affine transformations.
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In figure A.5 we report results for the PD and SD games using average payoff with syn-

chronous updating dynamics, and the same parameter set as in [101]. Looking at the figures,

and comparing them with the results of [101] (replicated here for k̄ = 4 in figure A.1), one

immediately sees that the cooperation level reached after the transient equilibration period is

much lower, and comparable with the results found for regular and random graphs. This is

reasonable, given that now it is as if each individual had the same average number of neighbors

as far as its payoff is concerned.

To reach a better understanding of the difference between accumulated and average payoff,

we interpolated between the two extreme cases according to the formula

Πi =
1

kd

∑
j

πi,j , (A.1)

where d ∈ [0, 1], Πi is the net payoff of player i, and πi,j is the payoff player i obtains when

interacting with neighbor j. One can see that, when d = 0 we recover the accumulated payoff

value, while d = 1 corresponds to the average payoff case. Figure A.6 clearly shows that, as d

varies from 0 to 1, and thus the ratio varies from 1 to 1/k, cooperation levels steadily decrease for

all values of the temptation on the y-axis. So, the way in which individual payoff is computed has

a large influence on cooperation levels that can be reached, in the average, on a given network

topology.
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Figure A.6: Cooperation level as a function of the parameter d of equation A.1 in the PD for
temptation values between 1 and 2. Cooperation prevails in light areas; Darker areas mean more
defection. Results are the average of 50 runs.

A.4 Evolutionary Stability

Evolutionary stability, i.e. the resistance to invasion by mutant strategies, is an important issue

when dealing with evolutionary games [128]. The effect of switching the strategy of the hub

with largest connectivity in a totally cooperating population has been studied in [102]. Here we
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Figure A.7: System stability when using accumulated payoff. For each parameter set, 100 runs
have been perturbed, but only a few individual runs are plotted here to expose the behaviors
encountered. Upper figures: replicator dynamics; lower figures: imitation of the best. Left-hand
figures: b = 1.8; right-hand figures: r = 0.5.

use a different approach to perturb the population after it has reached a quasi-stable state by

switching the strategy of a few players having the strategy of the greater number. This was done

for values of b ∈ {1.2, 1.5, 1.8} and r ∈ {0.2, 0.5, 0.8}. We then give the system 6000 time steps to

attempt to reattain its initial stable state. For reasons of space, we only plot the results obtained

for b = 1.8 and r = 0.5 (see figure A.7). Given the scale-free nature of the interaction network,

introducing a small amount of random noise does not have any effect on the population stability.

On the other hand, when cooperator hubs switch strategy (one to five in our study), avalanches

of defection can form and propagate through the population. Under replicator dynamics and

when using accumulated payoff, about 1/6 of the PD runs do not recover the state previously

attained at time step 104. This fraction rises to 1/3 for the SD game. With the imitation of

the best rule, 1/10 of the PD and SD runs fail to recover from the perturbations. In contrast

to accumulated payoff, average payoff does not allow perturbations to generate any noticeable

effect, i.e. the system remains quite stable.

A.5 Conclusions

In conclusion, we have deepened and extended the study presented in [101] clarifying the role of

the updating rule and the type of payoff attributed to players. We have shown that the games are
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not invariant under linear affine tranformations when using accumulated payoff, while average

payoff does not have this problem, although it may artificially reduce the impact of scale-free

degree networks. We have also seen that asynchronous update dynamics, being more likely

in a system of independently interacting agents, by eliminating artificial effects due to the

nature of synchronous update, may give rise to steadier quasi-equilibrium states. Moreover,

we have studied several dynamical aspects of the evolution of the populations such as their

transients before attaining the steady-state, and their evolutionary stability, showing that scale-

free networks of interactions provide a quite stable environment for the emergence of cooperation

when using accumulated payoff, except when hubs are targeted by the mutations, in which case

a sizable number of runs do not recover the original state, at least within the simulation times

allowed in our numerical experiments.
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Abstract

Situations of conflict giving rise to social dilemmas are widespread in society. One way of

studying these important phenomena is by using simplified models of individual behavior under

conflicting situations such as evolutionary game theory. Starting from the observation that

individuals interact through networks of acquaintances, we study the evolution of cooperation

on model and real social networks through well known paradigmatic games. Using a new payoff

scheme which leaves replicator dynamics invariant, we find that cooperation is sustainable in

such networks, even in the difficult case of the prisoner’s dilemma. The evolution and stability of

cooperation implies the condensation of game strategies into the existing community structures

of the social network in which clusters of cooperators survive thanks to their higher connectivity

towards other fellow cooperators.

B.1 Introduction

Game theory [122, 39] deals with social situations of conflict where two or more individuals

take decisions that will mutually influence each other. It is thus a view of collective systems

in which global social outcomes emerge as a result of the interaction of the individual decisions

made by each agent. The theory makes simplifying assumptions about the behavior of the
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agents to be able to cast results into a coherent mathematical framework. However, in spite

of their abstractness, some extremely simple games lead to puzzles and dilemmas that have

a deep social meaning. The Prisoner’s Dilemma, a universal metaphor for the tension that

exists between social welfare and individual selfishness, is the most famous game of this type.

It stipulates that, in situations where individuals may either cooperate or behave selfishly and

thus defect, they will rationally choose the latter. However, cooperation would be the preferred

outcome when global welfare is considered. And indeed, cooperation actually emerges when the

game is played by humans and in many other cases. For instance, in experiments where people

play the Prisoner’s Dilemma for money without repetition and anonymously, the fraction of

cooperation is observed to be about 40 to 50 per cent [99]. Other simple games that give rise to

social dilemmas are the Hawk-Dove and the Stag-Hunt games, to be described below.

Several mechanisms have been invoked to explain the emergence of cooperative behavior.

Among them, repeated interaction, reputation, and belonging to a recognizable group have

often been mentioned [6, 57]. However, the work of Nowak and May [84] showed that the simple

fact that players are arranged according to a spatial structure and only interact with neighbors is

sufficient to sustain a certain amount of cooperation even when the game is played anonymously

and without repetition. Nowak and May’s study and much of the following work was based on

regular structures such as two-dimensional grids (see also [41] for the Hawk-Dove case, and [86]

for a recent review). Axelrod et al. [7] showed that by randomizing the choice of neighbors,

i.e. by actually giving up a strictly local geographical structure, cooperation can still emerge,

provided that the interaction patterns remain stable in time, which is a first step toward a social

network structure. However, all these topologies can only be considered as approximations,

as it has now become clear that many actual networks, social or otherwise, usually have a

topological structure that is neither regular nor random but rather of the small-world type.

Roughly speaking, small-world networks are graphs in which any node is relatively close to

any other node. In this sense, they are similar to random graphs but unlike regular lattices.

However, in contrast with random graphs, they also have a certain amount of local structure, as

measured, for instance, by a quantity called the clustering coefficient which essentially represents

the probability that two neighbors of a given node are themselves connected (an excellent review

of the subject appears in [75]). Thus, most real conflicting situations in economy and sociology

are not well described neither by a fixed geographical position of the players in a regular lattice,

nor by a mixing population or a random graph, and it becomes relevant to study these dilemmas

on other, more realistic social structures. Some previous work has been done in this direction.

In particular we mention Santos and Pacheco’s work on scale-free networks [101, 104] and work

on Watts–Strogatz small-world graphs [1, 53, 116, 126]. These network types do have the right

global “statistical” properties, but we emphasize that they are only an approximation of the

actual local topological properties of measured networks of interactions. Thus, we introduce

more socially relevant topologies, including an actual coauthorship network, and we emphasize

the relationships between community structure and cooperation. Some recent works close to

the present one in spirit are Holme et al. [47], Santos et al. [101, 104], and [58]. However, the
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authors of [47] study only the prisoner’s dilemma on particular social networks using a different,

noisy, strategy update rule, while [101, 104] deal with scale-free graphs exclusively. Reference

[58] has similar goals as our work and it deals only with the Prisoner’s Dilemma on a couple of

empirically determined social networks. It uses a different strategy update rule and a restricted

parameter space. We shall discuss these and other differences with our work in the model and

results sections.

B.2 Social Dilemmas

The three representative games studied here are the Prisoner’s Dilemma (PD), the Hawk-Dove

(HD), and the Stag-Hunt (SH) of which we briefly summarize the significance and the main

results. More detailed accounts can be found in many places, for instance [122, 39, 6]. In their

simplest form, they are all two-person, two-strategies, symmetric games with the following payoff

bi-matrix:

C D

C (R,R) (S,T)
D (T,S) (P,P)

In this matrix, R stands for the reward the two players receive if they both cooperate (C), P is

the punishment for bilateral defection (D), and T is the temptation, i.e. the payoff that a player

receives if it defects, while the other cooperates. In this case, the cooperator gets the sucker’s

payoff S. In the three games the condition 2R > T + S is imposed so that mutual cooperation

is preferred over an equal probability of unilateral cooperation and defection. For the PD, the

payoff values are ordered numerically in the following way: T > R > P > S. Defection is always

the best rational individual choice in the PD; (D,D) is the unique Nash equilibrium (NE) and

also an evolutionarily stable strategy (ESS) [122, 128]. Mutual cooperation would be preferable

but it is a strongly dominated strategy.

In the HD, the order of P and S is reversed yielding T > R > S > P . Thus, in the HD when

both players defect they each get the lowest payoff. (C,D) and (D,C) are Nash equilibria of the

game in pure strategies, so the game is antagonistic, and there is a third equilibrium in mixed

strategies where strategy D is played with probability p, and strategy C with probability 1− p,
where p depends on the actual payoff values. The only ESS of the game is the mixed strategy,

while the two pure NE are not ESSs [128]. The dilemma in this game is caused by “greed”, i.e.

players have a strong incentive to “bully” their opponent by playing D, which is harmful for

both parties if the outcome produced happens to be (D,D).

In the SH, the ordering is R > T > P > S, which means that mutual cooperation (C,C) is the

best outcome, Pareto-superior, and a Nash equilibrium. However, there is a second equilibrium

in which both players defect (D,D) which is somewhat “inferior” to the previous one, although

perfectly equivalent from a NE point of view. Here the dilemma is represented by the fact that
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the socially preferable coordinated equilibrium (C,C) might be missed for “fear” that the other

player will play D instead. There is a third mixed-strategy NE in the game, but it is commonly

dismissed because of its inefficiency and also because it is not an ESS [128].

B.3 Nature of Social Networks

From the evolutionary game theory perspective [122, 128], these dilemmas have been classically

studied by modeling the behavior of a large population in which randomly paired individuals play

the game in an anonymous manner using the corresponding payoff matrix. Non-rational players

are “hard-wired” to play a given strategy, and those better than average increase their share in

the population. Among the fixed points of these replicator dynamics one finds evolutionarily

stable strategies, i.e. strategies that cannot be invaded by a mutant strategy [128].

If we take a network view in describing the structure of the population, the previous “mixing”

population would be represented by a complete graph, i.e. any individual may interact with any

other player. The advantage of the mixing model and also of random graphs is that they admit

an approach by mean-field methods, which treat the system as being homogeneous, ignoring

space dependences and correlations. For instance, the replicator dynamics leads to a system

of differential equations which, given an initial distribution of strategies among the agents,

describe the evolution of the vector of population frequencies [128]. However, we do know that

real social networks do not conform to these simple models. Instead, they are of finite size,

have heterogeneous connectivity, and often display small-world properties, in the sense that

any individual is only a few steps away from any other, and individuals cluster together in

neighborhoods [75, 126, 4, 12]. Therefore, the previous evolutionary games should be studied

on this type of networks, to understand the limitations of the theory, and to extend it as far as

possible to structures encountered in real-life.

We simulate the games on three main types of networks: scale-free graphs, a theoretical

social network model, and an existing coauthorship network. These network types go from least

realistic, the scale-free, to real, the coauthorship network. We construct scale-free networks

according to the classical Barabási-Albert (BA) model [3]. The social network model follows

[114]. Details of their construction are given in section B.4. As a typical example of a true social

network, we use a coauthorship network among researchers in the genetic programming (GP)

community. This network displays small-world properties, with a connected giant component

of 942 scientists and it has recently been analyzed [117]. It has clusters and communities and it

should be representative of other similar human acquaintance networks. Its degree distribution

function is not a pure power-law; rather, it can be fitted by an exponentially truncated power-

law.

Scale-free networks are characterized by a skewed degree distribution function P (k), i.e. the

probability that a given node has exactly k neighbors is a slow-decaying function of k. However,

except perhaps for sexual contact networks [56, 34], and some collaboration networks[8], most

social networks studied to date are not of the pure scale-free type, and show a faster decay of

the tail of the degree distribution [75, 4]. Intuitively, there must be a cutoff in the number of
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acquaintances a given agent can have, and in many cases also a typical number of acquaintances,

which gives a scale to the network. Besides, it has been observed that social networks have a

higher clustering coefficient than the typical values reached in scale-free graphs, another mani-

festation of the complex neighborhood structure of the network. Furthermore, the appearance of

communities – sets of densely connected vertices with sparse connections between the sets – is yet

another typical feature found in social structures [79]. Communities can highly influence the way

information is propagated throughout the network or opinion formation is processed. Finally,

another interesting aspect of real-life social networks is the correlation between the degrees of

neighbouring nodes, called degree assortativity. Technological and biological networks typically

have a negative correlation, i.e. high-degree vertices are preferentially connected to low-degree

vertices, whereas measured social networks are assortative, meaning highly connected nodes

tend to be connected with other highly connected nodes [75, 80].

We note that real social, communication, and technological networks are dynamical, i.e. new

nodes may join the network forming new links, and old nodes may leave it as social actors come

and go. As a first approximation we model only static networks, thus ignoring fluctuations

and non-equilibrium phenomena. In other words, we make the hypothesis that the network is

at equilibrium and that network dynamics are either absent, or their time scale is longer with

respect to the strategy-change dynamics. This proves to be a useful approach, especially for

social acquaintance networks. Some recent work has targeted the dynamical aspects of network

evolution [132, 25, 103, 38].

B.4 Model Description

B.4.1 Population Structure

We consider a population of players of size N . Each individual i in the population is represented

as a vertex vi of a graph G(V,E), with vi ∈ V . An interaction between two players i and

j is represented by the undirected edge eij ∈ E. The number of neighbors of player i is the

degree ki of vertex vi. The average degree of the network will be called k̄. The terms vertex,

node, individual, or player shall be used interchangeably in the sequel; likewise for edge, link,

interaction, and acquaintance. In the next two paragraphs we give details on the construction

of our population graphs.

Scale-Free Graphs Construction. We use the model proposed by Barabási and Albert [3].

Networks are grown incrementally starting with a small clique of m0 nodes. At each successive

time step a new node is added such that its m ≤ m0 edges link it to m nodes already present

in the graph. It is assumed that the probability p that a new node will be connected to node i

depends on the current degree ki of the latter. This is called the preferential attachment rule.

The probability p(ki) of node i to be chosen is given by p(ki) = ki/
∑

j kj , where the sum is over

all nodes already in the graph. The model evolves into a stationary network with power-law

Emergence of Cooperation on Static and Dynamic Networks Enea Pestelacci



64
ARTICLE B. COOPERATION AND COMMUNITY STRUCTURE IN SOCIAL

NETWORKS

probability distribution for the vertex degree P (k) ∼ k−γ , with γ ∼ 3. For the simulations,

we constructed Barabási-Albert scale-free networks (henceforth BA SF) of size N = 10000 and

with an average degree k = 4, starting with a clique of m0 = 2 nodes and at each time step the

new incoming node has m = 2 links.

Social Network Construction. This model, called here the TSN model and presented in

detail in [114], was conceived to construct a graph with most of the desired features of real-

life social networks i.e, assortative, highly clustered, showing community structures, having an

adjustable decay rate of the degree distribution, and a finite cutoff. The network is incrementally

grown starting from a seed of m0 randomly connected vertices. At each successive time step,

the following algorithm is applied:

1. On average mr ≥ 1 random vertices are picked to be initial contacts.

2. On average ms ≥ 0 neighbors of the mr initial contacts are chosen to be secondary contacts.

3. A newly added vertex v is connected to all the initial and secondary contacts determined

in the two previous steps.

The above is iterated until the network reaches the desired size. Notice that the process re-

sponsible for the appearance of high clustering, assortativity and community structure is step

2. In the numerical experiments, we used graphs of size N = 10000 with m0 = 30 initial

nodes. Every time a new node is added, its number of initial contacts mr is distributed as

p(# of initial contacts = 1) = 0.95 and p(# of initial contacts = 2) = 0.05. The number of its

secondary contacts ms is uniformly distributed between 0 and 3. The resulting degree distribu-

tion falls below a power-law for high values of k [114].

B.4.2 Strategy Update Rules

To update the strategies of the individuals given an initial strategy distribution in the population,

we use a discrete analogue of replicator dynamics as discussed in [46] and used in lattices by [41].

The replicator dynamics assumes that the share of the population playing a particular strategy

grows in proportion to how well this strategy is doing relative to the average population payoff.

Replicator dynamics is usually defined for very large populations [128] where correlations are

absent and mean-field approximations can be used. In finite populations the behavior may be

different, as studied by Nowak et al. [85].

Let Πx be a player x’s aggregated payoff and kx the number of neighbors x has. We define

the replicator dynamics function φ(Πj−Πi) as being the probability function according to which
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player i adopts neighbor j’s strategy, namely

φ(Πj −Πi) =


Πj −Πi

Πj,max −Πi,min
if Πj −Πi > 0

0 otherwise,

(B.1)

where Πx,max (resp. Πx,min) is the maximum (resp. minimum) payoff a player x can get. Note

that Santos et al. [101, 104] make use of a very similar expression which only differs from ours

by the choice of the normalization factor. The authors of [58] use another common strategy

update rule which consists in imitating the strategy of the most successful neighbor. This is a

deterministic rule while ours is stochastic. This, together with the use of accumulated payoff

(see next section) makes the results difficult to compare directly.

B.4.3 Utility Calculation

There exist several possibilities for determining a player’s utility or payoff. Some previous work

[84, 86, 101, 104, 58, 132] defined a player’s payoff as the sum (accumulated payoff ) of all pair

interactions with its nearest neighbors. Other studies [53, 116] use the average payoff, i.e. the

accumulated payoff divided by the number of interactions. Accumulated and average payoff

give the same results when considering degree-homogenous networks such as lattices [84, 86].

Accumulated payoff seems more logical to use in degree-heterogeneous networks since it reflects

the very fact that players may have different numbers of neighbors. However, accumulated

payoff may lead to a technical problem when players have a different number of interactions.

Evolutionary game theory states that replicator dynamics is invariant under positive affine

transformations of payoffs save for a possible change of time scale [128]. However, on degree-

heterogenous networks, this assumption is not satisfied when combining accumulated payoff with

the replicator dynamics, as shown in [118]. This is essentially due to the translation component

of the affine transformation and can be verified by considering a player x’s new accumulated

payoff after transformation of the payoff matrix which is Π′x = αΠx + βkx, with α ∈ R+, β ∈ R.

Average payoff respects the replicator dynamics invariance but it prevents nodes with many

edges to potentially have higher payoffs than those with only a few links, although it might be

justified in terms of the number of interactions that a player may sustain in a given time, i.e.

an individual with many connections is likely to interact less often with each of its neighbors

than another that has a lower number of connections. Also, if there is a cost to maintain a

relationship, average payoff will roughly capture this fact, while it will be hidden if one uses

accumulated payoff. Moreover, nodes are very vulnerable to defecting neighbors who have just

one link.

We propose here a third definition for a player’s payoff that retains the advantages of the

accumulated and average payoffs without their drawbacks. Before proceeding, let us first make

a few notations. Let πij denote the payoff player i receives when interacting with player j,
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and let Vi be the set of i’s neighbors. Finally, let πi,γ denote the guaranteed minimum payoff

player i can obtain in a one-shot two-person game. This is what i would receive were he to

attempt to maximize his minimum payoff. Note that for symmetric games such as the ones

studied here, πi,γ = πγ for i = 1, . . . , N , where N is the size of the population. For example in

the PD, a player could choose to play C with the risk of obtaining the lowest payoff S were its

opponent to play D. However, by opting for strategy D a player would maximize its minimum

payoff thus guaranteeing itself at least πγ = P > S no matter what its opponent’s strategy

might be. In the HD we have πγ = S, for this time the payoff ordering is T > R > S > P

and a player needs only to play C to receive at least payoff S. Finally, in the SH, πγ = P .

We can now define a player i’s aggregated payoff as being Πi =
∑

j∈Vi (πij − πi,γ). Intuitively,

it can be viewed as the difference between the payoff an individual collects and the payoff it

would get by “playing it safe”. Our modified payoff has the advantage of leaving the replicator

dynamics invariant with respect to a positive affine transformation of the payoff matrix both on

degree-homogeneous and heterogeneous graphs while still allowing the degree distribution of the

network to have a strong impact on the dynamics of the game. Indeed, players placed on highly

connected nodes of a graph can benefit from their numerous interactions which enable them

to potentially collect a high payoff. However, these same players run a risk of totaling a much

lower score than a player with only a few links. One can notice that on degree-homogeneous

graphs such as lattices or complete graphs, using the adjusted accumulated payoff yields the

same results as using accumulated or average payoff. The proof of the invariance under positive

affine transformation of this new payoff definition is straightforward; simply note that in this

case Πx,max = kx(πx,max−πx,γ) and Πx,min = kx(πx,min−πx,γ), where πx,max = max{T,R, P, S}
and πx,min = min{T,R, P, S} for the symmetric games studied here.

B.4.4 Population Dynamics

Calling C(t) = (s1(t), s2(t), . . . , sN (t)) a configuration of the population strategies si ∈ {C,D}
at time step t, the global synchronous system dynamics leads to C(t + 1) by simultaneously

updating all the player’s strategies according to the chosen rule which is here a discrete analogue

of replicator dynamics. Synchronous update, with its idealization of a global clock, is customary

in spatial evolutionary games, and most results have been obtained using this model [84, 86, 52].

However, perfect synchronicity is only an abstraction as agents normally act at different and

possibly uncorrelated times [48]. In spite of this, it has been shown that the update mode does

not fundamentally alter the results for replicator dynamics [41, 83]. We have also checked that

asynchronous update dynamics does not influence the system evolution in a significant way and

so, all results presented here refer to synchronous systems.
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B.5 Results

B.5.1 Simulation Parameters

We simulate on our networks the three games previously mentioned in section B.2. As stated

above, we study three types of networks: BA SF, the TSN model, and the real acquaintance GP

network. Let us point out that the BA SF graphs are only used as a benchmark for comparison

with more realistic networks. Indeed, they have already been studied in [101, 104], although

here we use a different payoff scheme.

For each game, we can explore the entire game space by limiting our study to the variation of

only two parameters per game. This is possible without loss of generality owing to the invariance

of Nash equilibria and replicator dynamics under positive affine transformations of the payoff

matrix and using our payoff scheme [128]. In the case of the PD, we set R = 1 and S = 0, and

vary 1 ≤ T ≤ 2 and 0 ≤ P ≤ 1. For the HD, we set R = 1 and P = 0 and the two parameters

are 1 ≤ T ≤ 2 and 0 ≤ S ≤ 1. Finally, in the SH, we decide to fix R = 1 and S = 0 and vary

0 ≤ T ≤ 1 and 0 ≤ P ≤ T .

We deliberately choose not to vary the same two parameters in all three games. The reason

we choose to set T and S in both the PD and the SH is to simply provide natural bounds on

the values to explore of the remaining two parameters. In the PD case, P is limited between

R = 1 and S = 0 in order to respect the ordering of the payoffs (T > R > P > S) and T ’s upper

bound is equal to 2 due to the 2R > T + S constraint. Had we fixed R = 1 and P = 0 instead,

T could be as big as desired, provided S ≤ 0 is small enough. In the HD, setting R = 1 and

P = 0 determines the range of S (since this time T > R > S > P ) and gives an upper bound of

2 for T , again due to the 2R > T + S constraint. Note however, that the only valid value pairs

of (T, S) are those that satisfy the latter constraint.

We used networks of size N = 10000, except for the GP network case, whose size is N = 942.

Each network is randomly initialized with exactly 50% cooperators and 50% defectors. In all

cases, the parameters are varied between their two bounds by steps of 0.1. For each set of values,

we carry out 50 runs of 16000 time steps each, using a fresh graph realization in each run (the

GP network is constant). Cooperation level is averaged over the last 1000 time steps, well after

the transient equilibration period.

B.5.2 Evolution of Cooperation

In this section we present global results as they pertain to the whole network of agents; discussion

of local structures, such as clusters and communities is deferred to the next section. In Figure

B.1, we report average cooperation levels for the three games on three different types of networks,

for systems having attained a steady-state. As expected, the region in which cooperation is

possible is much more restricted in the PD than for the other two games. Cooperation is more

widespread for the HD, as mutual defection is the worst outcome in this game. For the PD

and the SH, cooperation is sensitive to the “punishment” level P, for a given T, with the PD
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Figure B.1: Level of cooperation at the end of the simulation. From left to right: PD, HD, SH;
from top to bottom: BA SF, TSN model, GP network. For the HD, the meaningful phase space
is the lower left triangle; for the SH it is the upper left triangle. Results are averaged over 50
runs for each game, each network structure, and parameter set.

being influenced in a higher degree. Concerning the HD, one can see that the S parameter

has moderate influence on cooperation for a given T. We also notice that the transition from

cooperation to defection is much steeper in the PD and SH cases than for the HD.

Now, interpreting the results in terms of the three different topologies, BA SF networks are

the structures that yield the highest cooperation levels for the three games (compare the top

row with the second and third rows of Figure B.1), which qualitatively confirms the findings of

[101, 104]. However, note that Santos et al.’s results differ quantitatively from ours due to the

different payoff scheme used. Moreover, while our results are valid in the whole game’s space, the

results of [101, 104] are not because of the non-invariance of their dynamics using accumulated
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Figure B.2: Differences in cooperation between (a) TSN model and BA SF and (b) GP network
and BA SF for the PD. (c) and (d) show the same differences for the SH.

payoff on degree-heterogeneous networks. To highlight the effects of the network topology, in

Figure B.2 we show the cooperation difference plots between, respectively, the BA SF and the

TSN model, and the BA SF and the GP scientific coauthorship network. The left part refers to

the PD, while in the right two figures, differences are reported for the SH. Differences for the

HD are not shown as they are less marked. The difference plot between the TSN model and the

GP network is almost flat, as the differences are very small (not shown here). This can also be

inferred from the similarity between Figures B.2 (a), (b) and (c), (d) respectively. We can thus

say that the TSN model seems to be a good approximation of a real social network, at least as

far as the cooperation distribution in the games spaces is concerned.

Another important global quantity characterizing a population (or subpopulation) of players

as a whole is the total payoff at the end of the simulated games, sometimes called the wealth.

The cumulated wealth of defectors and cooperators is plotted in Figure B.3 for the PD in

the case of the TSN model. This is done for T = 1.3, for three values of the punishment

P, giving rise to different cooperation regimes: one in which cooperation prevails, a second

one with approximately an equal amount of cooperators and defectors, and a third case where

defection predominates. We found that, while defectors’ wealth curves are rather well fitted by
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an exponential function, the cooperators’ wealth is larger and has a broader distribution which

can be fitted by a stretched exponential. This hints at a clustering of cooperators, as this is

the only way for them to increase their payoff. In the next section we shall provide topological

evidence of this phenomenon.
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Figure B.3: Cumulative wealth distribution in the PD game averaged over 50 runs for the social
network model; (a) T = 1.3, P = 0.1 yielding ∼73% of cooperation. Average C-wealth=2.92,
average D-wealth=0.47; (b) T = 1.3, P = 0.15 yielding ∼52% of cooperation. Average C-
wealth=2.74, average D-wealth=0.34; (c) T = 1.3, P = 0.2 yielding ∼15% of cooperation.
Average C-wealth=2.30, average D-wealth=0.11.

B.5.3 Community Structure and Cooperation

As mentioned in a previous section, real social networks show community structure. A com-

munity can be seen as a set of highly connected vertices having few connections with vertices

belonging to other communities. It is a difficult task to distinguish the different communities

composing the network and to determine whether a given vertex belongs to only one or several

of them. There exist several algorithms to split a network into communities [79, 17, 76], each

one with its pros and cons. In our case, due to the computational burden of the simulations, we

chose one of the algorithms proposed by Newman [76].

When the community algorithm is run on the TSN model, the important observation is
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Table B.1: Comparison of the clustering coefficients and degree assortativity of the three net-
work types studied. For the TSN and BA SF, the values are averaged over 100 realizations.
Assortativity coefficient is computed using the expression that appears in [75].

TSN GP BA SF

Clustering coefficient 0.442± 0.004 0.665 0.026± 0.005
assortativity coefficient 0.133± 0.014 0.131 −0.089± 0.027

that, independent of the cooperation level, in most communities either cooperators or defectors

predominate. This is best seen in the GP coauthorship network, as its relatively small size makes

visualization easier. We also notice that the TSN model and the GP network both have a high

clustering coefficient, very similar degree assortativity, and also qualitatively similar community

structure. The corresponding features for the BA SF networks are very different (see Table B.1).

Powered by yFiles

Figure B.4: Communities: cooperators are represented by triangles and defectors by squares.

For reasons of space, in the following we mainly show results for the PD, giving occasional

comments for the other two games. In Figure B.4 we depict a portion of the GP graph, distin-

guishing between cooperators and defectors for the PD. As noted above, tightly-bound commu-

nities are mostly composed of players with the same strategy. Although we only show a small

portion of the whole network for reasons of clarity, we could have chosen many other places as

the phenomenon is widespread. Cooperators tend to “protect” themselves by occupying sites

with many links toward other cooperators. On the other hand, a cooperator like the central one

in the largest defecting community will have a tendency to become a defector since its neighbors

are nearly all defectors; but when its highly connected “wealthy” cooperator neighbor on the
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left of the figure is probabilistically selected to be imitated, then it will certainly become a coop-

erator again. So, the rare cooperators that are not tightly clustered with other cooperators will

tend to oscillate between strategies. Table B.2 illustrates the strategy clustering phenomenon

in a quantitative way by giving the average percentage of cooperating neighbors of a player as a

function of its strategy and of the global cooperation regime (high cooperation, medium cooper-

ation, and low cooperation). We can see that in all cases a cooperator is surrounded by a large

majority of cooperators, whereas a defector mainly interacts with other defectors. However, the

amount of strategy segregation is less extreme when considering the HD with respect to PD

and SH. In the HD case the two strategies are slightly more intermingled, confirming analogous

findings for grid-structured populations [41]. These results are in qualitative agreement with the

well known fact that for large mixing populations, the only evolutionary stable state in the HD

is one in which neither hawks nor doves completely disappear [46]. The community structure

of cooperators, together with the mutual payoff advantage of cooperating also explains the pre-

vious observation that the average cooperators’ wealth exceeds the average wealth of defectors.

While we focused on the way cooperators and defectors self-organize themselves within network

communities and how these community structures tend to naturally segregate the two strategies,

the authors of [58] concentrated on the study of the influence of the intra and intercommunity

structure on global cooperation levels for the PD only.

Table B.2: The proportion of cooperators in a player’s neighborhood depending on the game
played, the regime at the quasi-stable state, and the player’s strategy. The values were obtained
by averaging over 50 runs.

PD HD SH

C D C D C D

C regime 0.98± 0.01 0.18± 0.04 0.93± 0.02 0.28± 0.03 0.98± 0.02 0.11± 0.05

50-50 regime 0.96± 0.03 0.10± 0.06 0.91± 0.01 0.19± 0.03 0.96± 0.03 0.06± 0.05

D regime 0.92± 0.03 0.02± 0.02 0.61± 0.02 0.36± 0.02 0.93± 0.07 0.02± 0.04
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Figure B.5: Degree distribution functions for the TSN model; Prisoner’s dilemma. Data are
averaged over 50 runs; log-log scale. (a) T = 1.3, R = 1, P = 0.1, S = 0; 73% cooperation. (b)
T = 1.3, R = 1, P = 0.2, S = 0; 15% cooperation.

If we now focus on the degree distributions for the TSN model as a whole, and for cooperators

and defectors separately as shown in Figure B.5, we can make the following observations. Firstly,

although the distributions are fat-tailed, they are not well fitted by pure single power-laws for

the number of acquaintances an individual may establish is limited, similar to what happens in

real societies. Looking at the cooperators’ and defectors’ degree distributions, when cooperation

prevails, cooperators tend to occupy the highest degree nodes (Figure B.5 (a)). When defectors

predominate, as in Figure B.5 (b), the two curves tend to be closer, although the cooperators

still monopolize higher degree nodes. The 50/50 case falls just in between these two extremes

(not shown here to save space). As a matter of fact, for high cooperation, the defectors’ curve

are well fitted by an exponential distribution P (k) = 0.473 exp(−0.453k). Another way of seeing

this is depicted in Figure B.6, where we plot the distribution of cooperators according to node

degree, relative to the average for a given level of cooperation. Both for high and low cooperation

fractions, cooperators’ degrees are skewed toward higher values. For the HD and the SH the

results are similar, namely, degree distributions for defectors fall off more rapidly than those

for cooperators. However, when defection prevails, the effect is more marked for the HD, while

for the SH the skewness is less pronounced. Finally, the same measures on the GP graph give

qualitatively similar trends.

B.6 Conclusions

Our results have implications for evolutionary games, and they may also serve to illuminate how

the structure of social networks influences the game dynamics and the emergence of cooperation.

For that purpose, we have chosen to use a model for the construction of networks producing

features that are typical of social networks, and an actual social network that is precisely known.

The standard BA SF model has also been used but only as a benchmark against which to
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Figure B.6: Distribution of cooperators as a function of the players’ degree relative to the
population average. Prisoner’s dilemma. Data are averaged over 50 runs and logarithmically
binned. Left: 73% cooperation. Right: 15% cooperation.

compare the results obtained on social networks. It is encouraging that the results on the two

different social network structures are quite similar, and have much more in common between

themselves than with BA SF graphs. This is shown quite clearly by the values of the clustering

coefficient and by the degree assortativity, which is assortative for the social networks and slightly

disassortative for the BA SF graphs.

For evolutionary games, the study of graph structures that extend the usual regular lattices

and the more complex, but still socially unrealistic Watts–Strogatz and BA SF graphs, should

be a useful one. As these games are supposedly metaphorically played by people and entities in

many kinds of social interactions, it becomes important to take into account in as precise a man-

ner as possible the actual ties that exist. When this is done, one discovers that the community

structures that are so common in society play an extremely important role in the evolution of

cooperation. Starting with an equal amount of randomly distributed cooperators and defectors,

all simulations end up with the majority of cooperators separated from the defectors according

to the underlying community structure of the network. This phenomenon is quite independent

of the final global level of cooperation, at least for the simulations performed.

When one takes the structure of the social interactions into account, there are serious chal-

lenges from the theoretical point of view. However, this is a very promising direction to advance

our understanding of social processes. Simulations like those presented here can help to make

progress and can pave the way for more formal models.
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Abstract

We study the effects of conformity, the tendency of humans to imitate locally common be-

haviors, in the evolution of cooperation when individuals occupy the vertices of a graph and

engage in the one-shot Prisoner’s Dilemma or the Snowdrift game with their neighbors. Two

different graphs are studied: rings (one-dimensional lattices with cyclic boundary conditions)

and scale-free networks of the Barabási-Albert type. The proposed evolutionary-graph model is

studied both by means of Monte Carlo simulations and an extended pair-approximation tech-

nique. We find improved levels of cooperation when evolution is carried on rings and individuals

imitate according to both the traditional pay-off bias and a conformist bias. More important,

we show that scale-free networks are no longer powerful amplifiers of cooperation when fair

amounts of conformity are introduced in the imitation rules of the players. Such weakening

of the cooperation-promoting abilities of scale-free networks is the result of a less biased flow

of information in scale-free topologies, making hubs more susceptible of being influenced by

less-connected neighbors.
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C.1 Introduction

Understanding the emergence and stability of cooperation is a central problem in many fields

of both natural and social sciences. Researchers have traditionally adopted evolutionary game

theory [128] as common formal framework for studying the dynamics of strategy change, and

games like the Prisoner’s Dilemma (PD) and the Snowdrift Game (SG) as metaphors for the

tension between group welfare and individual selfishness. The PD and the SG (also known as

Chicken or Hawks-Doves) are two-person, symmetric games in which a given player can be, at

each time step, either a Cooperator (C) or a Defector (D). Cs are willing to engage in cooperative

tasks, while Ds prefer not to, thus exploiting Cs. If two individuals of the same type interact,

they both get the reward for mutual cooperation R if they cooperate or the punishment for

mutual defection P if they defect. If a D and a C interact, the D receives the temptation to

defect T and the C receives the sucker’s pay-off S. In the PD, the pay-offs are ordered such that

T > R > P > S with 2R > T + S. Since T > R and P > S, the only Nash equilibrium of the

game is the pure strategy (D,D). In this case, the dilemma is caused both by “greed” (or the

temptation to cheat) and “fear” that the other player cheats. In the SG, the order of P and S is

reversed, yielding T > R > S > P . Thus, when both players defect they get the lowest possible

pay-off. The pairs of pure strategies (C,D) and (D,C) are Nash equilibria of the game. There

is also a third equilibrium in mixed strategies in which strategy D is played with probability

p and strategy C with probability 1 − p, where p depends on the actual pay-off values. The

dilemma in this game is caused only by “greed”, i.e. players have a strong incentive to threat

their opponent by playing D, which is harmful for both parties if the outcome happens to be

(D,D).

Conventional evolutionary game theoretical models assume an infinite population in which pairs

of randomly drawn individuals interact according to a given game. Selection is strictly pay-off

biased, which implies that fitter individuals reproduce more (genetic evolution) or successful in-

dividuals tend to be imitated more frequently (cultural evolution). In both genetic and cultural

evolution, the evolutionary process can be analytically described by a set of equations called

the replicator dynamics [128]. In the SG, the only stable equilibrium of such equations is an

internal one, corresponding to the mixed strategy of classical game theory, while the two pure

equilibria are unstable. In the PD, the only stable rest point occurs when the population is

entirely composed of Ds: Cs are doomed to extinction in this game.

Given these unfavorable predictions for the evolution of cooperation, several mechanisms have

been invoked in order to explain why altruism can actually emerge, such as kin selection, group

selection, direct reciprocity, indirect reciprocity and network reciprocity [82]. Network reci-

procity [84, 101, 55, 112] arises when individuals occupy the vertices of a graph (modeling

spatially subdivided populations or social networks) such that interactions are constrained to

direct neighbors. When the population of players possesses such a structure, Cs can survive in

clusters of related individuals for certain ranges of the game parameters, as it has been known

since the pioneering work by Nowak and May [84]. Among the different conceivable population
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topologies, scale-free networks have received particular attention since they have been found to

promote cooperation to a point that Cs dominate Ds in a significant portion of the parameters’

space [101].

In addition to positing infinite well-mixed populations, the replicator dynamics relies on the

assumption that selection is entirely pay-off biased. Such a premise, although natural to posit in

genetic evolution, is less straightforward to postulate in cultural evolution where information is

transmitted by means of imitation. Humans not only have a bias for imitating more successful

people, but also to conform, or to show a disproportionate tendency to copy the behavior of

the majority [16]. Recent empirical research has shown that conformity is an important bias in

our social learning psychology [20, 24], and that it can partially account for the results obtained

in laboratory experiments on social dilemmas [18, 9]. Theoretical research has also shown that

conformity can promote cooperation in the PD. In the standard case of a large, well-mixed

population, the dynamics can lead either to full defection or to bi-stability, depending on the

amount of conformity [45, 89, 44]. In [89] the case of square lattices was studied by simulation,

with the result that conformity stabilizes cooperation in such population topologies, a result

confirmed for rings in [66] and, in a more detailed way, in the work presented here.

In this paper we investigate the evolution of cooperation when individuals imitate with a given

amount of conformity and both interaction and imitation are constrained to nearest neighbors in

a network. In order to extend previous work [84, 41, 23, 101, 116, 89] and to study the influence

of the network topology, we use rings and Bárabasi-Albert scale-free networks as examples of,

respectively, simple degree-homogeneous (i.e. regular) and highly degree-heterogeneous graphs.

It will be shown that, while conformity reinforces the cooperation-promoting advantages of

network reciprocity in rings, the very same mechanism may strongly hinder the evolution of

cooperation when the network topology is scale-free. Indeed, when Cs are not initially in the

majority and imitation is partly conformist, scale-free networks are no longer the powerful am-

plifiers of cooperation expected from the results of previous studies. There is thus an interesting

interplay between conformity and network reciprocity so that the cooperation-promoting effects

of conformity depend on the particular type of networks on which evolutionary dynamics are

played.

C.2 Model

We consider a population of size N where the i-th individual is represented by the vertex vi of

an undirected, simple graph G(V,E). The neighborhood of i, Γ(i), is the set of all individuals j

such that there is an edge eij ∈ E. The number of neighbors of i is thus the degree ki of vertex

vi.

At each time step, each individual is either a C or a D. The system evolves by the successive

application of interaction and imitation phases. During the interaction phase, individuals simul-

taneously engage in a single round of the game with their neighbors. As a result, individual i

collects an accumulated payoff Πi =
∑

l∈Γ(i) πil, where πil is the pay-off player i receives when
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Figure C.1: (Color online) Individuals imitate following two different update rules, each reflect-
ing a different bias of our social learning psychology: pay-off based imitation and conformist
imitation. Cooperators are shown in light yellow; defectors in dark blue. Social interaction is
modeled by a rescaled Prisoner’s Dilemma with T = b > 1, R = 1, P = S = 0. (a) Successful
pay-off biased transmission. When applying a pay-off biased rule of imitation, A can copy B’s
strategy and become a defector, since B’s pay-off is greater than A’s. (b) Unsuccessful conformist
transmission. If A were to imitate B according to conformity, no transmission would take place,
since defectors are in the minority of A’s neighborhood (3 defectors vs. 4 cooperators). (c)
Unsuccessful pay-off biased transmission. B will not copy A’s strategy under a pay-off biased
rule since A’s pay-off is smaller than B’s. (d) Successful conformist transmission. Conformist
transmission from A to B can take place because cooperators constitute the majority in B’s
neighborhood (5 cooperators vs. 1 defector).

interacting with player l (e.g. T , R, P or S). During the imitation phase, each individual

randomly chooses one of its neighbors as its cultural model. Let us denote i’s cultural model

by j. We consider two update rules for the cultural evolutionary dynamics: pay-off biased im-

itation and conformist imitation. (i) For pay-off biased imitation, i copies j’s strategy with a

probability given by f ((Πj −Πi)/(θk>)), where f(x) is equal to x if x > 0 and 0 otherwise,

k> = max {ki, kj}, θ = T−S in the PD and θ = T−P in the SG. This update rule is a local, finite

population analogue of the replicator dynamics, commonly used in the literature [41, 101]. (ii)

For conformist imitation the probability that i copies j’s strategy is given by f
(
(nj|i − ni|i)/ki

)
where nl|i is the number of i’s neighbors with strategy l. This update rule is related to the

majority rule and to the voter model, commonly used in interdisciplinary physics studies [21].

In our model individuals imitate according to a pay-off bias with probability 1−α, and accord-

ing to a conformist bias with probability α. Thus, the parameter α represents the amount of
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conformity in the individuals’ behavior and gives the average proportion of players imitating

according to the conformity rule at each time step. When α = 0 our local dynamics reduce

to the strictly pay-off biased imitation rule used in previous studies [101, 41]. Figure C.1 gives

some illustrative examples of the imitation dynamics of the proposed model.

In order to allow comparison with previous studies, we focus on the commonly used rescaled

version of the PD [84, 101], for which T = b, 1 ≤ b ≤ 2, R = 1 and P = S = 0. The parameter

b represents the advantage of defectors over cooperators. For the SG we make, as in [101],

T = β > 1, R = β − 1/2, S = β − 1, and P = 0, such that the cost-to-benefit ratio of mutual

cooperation is given by r = 1/(2β − 1). It is worthy of note that, in degree-inhomogeneous

networks, the local replicator dynamics using accumulated payoff is not invariant with respect

to affine transformations of the payoff matrix [118, 61]. Although this fact invalidate general-

izations of the obtained results to the extended parameter space, it allows us to compare our

results with relevant previous work.

Before studying our model with actual network models (rings and scale-free networks) by

means of numerical simulation, we briefly present analytical results obtained using the mean-

field method and the pair approximation. Such analytical results are important in order to

identify the dynamical regions of the system and to serve as starting point for comparisons with

the dynamics on actual networks studied in Section C.4.

C.3 Analytical Results

C.3.1 Mean-Field Approach

Within the framework of the traditional mean-field approach [112] network locality is ignored

and the system is assumed to have an infinite size, leading to an infinite, well-mixed population.

In this case, it is easy to show that the time evolution of the fraction of Cs ρ is ruled by the

following equation:

ρ̇ = ρ(1− ρ) {γ [πC − πD] + α(2ρ− 1)} , (C.1)

where πC = ρR + (1 − ρ)S and πD = ρT + (1 − ρ)P are the average pay-offs to Cs and

Ds, and γ = (1 − α)/θ. Equation C.1 (or a similar formula) has been derived in related

work on cultural transmission processes including both pay-off biased imitation and conformist

imitation [44, 45, 18, 89, 110]. The dynamics has the two trivial fixed points ρ∗0 = 0 and ρ∗1 = 1,

as well as (possibly) one internal non-trivial equilibrium given by

ρ∗ =
γ(P − S) + α

γ {R− T + P − S}+ 2α
.

For α = 0 (pure pay-off biased transmission) Eq. C.1 recovers the standard replicator dynamics

of the original game, whereas for α = 1 (pure conformist transmission), Eq. C.1 is equivalent

to the replicator dynamics of a pure coordination game with internal (unstable) equilibrium
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ρ∗ = 1/2. For 0 < α < 1, variations in the amount of conformity and the entries of the pay-off

matrix can change the evolutionary dynamics of the social dilemma. In particular, the global

behavior of the system depends on the two critical values αD = (S − P )/(θ + S − P ) and

αC = (T −R)/(θ+ T −R) so that the system is in one of the following four dynamical regions:

1. Dominant defection (α > αD ∧ α < αC): ρ∗0 = 0 is the only stable equilibrium. In this

case, Cs are doomed to extinction regardless of their initial frequency in the population.

2. Co-existence (α < αD ∧ α < αC): only the internal equilibrium ρ∗ is stable. Cs and Ds

coexist in equilibrium at proportions given by ρ∗ and 1− ρ∗, respectively.

3. Bi-stability (α > αD ∧ α > αC): both ρ∗0 = 0 and ρ∗1 = 1 are stable whereas the internal

fixed point ρ∗ is unstable. In this case, the evolutionary dynamics depends on the initial

frequency of Cs, ρ(0). For ρ(0) > ρ∗ cooperation prevails, whereas it vanishes for ρ(0) < ρ∗.

4. Dominant cooperation (α < αD ∧ α > αC): ρ∗1 = 1 is the only stable equilibrium; Cs get

fixed regardless of their initial frequency in the population.

These regimes can be seen in Fig. C.2, which shows the phase diagrams of the two rescaled

games. In the PD with conformity, S < P ⇒ αD < 0, so that only dominant defection and

bi-stability are possible. In particular, for the rescaled version of the game, conformity can make

the system bi-stable if α > (b−1)/(2b−1). However, for all values of b in the bi-stability region,

the basin of attraction of ρ∗0 is greater than the basin of attraction of ρ∗1, i.e. Cs initially in the

minority are doomed to extinction regardless of their initial proportion and the values of b and

α. In the SG with conformity, the four dynamical regions above described are possible, with

αD = (1− r)/2 and αC = r/(1 + 2r). In the co-existence region, the equilibrium proportion of

Cs is larger than what is expected in the α = 0 case when r < 1/2 and smaller when r > 1/2.

In the bi-stability region, the basin of attraction of ρ∗1 is greater than the basin of attraction of

ρ∗0 for r < 1/2.

In sum, conformity can promote cooperation in the PD to a certain degree in the mean-field

limit. If in the majority (and if conformity is strong enough) Cs now have a chance of surviving

invasion from Ds, and eventually take over the whole population [89]. In the SG, whether

conformity helps or hinders the evolution of cooperation actually depends on the cost-to-benefit

ratio r. Cs are favored for r < 1/2 and disfavored for r > 1/2.

C.3.2 Pair Approximation

Pair approximation [63, 121] improves over traditional mean-field approach for structured pop-

ulations by considering the frequency of strategy pairs (i.e. C-C, C-D and D-D). Since the

technique assumes regular graphs without loops, it only applies to Bethe lattices in a strict

sense [42]. However, pair approximation has been used to predict evolutionary dynamics on

more general regular graphs with considerable success [41, 42]. We extended the pair-dynamics
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Figure C.2: (Color online) Mean-field solutions of the phase diagrams for the PD with conformity
on the b-α plane (left) and for the SG with conformity on the r-α plane (right). For the PD, the
system can be in the dominant defection (D) or the bi-stability (C or D) regions. For the SG,
dominant cooperation (C ) and co-existence (C+D) are also possible outcomes. Darker colors
indicate more defection in the average. In the C or D region, colors indicate the size of the basin
of attraction for the cooperative equilibrium. In the C+D region, colors indicate the equilibrium
proportion of Cs.

model presented in the Supplementary Information of Ref. [41] to investigate the cultural evo-

lutionary dynamics of social dilemmas on graphs. The pair approximation of our model leads

to a system of ordinary differential equations tracking changes in the proportions pc,c, pc,d and

pd,d of, respectively, the C-C, C-D and D-D links in the population graph. The resulting system,

although impossible to solve analytically due to the nonlinearity of the equations, can be solved

numerically after specifying suitable initial conditions.

Figure C.3 shows the phase diagrams for the pair approximation of our model, for regular graphs

with degree k = 4 and k = 8. The figures were constructed by numerically integrating the equa-

tions under different initial proportions of Cs (ρ(0) = {0.1, 0.2, . . . , 0.9}) and averaging over all

initial conditions. Pure spatial effects can be seen when α = 0. For the PD, the dynamical

regime of the game is no longer of dominant defection, but of co-existence. Locality of interac-

tions thus favors Cs by allowing them to survive extinction. In addition to this classical result,

for k = 4 conformity is largely favorable to Cs. Indeed, augmenting α increases the proportion

of Cs in the co-existence region and, depending on the value of b, can shift the system to the

region of dominant cooperation. In the SG with k = 4 conformity has similar effects, resulting

in an analogous dynamic picture. The fact that the SG represents a less stringent dilemma

makes larger the area of dominant cooperation. For k = 8, phase diagrams get closer to those

predicted by the mean-field method (see Fig. C.2) but important levels of cooperation are still

sustained. In the PD, for instance, the basins of attraction of the cooperative equilibrium in the
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Figure C.3: (Color online) Pair approximations of the phase diagrams for the PD with conformity
on the b-α plane (top row) and the SG with conformity on the r-α plane (bottom row). The first
column shows the results for k = 4, the second column for k = 8. The system exhibits different
dynamical regimes depending on the game: dominant cooperation (C ), dominant defection
(D), coexistence (C+D), and bi-stability (C or D and C+D or C ). In the C+D or C region,
the system can stabilize in a mixed state or in pure cooperation. Darker colors indicate more
defection in the average.

bi-stability region are larger than those expected in a well-mixed population (compare the top

right panel of Fig. C.3 with the left panel of Fig. C.2).

In a nutshell, when the population of players possesses local structure, a given amount of confor-

mity in the imitation rules of the players is able to foster cooperation, at least for low values of

the mean degree k. The reason for this is the easier formation of clusters of individuals playing

the same strategy induced by conformist imitation.

C.4 Simulation Results

We now turn our attention to actual networks as population topologies, in particular (i) rings

(regular 1D-lattices with cyclic boundary conditions) with degrees k = 4, k = 8 and k = 16,
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and (ii) Barabási–Albert scale-free networks [3] with average degrees k̄ = 4, k̄ = 8, and k̄ = 16.

For both types of networks we generated graphs of size N = 104. In the case of rings, graphs

are constructed by arranging the nodes on a circle and connecting each node to the k most-

neighboring nodes.

We study the model by Monte Carlo simulations in populations randomly initialized with 50% Cs

and 50% Ds (but see Section C.4.3 for other initial conditions). The probability α of conformist

transmission was set to α ∈ [0, 0.5] in steps of 0.1. We privilege values of α ≤ 0.5 so that

dynamics are primarily driven by pay-off differences in the competing strategies. However, we

also study the limiting case α = 1 in Section C.4.4 and the case 0 ≤ α ≤ 1 in Section C.4.3.

The advantage of defectors b (PD) and the cost-to-benefit ratio r (SG) were varied in steps of

0.05. We carried out 50 runs for each couple of values of α and the game parameter. For the

scale-free networks, we used a fresh graph realization in each run. The average final frequency

of Cs ρ̂ was obtained by averaging over 103 time steps after a relaxation time of 104 time steps.
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Figure C.4: (Color online) Final average frequency of Cs on rings with k = 4 for the PD (upper
panels) and the SG (lower panels) as a function of b or r for different values of the propensity to
conform α. Results by Monte Carlo simulations are shown in the right panels while predictions
by pair approximation are shown in the left panels. Mean-field approximations for the SG and
α = 0 are shown with dotted lines.
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Figure C.5: (Color online) Final average frequency of Cs on rings with k = 8 for the PD (upper
panels) and the SG (lower panels) as a function of b or r for different values of the propensity to
conform α. Results by Monte Carlo simulations are shown in the right panels while predictions
by pair approximation are shown in the left panels. Mean-field approximations for the SG and
α = 0 are shown with dotted lines.

C.4.1 Results for Rings

Figure C.4 summarizes the results obtained for the PD and the SG on rings with k = 4. These

plots confirm the results previously obtained for the standard α = 0 case on these population

topologies [101, 116], which in turn are qualitatively similar to those obtained for square lat-

tices [84, 41]. In the PD, Cs are able to survive for low values of b by forming clusters wherein

they interact more often with their own strategy than what is expected in well-mixed popula-

tions. Cs can thus benefit from mutual cooperation and counterbalance the exploitation of Ds

at the borders of the clusters [23]. In the SG, spatial structure hinders the evolution of coop-

eration [41], such that only for small values of r (i.e. r < 0.3) the final fraction of Cs is higher

than what is expected in a well-mixed population. As it is evident from our results, conformity

enhances cooperation in rings, moving rightward the critical value b∗ for which ρ̂ = 0 in the

PD, and the value r∗ for which the ρ̂ becomes smaller than the corresponding proportion in a

well-mixed population in the SG. Furthermore, the different curves are ordered in a way that

the higher α, the higher ρ̂ for all values of b and r (except for the SG, r = 0.5, α = 0.1) and the

larger the critical values b∗ and r∗.

Figure C.5 plots the results for rings with k = 8. In the PD, conformity enhances cooperation
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even more pronouncedly than in the k = 4 case. Indeed, the threshold b∗ has moved rightward

for every value of α. Such trend is still present in the results obtained for rings with k = 16

(not shown here to avoid cluttering the figures). In the SG, the increase in the degree of the

graph makes conformity cooperation-enhancing up to a threshold value r̂ (where a curve with

α > 0 crosses the curve with α = 0) but detrimental afterwards. As b∗ in the PD, also r̂ moves

rightward as α increases.

With respect to simulation results, pair approximation tends to underestimate cooperation for

low values of α and b or r and to overestimate it for medium to large values of these parameters.

For the PD with conformity, results for k = 8 are rather pessimistic and are much closer to what

we have obtained for random graphs (data not shown here). This is not surprising since random

graphs are locally similar to Bethe lattices [14]. Notice, however, that pair approximation pre-

dicts reasonably well the cooperation-enhancing effects of conformity in the PD and the ordering

of the curves for different values of α. Also, for the SG, pair approximation accurately predicts

the fact that the curves with conformity (α > 0) are above the curve without conformity (α = 0)

when k = 4 (Fig. C.4, lower panels), but that they cross it when k = 8 (Fig. C.5, lower panels).

This means that pair approximation correctly predicts the fact that, for k = 8, there is a point

up to which conformity helps Cs but beyond which Ds are favored with respect to the standard

case without conformity.

C.4.2 Results for Scale-Free Graphs

Let us now turn our attention to the results obtained for scale-free networks (Fig. C.6). When

imitation is strictly pay-off biased (α = 0) these degree-heterogeneous graphs importantly foster

cooperation in both the PD and the SG with respect to what is obtained in rings and other

degree-homogeneous graphs [101]. As an aside, we note that the higher the average degree k̄,

the lower the gains in cooperation 1. The addition of conformity has important consequences

in the evolution of cooperation on scale-free graphs. In the PD, conformity improves ρ̂ for all

values of b only for a scale-free topology with k̄ = 4 and α < 0.3. For the other cases, conformity

does not hamper cooperation for small values of b but is detrimental for medium to large values

of the game parameter. Furthermore, the threshold value b̂ above which ρ̂ is higher than in

the case without conformity is a monotonically decreasing function of both α and k̄, such that

the higher the amount of conformity and the average connectivity of the graph, the smaller the

value of b̂. Particularly, for scale-free networks with k̄ = 8 and α ≥ 0.2, conformity weakens the

advantage of these graphs in promoting cooperation to a point that ρ̂ becomes comparable to

the corresponding fraction obtained in rings (compare the right upper panels of Fig. C.6 and

Fig. C.5).

Results for the SG on scale-free networks (lower panels of Fig. C.6) are qualitatively similar to

those obtained for the PD. Again, conformity is beneficial for cooperation for all values of the

game parameter r only for k̄ = 4 and α < 0.3. For the remaining cases, there is a threshold

1When comparing our results with those of [101], note that the curves are in the wrong order in [101] as
cooperation should decrease with increasing mean degree for scale-free networks.
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Figure C.6: (Color online) Final average frequency of Cs on scale-free networks for the PD
(upper panels) and the SG (lower panels) as a function of b (PD) or r (SG) for different values
of the propensity to conform α. Results are shown for k̄ = 4 (left panels) and k̄ = 8 (right
panels). Mean-field approximations for the SG and α = 0 are shown with dotted lines.

value r̂ of the cost-to-benefit ratio above which ρ̂ is smaller than the corresponding frequency

of Cs in the α = 0 case. We note again the fact that the higher the value of α, the lower the

value of r̂. Finally, and as in the PD, for k̄ = 8 and α ≥ 0.2 there are no important quantitative

differences in ρ̂ between rings and scale-free networks: scale-free networks have again lost the

cooperation-enhancing capabilities they feature when imitation is strictly pay-off biased. For

k̄ = 8 and high values of r, the addition of conformity can even make Cs go extinct, which would

not happen in the non-conformist case.

C.4.3 Dependence on the initial conditions

In order to investigate the robustness of cooperation and to study the influence of the initial

fraction of Cs ρ(0) we have also run simulations for the PD on rings and scale-free graphs for

k̄ = 8 starting from values of ρ(0) other than 0.5, and on an extended range of values of α

going from 0 to 1. Results are shown in Fig. C.7 in the form of phase diagrams for each initial

condition. In contrast to the notion of bi-stability in a system of ordinary differential equations

(such as those resulting from the mean-field approach and the pair approximation), here we

define bi-stability as the ability of the system to reach either full cooperation or full defection

starting from the same global initial conditions, due to its stochastic dynamics and finite size.
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Figure C.7: (Color online) Phase diagrams for the PD game on rings with k = 8 (top row) and
for scale-free graphs with k̄ = 8 (bottom row) as a function of b and α. The images are for
increasing initial fractions of cooperation ρ(0) from left to right.

Not unexpectedly, initial conditions influence the final outcomes of the simulations, so that the

strategy initially in the majority is always favored with respect to the case when ρ(0) = 0.5.

Notice, however, that the effects of conformity are still qualitatively different for each of the two

types of networks considered in this study. On these phase diagrams the transition from the

region of dominant cooperation (C ) to dominant defection (D) is steeper on rings, where the

two zones with monomorphic populations are divided by a narrow region of co-existence (C+D).

On scale-free networks a large region of bi-stability (C or D) tends to be formed in the middle of

the parameter’s space, being the largest for ρ(0) close to 50%. Indeed, the cultural evolutionary

dynamics are much more sensitive to the initial conditions when applied on top of scale-free

networks than when they are played on top of rings. For rings, conformity favor Cs even if

they are initially in the minority, such that, in general, the higher the value of α the higher the

final fraction of Cs in the population. For scale-free networks, conformity can be favorable to

cooperation when Cs are initially in the majority, but decidedly detrimental if they are in the

minority. The remarkable observation is that in scale-free networks even a small change in the

initial fraction of Cs can drastically change the final outcome (see the second and fourth images

in the lower row of Fig. C.7 for ρ(0) = 0.45 and ρ(0) = 0.55). It would be tempting to compare

the numerical results for scale-free graphs with those obtained analytically in the mean-field case

and with the pair approximation (Figs. C.2 and C.3). However, this cannot be done as both the

mean-field and pair approximation approaches give poor results in highly degree-inhomogeneous

networks.
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Figure C.8: (Color online) Final population composition as a function of the average degree k̄
and the initial proportion of cooperators when imitation is purely conformist (α = 1).

C.4.4 Pure conformist dynamics

We briefly comment on the case with α = 1 which is special as the dynamics is completely

driven by the majority rule and games’ payoffs play no role. Figure C.8 shows what happens in

this case as a function of the network’s average degree k̄ and the initial proportion of Cs. For

k̄ = 2 there is a large co-existence region for both graphs, and the pure equilibria have relatively

small basins of attraction. With increasing k̄, the co-existence region decreases so that a greater

connectivity favors fixation in a monomorphic population. Whereas in rings co-existence is still

reached for k̄ as large as 12, for scale-free networks such regime disappears for k̄ > 5. For these

networks, only in the narrow central strip around ρ(0) = 0.5 may bi-stability arise. Note that

in this case the C and D labels indicating cooperators or defectors are purely conventional as

payoffs (and so, the behavioral strategies of the individuals) are completely ignored.

C.5 Discussion

Conformity and network reciprocity are able to act together and foster cooperation in degree-

homogeneous graphs for social dilemmas such as the PD and the SG. The basic principle behind

network reciprocity is the formation of clusters of related individuals leading to assortative

interactions that favor Cs. Conformity further helps such cluster formation thus improving the

efficiency of cooperative behavior in a network of interacting individuals.

More interestingly, conformity may hinder the evolution of cooperation on the otherwise co-

operation-promoting scale-free networks. The different dynamical organization of cooperation

in degree-heterogeneous graphs with conformity can explain the reason of such phenomenon.

When individuals imitate exclusively according to a pay-off bias, Cs and Ds coexist in quasi-

equilibrium, with some nodes fixed in cooperative or defective behavior and others where there is

no fixation and cycles of invasion follow indefinitely [32]. Thus, the gradual drop in cooperation

seen in Fig. C.6 for the case α = 0 is mostly due to fluctuating individuals spending less and
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Figure C.9: (Color online) Evolution of the frequency of Cs on scale-free networks (k̄ = 8) during
the first 500 time steps for the PD, without conformity (upper panel) and with conformity (lower
panel). In both figures, b = 1.35. 20 distinct curves are shown.

less time engaging in cooperative behavior. This dynamical picture changes when individuals

imitate not only according to a pay-off bias, but also to conformity. In this case, for k̄ = 8, the

population always reaches one of the two absorbing states, so that in the limit only one strategy

gets fixed: Cs for low values of b, Cs or Ds (with a certain probability) for intermediate values of

b, and Ds for large values of b (see also the bottom row of Fig. C.7). In general, and contrary to

what happens without conformity, intermediate levels of cooperation for α > 0 (when averaging

over several runs) are not the result of the co-existence or fluctuation of different strategies but of

the fact that, for an interval of values of b, whose length increases with α, the system sometimes

converges to the cooperative equilibrium and some others to the defective equilibrium (see

Fig. C.7 bottom row, central image). Additionally, evolutionary dynamics develop much faster

in the presence of conformity. Figure C.9 illustrates these observations for the case of scale-free

networks with k̄ = 8 and b = 1.35. Without conformity (upper panel of Fig. C.9) the fraction

of Cs for each run slowly increases during the initial part of the simulation until, eventually, it

stabilizes around 0.9. Conversely, with conformity (lower panel of Fig. C.9), very early in the

evolutionary process the population goes either to full cooperation or to full defection.

We can gain an insight into the interplay between network reciprocity and conformity by making

use of the notion of the temperature of players [55, 62]. Hot players are those who play more

since they have a large number of neighbors, whereas cold players are those who have few

neighbors and, consequently, play less games. By playing more often, and provided that pay-offs

are positively biased (i.e. S ≥ 0 in the PD), hot players get higher accumulated payoffs than

cold players. Under pure pay-off biased imitation (α = 0) this implies that hot players are also
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Figure C.10: (Color online) Evolution of cooperation around the most connected hub of a scale-
free network with k̄ = 8. The game is a rescaled PD with b = 1.35 for α = 0 (upper panel) and
α = 0.1 (lower panel). The fraction of C neighbors is shown in solid lines and the strategy of the
hub in dashed lines (D corresponds to 0; C to 1). As a reference, the level of 50% cooperation
is depicted in dotted lines. The most connected hub is initially set to D (upper panel) or to C
(lower panel). The rest of the population is initialized to around 50% Cs.

more successful in being imitated and in disseminating their strategies [62].

Both Cs and Ds do better when they are surrounded by Cs. By spreading defective behavior,

hot Ds become less and less successful, since the number of their C neighbors decreases. Hot

Cs, on the contrary, see their pay-off increased by spreading their own strategy. The more hot

Cs are imitated the more they earn and the more difficult it is for a surrounding D to invade. A

typical example of such “hub dynamics” is illustrated in Fig. C.10 (upper panel) for the most

connected hub of a scale-free network. The hub is D at the beginning of the simulation, while the

rest of the population is initialized to around 50% Cs. Many C neighbors imitate the defective

hub (or other surrounding Ds) during the first steps of simulation, so that the proportion of

C neighbors is reduced to approximately 30%. As a consequence, the total pay-off of the hub

is reduced, and the hub becomes vulnerable to invasion from a neighboring C. When the hub

becomes a C, more and more of its D neighbors also switch their strategies. Consequently, the

proportion of C neighbors (and the total pay-off to the hub) increases and is maintained at a high

level afterwards. The presence of such positive feedback mechanism, and the fact that it only

works for Cs, greatly enhances cooperation in degree-heterogeneous graphs and, particularly, in

scale-free networks [100].

The introduction of conformity decreases the bias in the flow of information in degree-hetero-

geneous graphs, making hubs vulnerable to invasion from their cold neighbors. While hubs

are unlikely to imitate their low connected neighbors when using a pay-off biased rule, nothing
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prevents them from imitating a cold surrounding player if it holds the strategy of the local

majority (see Fig. C.1(d)). Since the fraction of Cs generally decreases at the outset of the

simulation (see the first time steps of the curves shown in Fig. C.9), conformity further favors

Ds, which become predominant in the population. An example of this dynamics is shown

in Fig. C.10 (lower panel). Initially, the hub is a C. Many of the hub’s neighbors turn to

defection during the first time steps, making cooperation the less common strategy in the hub’s

neighborhood. Around the 100th time step, the hub imitates by conformity one of its defector

neighbors, leading to a quicker decrease in the proportion of Cs in its neighborhood. Shortly

after, Cs completely vanish around the most connected hub. During those first time steps,

hubs imitating according to a conformist bias will have many chances of becoming Ds. When

Cs are not initially in the large majority, such initial asymmetry in the strategies of the hubs

can account for the negative effects of conformity in the evolution of cooperation in scale-free

networks. Conformity partly reverses the flow of information on degree-heterogeneous networks

so that hubs no longer conduct the dynamics and instead quickly conform to the general trend

of the whole population.

C.6 Conclusions

To sum up, we have investigated the effects of conformity in the evolution of cooperation on

regular one-dimensional lattices (rings) and scale-free networks. This was done by proposing

an updating rule that is a stochastic average of the traditional local replicator dynamics, which

models pay-off biased imitation, and a conformist biased rule of transmission favoring the most

common variants around focal individuals. We explored rings and scale-free networks with dif-

ferent average degrees, as well as different values of the propensity to conform α. Two games

representing social dilemmas were studied: the rescaled versions of the PD, and the SG. In

addition to Monte Carlo simulations, we also used an extended pair-dynamics model to predict

the average fraction of cooperators in equilibrium, and compare them with the results obtained

from our simulations.

The results presented in this paper show that whether conformity strengthens or weakens the

evolution of cooperation depends on the intrinsic characteristics of the underlying graph. In

the PD, conformity favors cooperation on rings by allowing clusters of Cs forming more easily.

Conversely, it can hinder cooperation in scale-free networks for medium to large values of b,

due to the exposure of hubs to the opinions of the local majority in their neighborhoods. In

particular, and already for small amounts of conformity in the imitation rules of the players,

scale-free networks do not show the great improvement over regular structures that has been

previously reported in the literature. In the SG, conformity fosters cooperation on rings in the

case k = 4 for all values of the cost-to-benefit ratio r, and for low to medium values of r in the

case k = 8. In scale-free networks, conformity is rather detrimental for large values of r. Thus,

for both the PD and the SG, conformity often hinders the evolution of cooperation on scale-free

networks for the cultural evolutionary dynamics described in this paper.
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It is worth pointing out that other factors dismissing the advantage of scale-free networks in

the evolution of cooperation have been identified, such as participation costs [62], other positive

affine transformations of the pay-off matrix [118, 61], and the use of average instead of accu-

mulated pay-offs [102]. While these factors are extrinsic to the imitation rules of the agents,

conformity is a simple mechanism undoubtedly present in our social learning psychology and

central to better understand cultural dynamics and the way cooperation evolves on real social

networks.
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C.7 Appendix: Pair approximation

An analytical approximation of the dynamics of evolutionary games on graphs can be obtained

by means of pair approximation [63, 121]. For detailed surveys of this technique, and its ap-

plications to games on graphs, we refer the interested reader to Refs. [41, 42, 112]. We limit

ourselves to briefly introduce the pair approximation and to explain how we have extended it

for taking into account conformity in the imitation rules of the players.

Pair approximation is a method for constructing a system of ordinary differential equations

for the global frequencies of strategies by tracking the changes in the frequencies of strategy

pairs. In our case, we are interested in determining the global frequency ρ of Cs by tracking

the fluctuations in pc,c, pc,d, pd,c and pd,d, where ps,s′ is the probability of having an individual

playing strategy s connected to an individual playing strategy s′. For pair approximation to be

consistent with the mean-field approach, it is assumed that ps =
∑

s′ ps,s′ . Furthermore, and

in order to “close” the set of equations, configurations of triplets and more complicated con-

figurations are approximated by the configuration probabilities of strategy pairs. For example,

the configuration probability of the triplet s, s′, s′′ is approximated by ps,s′,s′′ = ps,s′ps′,s′′/ps′ .

It is important to note that pair approximation (i) requires regular graphs and (ii) corrections

arising from loops are ignored. Finally, note that the predictions of the pair approximation for

any two regular graphs with the same degree k are exactly the same. This allows us to compare

our results to those of [41] when α = 0.

Let us consider individuals sitting on the vertices of a graph of degree k. Whenever a randomly

chosen site A updates its strategy, a random neighbor B is selected as A’s cultural model. Com-

mon neighbors of any pair of vertices are considered to be independent by pair approximation

(i.e. loops are neglected). Thus, let us denote by a1, . . . , ak−1 (resp. b1, . . . , bk−1) the k − 1 the

neighbors of A (resp. B) other than B (resp. A). The probability of a generic configuration
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A

a1

a2

ak-1

B

b1

b2

bk-1

Figure C.11: A generic configuration for pair approximation. A is the focal individual, B is
A’s cultural model, a1, a2, . . . , ak−1 are A’s neighbors other than B, and a1, a2, . . . , ak−1 are B’s
neighbors other than A. A and B are assumed to have no common neighbors, i.e. triangles and
loops are neglected.

(see Fig. C.11) is given by:

pA,B

∏k−1
i=1 pai,Apbi,B

pk−1
A pk−1

B

.

The probability that the pair A,B becomes B,B is calculated by multiplying the transition

probability σA→B by the configuration probability and summing over all possible configurations,

so that:

pA,B→B.B =
∑

a1,...,ak−1

∑
b1,...,bk−1

σA→B × pA,B
∏k−1
i=1 pai,Apbi,B

pk−1
A pk−1

B

.

In our model, the transition probability σA→B depends not only on the payoffs of A and B

but also on α (the probability to imitate according to a conformist bias) and on the number of

players among a1, . . . , ak−1 playing the same strategy of A and B. The transition probability is

given by:

σA→B = (1− α)f

(
ΠB(b1, . . . , bk−1)−ΠA(a1, . . . , ak−1)

kθ

)
+

αf

(
nB(a1, . . . , ak−1, B)− nA(a1, . . . , ak−1, B)

k

)
,

where ΠB(x1, . . . , xk−1), ΠA(x1, . . . , xk−1) denote the payoffs ofB (A) interacting with x1, . . . , xk−1

plus A (B), and nB(a1, . . . , ak−1, B), nA(a1, . . . , ak−1, B) specify the number of players with

strategy B (A) among a1, . . . , ak−1 and B. The definitions of the parameter θ and the function

f are given in Section C.2.

WheneverA imitatesB, the pair configuration probabilities change so that pB,B, pB,ai , . . . , pB,ak−1

increase, while pA,B, pA,ai , . . . , pA,ak−1
decrease. All these changes lead to a set of ordinary dif-
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ferential equations governing the dynamics of the system:

ṗc,c =
∑

a1,...,ak−1

(nc(a1, . . . , ak−1) + 1)
k−1∏
i=1

pd,ai
∑

b1,...,bk−1

k−1∏
j=1

pc,bj ×{
(1− α)f

(
Πc(b1, . . . , bk−1)−Πd(a1, . . . , ak−1)

kθ

)
+

αf

(
2nc(a1, . . . , ak−1) + 2− k

k

)}
−

∑
a1,...,ak−1

nc(a1, . . . , ak−1)

k−1∏
i=1

pc,ai
∑

b1,...,bk−1

k−1∏
j=1

pd,bj ×{
(1− α)f

(
Πd(b1, . . . , bk−1)−Πc(a1, . . . , ak−1)

kθ

)
+

αf

(
k − nc(a1, . . . , ak−1)

k

)}

ṗc,d =
∑

a1,...,ak−1

(
k

2
− 1− nc(a1, . . . , ak−1)

) k−1∏
i=1

pd,ai
∑

b1,...,bk−1

k−1∏
j=1

pc,bj ×{
(1− α)f

(
Πc(b1, . . . , bk−1)−Πd(a1, . . . , ak−1)

kθ

)
+

αf

(
2nc(a1, . . . , ak−1) + 2− k

k

)}
−

∑
a1,...,ak−1

(
k

2
− nc(a1, . . . , ak−1)

) k−1∏
i=1

pc,ai
∑

b1,...,bk−1

k−1∏
j=1

pd,bj ×{
(1− α)f

(
Πd(b1, . . . , bk−1)−Πc(a1, . . . , ak−1)

kθ

)
+

αf

(
k − nc(a1, . . . , ak−1)

k

)}
,

where nc(a1, . . . , ak−1) gives the number of Cs among a1, . . . , ak−1 and Πc(x1, . . . , xk−1), Πd(x1, . . . , xk−1)

denote the payoffs of a C (D) interacting with x1, . . . , xk−1 plus a D (C). Because of the symmetry

condition pc,d = pd,c and the constraint pc,c+pc,d+pd,c+pd,d = 1 these two differential equations

are sufficient to describe the system. Note that whenever α = 0 the system of equations is equiv-

alent to that derived in the supplementary information of Ref. [41] and the appendix of Ref. [42].

Following those works, the above equations also omit the common factor 2pc,d/(ρ
k−1pk−1

d ), which

has no influence in the equilibria of the system. The equilibrium values p̂c,c, p̂c,d, were obtained

by numerically integrating the equations after specifying initial conditions for 1010 time steps.

In all cases, pc,c(0) = (ρ(0))2, pc,d(0) = ρ(0)(1 − ρ(0)). The equilibrium frequency of Cs was

then approximated by p̂c = p̂c,c + p̂c,d.
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Abstract

Situations of conflict giving rise to social dilemmas are widespread in society and game theory is

one major way in which they can be investigated. Starting from the observation that individuals

in society interact through networks of acquaintances, we model the co-evolution of the agents’

strategies and of the social network itself using two prototypical games, the Prisoner’s Dilemma

and the Stag Hunt. Allowing agents to dismiss ties and establish new ones, we find that coop-

eration and coordination can be achieved through the self-organization of the social network, a

result that is non-trivial, especially in the Prisoner’s Dilemma case. The evolution and stabil-

ity of cooperation implies the condensation of agents exploiting particular game strategies into

strong and stable clusters which are more densely connected, even in the more difficult case of

the Prisoner’s Dilemma.

D.1 Introduction

In this paper we study the behavior of a population of agents playing some simple two-person,

one-shot non-cooperative game. Game theory [71] deals with social interactions where two or
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more individuals take decisions that will mutually influence each other. It is thus a view of

collective systems in which global social outcomes emerge as a result of the interaction of the

individual decisions made by each agent. Some extremely simple games lead to puzzles and

dilemmas that have a deep social meaning. The most widely known among these games is

the Prisoner’s Dilemma (PD), a universal metaphor for the tension that exists between social

welfare and individual selfishness. It stipulates that, in situations where individuals may either

cooperate or defect, they will rationally choose the latter. However, cooperation would be the

preferred outcome when global welfare is considered. Other simple games that give rise to social

dilemmas are the Hawk-Dove and the Stag-Hunt (SH) games.

In practice, however, cooperation and coordination on common objectives is often seen in

human and animal societies [6, 109]. Coordinated behavior, such as having both players coop-

erating in the SH, is a bit less problematic as this outcome, being a Nash equilibrium, is not

ruled out by theory. For the PD, in which cooperation is theoretically doomed between rational

agents, several mechanisms have been invoked to explain the emergence of cooperative behav-

ior. Among them, repeated interaction, reputation, and belonging to a recognizable group have

often been mentioned [6]. Yet, the work of Nowak and May [84] showed that the simple fact

that players are arranged according to a spatial structure and only interact with neighbors is

sufficient to sustain a certain amount of cooperation even when the game is played anonymously

and without repetition. Nowak and May’s study and much of the following work were based

on regular structures such as two-dimensional grids (see [86] for a recent review). Nevertheless,

many actual social networks usually have a topological structure that is neither regular nor

random but rather of the small-world type. Roughly speaking, small-world networks are graphs

in which any node is relatively close to any other node. In this sense, they are similar to random

graphs but unlike regular lattices. However, in contrast with random graphs, they also have a

certain amount of local structure, as measured, for instance, by a quantity called the clustering

coefficient which essentially represents the probability that two neighbors of a given node are

themselves connected (an excellent review of the subject appears in [75]). Some work has been

done in recent years in the direction of using those more realistic kind of networks, including

actual social networks. In particular we mention Santos and Pacheco’s work on scale-free net-

works [101], work on Watts–Strogatz small-world graphs [1, 116], and on model and real social

networks [60]. A recent contribution focuses on repeated games and learning [125] and Szabó

and Fáth have published an excellent and very complete review of work done up to 2006 [112].

These investigations have convincingly shown that a realistic structure of the society, with inter-

actions mainly limited to neighbors in the network, is well sufficient in allowing cooperative and

coordinated behavior to emerge without making any particular assumption about the rationality

of the actors or their computational and forecasting capabilities.

Most of the above mentioned studies have assumed a fixed population size and structure,

which amounts to dealing with a closed system and ignoring any fluctuations in the system’s

size and internal interactions. However, real social networks, such as friendship or collaboration

networks, are not in an equilibrium state, but are open systems that continually evolve with

Emergence of Cooperation on Static and Dynamic Networks Enea Pestelacci



D.1. INTRODUCTION 99

new agents joining or leaving the network, and relationships (i.e. links in network terms) being

made or dismissed by agents already in the network [8, 54, 115]. Thus, the motivation of the

present work is to re-introduce these coupled dynamics into our model and to investigate under

which conditions, if any, cooperative and coordinated behavior may emerge and be stable. In

this paper, we shall deal with networked populations in which the number of players remains

constant but the interaction structure, i.e. who interacts with whom, does not stay fixed; on

the contrary, it changes in time and its variation is dictated by the very games that are being

played by the agents. A related goal of the present work is to study the topological structures

of the emergent networks and their relationships with the strategic choices of the agents.

Some previous work has been done on evolutionary games on dynamic networks [59, 103, 111,

131]. Skyrms and Pemantle [111] was recently brought to our attention by a reviewer. It is one

of the first important attempts to study the kind of networks that form under a given game

and, as such, is closely related to the work we describe here. The main ideas are similar to ours:

agents start interacting at random according to some game’s payoff matrix and, as they evolve

their game strategy according to their observed payoffs, they also have a chance of breaking

ties and forming new ones, thus giving rise to a social network. The main differences with

the present work is that the number of agents used is low, of the order of 10 instead of the

103 used here. This allows us to study the topological and statistical nature of the evolving

networks in a way that is not possible with a few agents, while Skyrms’ and Pemantle’s work

is more quantitative in the study of the effects of the stochastic dynamics on the strategy and

network evolution process. The work of Zimmermann and Egúıluz [131] is based on similar

considerations too. There is a rather large population which has initially a random structure.

Agents in the population play the one-shot two-person Prisoner’s Dilemma game against each

other and change their strategy by copying the strategy of the more successful agent in their

neighborhood. They also have the possibility of dismissing interactions between defectors and

of rewiring them randomly in the population. The main differences with the present work are

the following. Instead of just considering symmetrical undirected links, we have a concept of

two directed, weighted links between pairs of agents. In our model there is a finite probability of

breaking any link, not only links between defectors, although defector-defector and cooperator-

defector links are much more likely to be dismissed than cooperator-cooperator links. When a

link is broken it is rewired randomly in [131] while we use a link redirection process which favors

neighbors with respect to more relationally distant agents. In [131] only the Prisoner’s Dilemma

is studied and using a reduced parameter space. We study both the Prisoner’s Dilemma and

the Stag Hunt games covering a much larger parameter space. Concerning timing of events,

we use an asynchronous update policy for the agents’ strategies, while update is synchronous

in [131]. Finally, instead of a best-takes-over discrete rule, we use a smoother strategy update

rule which changes an agent’s strategy with a probability proportional to the payoffs difference.

Santos et al. [103] is a more recent paper also dealing with similar issues. However, they use

a different algorithm for severing an undirected link between two agents which, again, does

not include the concept of a link weight. Furthermore, the Stag Hunt game is only mentioned
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in passing, and their strategy update rule is different. In particular, they do not analyze in

detail the statistical structure of the emerging networks, as we do here. Other differences with

the above mentioned related works will be described in the discussion and analysis of results.

Finally, our own previous work [59] also deals with the co-evolution of strategy and structure in

an initially random network. However, it is very different from the one presented here since we

used a semi-rational threshold decision rule for a family of games similar, but not identical to

the Prisoner’s Dilemma in [59]. Furthermore, the idea of a bidirectional weighted link between

agents was absent, and link rewiring was random.

This article is structured as follows. In sect. D.2, we give a brief description of the games

used in our study. This part is intended to make the article self-contained. In sect. D.3, we

present a detailed description of our model of co-evolving dynamical networks. In sect. D.4, we

present and discuss the simulation results and their significance for the social networks. Finally,

in sect. D.5, we give our conclusions and discuss possible extensions and future work.

D.2 Social Dilemmas

The two representative games studied here are the Prisoner’s Dilemma (PD) and the Stag-Hunt

(SH) of which we briefly summarize the significance and the main results. More detailed accounts

can be found elsewhere, for instance in [6, 109]. In their simplest form, they are two-person,

two-strategies, symmetric games with the following payoff bi-matrix:

C D

C (R,R) (S,T)
D (T,S) (P,P)

In this matrix, R stands for the reward the two players receive if they both cooperate (C), P is

the punishment for bilateral defection (D), and T is the temptation, i.e. the payoff that a player

receives if it defects, while the other cooperates. In this case, the cooperator gets the sucker’s

payoff S. In both games, the condition 2R > T + S is imposed so that mutual cooperation is

preferred over an equal probability of unilateral cooperation and defection. For the PD, the

payoff values are ordered numerically in the following way: T > R > P > S. Defection is always

the best rational individual choice in the PD; (D,D) is the unique Nash equilibrium (NE) and

also an evolutionarily stable strategy (ESS) [71, 128]. Mutual cooperation would be preferable

but it is a strongly dominated strategy.

In the SH, the ordering is R > T > P > S, which means that mutual cooperation (C,C) is the

best outcome, Pareto-superior, and a Nash equilibrium. However, there is a second equilibrium in

which both players defect (D,D) and which is somewhat “inferior” to the previous one, although

perfectly equivalent from a NE point of view. The (D,D) equilibrium is less satisfactory yet “risk-

dominant” since playing it “safe” by choosing strategy D guarantees at least a payoff of P, while

playing C might expose a player to a D response by her opponent, with the ensuing minimum

payoff S. Here the dilemma is represented by the fact that the socially preferable coordinated
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equilibrium (C,C) might be missed for “fear” that the other player will play D instead. There is

a third mixed-strategy NE in the game, but it is commonly dismissed because of its inefficiency

and also because it is not an ESS [128]. Although the PD has received much more attention in

the literature than the SH, the latter is also very useful, especially as a metaphor of coordinated

social behavior for mutual benefit. These aspects are nicely explained in [109].

D.3 Model Description

Our model is strictly local as no player uses information other than the one concerning the

player itself and the players it is directly connected to. In particular, each agent knows its own

current strategy and payoff, and the current strategies and payoffs of its immediate neighbors.

Moreover, as the model is an evolutionary one, no rationality, in the sense of game theory, is

needed [128]. Players just adapt their behavior such that they copy more successful strategies

in their environment with higher probability, a process commonly called imitation in the litera-

ture [46]. Furthermore, they are able to locally assess the worth of an interaction and possibly

dismiss a relationship that does not pay off enough. The model and its dynamics are described

in detail in the following sections.

D.3.1 Network and Interaction Structure

The network of agents will be represented as an undirected graph G(V,E), where the set of

vertices V represents the agents, while the set of edges (or links) E represents their symmetric

interactions. The population size N is the cardinality of V . A neighbor of an agent i is any

other agent j such that there is an edge {ij} ∈ E. The set of neighbors of i is called Vi and its

cardinality is the degree ki of vertex i ∈ V . The average degree of the network will be called k̄.

Although from the network structure point of view there is a single undirected link between a

player i and another player j ∈ Vi, we shall maintain two links: one going from i to j and another

one in the reverse direction (see fig. D.1). Each link has a weight or “force” fij (respectively

fji). This weight, say fij , represents in an indirect way an abstract quality that could be related

to the “trust” player i attributes to player j, it may take any value in [0, 1] and its variation is

dictated by the payoff earned by i in each encounter with j, as explained below.

fij

fji

ji

Figure D.1: Schematic representation of mutual trust between two agents through the strengths
of their links.

We point out that we do not believe that this model could represent, however roughly, a

situation of genetic relatedness in a human or animal society. In this case, at the very least, one
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should have at the outset that link strengths between close relatives should be higher than the

average forces in the whole network and such groups should form cliques of completely connected

agents. In contrast, we start our simulations from random relationships and a constant average

link strength (see below). Thus, our simplified model is closer to one in which relationships

between agents are only of socio-economic nature.

The idea behind the introduction of the forces fij is loosely inspired by the potentia-

tion/depotentiation of connections between neural networks, an effect known as the Hebb rule

[43]. In our context, it can be seen as a kind of “memory” of previous encounters. However, it

must be distinguished from the memory used in iterated games, in which players “remember” a

certain amount of previous moves and can thus conform their future strategy on the analysis of

those past encounters [71]. Our interactions are strictly one-shot, i.e. players “forget” the results

of previous rounds and cannot recognize previous partners and their possible playing patterns.

However, a certain amount of past history is implicitly contained in the numbers fij and this

information may be used by an agent when it will come to decide whether or not an interaction

should be dismissed (see below)1. This bilateral view of a relationship is, to our knowledge, new

in evolutionary game models on graphs.

We also define a quantity si called satisfaction of an agent i which is the sum of all the

weights of the links between i and its neighbors Vi divided by the total number of links ki:

si =

∑
j∈Vi fij

ki
.

We clearly have 0 ≤ si ≤ 1.

D.3.2 Initialization

The constant size of the network during the simulations is N = 1000. The initial graph is

generated randomly with a mean degree comprised between k̄ = 5 and k̄ = 20. These values of k̄

are of the order of those actually found in many social networks (see, for instance, [8, 54, 73, 117]).

Players are distributed uniformly at random over the graph vertices with 50% cooperators.

Forces between any pair of neighboring players are initialized at 0.5. With k̄ > 1 a random

graph finds itself past the percolation phase transition [15] and thus it has a giant connected

component of size O(N) while all the other components are of size O(log(N)). We do not

assure that the whole graph is connected, as isolated nodes will draw a random link during the

dynamics (see below).

Before starting the simulations, there is another parameter q that has to be set. This is akin

to a “temperature” or noise level; q is a real number in [0, 1] and it represents the frequency

with which an agent wishes to dismiss a link with one of its neighbors. The higher q, the faster

the link reorganization in the network. This parameter has a role analogous to the “plasticity”

1A further refinement of the concept could take obsolescence phenomena into account. For instance, in the
same way that pheromone trails laid down by ants evaporate with time, we could introduce a progressive loss of
strength of the links proportional to the time during which there is no interaction between the concerned agents.
For the sake of simplicity, we prefer to stick with the basic model in this work
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of [131] and it controls the speed at which topological changes occur in the network. As social

networks may structurally evolve at widely different speeds, depending on the kind of interaction

between agents, this factor might play a role in the model. For example, e-mail networks change

their structure at a faster pace than, say, scientific collaboration networks [54, 115]. A similar

coupling of time scales between strategy update and topological update also occurs in [111, 103].

D.3.3 Timing of Events

Usually, agents systems such as the present one, are updated synchronously, especially in evolu-

tionary game theory simulations [60, 84, 101, 131]. However, there are doubts about the physical

signification of simultaneous update [48]. For one thing, it is strictly speaking physically un-

feasible as it would require a global clock, while real extended systems in biology and society

in general have to take into account finite signal propagation speed. Furthermore, simultaneity

may cause some artificial effects in the dynamics which are not observed in real systems [48, 59].

Fully asynchronous update, i.e. updating a randomly chosen agent at a time with or without

replacement also seems a rather arbitrary extreme case that is not likely to represent reality

very accurately. In view of these considerations, we have chosen to update our population in a

partially synchronous manner. In practice, we define a fraction f = n/N (with N = an, a ∈ N)

and, at each simulated discrete time step, we update only n ≤ N agents randomly chosen with

replacement. This is called a microstep. After N/n microsteps, called a macrostep, N agents

will have been updated, i.e. the whole population will have been updated in the average. With

n = N we recover the fully synchronous update, while n = 1 gives the extreme case of the fully

asynchronous update. Varying f thus allows one to investigate the role of the update policy on

the dynamics. We study several different values of f , but we mainly focus on f = 0.01.

D.3.4 Strategy and Link Dynamics

Here we describe in detail how individual strategies, links, and link weights are updated. Once

a given node i is chosen to be activated, i.e. it belongs to the fraction f of nodes that are to be

updated in a given microstep, i goes through the following steps:

• if the degree of agent i, ki = 0 then player i is an isolated node. In this case a link with

strength 0.5 is created from i to a player j chosen uniformly at random among the other

N − 1 players in the network.

• otherwise,

– either agent i updates its strategy according to a local replicator dynamics rule with

probability 1−q or, with probability q, agent i may delete a link with a given neighbor

j and creates a new 0.5 force link with another node k ;

– the forces between i and its neighbors Vi are updated

Let us now describe each step in more detail.
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Strategy Evolution. We use a local version of replicator dynamics (RD) as described in [41]

and further modified in [60] to take into account the fact that the number of neighbors in a degree-

inhomogeneous network can be different for different agents. The local dynamics of a player i

only depends on its own strategy and on the strategies of the ki players in its neighborhood

Vi. Let us call πij the payoff player i receives when interacting with neighbor j. This payoff is

defined as

πij = σi(t) M σTj (t),

where M is the payoff matrix of the game (see sect. D.2) and σi(t) and σj(t) are the strategies

played by i and j at time t. The quantity

Π̂i(t) =
∑
j∈Vi

πij(t)

is the accumulated payoff collected by player i at time step t. The rule according to which

agents update their strategies is the conventional RD in which strategies that do better than

the average increase their share in the population, while those that fare worse than average

decrease. To update the strategy of player i, another player j is drawn at random from the

neighborhood Vi. It is assumed that the probability of switching strategy is a function φ of the

payoff difference, where φ is a monotonically increasing function [46]. Strategy σi is replaced by

σj with probability

pi = φ(Π̂j − Π̂i).

The major differences with standard RD is that two-person encounters between players are only

possible among neighbors, instead of being drawn from the whole population, and the latter is

finite in our case. Other commonly used strategy update rules include imitating the best in the

neighborhood [84, 131], or replicating in proportion to the payoff [41, 116]. Although, these

rules are acceptable alternatives, they do not lead to replicator dynamics and will not be dealt

with here. We note also that the straight accumulated payoff Π̂i has a technical problem when

used on degree-inhomogeneous systems such as those studied here, where agents (i.e. nodes)

in the network may have different numbers of neighbors. In fact, in this case Π̂i does not

induce invariance of the RD with respect to affine transformations of the game’s payoff matrix

as it should [128], and makes the results depend on the particular payoff values. Thus, we

shall use a modified accumulated payoff Π instead as defined in [60]. This payoff, which is

the standard accumulated payoff corrected with a factor that takes into account the variable

number of neighbors an agent may have, does not suffer from the standard accumulated payoff

limitations.

Link Evolution. The active agent i, which has ki 6= 0 neighbors will, with probability q,

attempt to dismiss an interaction with one of its neighbors. This is done in the following way.

Player i will look at its satisfaction si. The higher si, the more satisfied the player, since a

high satisfaction is a consequence of successful strategic interactions with the neighbors. Thus,
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there should be a natural tendency to try to dismiss a link when si is low. This is simulated by

drawing a uniform pseudo-random number r ∈ [0, 1] and breaking a link when r ≥ si. Assuming

that the decision is taken to cut a link, which one, among the possible ki, should be chosen?

Our solution again relies on the strength of the relevant links. First a neighbor j is chosen with

probability proportional to 1 − fij , i.e. the stronger the link, the less likely it will be chosen.

This intuitively corresponds to i’s observation that it is preferable to dismiss an interaction with

a neighbor j that has contributed little to i’s payoff over several rounds of play. However, in

our system dismissing a link is not free: j may “object” to the decision. The intuitive idea is

that, in real social situations, it is seldom possible to take unilateral decisions: often there is a

cost associated, and we represent this hidden cost by a probability 1− (fij +fji)/2 with which j

may refuse to be cut away. In other words, the link is less likely to be deleted if j appreciates i,

i.e. when fji is high. A simpler solution would be to try to cut the weakest link, which is what

happens most of the time anyway. However, with a finite probability of cutting any link, our

model introduces a small amount of noise in the process which can be considered like “trembles”

or errors in game theory [71] and which roughly reproduces decisions under uncertainty in the

real world.

Assuming that the {ij} link is finally cut, how is a new link to be formed? The solution

adopted here is inspired by the observation that, in social networks, links are usually created

more easily between people who have a mutual acquaintance than those who do not. First, a

neighbor k is chosen in Vi \ {j} with probability proportional to fik, thus favoring neighbors

i trusts. Next, k in turn chooses player l in his neighborhood Vk using the same principle,

i.e. with probability proportional to fkl. If i and l are not connected, a link {il} is created,

otherwise the process is repeated in Vl. Again, if the selected node, say m, is not connected to

i, a new link {im} is established. If this also fails, a new link between i and a randomly chosen

node is created. In all cases the new link is initialized with a strength of 0.5 in both directions.

This rewiring process is schematically depicted in fig. D.2 for the case in which a link can be

successfully established between players i and l thanks to their mutual acquaintance k.

i

j

k

l

fik
fkl

fil

Figure D.2: Illustration of the rewiring of link {ij} to {il}. Agent k is chosen to introduce player
l to i (see text).

At this point, we would like to stress several important differences with previous work in
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which links can be dismissed in evolutionary games on networks [59, 103, 131]. In [131], only

links between defectors are allowed to be cut unilaterally and the study is restricted to the PD.

Instead, in our case, any link has a finite probability to be abandoned, even a profitable link

between cooperators if it is recent, although links that are more stable, i.e. have high strengths,

are less likely to be rewired. This smoother situation is made possible thanks to our bilateral

view of a link which is completely different from the undirected choice made in [131].

In [103], links can be cut by an unsatisfied player, where the concept of satisfaction is different

from ours, and simply means that a cooperator or a defector will wish to break a link with a

defector. The cut will be done with a certain probability that depends on the strategies of the

two agents involved and their respective payoffs. Once a link between i and j is actually cut

and, among the two players, i is the one selected to maintain the link, the link is rewired to a

random neighbor of j. If both i and j wish to cease their interaction, the link is attributed to i

or j probabilistically, as a function of the respective payoffs of i and j, and rewiring takes place

from there. Thus, although both i’s and j’s payoffs are taken into consideration in the latter

case, there is no analogous of our “negotiation” process as the concept of link strength is absent.

In [59] links are cut according to a threshold decision rule and are rewired randomly anywhere

in the network.

A final observation concerns the evolution of k̄ in the network. While in [103, 131] the initial

mean degree is strictly maintained during network evolution through the rewiring process, here

it may increase slightly owing to the existence of isolated agents which, when chosen to be

updated, will create a new link with another random agent. While this effect is of minor

importance and only causes small fluctuations of k̄, we point out that in real evolving networks

the mean connectivity fluctuates too [8, 54, 115].

Updating the Link Strengths. Once the chosen agents have gone through their strategy or

link update steps, the strengths of the links are updated accordingly in the following way:

fij(t+ 1) = fij(t) +
πij − π̄ij

ki(πmax − πmin)
,

where πij is the payoff of i when interacting with j, π̄ij is the payoff earned by i playing with j,

if j were to play his other strategy, and πmax (πmin) is the maximal (minimal) possible payoff

obtainable in a single interaction. This update is performed in both directions, i.e. both fij and

fji are updated ∀j ∈ Vi because both i and j get a payoff out of their encounter.

The following algorithms schematically describe the whole co-evolution process for one mi-

crostep:
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Algorithm 1: Simulation of a microstep of the population evolution

Data: V is a set of players; I is a subset of n randomly selected players in V ; Vi is the

set of first neighbors of player i; fij is the strength of the oriented arc {~ij}; r is a

pseudo-random number ∈ [0, 1)

forall the players i ∈ I do

foreach j ∈ Vi do
i plays with j and updates its payoff

fij(t+ 1) = fij(t) + ∆fij(t)

fji(t+ 1) = fji(t) + ∆fji(t)

end

if ki = 0 then
i is isolated and creates a new link to a randomly selected j ∈ V

else

if r < q then
Link Evolution(i)

else
Strategy Evolution(i)

end

end

end

Algorithm 2: Link Evolution(i)

Data: r1 and r2 are pseudo-random numbers ∈ [0, 1); si is the satisfaction of player i

if r1 > si then
j ∈ Vi selected proportionally to 1− fij
if r2 > (fij + fji)/2 then

remove the link {ij}
k ∈ Vi selected proportionally to fik

l ∈ Vk selected proportionally to fkl

if {il} link doesn’t exist then
create the link{il}

else
m ∈ Vl selected proportionally to flm

if {im} link doesn’t exist then
create the link{im}

else
i creates a new link to a randomly selected j ∈ V \ Vi

end

end

end

end

Emergence of Cooperation on Static and Dynamic Networks Enea Pestelacci



108
ARTICLE D. EVOLUTION OF COOPERATION AND COORDINATION IN A

DYNAMICALLY NETWORKED SOCIETY

Algorithm 3: Strategy Evolution(i)

Data: r is a pseudo-random number ∈ [0, 1); Πk is the aggregated payoff of player k; φ

is a monotonically increasing function

j ∈ Vi randomly selected

pi = φ(Πj −Πi)

if r > pi then
i imitate the strategy of j

end

D.4 Simulation Results

D.4.1 Simulation Parameters

We simulate on our networks the two games previously mentioned in sect. D.2. For each game, we

can explore the entire game space by limiting our study to the variation of only two parameters

per game. This is possible without loss of generality owing to the invariance of Nash equilibria

and replicator dynamics under positive affine transformations of the payoff matrix using our

payoff scheme [128]. In the case of the PD, we set R = 1 and S = 0, and vary 1 ≤ T ≤ 2 and

0 ≤ P ≤ 1. For the SH, we decided to fix R = 1 and S = 0 and vary 0 ≤ T ≤ 1 and 0 ≤ P ≤ T .

The reason we choose to set T and S in both the PD and the SH is to simply provide natural

bounds on the values to explore of the remaining two parameters. In the PD case, P is limited

between R = 1 and S = 0 in order to respect the ordering of the payoffs (T > R > P > S)

and T ’s upper bound is equal to 2 due to the 2R > T + S constraint. Had we fixed R = 1 and

P = 0 instead, T could be as big as desired, provided S ≤ 0 is small enough. In the SH, setting

R = 1 and S = 0 determines the range of T and P (since this time R > T > P > S). Note

however, that for this game the only valid value pairs of (T, P ) are those that satisfy the T > P

constraint.

As stated in sect. D.3.2, we used networks of size N = 1000, randomly generated with an

average degree k̄ ∈ {5, 10, 20} and randomly initialized with 50% cooperators and 50% defectors.

In all cases, the parameters are varied between their two bounds in steps of 0.1. For each set of

values, we carry out 50 runs of at most 20000 macrosteps each, using a fresh graph realization

in each run. A run is stopped when all agents are using the same strategy, in order to be able

to measure statistics for the population and for the structural parameters of the graphs. The

system is considered to have reached a pseudo-equilibrium strategy state when the strategy

of the agents (C or D) does not change over 150 further macrosteps, which means 15 × 104

individual updates. We speak of pseudo-equilibria or steady states and not of true evolutionary

equilibria because, as we shall see below, the system never quite reaches a totally stable state in

the dynamical systems sense in our simulations but only transient states that persist for a long

time.
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D.4.2 Cooperation and Stability
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Figure D.3: Cooperation level for the PD in the game’s configuration space. Darker gray means
more defection.

Cooperation results for the PD in contour plot form are shown in fig. D.3. We remark that,

as observed in other structured populations, cooperation may thrive in a small but non-negligible

part of the parameter space. Thus, the added degree of freedom represented by the possibility

of refusing a partner and choosing a new one does indeed help to find player’s arrangements that

help cooperation. This finding is in line with the results of [103, 131]. Furthermore, the fact that

our artificial society model differs from the latter two in several important ways also shows that

the result is a rather robust one. When considering the dependence on the fluidity parameter

q, one sees in fig. D.3 that the higher q, the higher the cooperation level. This was expected
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since being able to break ties more often clearly gives cooperators more possibilities for finding

and keeping fellow cooperators to interact with. This effect has been previously observed also in

the works of [103, 131] and, as such, seems to be a robust finding, relatively independent of the

other details of the models. The third parameter considered in fig. D.3 is the mean degree k̄.

For a given value of q, cooperation becomes weaker as k̄ increases. We believe that, as far as k̄ is

concerned, a realistic average characterization of actual social networks is represented by k̄ = 10

(middle row in fig. D.3) as seen, for instance, in [8, 54, 73, 117]. Higher average degrees do exist,

but they are found either in web-based pseudo-social networks or in fairly special collaboration

networks like the particle physics community, where it is customary to include as coauthors tens

or even hundreds of authors [73]. Clearly, there is a limit to the number of real acquaintances a

given agent may manage with.

We have also performed many simulations starting from different proportions of randomly dis-

tributed cooperators and defectors to investigate the effect of this parameter on the evolution

of cooperation. In Fig. D.4 we show five different cases, the central image corresponding to the

50% situation. The images correspond to the lower left quarter of the right image in the middle

row of Fig. D.3 with k̄ = 10, q = 0.8, 1 < T < 1.5, and 0 < P < 0.5.
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Figure D.4: Cooperation level for the PD starting with different fractions of cooperators increas-
ing from 20% to 80% from left to right. Only the lower left quarter of the parameter space is
shown. Results are the average of 50 independent runs.

Compared with the level of cooperation observed in simulations in static networks, we can say

that results are consistently better for co-evolving networks. For example, the typical cases with

k̄ = 10 and q = 0.5, 0.8 show significantly more cooperation than what was found in model and

real social networks in previous work [60]. Even when there is a much lower rewiring frequency,

i.e. with q = 0.2, the cooperation levels are approximately as good as those observed in our

previous study in which exactly the same replicator dynamics scheme was used to update the

agents’ strategies and the networks were of comparable size. The reason for this behavior is to

be found in the added constraints imposed by the invariant network structure. The seemingly

contradictory fact that an even higher cooperation level may be reached in static scale-free

networks [101], is theoretically interesting but easily dismissed as those graphs are unlikely

models for social networks, which often show fat-tailed degree distribution functions but not

pure power-laws (see, for instance, [4, 73]). As a further indication of the latter, we shall see in
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sect. D.4.3 that, indeed, emerging networks do not have a power-law degree distribution.

From the point of view of the evolutionary dynamics, it is interesting to point out that

any given simulation run either ends up in full cooperation or full defection. When the full

cooperation state of the population is attained, there is no way to switch back to defection by

the intrinsic agent dynamics. In fact, all players are satisfied and have strong links with their

cooperating neighbors. Even though a small amount of noise may still be present when deciding

whether or not to rewire a link, since there are only cooperators around to imitate, there can

be no strategy change and only very little link rewiring. On the other hand, well before this

stable state is reached and there are still many defectors around, the system may experience

some random drift that may drive it to full defection. The converse may also happen, but when

the full defection state is reached, the situation is qualitatively different. In this case agents are

unsatisfied, they will often try to rewire their links. However, all the other players around being

also defectors, there will be constant changes of the local network structure. Thus the system

will find itself in a fluctuating state, but this matters little for the bulk statistical properties of

the population and of the network. To be assured that this is indeed the case, we have conducted

some very long runs with all-defect end states. Global statistics do not change, except that the

mean degree tends to increase slightly with time and the degree distribution function continues

to evolve (see sect. D.4.3).
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Figure D.5: Cooperation level for the SH game.

Cooperation percentages as a function of the payoff matrix parameters for the SH game are

shown in fig. D.5 for k̄ = 10 and q = 0.2, 0.5, and 0.8. Note that in this case only the upper

left triangle of the configuration space is meaningful (see sect. D.4.1). The SH is different from

the PD since there are two evolutionarily stable strategies which are therefore also NEs: one

population state in which everybody defects and the opposite one in which everybody cooperates

(see sect. D.2). Therefore, it is expected, and absolutely normal, that some runs will end up

with all defect, while others will witness the emergence of full cooperation. In contrast, in the

PD the only theoretically stable state is all-defect and cooperating states may emerge and be

stable only by exploiting the graph structure and creating more favorable neighborhoods by

breaking and forming ties. The value of the SH is in making manifest the tension that exists

between the socially desirable state of full cooperation and the socially inferior but less risky
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state of defection [109]. The final outcome of a given simulation run depends on the size of

the basin of attraction of either state, which is in turn a function of the relative values of the

payoff matrix entries. To appreciate the usefulness of making and breaking ties in this game we

can compare our results with what is prescribed by the standard RD solution. Referring to the

payoff table of sect. D.2, let’s assume that the column player plays C with probability α and D

with probability 1− α. In this case, the expected payoffs of the row player are:

Er[C] = αR+ (1− α)S

and

Er[D] = αT + (1− α)P

The row player is indifferent to the choice of α when Er[C] = Er[D]. Solving for α gives:

α =
P − S

R− S − T + P
. (D.1)
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Figure D.6: Probabilities of cooperation for the mixed strategy NE as a function of the game’s
parameters for the Stag Hunt.

Since the game is symmetric, the result for the column player is the same and (αC, (1−α)D)

is a NE in mixed strategies. We have numerically solved the equation for all the sampled points

in the game’s parameter space, which gives the results shown in fig. D.6. Let us now use the

following payoff values in order to bring them within the explored game space (remember that

NEs are invariant w.r.t. such a transformation [128]):

C D

C (1, 1) (0, 2/3)
D (2/3, 0) (1/3, 1/3)

Substituting in(D.1) gives α = 1/2, i.e. the (unstable) polymorphic population should be

composed by about half cooperators and half defectors. Now, if one looks at fig. D.5 at the points

where P = 1/3 and T = 2/3, one can see that this is approximately the case for the first image,

within the limits of the approximations caused by the finite population size, the symmetry-
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breaking caused by the non-homogeneous graph structure, and the local nature of the RD. On

the other hand, in the middle image and, to a greater extent, in the rightmost image, this point

in the game space corresponds to pure cooperation. In other words, the non-homogeneity of the

network and an increased level of tie rewiring has allowed the cooperation basin to be enhanced

with respect to the theoretical predictions of standard RD. Skyrms and Pemantle found the

same qualitative result for very small populations of agents when both topology and strategy

updates are allowed [111]. It is reassuring that coordination on the payoff-dominant equilibrium

can still be achieved in large populations as seen here.

D.4.3 Structure of the Emerging Networks

In this section we present a statistical analysis of the global and local properties of the networks

that emerge when the pseudo-equilibrium states of the dynamics are attained. Let us start

by considering the evolution of the average degree k̄. Although there is nothing in our model

to prevent a change in the initial mean degree, the steady-state average connectivity tends to

increase only slightly. For example, in the PD with q = 0.8 and k̄init = 5 and k̄init = 10, the

average steady-state (ss) values are k̄ss ' 7 and k̄ss ' 10.5 respectively. Thus we see that,

without imposing a constant k̄ as in [103, 131], k̄ nonetheless tends to increase only slightly,

which nicely agrees with observations of real social networks [8, 54, 115]. There is a special case

when the steady-state is all-defect and the simulation is allowed to run for a very long time

(2× 104 macrosteps); in this case the link structure never really settles down, since players are

unsatisfied, and k̄ may reach a value of about 12 when starting with k̄ = 10 and q = 0.8.
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Figure D.7: Clustering coefficient level for the PD game. Lighter gray means more clustering.

Another important global network statistics is the average clustering coefficient C. The clus-

tering coefficient Ci of a node i is defined as Ci = 2Ei/ki(ki − 1), where Ei is the number of

edges in the neighborhood of i. Thus Ci measures the amount of “cliquishness” of the neighbor-

hood of node i and it characterizes the extent to which nodes adjacent to node i are connected

to each other. The clustering coefficient of the graph is simply the average over all nodes:

C = 1
N

∑N
i=1 Ci [75]. Random graphs are locally homogeneous and for them C is simply equal

to the probability of having an edge between any pair of nodes independently. In contrast, real
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networks have local structures and thus higher values of C. Fig. D.7 gives the average clustering

coefficient C̄ = 1
50

∑50
i=1 C for each sampled point in the PD configuration space, where 50 is

the number of network realizations used for each simulation. It is apparent that the networks

self-organize and acquire local structure in the interesting, cooperative parts of the parameter’s

space, since the clustering coefficients there are higher than that of the random graph with the

same number of edges and nodes, which is k̄/N = 10/1000 = 0.01. Conversely, where defection

predominates C is smaller, witnessing of a lower amount of graph local restructuring. These

impressions are confirmed by the study of the degree distribution functions (see below). The

correlation between clustering and cooperation also holds through increasing values of q: C tends

to increase from left to right in fig. D.7, a trend similar to that observed in the middle row of

fig. D.3 for cooperation. This correlation is maintained also for k̄ = 5 and k̄ = 20 (not shown).

k = 10, q = 0.2

P

T

 

 

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
k = 10, q = 0.5

P

T

 

 

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
k = 10, q = 0.8

P

T

 

 

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.05

0.1

0.15

0.2

0.25

0.3

0.05

0.1

0.15

0.2

0.25

0.3

0.05

0.1

0.15

0.2

0.25

0.3
k = 10, q = 0.2

P

T

 

 

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
k = 10, q = 0.5

P

T

 

 

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
k = 10, q = 0.8

P

T

 

 

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.05

0.1

0.15

0.2

0.25

0.3

0.05

0.1

0.15

0.2

0.25

0.3

0.05

0.1

0.15

0.2

0.25

0.3
k = 10, q = 0.2

P

T

 

 

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
k = 10, q = 0.5

P

T

 

 

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
k = 10, q = 0.8

P

T
 

 

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.05

0.1

0.15

0.2

0.25

0.3

0.05

0.1

0.15

0.2

0.25

0.3

0.05

0.1

0.15

0.2

0.25

0.3
k = 10, q = 0.2

P

T

 

 

0 0.2 0.4 0.6 0.8 1
1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2
k = 10, q = 0.5

P

T

 

 

0 0.2 0.4 0.6 0.8 1
1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2
k = 10, q = 0.8

P

T

 

 

0 0.2 0.4 0.6 0.8 1
1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2

0.05

0.1

0.15

0.2

0.25

0.3

0.05

0.1

0.15

0.2

0.25

0.3

0.05

0.1

0.15

0.2

0.25

0.3

Figure D.8: Clustering coefficient level for the SH game.

As far as the clustering coefficient is concerned, the same qualitative phenomenon is ob-

served for the SH namely, the graph develops local structures and the more so the higher the

value of q for a given k̄ (see fig. D.8). Thus, it seems that evolution towards cooperation and

coordination passes through a rearrangement of the neighborhood of the agents with respect to

the homogeneous random initial situation, something that is made possible through the higher

probability given to neighbors when rewiring a link, a stylized manifestation of the commonly

occurring social choice of partners.

The degree distribution function (DDF) p(k) of a of a graph represents the probability that a

randomly chosen node has degree k [75]. Random graphs are characterized by DDF of Poissonian

form, while social and technological real networks often show long tails to the right, i.e. there are

nodes that have an unusually large number of neighbors [75]. In some extreme cases the DDF

has a power-law form p(k) ∝ k−γ ; the tail is particularly extended and there is no characteristic

degree. The cumulative degree distribution function (CDDF) is just the probability that the

degree is greater than or equal to k and has the advantage of being less noisy for high degrees.

Fig. D.9 (a) shows the CDDFs for the PD for three cases of which two are in the cooperative

region and the third falls in the defecting region (see fig. D.3). The dotted curve refers to a region

of the configuration space in which there is cooperation in the average but it is more difficult

to reach, as the temptation parameter is high (T=1.8,P=0.1). The curve has a rather long tail
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Figure D.9: Cumulative degree distributions. Average values over 50 runs. (a): PD, (b): SH.
q = 0.8, k̄ = 10. Linear-log scales.
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Figure D.10: Cumulative degree distributions for the PD in case of defection before (dotted line)
and after (thick line) reaching a steady-state. Linear-log scales.

and is thus broad-scale in the sense that there is no typical degree for the agents. Therefore,

in the corresponding network there are cooperators that are linked to many other cooperators.

On the other hand, if one considers the dotted-dashed curve, which corresponds to a defecting

region (T=1.1,P=0.4), it is clear that the distribution is much closer to normal, with a well-

defined typical value of the degree. Finally, the third thick curve, which corresponds to a region

where cooperation is more easily attained (T=1.1,P=0.1), also shows a rather faster decay of

the tail than the dotted line and a narrower scale for the degree. Nevertheless, it is right-skewed,

indicating that the network is no longer a pure random graph. Since we use linear-log scales, the

dotted curve has an approximately exponential or slower decay, given that a pure exponential

would appear as a straight line in the plot. The tail of the thick curve decays faster than an

exponential, while the dashed-dotted curve decays even faster. Almost the same observations

also apply to the SH case, shown in fig. D.9 (b). These are quite typical behaviors and we can

conclude that, when cooperation is more difficult to reach, agents must better exploit the link-

redirection degree of freedom in order for cooperators to stick together in sufficient quantities

and protect themselves from exploiting defectors during the co-evolution. When the situation

is either more favorable for cooperation, or defection easily prevails, network rearrangement is

less radical. In the limit of long simulation times, the defection case leads to networks that have

degree distribution close to Poissonian and are thus almost random. Fig. D.10 shows such a case
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for the PD. The dashed curve is the CDDF at some intermediate time, when full defection has

just been reached but the network is still strongly reorganizing itself. Clearly, the distribution

has a long tail. However, if the simulation is continued until the topology is quite stable at the

mesoscopic level, the distribution becomes close to normal (thick curve).
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Figure D.11: Cumulative degree distribution functions for three values of q, for the same point
in the PD configuration space in the cooperating region.

Finally, it is interesting to observe the influence of the q parameter on the shape of the

degree distribution functions for cooperating networks. Fig. D.11 reports average curves for

three values of q. For high q, the cooperating steady-state is reached faster, which gives the

network less time to rearrange its links. For lower values of q the distributions become broader,

despite the fact that rewiring occurs less often, because cooperation in this region is harder to

attain and more simulation time is needed.
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Figure D.12: Cooperation levels in the PD for P = 0.1 and 1 ≤ T ≤ 2 as a function of the
synchronicity parameter f .

Influence of Timing. Fig. D.12 depicts a particular cut in the configuration space as a

function of the synchronicity parameter f . The main remark is that asynchronous updates

give similar results, in spite of the difference in the number of agents that are activated in a

single microstep. In contrast, fully synchronous update (f = 1) appears to lead to a slightly

less favorable situation for cooperation. Since fully synchronous update is physically unrealistic
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and can give spurious results due to symmetry, we suggest using fully or partially asynchronous

update for agent’s simulation of artificial societies.

D.4.4 Clusters

We have seen in the previous section that, when cooperation is attained in both games as a

quasi-equilibrium state, the system remains stable through the formation of clusters of players

using the same strategy. In fig. D.13 one such typical cluster corresponding to a situation in

which global cooperation has been reached in the PD is shown. Although all links towards the

“exterior” have been suppressed for clarity, one can clearly see that the central cooperator is

a highly connected node and there are many links also between the other neighbors. Such a

tightly packed structure has emerged to protect cooperators from defectors that, at earlier times,

were trying to link to cooperators to exploit them. These observations explain why the degree

distributions are long-tailed (see previous section), and also the higher values of the clustering

coefficient in this case (see sect. D.4.3).

Figure D.13: Example of a tightly packed cluster of cooperators for PD networks. T = 1.8, P =
0.1 and q = 0.8.

When the history of the stochastic process is such that defection prevails in the end, the

situation is totally different. Fig. D.14 (a) and (b) show two typical examples of cluster structures

found during a simulation. Fig. D.14 (a) refers to a stage in which the society is composed solely

by defectors. However, the forces of the links between them are low, and so many defectors try

to dismiss some of their links. This situation lasts for a long simulated time (actually, the system

is never at rest, as far as the links are concerned) but the dense clusters tend to dissolve, giving

rise to structures such as the one shown in fig. D.14 (b). If one looks at the degree distribution at

this stage (fig. D.10) it is easy to see that the whole population graph tends to become random.
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(a) (b)

Figure D.14: Example of defector clusters for PD networks, for T = 1.8, P = 0.3 and q = 0.8.
Clusters like (a) exists only just after the all-defect state is reached. When a steady-state is
reached only clusters like (b) are present in a network of defectors.

The SH case is very similar, which is a relatively surprising result. In fact, when coopera-

tion finally takes over in regions of the configuration space where defection would have been an

almost equally, likely final state, players are highly clustered and there are many highly con-

nected individuals, while in less conflicting situations the clusters are less dense and the degree

distribution shows a faster decay of the tail. On the other hand, when defection is the final

quasi-stable state, the population graphs looses a large part of its structure. Thus, the same

topological mechanisms seem to be responsible for the emergence of cooperation in the PD and

in the SH. The only previous study that investigates the structure of the resulting networks in a

dynamical setting is, to our knowledge, reference [131], where only the PD is studied. It is diffi-

cult to meaningfully compare our results with theirs as the model of Zimmermann et al. differs

from ours in many ways. They use a deterministic hard-limit rule for strategy update which is

less smooth than our stochastic local replicator dynamics. Moreover, they study the PD in a

reduced configuration space, only links between defectors can be broken, and links are rewired at

random. They concentrate on the study of the stability of the cooperating steady-states against

perturbations, but do not describe the topological structures of the pseudo-equilibrium states in

detail. Nevertheless, it is worthy of note that the degree distribution functions for cooperators

and defectors follow qualitatively the same trend, i.e. cooperators networks have distributions

with fatter tails to the right than defector networks.

D.5 Conclusions and Future Work

Using two well known games that represent conflicting decision situations commonly found in

animal and human societies, we have studied by computer simulation the role of the dynami-

cally networked society’s structure in the establishment of global cooperative and coordinated

behaviors, which are desirable outcomes for the society’s welfare. Starting from randomly con-

nected players which only interact locally in a restricted neighborhood, and allowing agents to
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probabilistically and bilaterally dismiss unprofitable relations and create new ones, the stochas-

tic dynamics lead to pseudo-equilibria of either cooperating or defecting agents. With respect

to standard replicator dynamics results for mixing populations, we find that there is a sizable

configuration space region in which cooperation may emerge and be stable for the PD, whereas

the classical result predicts total defection. For the SH, where both all-cooperate and all-defect

steady-states are theoretically possible, we show that the basin of attraction for cooperation

is enhanced. Thus, the possibility of dismissing a relationship and creating a new one does

indeed increase the potential for cooperation and coordination in our artificial society. The self-

organizing mechanism consists in both games in forming dense clusters of cooperators which are

more difficult to dissolve by exploiting defectors. While the beneficial effect of relational or geo-

graphical static population structures on cooperation was already known from previous studies,

here we have shown that more realistic dynamic social networks may also allow cooperation to

thrive. Future work will deal with the stability of the cooperating states against stronger pertur-

bations than merely the implicit noise of the stochastic dynamics. We also intend to study more

fully the structure of the emerging clusters and their relationships, and we plan to extend the

model to other important paradigmatic games such as Hawks-Doves and coordination games.
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Abstract

Using a new dynamical network model of society in which pairwise interactions are weighted ac-

cording to mutual satisfaction, we show that cooperation is the norm in the Hawks-Doves game

when individuals are allowed to break ties with undesirable neighbors and to make new acquain-

tances in their extended neighborhood. Moreover, cooperation is robust with respect to rather

strong strategy perturbations. We also discuss the empirical structure of the emerging networks,

and the reasons that allow cooperators to thrive in the population. Given the metaphorical im-

portance of this game for social interaction, this is an encouraging positive result as standard

theory for large mixing populations prescribes that a certain fraction of defectors must always

exist at equilibrium.

E.1 Introduction and Previous Work

Game Theory [122] is the study of how social or economical agents take decisions in situations of

conflict. Some games such as the celebrated Prisoner’s Dilemma have a high metaphorical value

for society in spite of their simplicity and abstractness. Hawks-Doves, also known as Chicken,
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is one such socially significant game. Hawks-Doves is a two-person, symmetric game with the

generic payoff bi-matrix of Table E.1. In this matrix, D stands for the defecting strategy “hawk”,

C D

C (R,R) (S,T)
D (T,S) (P,P)

Table E.1: Payoff matrix for a symmetric two person game.

and C stands for the cooperating strategy “dove”. The “row” strategies correspond to player

1 and the “column” strategies to player 2. An entry of the table such as (T,S) means that if

player 1 chooses strategy D and player 2 chooses strategy C, then the payoff or utility to player

1 is T, while the payoff of player 2 is S. Metaphorically, a hawkish behavior means a strategy

of fighting, while a dove, when facing a confrontation, will always yield. R is the reward the

two players receive if they both cooperate, P is the punishment for bilateral defection, and T is

the temptation, i.e. the payoff that a player receives if it defects, while the other cooperates. In

this case, the cooperator gets the sucker’s payoff S. The game has a structure similar to that

of the Prisoner’s Dilemma [6]. However, the ordering of payoffs for the Prisoner’s Dilemma is

T > R > P > S rendering defection the best rational individual choice, while in the Hawks-

Doves game studied here the ordering is T > R > S > P thus making mutual defection, i.e.

result (D,D), the worst possible outcome. Note that in game theory, as long as the above order-

ings are respected, the actual numerical payoff values do not change the nature and number of

equilibria [122].

In contrast to the Prisoner’s Dilemma which has a unique Nash equilibrium that corresponds

to both players defecting, the strategy pairs (C,D) and (D,C) are both Nash equilibria of the

Hawks-Doves game in pure strategies, and there is a third equilibrium in mixed strategies in

which strategy D is played with probability p, and strategy C with probability 1 − p, where

0 < p < 1 depends on the actual payoff values. We recall that a Nash equilibrium is a combina-

tion of strategies (pure or mixed) of the different players such that any unilateral deviation by

any agent from this combination can only decrease her expected payoff [122].

As it is the case for the Prisoner’s Dilemma (see for example [6, 57] for the iterated case, among

a vast literature), Hawks-Doves, for all its simplicity, appears to capture some important fea-

tures of social interactions. In this sense, it applies in many situations in which “parading”,

“retreating”, and “escalating” are common. One striking example of a situation that has been

thought to lead to a Hawks-Doves dilemma is the Cuban missile crisis in 1962 [94]. Territorial

threats at the border between nations are another case in point as well as bullying in teenage

gangs. Other well known applications are found in the animal kingdom during ritualized fights

[64].

In this article, we shall present our methods and results in the framework of evolutionary game

theory [46]. In evolutionary game theory a very large mixing population of players is considered,

and randomly chosen pairs of individuals play a sequence of one-shot two-person games. In the
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Hawks-Doves game, the theory prescribes that the only Evolutionary Stable Strategy (ESS) of

the population is the mixed strategy, giving rise, at equilibrium, to a polymorphic population

composed of hawks and doves in which the frequency of hawks equals p, the probability with

which strategy hawk would be played in the NE mixed strategy.

In the case of the Prisoner’s Dilemma, one finds a unique ESS with all the individuals defecting.

However, Nowak and May [84] showed that cooperation in the population is sustainable under

certain conditions, provided that the network of the interactions between players has a lattice

spatial structure. Killingback and Doebeli [52] extended the spatial approach to the Hawks-

Doves game and found that a planar lattice structure with only nearest-neighbor interactions

may favor cooperation, i.e. the fraction of doves in the population is often higher than what is

predicted by evolutionary game theory. In a more recent work however, Hauert and Doebeli [41]

were led to a different conclusion, namely that spatial structure does not seem to favor cooper-

ation in the Hawks-Doves game.

Further studies extended the structured population approach to other graph structures repre-

senting small worlds (for an excellent review, see [112]). Small-world networks are produced

by randomly rewiring a few links in an otherwise regular lattice such as a ring or a grid [127].

These “shortcuts”, as they are called, give rise to graphs that have short path lengths between

any two nodes in the average as in random graphs, but in contrast to the latter, also have a

great deal of local structure as conventionally measured by the clustering coefficient1. These

structures are much more typical of the networks that have been analyzed in technology, society,

and biology than regular lattices or random graphs [75]. In [116] it was found that cooperation

in Hawks-Doves may be either enhanced or inhibited in small-world networks depending on the

gain-to-cost ratio r = R/(R− P ), and on the strategy update rule using standard local evo-

lutionary dynamics with one-shot bilateral encounters. However, Watts–Strogatz small-world

networks, although more realistic than lattices or random graphs, are not good representations

of typical social networks. Santos and Pacheco [101] extended the study of the Hawks-Doves

game to scale-free networks, i.e. to networks having a power-law distribution of the connectivity

degree [75]. They found that cooperation is remarkably enhanced in them with respect to previ-

ously described population structures through the existence of highly connected cooperator hubs.

Scale-free networks are much closer than Watts–Strogatz ones to the typical socio-economic net-

works that have been investigated, but they are relatively uncommon in their “pure” form due

to finite cutoffs and other real-world effects (for example, see [75, 4, 73, 50]), with the notable

exception of sexual contact networks [56]. Using real and model static social networks, Luthi

et al. [60] also found that cooperation is enhanced in Hawks-Doves, although to a lesser degree

than in the scale-free case, thanks to the existence of tight clusters of cooperators that reinforce

each other.

Static networks resulting from the analysis of actual social networks or good models of the latter

1The clustering coefficient Ci of a node i is defined as Ci = 2Ei/ki(ki − 1), where Ei is the number of edges
in the neighborhood of i. Thus Ci measures the amount of “cliquishness” of the neighborhood of node i and it
characterizes the extent to which nodes adjacent to node i are connected to each other. The clustering coefficient
of the graph is simply the average over all nodes: C = 1

N

∑N
i=1 Ci [75].
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are a good starting point; however, the static approach ignores fluctuations and non-equilibrium

phenomena. As a matter of fact, in many real networks nodes may join the network forming

new links, and old nodes may leave it as social actors come and go. Furthermore, new links

between agents already in the network may also form or be dismissed. Often the speed of these

network changes is comparable to that of the agent’s behavioral adaptation, thus making it

necessary to study how they interact. Examples of slowly-changing social networks are scien-

tific collaborations, friendships, firm networks among others. A static network appears to be

a good approximation in these cases. On the other hand, in our Internet times, there exist

many social or pseudo-social networks in which topology changes are faster. For example, e-

mail networks [54], web-based networks for friendship and entertainment, such as Facebook, or

professional purposes such as LinkedIn, and many others. Furthermore, as it is not socially

credible that people will keep for a long time unsatisfying relationships, addition and dismissal

of partners are an extremely common phenomenon, also due to natural causes such as moving,

changing fields, or interests. We note at this point that some previous work has focused on the

possibility of allowing players to choose or refuse social partners in game interactions [10, 108],

which has been shown to potentially promote cooperation. However, this work does not consider

an explicit underlying interaction network of agents, nor does it use the social link strengths as

indicators of partner’s suitability as we do here.

In light of what has been said above, the motivation of the present work is to study the co-

evolution of strategy and network structure and to investigate under which conditions cooper-

ative behavior may emerge and be stable in the Hawks-Doves game. A related goal is to study

the topological structures of the emergent networks and their relationships with the strategic

choices of the agents. Some previous work has been done on evolutionary games on dynamic

networks [111, 25, 131, 59, 103] almost all of them dealing with the Prisoner’s Dilemma. The

only one briefly describing results for the Hawks-Doves game is [103] but our model differs in sev-

eral important respects and we obtain new results on the structure of the cooperating clusters.

The main novelty is the use of pairwise interactions that are dynamically weighted according

to mutual satisfaction. The new contributions and the differences with previous work will be

described at the appropriate points in the article. An early preliminary version of this study

has been presented at the conference [91].

The paper is organized as follows. In the next section we present our coevolutionary model.

This is followed by an exhaustive numerical study of the game’s parameter space. After that

we present our results on cooperation and we describe and discuss the structure of the emerging

networks. Finally we give our conclusions and suggestions for possible future work.

E.2 The Model and its Dynamics

The model is strictly local as no player uses information other than the one concerning the player

itself and the players it is directly connected to. In particular, each agent knows its own current

strategy and payoff. Moreover, as the model is an evolutionary one, no rationality, in the sense
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of game theory, is needed [122]. Players just adapt their behavior such that they imitate more

successful strategies in their environment with higher probability. Furthermore, they are able

to locally assess the worthiness of an interaction and possibly dismiss a relationship that does

not pay off enough. The model has been introduced and fully explained in [92], where we study

the Prisoner’s Dilemma and the Stag-Hunt games; it is reported here in some detail in order to

make the paper self-contained.

E.2.1 Agent-Agent and Network Interaction Structure

The network of agents is represented by a directed graph G(V,E), where the set of vertices V

represents the agents, while the set of oriented edges (or links) E represents their unsymmetric

interactions. The population size N is the cardinality of V . A neighbor of an agent i is any

other agent j such that there is a pair of oriented edges ~ij and ~ji ∈ E. The set of neighbors of i

is called Vi. For network structure description purposes, we shall also use an unoriented version

G
′

of G having exactly the same set of vertices V but only a single unoriented edge ij between

any pair of connected vertices i and j of G. For G′ we shall define the degree ki of vertex i ∈ V
as the number of neighbors of i. The average degree of the network G

′
will be called k̄.

A pair of directed links between vertices i and j in G is schematically depicted in Fig. E.1. Each

link has a weight or “force” fij (respectively fji). This weight, say fij , represents in an indirect

way the “trust” player i attributes to player j. This weight may take any value in [0, 1] and its

variation is dictated by the payoff earned by i in each encounter with j, as explained below.

Figure E.1: Schematic representation of mutual trust between two agents through the strengths
of their links.

The idea behind the introduction of the forces fij is loosely inspired by the potentia-

tion/depotentiation of connections between neurons in neural networks, an effect known as

the Hebb rule [43]. In our context, it can be seen as a kind of “memory” of previous encounters.

However, it must be distinguished from the memory used in iterated games, in which players

“remember” a certain number of previous moves and can thus conform their future strategy on

the analysis of those past encounters [122]. Our interactions are strictly one-shot, i.e. players

“forget” the results of previous rounds and cannot recognize previous partners and their possi-

ble playing patterns. However, a certain amount of past history is implicitly contained in the

numbers fij and this information may be used by an agent when it will come to decide whether

or not an interaction should be dismissed (see below).

We also define a quantity si called satisfaction of an agent i which is the sum of all the weights

of the links between i and its neighbors Vi divided by the total number of links ki:
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si =

∑
j∈Vi fij

ki
.

We clearly have 0 ≤ si ≤ 1. Note that the term satisfaction is sometimes used in game-theoretical

work to mean the amount of utility gained by a given player. Instead, here satisfaction is

related to the average willingness of a player to maintain the current relationships in the player’s

neighborhood.

E.2.2 Initialization

The network is of constant size N = 1000; this allows a simpler yet significant model of network

dynamics in which social links may be broken and formed but agents do not disappear and

new agents may not join the network. The initial graph is generated randomly with a mean

degree k̄ = 10 which is of the order of those actually found in many social networks such as

collaboration, association, or friendship networks in which relations are generally rather long-

lived and there is a cost to maintain a large number; see, for instance, [73, 75, 69, 117]. Players

are distributed uniformly at random over the graph vertices with 50% cooperators. Forces of

links between any pair of neighboring players are initialized at 0.5.

We use a parameter q which is akin to a “temperature” or noise level; q is a real number in

[0, 1] and it represents the frequency with which an agent wishes to dismiss a link with one of

its neighbors. The higher q, the faster the link reorganization in the network. This parameter

has been first introduced in [131] and it controls the speed at which topological changes occur

in the network, i.e. the time scale of the strategy-topology co-evolution. It is an important

consideration, as social networks may structurally evolve at widely different speeds, depending

on the kind of interaction between agents. For example, e-mail networks change their structure

at a faster pace than, say, scientific collaboration networks.

E.2.3 Strategy and Link Dynamics

Here we describe in detail how individual strategies, links, and link weights are updated. The

node update sequence is chosen at random with replacement as in many previous works [48, 41,

59]. Once a given node i of G is chosen to be activated, it goes through the following steps:

• if the degree of agent i, ki = 0 then player i is an isolated node. In this case a link with

strength 0.5 is created from i to a player j chosen uniformly at random among the other

N − 1 players in the network.

• otherwise,

– either agent i updates its strategy according to a local replicator dynamics rule with

probability 1−q or, with probability q, agent i may delete a link with a given neighbor

j and creates a new 0.5 force link with another node k ;

– the forces between i and its neighbors Vi are updated
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Let us now describe each step in more detail.

E.2.4 Strategy Evolution

We use a local version of replicator dynamics (RD) for regular graphs [41] but modified as

described in [61] to take into account the fact that the number of neighbors in a degree-

inhomogeneous network can be different for different agents. Indeed, it has been analytically

shown that using straight accumulated payoff in degree-inhomogeneous networks leads to a loss

of invariance with respect to affine transformations of the payoff matrix under RD [61]. The

local dynamics of a player i only depends on its own strategy and on the strategies of the ki

players in its neighborhood Vi ∈ G
′
. Let us call πij the payoff player i receives when interacting

with neighbor j. This payoff is defined as

πij = σi(t) M σTj (t),

where M is the payoff matrix of the game and σi(t) and σj(t) are the strategies played by i and

j at time t. The quantity

Π̂i(t) =
∑
j∈Vi

πij(t)

is the weighted accumulated payoff defined in [61] collected by player i at time step t. The rule

according to which agents update their strategies is the conventional RD in which strategies

that do better than the average increase their share in the population, while those that fare

worse than average decrease. To update the strategy of player i, another player j is drawn at

random from the neighborhood Vi. It is assumed that the probability of switching strategy is

a function φ of the payoff difference; φ is required to be monotonic increasing; here it has been

taken linear [46]. Strategy σi is replaced by σj with probability

pi = φ(Π̂j − Π̂i),

where

φ(Π̂j − Π̂i) =


Π̂j − Π̂i

Π̂j,max − Π̂i,min

if Π̂j − Π̂i > 0

0 otherwise.

In the last expression, Π̂x,max (resp. Π̂x,min) is the maximum (resp. minimum) payoff a player x

can get (see ref. [61] for more details).

The major differences with standard RD is that two-person encounters between players are

only possible among neighbors, instead of being drawn from the whole population, and the latter

is of finite size in our case. Other commonly used strategy update rules include imitating the

best in the neighborhood [84, 131], or replicating in proportion to the payoff [41, 116].
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E.2.5 Link Evolution

The active agent i, which has ki 6= 0 neighbors will, with probability q, attempt to dismiss an

interaction with one of its neighbors in the following way. In the description we focus on the

outgoing links from i in G, the incoming links play a subsidiary role. Player i first looks at

its satisfaction si. The higher si, the more satisfied the player, since a high satisfaction is a

consequence of successful strategic interactions with the neighbors. Thus, the natural tendency

is to try to dismiss a link when si is low. This is simulated by drawing a uniform pseudo-random

number r ∈ [0, 1] and breaking a link when r ≥ si. Assuming that the decision is taken to cut a

link, which one, among the possible ki, should be chosen? Our solution is based on the strength

of the relevant links. First a neighbor j is chosen with probability proportional to 1−fij , i.e. the

stronger the link, the less likely it is that it will be selected. This intuitively corresponds to i’s

observation that it is preferable to dismiss an interaction with a neighbor j that has contributed

little to i’s payoff over several rounds of play. However, dismissing a link is not free: j may

“object” to the decision. The intuitive idea is that, in real social situations, it is seldom possible

to take unilateral decisions: often there is a cost associated, and we represent this hidden cost

by a probability 1 − (fij + fji)/2 with which j may refuse to be cut away. In other words, the

link is less likely to be deleted if j appreciates i, i.e. when fji is high.

Assuming that the ~ij and ~ji links are finally cut, how is a new interaction to be formed? The

solution adopted here is inspired by the observation that, in social settings, links are usually

created more easily between people who have a mutual acquaintance than those who do not.

First, a neighbor k is chosen in Vi \ {j} with probability proportional to fik, thus favoring

neighbors i trusts. Next, k in turn chooses player l in his neighborhood Vk using the same

principle, i.e. with probability proportional to fkl. If i and l are not connected, two links ~il and
~li are created, otherwise the process is repeated in Vl. Again, if the selected node, say m, is not

connected to i, an interaction between i and m is established by creating two new links ~im and

~mi. If this also fails, new links between i and a randomly chosen node are created. In all cases

the new links are initialized with a strength of 0.5 in each direction. This rewiring process is

schematically depicted in Fig. E.2 for the case in which a link can be successfully established

between players i and l thanks to their mutual acquaintance k.

Figure E.2: Illustration of the rewiring of link {ij} to {il}. Agent k is chosen to introduce player
l to i (see text). Only outgoing links are shown for clarity.
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At this point, we would like to stress several important differences with previous work in

which links can be dismissed and rewired in a constant-size network in evolutionary games.

First of all, in all these works the interaction graph is undirected with a single link between any

pair of agents. In [131], only links between defectors are allowed to be cut unilaterally and the

study is restricted to the Prisoner’s Dilemma. Instead, in our case, any interaction has a finite

probability to be abandoned, even a profitable one between cooperators if it is recent, although

links that are more stable, i.e. have high strengths, are less likely to be rewired. This smoother

situation is made possible thanks to our bilateral view of a link. It also allows for a moderate

amount of “noise”, which could reflect to some extent the uncertainties in the system. The

present link rewiring process is also different from the one adopted in [103], where the Fermi

function is used to decide whether to cut a link or not and also from their new version of it

which has appeared in [107]. Finally, in [59] links are cut according to a threshold decision rule

and are rewired randomly anywhere in the network.

E.2.6 Updating the Link Strengths

Once the chosen agents have gone through their strategy or link update steps, the strengths of

the links are updated accordingly in the following way:

fij(t+ 1) = fij(t) +
πij − π̄ij

ki(πmax − πmin)
,

where πij is the payoff of i when interacting with j, π̄ij is the payoff earned by i playing with j,

if j were to play his other strategy, and πmax (πmin) is the maximal (minimal) possible payoff

obtainable in a single interaction. If fij(t+ 1) falls outside the [0, 1] interval then it is reset to 0

if it is negative, and to 1 if it is larger than 1. This update is performed in both directions, i.e.

both fij and fji are updated ∀j ∈ Vi because both i and j get a payoff out of their encounter.

E.3 Numerical Simulations and Discussion

E.3.1 Simulation Parameters

We simulated the Hawks-Doves game with the dynamics described above exploring the game

space by limiting our study to the variation of only two game parameters. We set R = 1 and

P = 0 and the two parameters are 1 ≤ T ≤ 2 and 0 ≤ S ≤ 1. Setting R = 1 and P = 0

determines the range of S (since T > R > S > P ) and gives an upper bound of 2 for T , due to

the 2R > T + S constraint, which ensures that mutual cooperation is preferred over an equal

probability of unilateral cooperation and defection. Note however, that the only valid value

pairs of (T, S) are those that satisfy the latter constraint.

We simulated networks of size N = 1000, randomly generated with an average degree k̄ = 10

and randomly initialized with 50% cooperators and 50% defectors. In all cases, parameters T

and S are varied between their two bounds in steps of 0.1. For each set of values, we carry out 50
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Figure E.3: Average cooperation values for the Hawks-Doves game for three values of q at
steady-state. Results are the average of 50 runs.

runs of at most 10000 steps each, using a fresh graph realization in each run. Each step consists

in the update of a full population. A run is stopped when all agents are using the same strategy,

in order to be able to measure statistics for the population and for the structural parameters

of the graphs. After an initial transient period, the system is considered to have reached a

pseudo-equilibrium strategy state when the strategy of the agents (C or D) does not change

over 150 further time steps, which means 15 × 104 individual updates. It is worth mentioning

that equilibrium is always attained well before the allowed 10000 time steps, in most cases, less

than 1′000 steps are enough. We speak of pseudo-equilibria or steady states and not of true

evolutionary equilibria because there is no analog of equilibrium conditions in the dynamical

systems sense.

To check whether scalability is an issue for the system, we have run several simulations with

larger graphs namely, N = 3000 and N = 10000. The overall result is that, although the

simulations take a little longer and transient times are also slightly longer, at quasi-equilibrium

all the measures explored in the next sections follow the same trend and the dynamics give rise

to comparable topologies and strategy relative abundance.

E.3.2 Emergence of Cooperation

Cooperation results in contour plot form are shown in Fig. E.3. We remark that, as observed in

other structured populations, cooperation is achieved in almost the whole configuration space.

Thus, the added degree of freedom represented by the possibility of refusing a partner and

choosing a new one does indeed help to find player’s arrangements that help cooperation. When

considering the dependence on the parameter q, one sees in Fig. E.3 that the higher q, the higher

the cooperation level, although the differences are small, since full cooperation prevails already

at q = 0.2. This is a somewhat expected result, since being able to break ties more often clearly

gives cooperators more possibilities for finding and keeping fellow cooperators to interact with.

The results reported in the figures are for populations starting with 50% cooperators randomly

distributed. We have also tried other proportions with less cooperators, starting at 30%. The

results, not reported here for reasons of space, are very similar, the only difference being that it
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takes more simulation time to reach the final quasi-stable state. Finally, one could ask whether

cooperation would still spread starting with very few cooperators. Numerical simulations show

that cooperation could indeed prevail even starting from as low as 1% cooperators, except on

the far left border of the configuration space where cooperation is severely disadvantaged.

Compared with the level of cooperation observed in simulations in static networks, we can say

that results are consistently better for co-evolving networks. For all values of q (Fig. E.3) there

is significantly more cooperation than what was found in model and real social networks [60]

where the same local replicator dynamics was used but with the constraints imposed by the

invariant network structure. A comparable high cooperation level has only been found in static

scale-free networks [101, 104] which are not as realistic as a social network structures.

The above considerations are all the more interesting when one observes that the standard RD

result is that the only asymptotically stable state for the game is a polymorphic population in

which there is a fraction α of doves and a fraction 1 − α of hawks, with α depending on the

actual numerical payoff matrix values. To see the positive influence of making and breaking ties

we can compare our results with what is prescribed by the standard RD solution. Referring to

the payoff table E.1, let’s assume that the column player plays C with probability α and D with

probability 1− α. In this case, the expected payoffs of the row player are:

Er[C] = αR+ (1− α)S

and

Er[D] = αT + (1− α)P

The row player is indifferent to the choice of α when Er[C] = Er[D]. Solving for α gives:

α =
P − S

R− S − T + P
. (E.1)

Since the game is symmetric, the result for the column player is the same and (αC, (1−α)D)

is a NE in mixed strategies. We have numerically solved the equation for all the sampled points

in the game’s parameter space. Let us now use the following payoff values in order to bring

them within the explored game space (remember that NEs are invariant w.r.t. such an affine

transformation):

C D

C (1, 1) (2/3, 4/3)
D (4/3, 2/3) (0, 0)

Substituting in equation E.1 gives α = 2/3, i.e. the dynamically stable polymorphic popu-

lation should be composed by about 2/3 cooperators and 1/3 defectors. Now, if one looks at

Fig. E.3 at the points where S = 2/3 and T = 4/3, one can see that the point, and the region

around it, is one of full cooperation instead. Even within the limits of the approximations caused

by the finite population size and the local dynamics, the non-homogeneous graph structure and
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an increased level of tie rewiring has allowed cooperation to be greatly enhanced with respect

to the theoretical predictions of standard RD.

E.3.3 Evolution of Agents’ Satisfaction

According to the model, unsatisfied agents are more likely to try to cut links in an attempt

to improve their satisfaction level, which could be simply described as an average value of

the strengths of their links with neighbors. Satisfaction should thus tend to increase during

evolution. In effect, this is what happens, as can be seen in Fig. E.4. The figure refers to a

particular run that ends in all agents cooperating, but it is absolutely typical. One can remark

Satisf
action

Steps

P
la

y
er

s

Figure E.4: Fraction of agents having a given satisfaction level as a function of evolution time.

the “spike” at time 0. This is clearly due to the fact that all links are initialized with a weight

of 0.5. As the simulation advances, the satisfaction increases steadily and for the case of the

figure, in which all agents cooperate at the end, it reaches its maximum value of 1 for almost all

players.

E.3.4 Stability of Cooperation

Evolutionary game theory provides a dynamical view of conflicting decision-making in popula-

tions. Therefore, it is important to assess the stability of the equilibrium configurations. This

is even more important in the case of numerical simulation where the steady-state finite pop-

ulation configurations are not really equilibria in the mathematical sense. In other words, one

has to be reasonably confident that the steady-states are not easily destabilized by perturba-

tions. To this end, we have performed a numerical study of the robustness of final cooperators’

configurations by introducing a variable amount of random noise into the system. A strategy is

said to be evolutionarily stable when it cannot be invaded by a small amount of players using

another strategy [46]. We have chosen to switch the strategy of an increasing number of highly

connected cooperators to defection, and to observe whether the perturbation propagates in the
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population, leading to total defection, or if it stays localized and disappears after a transient

time. Figs. E.5 and E.6 show how the system recovers when the most highly connected 30% of

Figure E.5: Cooperation percentage as a function of simulated time when the strategy of the
30% most connected nodes is switched from cooperation to defection. T = 1.6, S = 0.4 and,
from left to right, q = 0.2, 0.5, 0.8.

Figure E.6: Cooperation percentage when the strategy of the 30% most connected nodes is
switched from cooperation to defection. T = 1.9, S = 0.1 and, from left to right, q = 0.2, 0.5, 0.8.

the cooperators are suddenly and simultaneously switched to defection. In Fig. E.5 the value

chosen in the game’s configuration space is T = 1.6 and S = 0.4. This point lies approximately

on the diagonal in Fig. E.3 and corresponds to an all-cooperate situation. As one can see, after

the perturbation is applied, there is a sizable loss of cooperation but, after a while, the system

recovers full cooperation in all cases (only 10 curves are shown in each figure for clarity, but

the phenomenon is qualitatively identical in all the 50 independent runs tried). From left to

right, three values of q = 0.2, 0.5, 0.8 are used. It is seen that, as the rewiring frequency q

increases, recovering from the perturbation becomes easier as defection has less time to spread

around before cooperators are able to dismiss links toward defectors. Switching the strategy of

the 30 % most connected nodes is rather extreme since they include most cooperator clusters

but, nonetheless, cooperation is rather stable in the whole cooperating region. In Fig. E.6 we

have done the same this time with T = 1.9 and S = 0, 1. This point is in a frontier region in

which defection may often prevail, at least for low q (see Fig. E.3) and thus it represents one

of the hardest cases for cooperation to remain stable. Nevertheless, except in the leftmost case
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(q = 0.2) where half of the runs permanently switch to all-defect, in all the other cases the

population is seen to recover after cooperation has fallen down to less than 10%. Note that the

opposite case is also possible in this region that is, in a full defect situation, switching of 30%

highly connected defectors to cooperation can lead the system to one of full cooperation. In con-

clusion, the above numerical experiments have empirically shown that cooperation is extremely

stable after cooperator networks have emerged. Although we are using here an artificial society

of agents, this can hopefully be seen as an encouraging result for cooperation in real societies.

E.3.5 Structure of the Emerging Networks

In this section we present a statistical analysis of the global and local properties of the networks

that emerge when the pseudo-equilibrium states of the dynamics are attained. Note that in the

following sections the graph we refer to is the unoriented, unweighted one that we called G
′

in

Sect. E.2.1. In other words, for the structural properties of interest, we only take into account

the fact that two agents interact and not the weights of their directed interactions.

Small-World Nature

Small-world networks are characterized by a small mean path length and by a high clustering

coefficient [127]. Our graphs start random, and thus have short path lengths by construction

since their mean path length l̄ = O(logN) scales logarithmically with the number of vertices

N [75]. It is interesting to notice that they maintain short diameters at equilibrium too, after

rewiring has taken place. We took the average L̄ =
∑660

k=1 l̄ of the mean path length of 660

evolved graphs, which represent ten graphs for each T, S pair. This average is 3.18, which is of

the order of log(1000), while its initial random graph average value is 3.25. This fact, together

with the remarkable increase of the clustering coefficients with respect to the random graph (see

below), shows that the evolved networks have the small-world property. Of course, this behavior

was expected, since the rewiring mechanism favors close partners in the network and thus tends

to increase the clustering and to shorten the distances.

Average Degree

In contrast to other models [131, 103], the mean degree k̄ can vary during the course of the

simulation. We found that k̄ increases only slightly and tends to stabilize around k̄ = 11. This

is in qualitative agreement with observations made on real dynamical social networks [54, 8, 115]

with the only difference that the network does not grow in our model.

Clustering Coefficients

The clustering coefficient C of a graph has been defined in the Introduction section. Random

graphs are locally homogeneous in the average and for them C is simply equal to the probability

of having an edge between any pair of nodes independently. In contrast, real networks have
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Figure E.7: Average values of the clustering coefficient over 50 runs for three values of q.

local structures and thus higher values of C. Fig. E.7 gives the average clustering coefficient

C̄ = 1
50

∑50
i=1 C for each sampled point in the Hawks-Doves configuration space, where 50 is the

number of network realizations used for each simulation. The networks self-organize through

dismissal of partners and choice of new ones and they acquire local structure, since the clustering

coefficients are higher than that of a random graph with the same number of edges and nodes,

which is k̄/N = 10/1000 = 0.01. The clustering tends to increase with q (i.e. from left to right

in Fig. E.7). It is clear that the increase in clustering and the formation of cliques is due to the

fact that, when dismissing an unprofitable relation and searching for a new one, individuals that

are relationally at a short distance are statistically favored. But this has a close correspondence

in the way in which new acquaintances are made in society: they are not random, rather people

often get to interact with each other through common acquaintances, or “friends of friends” and

so on.

Degree Distributions

The degree distribution function (DDF) p(k) of a graph represents the probability that a ran-

domly chosen node has degree k. Random graphs are characterized by DDF of Poissonian form

p(k) = k̄ke−k̄/k!, while social and technological real networks often show long tails to the right,

i.e. there are nodes that have an unusually large number of neighbors [75]. In some extreme

cases the DDF has a power-law form p(k) ∝ k−γ ; the tail is particularly extended and there is

no characteristic degree. The cumulative degree distribution function (CDDF) is just the prob-

ability that the degree is greater than or equal to k and has the advantage of being less noisy

for high degrees. Fig. E.8 shows the CDDFs for the Hawks-Doves for three values of T , S = 0.2,

and q = 0.5 with a logarithmic scale on the y-axis. A Poisson and an exponential distribution

are also included for comparison. The Poisson curve actually represents the initial degree dis-

tribution of the (random) population graph. The distributions at equilibrium are far from the

Poissonian that would apply if the networks would remain essentially random. However, they

are also far from the power-law type, which would appear as a straight line in the log-log plot

of Fig E.9. Although a reasonable fit with a single law appears to be difficult, these empirical

distributions are closer to exponentials, in particular the curve for T = 1.7, for which such a fit
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Figure E.8: Empirical cumulative degree distribution functions for three different values of the
temptation T . A Poissonian and an exponential distribution are also plotted for comparison.
Distributions are discrete, the continuous lines are only a guide for the eye. Lin-log scales.

Figure E.9: Empirical cumulative degree distribution functions for three different values of the
parameter T . Log-log scales.

has been drawn. It can be observed that the distribution is broader the higher T (The higher T ,

the more agents gain by defecting). In fact, although cooperation is attained nearly everywhere

in the game’s configuration space, higher values of the temptation T mean that agents have

to rewire their links more extensively, which results in a higher number of neighbors for some

players, and thus it leads to a longer tail in the CDDF. The influence of the q parameter on

the shape of the degree distribution functions is shown in Fig. E.10 where average curves for

three values of q, T = 1.7, and S = 0.2, are reported. For high q, the cooperating steady-state

is reached faster, which gives the network less time to rearrange its links. For lower values of

q the distributions become broader, despite the fact that rewiring occurs less often, because

cooperation in this region is harder to attain and more simulation time is needed. In conclusion,

emerging network structures at steady states have DDFs that are similar to those found in actual

social networks [75, 4, 73, 50, 117], with tails that are fatter the higher the temptation T and

the lower q. Topologies closer to scale-free would probably be obtained if the model allowed for

growth, since preferential attachment is already present to some extent due to the nature of the
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Figure E.10: Empirical cumulative degree distribution functions for three different values of the
temptation q. Lin-log scales.

rewiring process [93].

Degree Correlations

Besides the degree distribution function of a network, it is also sometimes useful to investigate

the empirical joint degree-degree distribution of neighboring vertices. However, it is difficult to

obtain reliable statistics because the data set is usually too small (if a network has L edges,

with L � N2 where N is the number of vertices for the usually relatively sparse networks we

deal with, one then has only L pairs of data to work with). Approximate statistics can readily

be obtained by using the average degree of the nearest neighbors of a vertex i as a function of

the degree of this vertex, k̄Vi(ki) [88]. From Fig. E.11 one can see that the correlation is slightly

Figure E.11: Average degree of the direct neighbors of a vertex Vs. the vertex degree. The
relation is disassortative. Log-lin scales.

negative, or disassortative. This is at odds with what is reported about real social networks,

in which usually this correlation is positive instead, i.e. high-degree nodes tend to connect to

high-degree nodes and vice-versa [75]. However, real social networks establish and grow because
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of common interests, collaboration work, friendship and so on. Here this is not the case, since

the network is not a growing one, and the game played by the agents is antagonistic and causes

segregation of highly connected cooperators into clusters in which they are surrounded by less

highly connected fellows. This will be seen more pictorially in the following section.

E.3.6 Cooperator Clusters

From the results of the previous sections, it appears that a much higher amount of cooperation

than what is predicted by the standard theory for mixing populations can be reached when ties

can be broken and rewired. We have seen that this dynamics causes the graph to acquire local

structure, and thus to loose its initial randomness. In other words, the network self-organizes in

order to allow players to cooperate as much as possible. At the microscopic, i.e. agent level, this

happens through the formation of clusters of players using the same strategy. Fig. E.12 shows

one typical cooperator cluster. In the figure one can clearly see that the central cooperator is a

Figure E.12: A typical cooperator cluster. Links to the rest of the network have been suppressed
for clarity. The size of a node is proportional to its connectivity in the whole graph. The most
connected central cooperator is shown as a square.

highly connected node and there are many links also between the other neighbors. Such tightly

packed structures have emerged to protect cooperators from defectors that, at earlier times,

were trying to link to cooperators to exploit them. These observations help understand why

the degree distributions are long-tailed (see previous section), and also the higher values of the

clustering coefficient.

Further studies of the emerging networks would imply investigating the communities and the
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way in which strategies are distributed in them. There are many ways to reveal the modular

structure of networks [22] but we leave this study for further work.

E.4 Conclusions

In this paper we have introduced a new dynamical population structure for agents playing a se-

ries of two-person Hawks and Doves game. The most novel feature of the model is the adoption

of a variable strength of the bi-directional social ties between pairs of players. These strengths

change dynamically and independently as a function of the relative satisfaction of the two end

points when playing with their immediate neighbors in the network. A player may wish to

break a tie to a neighbor and the probability of cutting the link is higher the weaker the directed

link strength is. The ensemble of weighted links implicitly represents a kind of memory of past

encounters although, technically speaking, the game is not iterated. While in previous work the

rewiring parameters where ad hoc, unspecified probabilities, we have made an effort to relate

them to the agent’s propensity to gauge the perceived quality of a relationship during time.

The model takes into account recent knowledge coming from the analysis of the structure and

of the evolution of social networks and, as such, should be a better approximation of real so-

cial conflicting situations than static graphs such as regular grids. In particular, new links are

not created at random but rather taking into account the “trust” a player may have on her

relationally close social environment as reflected by the current strengths of its links. This,

of course, is at the origin of the de-randomization and self-organization of the network, with

the formation of stable clusters of cooperators. The main result concerning the nature of the

pseudo-equilibrium states of the dynamics is that cooperation is greatly enhanced in such a

dynamical artificial society and, furthermore, it is quite robust with respect to large strategy

perturbations. Although our model is but a simplified and incomplete representation of social

reality, this is encouraging, as the Hawks-Doves game is a paradigm for a number of social and

political situations in which aggressivity plays an important role. The standard result is that

bold behavior does not disappear at evolutionary equilibrium. However, we have seen here that

a certain amount of plasticity of the networked society allows for full cooperation to be consis-

tently attained. Although the model is an extremely abstract one, it shows that there is place

for peaceful resolution of conflict. In future work we would like to investigate other stochastic

strategy evolution models based on more refined forms of learning than simple imitation and

study the global modular structure of the equilibrium networks.
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Abstract

Coordination games are important to explain efficient and desirable social behavior. Here we

study these games by extensive numerical simulation on networked social structures using an

evolutionary approach. We show that local network effects may promote selection of efficient

equilibria in both pure and general coordination games and may explain social polarization.

These results are put into perspective with respect to known theoretical results. The main

insight we obtain is that clustering, and especially community structure in social networks has

a positive role in promoting socially efficient outcomes.

F.1 Introduction

Game theory [122] has proved extremely useful in the study of economic, social, and biological

situations for describing interactions between agents having possibly different and often con-

flicting objectives. Paradigmatic games such as the Prisoner’s Dilemma [6] have been used in

order to represent the tension that appears in society when individual objectives are in conflict

with socially desirable outcomes. Most of the vast research literature has focused on conflicting

situations in order to uncover the mechanisms that could lead to cooperation instead of socially

harmful outcomes (see e.g. [82] for a synthesis). However, there are important situations in
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society that do not require players to use aggressive strategies. In fact, many frequent social

and economic activities require individuals to coordinate their actions on a common goal since

in many cases the best course of action is to conform to the standard behavior. For example,

if one is used to drive on the right side of the road and travels to a country where the norm

is reversed, it pays off to follow the local norm. Bargaining and contracts are also of this type

because, even though expectancies may be different between a buyer and a seller, still both

would rather trade than not, provided that the respective prices are not too different. For an-

other example, consider a situation in which coordination in working contributions is required

in order to produce a good or a service. In a group it might pay off not to contribute, if this

behavior goes unnoticed, but the total output will be negatively affected. Games that express

this extremely common kind of interactions are called coordination games.

Coordination games confront the players with multiple Nash equilibria and the ensuing

problem of equilibrium selection. Given that these equilibria are equivalent from the game-

theoretical point of view, how to explain how agents make their decisions? This question has

important implications in opinion dynamics problems, for example in elections, choice of a new

technology and so on [33, 11, 29].

A useful approach has been to use evolutionary and learning ideas which offer a dynamical

perspective based on the forces of biological and social evolution. In evolutionary game theory

(EGT), the concept of a population of players where strategies that score best are more likely

to be selected and reproduced provides a justification for the appearance of stable states of the

dynamics that represent solutions of the game [122, 128].

For mathematical convenience, standard EGT is based on infinite mixing populations where

pairs of individuals are drawn uniformly at random at each step and play the game. Correlations

are absent by definition and the population has an homogeneous structure. However, everyday

observation tells us that in animal and human societies, individuals usually tend to interact

more often with some specified subset of partners; for instance, teenagers tend to adopt the

fashions of their close friends group; closely connected groups usually follow the same religion,

and so on. Likewise, in the economic world, a group of firms might be directly connected

because they share capital, technology, or otherwise interact in some way. In short, social

interaction is mediated by networks, in which vertices identify people, firms etc., and edges

identify some kind of relation between the concerned vertices such as friendship, collaboration,

economic exchange and so on. Thus, locality of interaction plays an important role. This kind of

approach was pioneered in EGT by Nowak and May [84] by using simple two-dimensional regular

grids. Recently, in the wake of a surge of activity in network research in many fields [75, 19],

the dynamical and evolutionary behavior of games on networks that are more likely to represent

actual social interactions than regular grids has been investigated (see [112] for a comprehensive

recent review). These studies, almost exclusively conducted on games of conflict such as the

Prisoner’s dilemma or Hawks-Doves, have shown that there are network structures, such as

scale-free and actual social networks that may favor the emergence of cooperation with respect

to the fully mixing populations used in the theory [104, 60].
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In this work we extend this kind of approach to games of the coordination type. We shall

use several types of network structures, both networks generated by an algorithm as well as an

actual social network to try to unravel the effect of structure on the population behavior. In

the present paper, we ignore that social networks are actually dynamical entities that change

constantly. Indeed, actors join and leave networks and they may accumulate and abandon ties

over time. Using static networks is a useful first approximation however, especially for the cases

where the rate of change of the network structure is slow with respect to the rate of change

of individual’s behaviors which is the approximation that is made here1. Comparatively little

theoretical work has been done on coordination games on networks, except for some standard

types such as rings or complete networks [26] for which rigorous results have been obtained

thanks to their regular structure. Although we do mention some known rigorous results as

discussed below, our methodology is essentially computer simulation-based. This is because for

most network types, inhomogeneity and correlations do not allow standard mean-field methods

to be used. Likewise, pair approximation methods [120] provide an acceptable approach for

random and regular graphs but not for the other more complex types and thus they are not

used here.

The paper is organized as follows. In the next section we first present a brief introduction to the

subject of coordination games, in order to make the work self-contained. Then, in Sect. F.3, we

enumerate the main theoretical results on coordination games, as well as the necessary definitions

for networks of agents and their dynamics. In Sect. F.4 we describe the simulation methodology

and the parameters used and, in Sect. F.5 we present and discuss the simulation results on

various network classes first for pure coordination games, and then for general coordination

ones. Finally, in Sect. F.6 we give our conclusions and ideas for future work.

F.2 Coordination Games

F.2.1 General Coordination Games

General two-person, two strategies coordination games have the normal form of Table F.1. With

a > d and b > c, (α, α) and (β, β) are both Nash equilibria. Now, if we assume that a > b and

(a−d) ≤ (b−c) then (β, β) is the risk-dominant equilibrium, while (α, α) is the Pareto-dominant

one. This simply means that players get a higher payoff by coordinating on (α, α) but they risk

less by using strategy β instead. There is also a third equilibrium in mixed strategies but it is

evolutionarily unstable. A well known example of games of this type are the so-called Stag-Hunt

α β

α a, a c, d
β d, c b, b

Table F.1: A general two-person, two strategies coordination game.

1a companion study on the dynamical network case is in progress.
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games [109]. This class of games has been extensively studied analytically in an evolutionary

setting [51, 26] and by numerical simulation on several model network types [109, 104, 60, 96].

In the following, we shall first deal with the easier case of pure coordination games which, in

spite of their simplicity, already clearly pose the equilibrium selection problem. Then we shall

report results on Stag-Hunt games, for which there exist many published studies to compare

with, both theoretical and with the use of simulation.

F.2.2 Pure Coordination Games

Two-person pure coordination games have the normal form depicted in Table F.2, with ui, ui > 0,

and ui, uj = 0, 0, i 6= j,∀i, j ∈ [1, k], where k is the number of strategies available to each player

in the strategy set S = {s1, s2, ..., sk}, and the u’s are payoffs. So all the Nash equilibria in

pure strategies correspond to diagonal elements in the table where the two players coordinate

on the same strategy, while there is a common lower uniform payoff for all other strategy pairs

which is set to 0 here. A simple coordination game is the driving game. In some countries

s1 s2 . . . sk
s1 u1,u1 0, 0 . . . 0, 0
s2 0, 0 u2,u2 . . . 0, 0
. . . . . . . . . . . . . . .
sk 0, 0 . . . . . . uk,uk

Table F.2: A general payoff bi-matrix of a two-person pure coordination game. Nash equilibria
in pure strategies are marked in bold.

people drive on the right side of the road, while in others they drive on the left side. This can

be represented by the pure coordination game represented in Table F.3. There are two Nash

right left

right 1,1 0, 0
left 0, 0 1,1

Table F.3: The driving game.

equilibria in pure strategies: (right, right) and (left, left) and obviously there is no reason, in

principle, to prefer one over the other, i.e. the two equilibria are equivalent. However, while

some countries have got accustomed to drive on the left such as the UK, Australia, and Japan,

others have done the opposite such as most European countries and the USA. Such norms or

conventions have stabilized in time and are often the product of social evolution. There is of

course a third equilibrium in mixed strategies in the driving game which consists in playing left

and right with probability 1/2 each but it would seem rather risky to play the game in this way

on a real road. Another well known example of a pure coordination game is the Battle of the

Sexes in which the Nash equilibria in pure strategies are those in which players use the same

strategy, but the two sides in a two person game prefer a different equilibrium [122].
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F.3 Mathematical Setting and Previous Results

In this section, we recall some rigorous results for two-person, two-strategies coordination games

on some particular network types. Indeed, network topology has an influence on the stable

states of the evolutionary dynamics that will be reached, as it will become clear in what follows.

We also give nomenclature and definitions for the graphs representing the population of agents

and for the dynamical decision processes implemented by the agents.

Let’s thus consider the game’s payoff matrix of Table F.4 with a ≥ b > 0. When a > b,

strategy α is said to be dominant since a player obtains a higher payoff playing α rather than

β.

α β

α a, a 0, 0
β 0, 0 b, b

Table F.4: A general two-person, two-strategies pure coordination game.

The network of agents will be represented by an undirected graph G(V,E), where the set of

vertices V represents the agents, while the set of edges (or links) E represents their symmetric

interactions. The population size N is the cardinality of V . A neighbor of an agent i is any

other agent j at distance one from i. The set of neighbors of i is called Vi and its cardinality is

the degree ki of vertex i ∈ V . The average degree of the network is called k̄ and p(k) denotes its

degree distribution function, i.e. the probability that an arbitrarily chosen node has degree k.

Since we shall adopt an evolutionary approach, we must next define the decision rule by

which individuals will update their strategy during time. An easy and well known adaptive

learning rule is myopic best-response dynamics, which embodies a primitive form of bounded

rationality and for which rigorous results are known [129, 36]. In the local version of this model,

time is discrete i.e. t = 0, 1, 2, . . . and, at each time step, an agent has the opportunity of

revising her current strategy. She does so by considering the current actions of her neighbors

and switching to the action that would maximize her payoff if the neighbors would stick to their

current choices. The model is thus completely local and an agent only needs to know her own

current strategy, the game payoff matrix, who are her neighbors, and their current strategies.

This rule is called myopic because the agents only care about immediate payoff, they cannot see

far into the future. Given the network structure of the population, the rule is implemented as

follows:

• at each time step a player i revises his strategy with probability p

• player i will choose the action that maximizes his payoff, given that the strategy profile of

his neighbors Vi remains the same as in the previous period

• if there is a tie or i is not given the opportunity of revising his strategy, then i will keep

his current strategy
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Using the above kind of stochastic evolutionary process, which can be modeled by a Markov

chain, the following theoretical results have been proved by several researchers and can be found

in Chapter 4 of [36], where references to the original works are given. They are valid for general

coordination games, and thus also for the special case of the pure coordination game of Table F.4.

Theorem. A strategy profile in which everyone plays the same action is a Nash equilibrium for

every graph G. If G is complete then these are the only possible equilibria. If G is incomplete,

then there may exist polymorphic equilibria as well.

The preceding theorem implies that social diversity may emerge at equilibrium depending on

the network structure. Given that complete networks are not socially relevant, this result leaves

open the possibility of equilibrium strategy distributions in the population. A second related re-

sult states that, starting from any initial strategy profile, the above described stochastic process

will converge to a Nash equilibrium of the coordination game with probability 1. To probe for

the stability of equilibria, the concept of mutation is introduced. A mutation simply means that

a player that is updating its current strategy can make a mistake with some small probability q.

These small random effects are meant to capture various sources of uncertainty such as delib-

erate and involuntary decision errors. Deliberate errors might play the role of experimentation

in the environment, and involuntary ones might be linked with insufficient familiarity with the

game, for example. A state of this adaptive noisy dynamics is called stochastically stable if in

the long term, the probability of being in that state does not go to tero as the error probability

tends to zero (see [129] for a rigorous definition). This idea allows one to discriminate among

the possible equilibria according to their stability properties.

From the above considerations, it may be concluded that the network topology plays an im-

portant role on the equilibrium states that the population will reach in the long run. However,

the graph types for which analytical results are available are far from the complex structures of

observed real social networks. Therefore, our aim in the following is to characterize the behavior

of such complex networks by using numerical simulations and appropriate statistical analysis.

F.4 Numerical Simulations Methodology

F.4.1 Network Types Studied

In the last few years a large amount of knowledge has accumulated about the structure of real

social networks and many model networks, both static and growing have been proposed [75, 19,

49]. We are thus in a position that allows us to make use of this recent information in order

to study the behavior of coordination games on such realistic networks. In detail, we shall use

the following network types: random, Barábasi-Albert scale-free networks, a real social network,

and model social networks. We shall now briefly describe each of these network types, directing

the reader to the relevant references for more details.
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random graphs

For generating random graphs we use one of the classical models proposed by Erdös and Rényi

and described in [15]. Given N indistinguishable vertices, each possible edge has an independent

probability p of appearing (0 ≤ p ≤ 1), which gives the G(N, p) ensemble of random graphs.

It is worth mentioning that for that type of random graph the average clustering coefficient2

C̄ = p = k̄/N . Thus C̄ at fixed k̄ tends to 0 for increasing N . This is one of the reasons that

make these random graphs rather unsuitable as model social networks, although they are useful

as a known benchmark to evaluate deviations from randomness. Furthermore, p(k) = e−k̄ k̄k

k! is

Poissonian and thus it allows only small fluctuations around k̄, while actual measured networks

usually have long-tailed degree distribution functions.

Scale-Free graphs

Among the several available models for constructing scale-free networks [75], here we use the

classical one by Barabási–Albert [3]. Barabási–Albert networks are grown incrementally starting

with a small clique of m0 nodes. At each successive time step a new node is added such that its

m ≤ m0 edges link it to m nodes already present in the graph. It is assumed that the probability

p that a new node will be connected to node i depends on the current degree ki of the latter.

This is called the preferential attachment rule. The probability p(ki) of node i to be chosen is

given by p(ki) = ki/
∑

j kj , where the sum is over all nodes already in the graph. The model

evolves into a stationary network with power-law probability distribution for the vertex degree

P (k) ∼ k−γ , with γ ∼ 3. For the simulations, we started with a clique of m0 = 2 nodes and at

each time step the new incoming node has m = 2 links.

Scale-free graphs are rather extreme and are infrequent among social networks (see below), even

taking finite degree cutoffs into account. As the random graph, they are rather to be considered

as a model network.

An Actual Social Network

One important reason for introducing true or model social networks is that, as said above, clus-

tering is an important feature in networks of contacts while neither Erdös-Rényi nor Barabási-

Albert scale-free graphs show a comparable level of clustering. As a typical example of a true

social network, we use a coauthorship network among researchers in the genetic programming

(GP) community. This network has a connected giant component of 1024 scientists and it has

recently been analyzed [117]. It has clusters and communities and it should be representative of

other similar human acquaintance networks. Its degree distribution function p(k), as is usually

the case with most measured social networks [4, 75, 49], is not a pure power-law; rather, it can

be fitted by an exponentially truncated power-law.

2We use the following common definition. The clustering coefficient Ci of a node i is defined as Ci = 2Ei/ki(ki−
1), where Ei is the number of edges in the neighborhood of i. Thus Ci measures the amount of “cliquishness” of
the neighborhood of node i and it characterizes the extent to which nodes adjacent to node i are connected to
each other. The clustering coefficient of the graph is the average over all nodes: C̄ = 1

N

∑N
i=1 Ci [75]
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Model Social Networks

Several ways have been proposed for growing artificial networks with properties similar to those

of observed social networks. Here we use the model of Toivonen et al. [114], which was conceived

to construct a graph with most of the desired features of real-life social networks i.e, assortative,

highly clustered, showing community structures, having an adjustable decay rate of the degree

distribution, and a finite cutoff. The network is incrementally grown starting from a seed of m0

randomly connected vertices. At each successive time step, the following algorithm is applied:

1. On average mr ≥ 1 random vertices are picked to be initial contacts.

2. On average ms ≥ 0 neighbors of the mr initial contacts are chosen to be secondary contacts.

3. A newly added vertex v is connected to all the initial and secondary contacts determined

in the two previous steps.

The above is iterated until the network reaches the desired size. Notice that the process re-

sponsible for the appearance of high clustering, assortativity and community structure is step

2. In the numerical experiments, we used graphs of size N = 1000 with m0 = 30 initial

nodes. Every time a new node is added, its number of initial contacts mr is distributed as

p(# of initial contacts = 1) = 0.95 and p(# of initial contacts = 2) = 0.05. The number of its

secondary contacts ms is uniformly distributed between 0 and 3. The resulting degree distribu-

tion falls below a power-law for high values of k [114].

F.4.2 Simulations Settings

The network used are of size N = 1000 except for the GP network, whose giant component has

size 1024. The mean degree k̄ of the networks generated was 6, except for the GP case which

has k̄ ' 5.8.

For pure coordination games the non-zero diagonal payoffs a (see sect. F.2.2) has been varied in

the range [0.5, 1] in steps of 0.05 with b = 1 − a; the range [0, 0.5] is symmetrically equivalent.

For general coordination games (sect. F.2) in which a > d > b > c, we have studied a portion of

the parameters’ space defined by c ∈ [−1, 0] and d ∈ [0, 1], a = 1, and b = 0, as is usually done

for the stag-hunt games [104, 96]. The c− d plane has been sampled with a grid step of 0.05.

Each value in the phase space reported in the following figures is the average of 50 independent

runs. Each run has been performed on a fresh realization of the corresponding graph, except

for the GP co-authorship network case which is a unique realization.

As already hinted in sect. F.3, we have used a fully asynchronous update scheme in which a

randomly selected agent is chosen for update with replacement at each discrete time step. To

detect steady states3 of the dynamics we first let the system evolve for a transient period of

3True equilibrium states in the sense of stochastic stability are not guaranteed to be reached by the simulated
dynamics. For this reason we prefer to use the terms steady states or quasi-equilibrium states which are states
that have little or no fluctuation over an extended period of time.
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5000 × N ' 5 × 106 time steps. After a quasi-equilibrium state is reached past the transient,

averages are calculated during 500 × N additional time steps. A steady state has always been

reached in all simulations performed within the prescribed amount of time, for most of them

well before the limit.

We have experimented with different proportions of uniformly randomly distributed initial

strategies α belonging to the set {0, 0.05, 0.25, 0.5, 0.75, 0.95, 1} and we have used two differ-

ent values for the stochastic noise q in the simulations: q ∈ {0, 0.02}, i.e. either no noise or

a small amount, as prescribed by the most important theoretical stochastic models in order to

ensure that the evolutionary process is ergodic [51, 26, 129].

F.5 Simulation Results

F.5.1 Results on Pure Coordination Games

Figures F.1 and F.2 show global coordination results for random graphs and scale-free graphs

respectively. The plots report on the x-axis the payoff advantage of strategy α with respect

to strategy β, which goes from 0 to 1, and on the y-axis the frequency of α-strategists in the

population. The curves represent average values over 50 runs for each sampled point. By

simple inspection, it is clear that results do not differ by a large extent between the random and

the scale-free cases, which means that the degree distribution function has little effect on the

outcome. The general trend is for all the populations to converge toward the payoff-dominant

Nash equilibrium in pure strategies which is also the case for the standard well-mixed population,

as we know from analytical results. Polymorphic populations do exist temporarily but they are

unstable and the stochastic dynamics always reaches a monomorphic state. It is also quite

obvious that without mutations (Figs. F.1 and F.2 left-hand images), if a strategy is absent at

the beginning, it cannot appear later. Instead, with even a small amount of noise (q = 0.02

in the figures), the strategy offering the best payoff will take over the population thanks to

repeated mutations that will create individuals playing that strategy (Figs. F.1 and F.2 right-

hand images) even in case the strategy is absent in the initial population. Furthermore, noise

always promotes a quicker transition toward the payoff-dominant steady state.

Figures F.3 and F.4 depict the same quantities as above in the case of the real social network

and model social networks respectively. Although the general behavior is the same, i.e. the

Pareto-dominant steady state is reached in most situations, some aspects of the dynamics differ

from the case of random and scale-free networks. To begin with, one sees on the left-hand images

that, without noise, the payoff dominated strategy is able to resist in the population when the

payoff differences are small. For example, starting with an equal initial share of strategies α and

β, one sees in Figs. F.3 and F.4 that, up to a difference in payoffs of 0.02 the Pareto-dominated

strategy is still present in the population with a sizable fraction. This phenomenon can be

explained by looking at the clusters present in the social networks. Results will be presented

below.
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Figure F.1: Random network: k̄ = 6. Left image refers to noiseless best response dynamics. The
right image is for a noisy dynamics with q = 0.02. Graphics report the frequency of strategy α
in the population as a function of the payoff difference a− b. Continuous lines are just a guide
for the eye.
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Figure F.2: Scale-free network: Barabasi-Albert Model, k̄ = 6. Left image refers to noiseless
best response dynamics. In the right image the probability of mutation is q = 0.02. On the
y-axis the frequency of strategy α is plotted against the payoff difference a− b.

But the main remark is that, in the presence of noise, the payoff-dominant stable state is

reached for smaller differences in payoff (see right-hand images). In other words, a small a − b
advantage is enough to quickly steer the dynamics towards the dominant quasi-equilibrium.

The behavior is sufficiently different from the previous one to require at least a qualitative

explanation, which is presented next by introducing the concept of communities.

F.5.2 Social Communities and Game Strategies

Communities or clusters in networks can be loosely defined as being groups of nodes that are

strongly connected between them and poorly connected with the rest of the graph. These

structures are extremely important in social networks and may determine to a large extent the

properties of dynamical processes such as diffusion, search, and rumor spreading among others.

Several methods have been proposed to uncover the clusters present in a network (for a review

see, for instance, [28]). In order to study the effect of community structure on the distribution

of behaviors at steady state, here we have used the divisive method of Girvan and Newman [79]
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Figure F.3: Coauthorship network in the Genetic Programming community. Left image: no
noise. Right image: mutation probability q = 0.02. On the y-axis we report the fraction of
α-strategists in the population as a function of the payoff difference a− b.
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Figure F.4: Model social network. Left: mutation probability q = 0; right: q = 0.02. On
the y-axis we report the fraction of α-strategists in the population as a function of the payoff
difference a− b.

which is based on iteratively removing edges with a high value of edge betweennes.

The presence of communities has a marked effect on the game dynamics. Figure F.5 depicts the

community structure of a Barabási–Albert scale-free graph (a) and of a model social network

built according to Toivonen et al’s model (b). The difference is striking: while clear-cut clusters

exist in (b), almost no recognizable communities can be isolated in (a), a fact that is shown by the

high number of links between clusters, with a communities graph average degree of ∼ 32, while

k̄ is about 6.5 for the communities graphs arising from social networks. A common statistical

indicator of the presence of a recognizable community structure is the modularity Q. According

to Newman [77], where quantitative definitions are given, modularity is proportional to the

number of edges falling within clusters minus the expected number in an equivalent network

with edges placed at random. While modularity is not without flaws [37], it is still a convenient

indicator of the presence of clusters. In general, networks with strong community structure

tend to have values of Q in the range 0.4 − 0.7. Indeed, for the networks in Fig. F.5, we have

Q ' 0.3 for the scale-free network, while Q ' 0.6 for the model social network. Colors in the

figure represent frequency of strategies at steady state for a single particular, but representative,
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(a) (b)

Figure F.5: Distribution of strategies at steady state in the network communities when both
strategies share the same payoff: a = b = 0.5. (a) scale-free, frequency of α = 0.568. (b) model
social network, fraction of α = 0.585. Each vertex represents a whole community with size pro-
portional to the size of the community. Links represent inter-community connections and their
thickness is proportional to the number of inter-community links. The communities are much
less interconnected in the social network and this causes a greater difference in concentration
from community to community.

run in each case. In the average over 50 runs, final proportions of strategies α and β do not

depart much from the initial 50%. However, while in the scale-free case at the steady state

the standard deviation is high, meaning that the system converges often to one or the other

equilibrium, this is not the case for the social networks. In the latter, at steady state there

is always a mix of strategies; in other words, polymorphic equilibria may be stable. This is

a remarkable fact that is due to the community structure of social networks, which is almost

missing in the scale-free and random network cases. Thanks to this clear-cut cluster structure,

as soon as the nodes of a cluster are colonized by a majority of one of the two strategies by

statistical fluctuation, it becomes difficult for the other strategy to overtake, which explains

why these cluster strategies are robust. The effect of the community structure is even more

apparent in Fig. F.6 where strategy α has been given a slight initial advantage. At steady

state, in both the co-authorship network (a) as well as the model network (b) strategy β is still

present in some clusters. If we were to interpret strategies as social norms or conventions, then

this would suggest that a realistic social structure may help protect diversity, either political or

cultural, for example. The possibility of polymorphic equilibria had been theoretically predicted

by Morris [70] for symmetric payoffs in pure coordination games with best response dynamics

in the case of infinite populations and making use of a notion of “cohesion” which refers to the

relative frequency of ties among groups compared with non-members. Clearly, although it was

expressed in a different language that does not make explicit use of networks, this notion is

related to the communities we have here and the simulation results nicely confirm the prediction
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in the case of finite, actual networked systems.

(a) (b)

Figure F.6: Strategy distribution in the network communities when α has a small advantage
over β: a = 0.55. (a) Genetic Programming co-authorship network, proportion of α = 0.839.
(b) model social network, proportion of α = 0.833. The cluster structure of these networks
allows the preservation of the dominated strategy in some communities.

F.5.3 Results on the Stag Hunt Games

Figure F.7 shows strategy distribution on the game parameter space for the Stag Hunt class of

coordination games for the scale-free case. Results for random graphs are similar to those for

scale-free networks and are not shown. The two upper images are for equal initial proportions

of each strategy, while the bottom figures refer to an initial proportion of strategy α = 5%. The

first image in each row is for best response without noise, while the second image has noise level

q = 0.02.

For initially equidistributed strategies, although average values are reported in the figures, almost

all simulations attain one or the other absorbing state, i.e. all individuals play α or all play

β, and there is almost no difference when noise is present. This is in agreement with previous

results on scale-free graphs published by Roca et al. [97] where update was by best response

without noise, and also with [60] where replicator dynamics instead of best response dynamics

was used as a strategy update rule.

For the more extreme case in which initially the fraction of strategy α is 5% randomly distributed

over the graph vertices (bottom row images), a small amount of random noise does not have a

large effect: the cooperative strategy emerges in the favorable region of the parameter space, i.e.

for low d and high c (upper left corner) in both cases. However, the presence of noise enhances the

efficient coordination region. Indeed, even when strategy α is initially absent, once it is created

by mutation, it spreads as in the 5% case. It is to be noted that the same phenomenon happens

when the minority strategy is β = 0.05; in this case the images are specularly symmetrical, and
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Figure F.7: Distribution of strategies proportions at steady state on the d − c plane for scale-
free networks. Each sampled point is the average of 50 independent runs. The upper images
are for equal initial proportions of each strategy. In the lower figures the initial proportion
of randomly distributed α-strategists is 5%. Figures on the left column are for best response
dynamics without noise, while those on the right column represent a situation in which the
probability of mutation q = 0.02. Darker colors mean that risk-dominance prevails; light color
design the region where payoff-dominance prevails.

with colors reversed, with respect to the main diagonal, except for sampling differences (not

shown to save space).

Figure F.8 depicts average results for the model social network case of Toivonen et al. [114].

Results for the collaboration network are very close to those of model social networks. For this

reason, and in order not to clutter the graphics too much, we do not show them. It is immediately

apparent that the case in which strategies are initially randomly distributed in equal amounts

seems similar to the scale-free results. However, looking more carefully, the average results

shown in the figures hide to some extent the fact that now many simulations do not end in one

of the monomorphic population states, but rather there is a mix of the two strategies, when

noise is absent. This is visible in the upper left figure in the less crisp frontier along the diagonal

which is due to a more gradual transition between phase space regions. However, when a small

amount of noise is present (upper right image) the transition is again sharp and the dynamics

usually leads to a monomorphic population in which one of the two absorbing states is entered.

The reason why there can be mixed states in the noiseless case in social networks is related to
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Figure F.8: Distribution of strategies proportions at steady state on the d − c plane for model
social networks. Each sampled point is the average of 50 independent runs. The upper images
are for equal initial proportions of each strategy. In the lower figures the initial proportion
of randomly distributed α-strategists is 5%. Figures on the left column are for best response
dynamics without noise, while those on the right column represent a situation in which the
probability of mutation q = 0.02. Darker colors mean that risk-dominance prevails; light color
design the region where payoff-dominance prevails.

their mesoscopic structure. As we have seen in sect. F.5.2, model and real social networks can be

partitioned into recognizable clusters. Within these clusters strategies may become dominant as

in the pure coordination case just by chance. In other words, as soon as a strategy dominates in

a given cluster, it is difficult to eradicate it from outside since other communities, being weakly

connected, have little influence. This kind of effect in the Stag Hunt game has been observed

previously in simulations on grid-structured populations [109, 97]. However, grid structures are

not socially realistic; thus, the fact that more likely social structure do support efficient outcomes

is an encouraging result. However, when noise is present, there is always the possibility that the

other strategy appears in the cluster by statistical fluctuations and, from there, it can takeover

the whole community. To end this section, we remark that analogous effects due to the presence

of clusters in social networks have been observed and interpreted in the Prisoner’s Dilemma

game in [58, 60].

We now briefly comment on the relationship between our numerical results and well known

theoretical results on Stag-Hunt games. These theoretical models are based on ergodic stochastic
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processes in large populations and state that, when using best-response dynamics in random

two-person encounters, and in the presence of a little amount of noise, both for well-mixed

populations as well as for populations structured as rings, the risk-dominant strategy should

take over the population in the long run [51, 26, 129]. From our simulation results on all kind of

networks this is not the case; in other words, at the steady state there is always either a single

strategy, but not necessarily the risk-dominant one, or a mix of both strategies. For scale-free

and random graphs, the numerical results of [97] agree with ours. The case of social networks,

presented here for the first time, also confirms the above and in addition makes explicit the

role played by communities. We may also mention at this point that, for the Stag-Hunt, the

presence of a local interaction structure provided by a network has been shown to increase the

region of the phase space in which the Pareto-dominant outcome prevails for other strategy

update rules, such as imitate the most successful neighbor or reproduce proportionally to fitness

(replicator dynamics) [109, 96]. Thus coordination is sensitive to the exact type of underlying

dynamics in networks. This is indirectly confirmed by the theoretical study of Robson and Vega-

Redondo [95] in which a different matching model is used with respect to Kandori et al [51].

In [95] players are immediately randomly rematched after each encounter and the result is that

the Pareto-dominant equilibrium is selected instead.

In summary, it can be said that network effects tend to reinforce cooperation on the Pareto-

dominant case, which is a socially appreciable effect. However, these results must be taken

with a grain of salt. We are numerically studying finite, network-structured populations during

a limited amount of time, while theoretical results have been established for large well mixed

populations in the very long run. As for the finite-size population, we have performed many

simulations with larger (N = 2000) and smaller (down to N = 100) networks and the results

do not change significantly (not shown to save space). However, in the end, the conditions

of the numerical experiments are sufficiently different to conclude that numerical results and

theoretical predictions based on different assumptions do not have to agree necessarily.

F.6 Summary and Conclusions

In this work we have studied pure and general coordination games on complex networks by

numerical simulation. Situations described by coordination games are common in society and

it is important to understand when and how coordination on socially efficient outcomes can be

achieved.

In the case of pure coordination games on model networks using deterministic best response

strategy dynamics we have found that network effects are small or non-existent in standard

complex networks. On model social networks and a real co-authorship network the behavior is

similar, but the transition from one convention to the other is smoother and the cluster structure

of the networks plays an important role in protecting payoff-weaker conventions within commu-

nities and this leads to a clear polarization of conventions in the network. When a small amount

of noise is added in order to simulate errors and trembles in the agent’s decisions, the dynamics
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leads to the payoff-dominant norm for smaller values of the payoff difference between strategies.

However, in the case of social networks, even a tiny amount of payoff advantage is enough to

drive a minority of α-strategists to take over the whole network thanks to the cluster structure

and mutations.

In the case of general coordination games of the Stug Hunt type where there is a tension be-

tween payoff-dominance and risk-dominance, we have confirmed previous simulation results in

the sense that, with deterministic best response dynamics the influence of network structure

is very limited [109, 97, 96, 60]. On the other hand, when we consider model and social net-

works, again their community structure plays an important role which consists in allowing the

existence at steady state of dimorphic populations in which both strategies are present and

stable. The payoff-dominant strategy is favored in regions where risk-dominance should be the

only stable strategy and, conversely, it allows risk-dominant players to survive in clusters when

payoff-dominance should prevail.

We have also compared numerical results with theoretical ones when they exist. The latter

actually depend on the detailed structure of the stochastic processes generated by the particular

theoretical model. In this sense, numerical results are compatible with theoretical predictions

when they are applicable, i.e. for well mixed and ring-structured populations [51, 95, 26]. Also,

for pure coordination games the predictions of [70] in arbitrary non-homogeneous structures are

qualitatively confirmed. However, finite-size and complex network effects are difficult to describe

theoretically and thus our results on complex and social networks cannot always be easily com-

pared with theoretical predictions. Our current and future work is to investigate coordination

games in a more realistic co-evolutionary scenario in which both the agents’ strategies as well

as their interactions may vary dynamically.
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Abstract

We propose a model in which agents of a population interacting according to a network of

contacts play games of coordination with each other and can also dynamically break and redirect

links to neighbors if they are unsatisfied. As a result, there is co-evolution of strategies in the

population and of the graph that represents the network of contacts.

We apply the model to the class of pure and general coordination games. For pure coor-

dination games, the networks co-evolve towards the polarization of different strategies. In the

case of general coordination games our results show that the possibility of refusing neighbors

and choosing different partners increases the success rate of the Pareto-dominant equilibrium.

G.1 Introduction

The purpose of Game Theory [122] is to describe situations in which two or more agents or

entities may pursue different views about what is to be considered best by each of them. In

other words, Game Theory, or at least the non-cooperative part of it, strives to describe what the

agents’ rational decisions should be in such conflicting situations. For example, games such as

the well known Prisoner’s Dilemma have been heavily used in order to represent the tension that

appears in society when individual objectives are in conflict with socially desirable outcomes.
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Indeed, a large part of the research literature has focused on conflicting situations in order to

uncover the mechanisms that could lead to cooperation instead of socially harmful outcomes (see

e.g. [82] for a synthesis). However, there are important situations in society that do not require

players to use aggressive strategies. In fact, many frequent social and economic activities require

individuals to coordinate their actions on a common goal since in many cases the best course

of action is to conform to the standard behavior. For example, if someone’s native language

is French and she travels to an English-speaking country, it pays off to follow the local norm,

i.e. to speak English instead of French. Games that express this extremely common kind of

interactions are called coordination games.

Coordination games confront the players with multiple Nash equilibria and the consequent

problem of how to choose among them. A useful approach has been to turn to evolutionary and

learning ideas which offer a dynamical perspective based on the forces of biological and social

evolution. In evolutionary game theory (EGT), the concept of a population of players where

strategies that score best are more likely to be selected and reproduced provides a justification for

the appearance of stable states of the dynamics that represent solutions of the game [122, 30].

For mathematical convenience, standard EGT is based on infinite mixing populations where

pairs of individuals are drawn uniformly at random at each step and play the game. Correlations

are absent by definition and the population has an homogeneous structure. However, everyday

observation tells us that in animal and human societies, individuals usually tend to interact more

often with some specified subset of partners; for instance, teenagers tend to adopt the fashions

of their close friends group; closely connected groups usually follow the same religion, and so on.

Likewise, in the economic world, a group of firms might be directly connected because they share

capital, technology, or otherwise interact in some way. In short, social interaction is mediated by

networks, in which vertices identify people, firms etc., and edges identify some kind of relation

between the concerned vertices such as friendship, collaboration, and economic exchange. Thus,

locality of interaction plays an important role. This kind of approach was pioneered in EGT

by Nowak and May [84] by using simple two-dimensional regular grids. Recently, in the wake

of a surge of activity in network research in many fields [75], the dynamical and evolutionary

behavior of games on networks that are more likely to represent actual social interactions than

regular grids has been investigated (see [112] for a comprehensive recent review). These studies

have shown that there are network structures, such as scale-free and actual social networks that

may favor the emergence of cooperation with respect to the fully mixing populations used in the

theory [101, 60]. Most studies have focused on conflicting games but some work has also been

done on games of the coordination type [109, 60, 96].

However, the above approach assumes a static point of view, i.e. it takes the network of

contacts as being fixed once and for all and investigates the evolution of the agents’ strategies

over time. In other words, it is as if we took a snapshot of a given network at a given time and

used this situation during all future times. Actually, however, social networks are dynamical

entities that change constantly: actors may join and leave networks at unpredictable times

and they may accumulate and abandon ties over time. Using static networks is a useful first
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approximation however, especially for the cases where the rate of change of the network structure

is slow with respect to the rate of change of individual’s behaviors. This could be the case of

long-term collaboration networks, friendship, or of biological networks that are the result of an

extremely long and slow evolution. But in many cases this static picture does not fit the reality

very well. If we think of social or pseudo-social networks such as e-mail exchanges, Facebook-like

networks, rumor-spreading networks and a host of other similar structures, we see that that the

evolution of the network of contacts itself can be quite rapid and plays an important role.

In the present work we study the co-evolution of agents’ behavior and of the agents’ ties in

the network over time. For the sake of simplicity, we investigate constant-size systems, i.e. we

start with a finite-size network of agents and allow agents to abandon and to create links among

themselves but there will be no new agents joining the system, nor agents will be allowed to leave

it. This is not what happens in actual social and technological networks, which all tend to grow

with time and are actually non-equilibrium systems, but our “closed system” approximation is

simpler to simulate and interpret, and will allow us to already draw significant conclusions. Our

methodology is essentially computer simulation-based since complex networks inhomogeneity

and correlations make standard mean-field methods not adequate.

Some previous work has been done on evolutionary games on dynamic networks essentially

dealing with the Prisoner’s Dilemma, e.g. [109, 59, 103, 131] and a recent review of these ap-

proaches has been written by Perc and Szolnoki [90]. The present study follows our own model

described in [92, 119] which differs from other approaches in the way in which links between

agents are represented and interpreted, as explained later. In these previous works we stud-

ied the antagonistic Hawk Doves game and the Prisoner’s Dilemma with replicator dynamics,

instead of the best response dynamics used here for coordination games.

We also note that in the last fifteen years economists have put forward a theory of strategic

network formation, i.e. formal models of how utility-based link formation moves might be

implemented in order to reach a Nash equilibrium for all the members of the network (see e.g.

Jackson’s book for a synthesis of this work [49]). Our approach is different from the above

view of strategic network formation for two reasons. First, we use networks that are at least

two orders of magnitude larger and, while the equilibrium predictions resulting from strategic

considerations usually lead to very simple topological structures such as small cliques or stars,

our large evolving networks show complex structure and behavior. Second, while in strategic

network formation the evolution of the network is submitted to utility maximization on the part

of the players, our linking moves are based on very simple forms of reinforcement learning. Only

the decisions of players concerning their behavioral strategies are based on a formal game payoff

matrix.

The paper is organized as follows. In the next section we present a brief introduction to the

subject of coordination games, in order to make the work self-contained. Then we describe the

dynamical network model in Sect. G.3. Next, in Sect. G.4 we present and discuss the simulation

results for pure coordination games. This is followed by the results on general coordination

games in Sect. G.5. Finally, in Sect. G.6 we give our conclusions.
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G.2 Coordination Games

G.2.1 General Coordination Games

General two-person, two strategies coordination games have the normal form of Table G.1. With

a > d and b > c, (α, α) and (β, β) are both Nash equilibria. Now, if we assume that a > b and

(a−d) ≤ (b−c) then (β, β) is the risk-dominant equilibrium, while (α, α) is the Pareto-dominant

one. This simply means that players get a higher payoff by coordinating on (α, α) but they risk

less by using strategy β instead. There is also a third equilibrium in mixed strategies but it is

evolutionarily unstable. A well known example of games of this type are the so-called Stag Hunt

α β

α a, a c, d
β d, c b, b

Table G.1: A general two-person, two strategies coordination game.

games [109]. This class of games has been extensively studied analytically in an evolutionary

setting [51, 26] and by numerical simulation on several static model network types [109, 60, 96].

In the following, we shall first deal with the easier case of pure coordination games which, in

spite of their simplicity, already clearly pose the equilibrium selection problem. Then we shall

report results on Stag Hunt games which are more interesting in social terms as they pose a

problem of “trust”, since the socially efficient solution is more risky.

G.2.2 Pure Coordination Games

Two-person pure coordination games have the normal form depicted in Table G.2, with ui, ui > 0,

and ui, uj = 0, 0, i 6= j,∀i, j ∈ [1, k], where k is the number of strategies available to each player

in the strategy set S = {s1, s2, ..., sk}, and the u’s are payoffs. So all the Nash equilibria in pure

strategies correspond to diagonal elements in the table where the two players coordinate on the

same strategy, while there is a common lower uniform payoff for all other strategy pairs which

is set to 0 here.

s1 s2 . . . sk
s1 u1,u1 0, 0 . . . 0, 0
s2 0, 0 u2,u2 . . . 0, 0
. . . . . . . . . . . . . . .
sk 0, 0 . . . . . . uk,uk

Table G.2: A general payoff bi-matrix of a two-person pure coordination game. Nash equilibria
in pure strategies are marked in bold.

In this paper we shall consider two-person, two-strategies pure coordination games with the

payoff matrix of Table G.3 with a ≥ b > 0. When a > b, strategy α is said to be dominant since
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a player obtains a higher payoff playing α rather than β.

α β

α a, a 0, 0
β 0, 0 b, b

Table G.3: A general two-person, two-strategies pure coordination game.

G.3 Model Description

In this section we provide nomenclature and definitions for the graphs representing the popula-

tion and for the dynamical decision processes implemented by the agents. The dynamical model

has originally appeared in [92, 119]; it is summarized here to make the paper self-contained.

The network of players is represented by a directed weighted graph G(V,E), where the set of

vertices V represents the agents, while the set of oriented edges (or links) E represents their

unsymmetric weighted interactions. The population size N is the cardinality of V . A neighbor

of an agent i is any other agent j such that there is a pair of oriented edges īj and j̄i ∈ E.

The set of neighbors of i is called Ni. For network structure description purposes, we shall also

use an unoriented version G
′

of G having exactly the same set of vertices V but only a single

unoriented unweighted edge ij between any pair of connected vertices i and j of G. For G′ we

shall define the degree ki of vertex i ∈ V as the number of neighbors of i. The average degree

of the network G
′

will be called k̄.

Each link in G has a weight or “force” fij that represents in an indirect way the “trust” player

i places in player j. This weight may take any value in [0, 1] and its variation is dictated by

the payoff earned by i in each encounter with j. The detailed way in which weights evolve

dynamically is explained below. We define a quantity si called satisfaction of an agent i as the

mean weight of i’s links:

si =

∑
j∈Ni

fij

ki
,

with 0 ≤ si ≤ 1. The link strengths can be seen as a kind of accumulated “memory” of previous

encounters. However, it must be distinguished from the memory used in iterated games, in

which players “remember” a certain number of previous moves and can thus conform their

future strategy on the analysis of those past encounters [122, 30]. Our interactions are strictly

one-shot, i.e. players “forget” the strategies used by neighbors in previous rounds and cannot

recognize their playing patterns over time. However, they do recognize neighbors in terms of

the strengths of the links they maintain with them. It could also be useful to model progressive

obsolescence of the fij over time, i.e. a discount rate of their values but, for the sake of simplicity,

we prefer not to consider this effect in a first step.

Since we shall adopt an evolutionary approach, we must next define the decision rule by which
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individuals update their strategy and their contacts during time. For the strategy update, an

easy and well known adaptive learning rule is myopic best-response dynamics, which embodies

a primitive form of bounded rationality and for which rigorous results for coordination games

are known in well mixed populations [51, 95] and in fixed one-dimensional and two-dimensional

lattices [26, 70].

In the local version of this model, time is discrete i.e. t = 0, 1, 2, . . . and, in each time step,

an agent has the opportunity of revising her current strategy. She does so by considering the

current actions of her neighbors and switching to the action that would maximize her payoff

if the neighbors would stick to their current choices. This rule is called myopic because the

agents only care about immediate payoff, they cannot see far into the future. The model is thus

completely local and an agent only needs to know her own current strategy, the game payoff

matrix, who are her neighbors, and their current strategies. Furthermore, the agent must be

able to “ask” one of her neighbors to introduce to her one of his neighbors. Given the network

structure of the population, the strategy update rule is implemented as follows:

• in each time step a randomly chosen1 player i revises her strategy with probability p

• player i will choose the action that maximizes her payoff, given that the strategy profile

of her neighbors Ni remains the same as in the previous period

• if there is a tie or i is not given the opportunity of revising her strategy, then i will keep

her current strategy

Now we describe the dynamics of links. The active agent i will, with probability q, attempt

to dismiss an interaction with one of her neighbors, say j, selected proportionally to 1 − fij ,
i.e. the higher fij , the lower the probability of the link being selected for rewiring. Likewise,

the lower the satisfaction si of agent i, the higher the probability of dismissing the ij link.

However, although i may take the lead in the decision to dismiss a link, j has some power in

opposing herself. The idea is that, in real social situations, it is seldom possible to take unilateral

decisions: often there is a cost associated, and we represent this hidden cost by a probability

1− (fij + fji)/2 with which j may refuse to be cut away. In other words, the link is less likely

to be deleted when j’s trust in i, fji, is high. If the decision is finally taken to cut the link,

i attempts to create a new link with a neighbor l of one of her neighbors k ∈ Ni \ {j}, such

that links ik and kl with high forces are probabilistically favored. Link ji simply disappears, as

relations in the weighted graph G are always reciprocal, although the corresponding weights will,

in general, be different. This process is schematically depicted in Fig. G.1. This process requires

that agent k “introduces” one of its neighbors, say l, to i. Obviously, this bias will cause the

clustering coefficient of the network to increase over time due to the transitive closure it causes,

i.e. triangles will be more likely in the evolving graph. The solution adopted here is inspired by

the observation that, in social networks, links are usually created more easily between people

who have a satisfactory mutual acquaintance than those who do not. If the new link already

1The active agent is chosen with uniform probability and with replacement.
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exists, the process is repeated with l’s neighbors. If this also fails, a new link between i and a

randomly chosen node is created. In all cases the new link is initialized with a strength of 0.5

in both directions.

i

j

k

l

fik
fkl

fil

Figure G.1: Illustration of the rewiring of link {ij} to {il}. Agent k is chosen to introduce player
l to i (see text). Between any pair of connected agents there are two directed links: only one of
them is shown for clarity.

Once the agents have played with their neighbors, and have gone through their strategy or

link update steps, the strengths of the links are updated in the following way:

fij(t+ 1) = fij(t) +
πij − π̄ij

ki (πmax − πmin)
,

where πij is the payoff of i when interacting with j, π̄ij is the payoff that i would have earned

against j, if j were to play his other strategy, and πmax (πmin) is the maximal (minimal) possible

payoff obtainable in a single interaction. ki = |Ni| is the number of i’s neighbors, i.e. its degree.

If fij(t + 1) falls outside the [0, 1] interval then it is reset to 0 if it is negative, and to 1 if it is

larger than 1. This update is performed in both directions, i.e. both fij and fji are updated

∀j ∈ Ni because both i and j get a payoff out of their encounter.

In summary, calling Gt the population graph at time t, where each node is labeled with

its present strategy s(t) ∈ {α, β} and Gt = (V,E) where V is fixed but E = E(t) evolves, the

resulting stochastic process {G0, G1, . . .} is a Markov chain since the probability of state Gt only

depends on the previous step: P (Gt|Gt−1, Gt−2, . . .) = P (Gt|Gt−1).

At this point, we should mention that Skyrms and coworkers [109, 111] have proposed a

representation of agents’ interaction based on evolvable interaction probabilities which is con-

ceptually similar to ours, but the context is very different. Populations are small (ten players)

and the network structure is never made explicit as the authors prefer to think in terms of

probabilistic “encounters” instead of using the link concept. This approach allows Skyrms and

coworkers to establish quantitative models based on stochastic processes for the simplest cases

but it does not lead to an explicit description of the actual evolving networks. In addition, when

players update their strategies, they have global knowledge of the strategy distribution of the

whole population, while in our model this knowledge is strictly local.
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G.4 Simulation Results for Pure Coordination Games

G.4.1 Simulation Settings

The constant size of the network during the simulations is N = 1000. The initial graph G′0 is

generated randomly with a mean degree k̄ = 6. The companion oriented graph G0 is trivially

built from G′0 and forces between any pair of neighboring players are initialized at 0.5.

The non-zero diagonal payoff a has been varied in the range [0.5, 1] in steps of 0.05 with

b = 1− a; the range [0, 0.5] is symmetrically equivalent. Each value in the phase space reported

in the following figures is the average of 50 independent runs and each run has been performed

on a fresh realization of the corresponding initial random graph.

To detect steady states of the dynamics 2, i.e. those states with little or no fluctuation over

extended periods of time, we first let the system evolve for a transient period of 5000×N times

steps (= 5 × 106 time steps when N = 1000). After a quasi-equilibrium state is reached past

the transient, averages are calculated during 500×N additional time steps. A steady state has

always been reached in all simulations performed within the prescribed amount of time, for most

of them well before the limit.

We have experimented with different proportions of uniformly randomly distributed initial

strategies α belonging to the set {0.05, 0.25, 0.5, 0.75}.

G.4.2 Discussion of Results

Figure G.2 reports the amount of α-strategists in the population when a quasi-equilibrium

state has been reached as a function of the rewiring frequency q. The upper light part of the

plots indicate the region of the parameters space where the α-strategists are able to completely

take over the population. This can happen because α strategy offers the best payoff since

a − b is positive, therefore β-strategists are prone to adapt in order to improve their wealth.

Figure G.2(a) shows the case where both α and β strategies are present in the same ratio at the

beginning of the simulation. The darker region indicates the situations where diversity is able

to resist. This clearly happens when the payoff difference a−b is zero. In this case both α and β

are winning strategies and the players tends to organize in two big clusters to minimize the links

with the opposing faction. More surprisingly, even when one of the two strategies has a payoff

advantage, the evolution of the topology of the interaction allows the less favorable strategy to

resist. The faster the network evolution is (larger q), the greater the payoff difference that can

be tolerated by the agents.

In figures G.2(b) the case when α represent only 25% of the initial population is presented.

When no noise is present the stronger strategy needs an increased payoff advantage to take over

the population. When a−b < 0.3 the payoff-inferior strategy β is able to maintain the majority.

To confirm the stochastic stability of the evolution process we did a series of simulations

2With the above simulated process one cannot properly speak of true equilibrium states in the strict mathe-
matical sense.
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Figure G.2: Fraction of α-strategists in the population as a function of the relinking probability
q when the quasi-equilibrium has been reached. (a) shows the case where the initial fraction of
α is 0.5 and noise is not present. In (b) and (c) the initial fraction of α is 0.25. (b) shows the
noiseless case and (c) the case where noise is 0.01. Results are averages over 50 independent
runs.

using a noisy version of the strategy evolution rule [51]. The amount of noise used is 0.01, which

means that an agent will pick the wrong strategy once every 100 updates on average. This

quantity is rather small and does not change the results obtained when the two populations are

equally represented in the initial network, the graphic representation is almost the same of the

one in fig. G.2(a) with respect to stochastic fluctuations. However, when the initial share is not

the same, the presence of noise allows a considerable increase in the performance of the Pareto-

superior strategy when this strategy is less represented in the beginning. Figure G.2(c) shows

the case when the initial ratio of α-strategists is 25% of the population. We can clearly see that

the strategy that offers the higher payoff (α in this case but the results for β would obviously

be symmetrical) can recover a considerable amount of the parameters space even when it starts

from an unfavorable situation. The coexistence of stochastic errors and network plasticity allows

the more advantageous strategy to improve its share. In this case, when q > 0.4 the situation is

almost the same as when the initial shares are the same. The same phenomenons happen when

the initial ratio of α is smaller. The case of an initial ratio of 5% has been verified but is not

shown here.

For visualization purposes, figures G.3 and G.4 show one typical instance of the evolution

of the network G
′

and of the strategy distribution from the initial state in which strategies are

distributed uniformly at random to a final quasi-equilibrium steady state for a smaller N = 100

network. in spite of the relatively small size, the phenomena are qualitatively the same for

N = 100 and N = 1000, the major difference is just the time to convergence which is much

shorter for N = 100.

These results have been obtained for a symmetric payoff of the strategies a = b and for

an equal initial fraction of α-strategists and β-strategists. It is visually clear that the system
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(a) (b)

(c)

Figure G.3: (a) The simulation starts from a random network with N = 100 and 50 players for
each type. (b) In the first short part of the simulation (∼ 500 time steps) the strategies reach
an equilibrium, the network however is still unorganized. (c) The community structure starts
then to emerge, many small clusters with nearly uniform strategy appears.

goes from a random state of both the network and the strategy distribution to a final one in

which the network is no longer completely random and, even more important, the strategies

are distributed in a completely polarized way. In other words, the system evolves toward an

equilibrium where individuals following the same convention are clustered together. Since both

norms are equivalent in the sense that their respective payoffs are the same, agents tend to pair-

up with other agents playing the same strategy since playing the opposite one is a dominated

strategy. The process of polarization and, in some cases, even the splitting of the graph into two

distinct connected components of different colors, is facilitated by the possibility of breaking and

forming links when an interaction is judged unsatisfactory by an agent. Even with a relatively

small rewiring frequency of q = 0.15 as for the case represented in the figures, polarization

is reached relatively quickly. In fact, since our graphs G and G
′

are purely relational entities

devoid of any metric structure, breaking a link and forming another one may also be interpreted

as “moving away”, which is what would physically happen in certain social contexts. If, on the

Emergence of Cooperation on Static and Dynamic Networks Enea Pestelacci



G.4. SIMULATION RESULTS FOR PURE COORDINATION GAMES 171

other hand, the environment is say, belonging to one of two forums on the Internet, then link

rewiring would not represent any physical reconfiguration of the agents, just a different web

connection. Although our model is an abstract one and does not claim any social realism, still

one could imagine how conceptually similar phenomena may take place in society. For example,

the two norms might represent two different dress codes. People dressing in a certain way, if

they go to a public place, say a bar or a concert in which individuals dress in the other way

in the majority, will tend to change place in order to feel more adapted to their surroundings.

Of course, one can find many other examples that would fit this description. An early model

capable of qualitatively represent this kind of phenomena was Schelling’s segregation cellular

automaton [106] which was based on a simple majority rule. However, Schelling’s model, being

based on a two-dimensional grid, is not realistic as a social network. Furthermore, the game

theory approach allows to adjust the payoffs for a given strategy and is analytically solvable for

homogeneous or regular graphs.

The above qualitative observations can be rendered more statistically rigorous by using the

concept of communities. Communities or clusters in networks can be loosely defined as being

groups of nodes that are strongly connected between them and poorly connected with the rest

of the graph. These structures are extremely important in social networks and may determine

to a large extent the properties of dynamical processes such as diffusion, search, and rumor

spreading among others. Several methods have been proposed to uncover the clusters present in

a network (for a recent review see, for instance, [28]). To detect communities, here we have used

the divisive method of Girvan and Newman [79] which is based on iteratively removing edges

with a high value of edge betweennes. A commonly used statistical indicator of the presence of

a recognizable community structure is the modularity Q. According to Newman [77] modularity

is proportional to the number of edges falling within clusters minus the expected number in an

equivalent network with edges placed at random. In general, networks with strong community

structure tend to have values of Q in the range 0.4−0.7. In the case of our simulations Q = 0.19

for the initial random networks with N = 100 like the one shown in fig. G.3(a). Q progressively

increases and reaches Q = 0.29 for fig. G.3(c) and Q = 0.45 for the final polarized network of

fig. G.4. In the case of the larger networks with N = 1000 the modularity is slightly higher

during the evolution, Q ∼ 0.3 at the beginning of the simulation and Q ∼ 0.5 when the network

has reached a polarized state. This is due to the more sparse structure of these networks.

To confirm the stability of this topological evolution we performed several simulation using

the noisy strategy update rule. Even in this situation the network will attain a polarized state

but due to the stochastic strategy fluctuations the two main clusters almost never reach a

completely disconnected state and the modularity remains slightly lower (∼ 0.4) compared to

the noiseless case.

As a second kind of numerical experiment, we asked how the population would react when,

in a polarized social situation, a few connected players of one of the clusters suddenly switch to

the opposite strategy. The results of a particular but typical simulation are shown in Figs. G.5.

Starting from the clusters obtained as a result of the co-evolution of strategies and network

leading to Fig. G.4, a number of “red” individuals replace some “yellow” ones in the corre-
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Figure G.4: In the last phase the network is entirely polarized in two homogeneous clusters. If
the simulation is long enough all the links between the two poles will disappear.

(a)

(b) (c)

Figure G.5: (a) A consistent amount of mutant is inserted in one of the two clusters. (b) This
invasion perturbs the structure of the population that starts to reorganize. (c) With enough
evolution time the topology reaches a new polarized quasi-equilibrium.

sponding cluster. The evolution is very interesting: after some time the two-cluster structure

disappears and is replaced by a different network in which several clusters with a majority of

one or the other strategies coexist. However, these intermediate structures are unstable and, at

steady state one recovers essentially a situation close to the initial one, in which the two poles

form again but with small differences with respect to the original one. Clearly the size of the

clusters is different from that of before the invasion. Even in this case, if the evolution time is

long enough, the two components can become disconnected at the end. This means that, once

formed, polar structures are rather stable, except for noise and stochastic errors. Moreover,
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we observed that at the beginning the invasion process the modularity drops slightly due to

the strong reorganization of the network but then it increases again and often reaches a higher

value with respect to the previous state. In the case shown here, the final modularity is 0.56.

The same happens in the larger networks where, after the invasion process Q reaches values of

Q ∼ 0.55.

G.5 Results for General Coordination Games

In this section we show the numerical results for the Stag Hunt class of coordination games. We

recall that, unlike pure coordination games, in Stag Hunt games there is risk in coordinating

on the Pareto-efficient strategy and thus agents may wish to reduce their aspirations by playing

the socially inferior strategy for fear of being “betrayed” (see Sect. G.2.1).

The simulation parameters are the same as for coordination games, see Sect. G.4.1, except

that now the game parameter space is more complex. For the Stag Hunt the ordering of payoffs

is a > d > b > c, and we have studied the portion of the parameters’ space defined by c ∈ [−1, 0]

and d ∈ [0, 1], a = 1, and b = 0, as is customarily done [96]. The c− d plane has been sampled

with a grid step of 0.05.

In order to find out whether a change in the strategy update dynamics would make a differ-

ence in the results, we have used, besides the already described best response dynamics, another

update rule which is related to replicator dynamics [122, 30]. Instead of considering a mixing

population, the version of replicator dynamics used here is modified to take into account the local

nature of interaction networks as proposed by [41]. It assumes that the probability of switching

strategy is a monotonic increasing function φ of the payoff difference; here φ is a linear function.

First, a player i is randomly chosen from the population to be updated with uniform probabil-

ity and with replacement. To update its strategy another player j is next drawn uniformly at

random from i’s neighborhood Ni. Then, strategy si is replaced by sj with probability

pi = φ(Πj −Πi), (G.1)

in which

Πi(t) =
∑
j∈Ni

πij(t)

is the accumulated payoff collected by player i at time step t after having played with all

his neighbors Ni. The major difference with standard replicator dynamics is that two-person

encounters between players are only possible among neighbors, instead of being drawn from the

whole population.
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G.5.1 Strategy Distribution at Steady State

The following Figures G.6 and G.7 show the average fraction of strategy α (light color) and β

(darker color) respectively at steady state for best response dynamics and replicator dynamics,

and for three values of the rewiring frequency q increasing from left to right. Initially there is

an equal amount of α and β players randomly distributed in the network nodes. The first thing

to notice is that the trend is the same, i.e. higher frequencies of link rewiring favor the Pareto-

efficient result for both dynamics, although this happens to a lesser extent for best response.

The reason is that best response confirms the players in what they are doing: the best response

to α is α and to β it is β but, on the whole, the possibility of link rewiring allows unsatisfied

α-strategists to cut a link with a β-strategist and to search for another α in the next to first

neighborhood. Since the data plotted in the figures are average values, it is also important

to point out that, actually, in all runs the final steady state is constituted by a monomorphic

population, i.e. only one strategy is present. This is coherent with standard results on Stag

Hunt games which show that polymorphic populations are unstable and that the dynamics

should converge to one of the pure states [30, 51, 26, 95].
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Figure G.6: Average strategy proportions over 50 independent runs in the game’s phase space
at steady state. Initially α and β are equally represented. Update rule is best response and
rewiring frequency q increases from left to right.

The update rules used are both noiseless, in the sense that, apart from the implicit probabil-

ities used in the dynamics, no exogenous noise simulating strategic errors or trembles has been

added. When a small amount of error probability of 0.01 is added in the best response case the

results change very little and are not shown.

One might also ask what happens when initially the strategies are not present in equal

amounts and, in particular, whether network and rewiring effects may help the socially efficient

strategy α to proliferate when it starts in the minority. Figures G.8 and G.9 are the same as

Figs. G.6 and G.7 but this time strategy α is only 1/4 of the total initially. It is apparent

that, even when α-strategists are the minority, they can occupy a sizeable region of the phase

space thanks to rewiring effects. Indeed, by increasing the rewiring frequency the size of the α
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Figure G.7: Average strategy proportions over 50 independent runs in the game’s phase space
at steady state. Initially α and β are equally represented. Update rule is replicator dynamics
and rewiring frequency q increases from left to right.
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Figure G.8: Average strategy proportions over 50 independent runs in the game’s phase space at
steady state. Initially α players are 25% of the total. Update rule is best response and rewiring
frequency q increases from left to right.

region increases as well. The effects are present for both dynamics but they are more marked

in the best response case (Fig. G.8). As a further probe, we have also simulated the evolution

of populations with only 5% α initially and the results, not shown here, are that the α strategy

proliferates in a non-negligible region of the parameter space and the more so the higher the

relinking frequency.

G.5.2 Network Features

In this section we present a statistical analysis of some of the global and local properties of the

networks that emerge when the pseudo-equilibrium states of the dynamics are attained. We

do not strive for a complete analysis: this would take too much space; just a few topological

features should be already useful to get a clearer picture. The graphs used for the analysis are

the undirected, unweighted versions G
′
. An important global network statistics is the average
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Figure G.9: Average strategy proportions over 50 independent runs in the game’s phase space
at steady state. Initially α players are 25% of the total. Update rule is replicator dynamics and
rewiring frequency q increases from left to right.

clustering coefficient C. The clustering coefficient Ci of a node i is defined as Ci = 2Ei/ki(ki−1),

where Ei is the number of edges in the neighborhood of i and ki is i’s degree. Thus Ci measures

the amount of “cliquishness” of the neighborhood of node i and it characterizes the extent to

which nodes adjacent to node i are connected to each other. The clustering coefficient of the

graph is simply the average over all nodes: C = 1
N

∑N
i=1Ci [75]. In Figure G.10 we report for

each grid point the average value of C over 50 realizations of G
′
. The figure shows that in general

C increases with increasing q which is reasonable, as higher q values mean more rewiring and

thus more transitive closure of triangles in the neighborhood. In particular, we have remarked

that C is especially high in the proximity of the transition zone between β and α regions. We

also note that the clustering of α-strategists networks are higher than those of β-strategists.

Indeed, in the relinking process, α−α links tends to be stable as both players get the maximum

payoff. On the other hand, α − β links will be unstable since the α end will try to dismiss the

link, while the β end tries to keep it. As for the β − β links, they also tend to be unstable for

both agents will in the average try to chase for an α. When αs become rearer in the population

the links are more difficult to stabilize and local structure does not emerge.

To give a qualitative idea of the network self-organization, we compare C values in the α

and β regions with the values expected for the initial random graph. Random graphs are locally

homogeneous and for them C is simply equal to the probability of having an edge between any

pair of nodes independently. In contrast, real networks have local structures and thus higher

values of C. For example, with q = 0.5, C can be as high as 0.3 in the α region close to the

transition, and as low as C = 0.009 in the β region. It is thus apparent that the networks

self-organize and acquire local structure for α networks as C is much higher than that of the

random graph with the same number of nodes and edges, which is k̄/N = 6/1000 = 0.006. In

the β region there is barely more clustering than for a random graph. Given that the model

favors rewiring a link toward a neighbor’s neighbor, it is obvious that the clustering coefficient

will tend to increase and thus the effect was expected. Nevertheless, this transitive closure is a
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Figure G.10: Average clustering coefficients of steady-state networks; relinking frequency q
increases from left to right. Equal initial proportions of α and β strategies and strategy update
is by best response.

well known social phenomenon and the model successfully simulates it.

Another important quantity is the degree distribution function. The degree distribution

function p(k) of a graph represents the probability that a randomly chosen node has degree

k [75]. Random graphs are characterized by distributions of Poisson form p(k) = k̄ke−k̄/k!, while

social and technological real networks often show long tails to the right, i.e. there are nodes

that have an unusually large number of neighbors [75]. In some extreme cases the distribution

has a power-law form p(k) ∝ k−γ ; the tail is particularly extended and there is no characteristic

degree.

In our simulations the population graph G
′

always starts random, i.e. G
′
0 has a Poisson

degree distribution. It would be interesting to see whether the graphs remain random after

the co-evolutionary process stabilizes in a steady state, or whether they acquire some more

structure. Fig. G.11 shows the degree distribution functions sampled at two points in the c− d
plane. One point is in the α-stable region and the other is in the β-stable one. The third dotted

curve is shown for comparison and corresponds to the initial random graph which has a Poisson

p(k) with k̄ = 6. Both curves at steady state deviate from the random graph distribution but,

while the degree distribution of the network of β players is still rather close to Poisson, the

α network (thick curve) shows a distribution that has a longer tail to the right, i.e. there is

a non-negligible quantity of nodes that have more connections. Together with the increase of

the clustering coefficient seen above, this shows that α networks have acquired more structure

than β networks during the co-evolutionary process. It appears that α strategists use the

relinking possibility in such a way that more α clusters are created, thus protecting them from

β “exploiters”. The curves shown are for q = 0.8; for lower values of q the effect is the same but

less marked as q → 0.
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G.6 Conclusions

In this paper we propose and simulate numerically a model in which a population of agents

interacting according to a network of contacts play games of coordination with each other.

The agents can update their game strategy according to their payoff and the payoff of their

neighbors by using simple rules such as best response and replicator dynamics. In addition, the

links between agents have a strength that changes dynamically and independently as a function

of the relative satisfaction of the two end points when playing with their immediate neighbors in

the network. A player may wish to break and redirect a tie to a neighbor if it is unsatisfied. As a

result, there is co-evolution of strategies in the population and also of the graph that represents

the network of contacts.

We have applied the above model to the class of coordination games, which are important

paradigms for collaboration and social efficiency. For pure coordination games, the networks

co-evolve towards the polarization and, in some cases, even the splitting of the graph into two

distinct connected components of different strategies. Even with a relatively small rewiring

frequency polarization is reached relatively quickly. This metaphorically represents the segrega-

tion of norm-following subpopulations in larger populations. In the case of general coordination

games the issue is whether the socially efficient strategy, i.e the Pareto-dominant one, may es-

tablish in the population. While results in well-mixed and static networked populations tend to

favor the risk-dominant, and thus socially inefficient outcome, our simulation results show that

the possibility of refusing neighbors and choosing different partners increases the success rate of

the Pareto-dominant equilibrium. Although the model is extremely simplified, the possibility of
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link redirection is a real one in society and thus these results mean that some plasticity in the

network contacts may have positive global social effects.
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Chapter 5

Conclusions

Only Robinson Crusoe had everything done by

Friday.

Author Unknown

This work has been conducted in the last five years. It’s a quite long time span and although

some of the ideas developed here where already planned, some developments have been decided

on the way.

In the following, we shall try to point out which are the main results and conclusions reached

in this work in the light of the motivations and objectives that we set for ourselves in Chapter 1.

On update rules

From a statistical point if view, update rules and timing of events have only limited effect on

the amount of cooperation in a structured population. When we look at the mean values, the

transition from cooperation to defection may happen for slightly different values of the payoff

matrix but in general the global picture seen at the equilibrium is only slightly affected by timing

and update rule (see figures A.1 and A.2).

The numbers of time steps needed to reach an equilibrium are however strongly dependent

on the update rule. For example, when using a deterministic rule like “Imitate the best” the

evolution is much quicker.

On the other hand, when we look more closely at the behavior of the agents on a single

population instead of analyzing the average behavior of many populations, the update rule can

have a greater influence on the stable states and on the behavior of agents. With little or no

stochastic noise, i.e with deterministic update rules like the “Imitate the best”, the outcome can

be drastically different even for the same parameters. For the same payoff values, the population

can converge to either full cooperation or full defection, i.e. in these cases we observe bistability

in the dynamic as a population starting from the same situation can reach two different stable

states (for an example see figure A.3(a)). In this case the specific network topology and a

particular initial distribution of the different strategies on the network are the reason for this
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bistable behavior: even small differences in connections or initial strategies can thus have an

influence on the final state.

Conversely, when the decisions of the agents are based on a stochastic rule like “Replicator

dynamics” , the evolution can reach a steady state even when the population still include agents

playing different strategies. These stable situation are not however completely frozen as small

fluctuations like those that can be seen in figure A.3(b) may continue to be observed in these

populations. This happens when agents use stochastic rules because their decisions, even if

statistically good, are dictated by probabilities and in some cases leads to errors. These behaviors

are not apparent when we look at the mere average cooperation levels.

On utility calculation

The method used to calculate the individual’s payoff can have a great impact on the cooperation

level in a population, in particular when coupled with an heterogeneous network. When the

payoff of the encounters is accumulated, a highly connected agent has a strong influence on his

neighborhood and on the dynamics of the population. On the other hand, when the payoff is

divided by the number of links, i.e. when the average payoff is considered, the influence of the

heterogeneity is almost nullified. This is an important consideration in our opinion, as many

works use accumulated payoff without taking into account link maintaining costs. In real life

this is a significant issue as, even considering that different agents can have different skills, the

involvement needed to maintain a relationship is such that a great difference in the quantity of

links should imply a slight degradation in the effort to maintain these relationships healthy.

Moreover, if accumulated payoff is coupled with replicator dynamics, an affine transformation

of the payoff matrix can change completely the fixed points of the dynamics. To obviate this

situation we proposed a modified version of the replicator dynamics to maintain the advantage

of heterogeneous degree and restore the invariance of replicator dynamics [61].

On network structure

As expected, the structure of the population plays an important role on the quasi-stable states

of the simulations. In general, degree heterogeneous networks such as scale-free and social

networks allow cooperative behavior to emerge in a wider area of the parameter space than

more homogeneous networks such as rings, grids, and random networks with Poisson degree

distribution. The conclusions explained here are based on the assumption that the payoff is

calculated in an accumulated way, as average payoff does not take advantage from the degree

heterogeneity of the structured population.

In the case of Barabási-Albert scale-free networks the evolution of cooperation essentially

depends on the colonization of highly connected nodes by cooperators [101]. Clustering and

community structure plays only a little role for these kinds of structure as these features are

almost absent. When we look at the initial progression of cooperators in a scale-free network,

shown in figure A.3(c), we can see how the initial number of cooperators drops quickly and then
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eventually starts a slower recovery. This drop is proportional to the value of the temptation

to defect compared to the reward for cooperate, the black lines in the left images of figure 5.1

shows this initial drop for two different values of T . In this first phase of the evolution, isolated

cooperators are absorbed by the defectors as their payoff is considerably lower, moreover, isolated

defectors are able to exploit the cooperators and diffuse their strategy. This initial fluctuation

is due to the initial random distribution of the agents, because cooperators are only able to

survive by sticking together and only when they manage to achieve a tight cluster they are able

to resist to defectors.

When this first initial drop does not lead to cooperator’s extinction, the clustered cooperators

are able to slowly expand and eventually regain a majority position. This happens for two main

reasons: cooperators are able to obtain high payoff when clustered together and they became

even stronger when they successfully transmit their strategy; on the other hand, defectors are

stronger when isolated between cooperators, but by diffusing their strategy they weaken their

position as they cannot get the same benefit from a defector than from a cooperator. Of course

these phenomenon can have a greater of smaller amplitude depending on the payoff values.

In the diffusion of the cooperative strategy, the highly connected hubs of the network play

a crucial role: when cooperators are able to cluster and maintain the control of at least one

hub, the cooperator hub will achieve an higher benefit. On the other hand, a defector hub, is

only able to gather a relatively small benefit. In this situation, the defector hub will have a

high probability to imitate the strategy of a cooperator hub or even of another well connected

cooperator. When this imitation happens the payoff of this new cooperator hub is increased by

the neighboring cooperators and the neighboring defectors will now slowly imitate the strategy

of the hub. The more a cooperator hub is able to diffuse his strategy and the less he will tend

to imitate a defector agent.

This phenomenon can be observed in the upper panel of figure C.10, here we can see the

number of cooperators in the neighborhood of a defector hub. As mentioned before, the initial

ratio of cooperators decreases, this lowers the payoff of the hub. When the hub changes to coop-

eration, his payoff increases, and thus he is able to diffuse his strategy to some of his defectors

neighbors. This effect is amplified by the correlation between the hubs. Especially in structures

like the Barabási-Albert scale-free networks, the construction of the network introduces corre-

lation between high connected nodes that may amplify the diffusion of cooperation by allowing

cooperator hubs to spread their strategy directly to defector hubs. The inverse phenomenon is

in general not possible because of the higher benefit obtained by cooperator hubs. Indeed when

the correlationless configuration model is used [101], the global amount of cooperation is lower.

In social networks individuals with very high degree are almost inexistent. However these

structures are still able to boost cooperation, even if not to a level as high as in scale-free

networks. The phenomenon is however very important as real social structures are different

from scale-free network but they are still capable of sustaining cooperation.

In social network the diffusion of cooperation has to rely on other features of the topology, and

we identified these properties in the higher presence of clustering, but also on the organization
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of the population in communities. As can be seen in Article B and in Article F, the presence

of a community structure in the network strongly influences the diffusion of the strategies.

These two properties allow cooperators to reorganize and stick together during the initial phase,

when defectors are able to expand. When the initial regression is contained, the cooperators

may exploit their cohesion to expand their strategy. In these networks highly connected hubs

are absent and cooperators cannot exploit this preferential channel to diffuse their strategy.

However, the lack of defector hubs is in this case even profitable for cooperators, combined with

the higher clustering of cooperators, well connected cooperators have an high benefit and are

easily imitated by low and high connected defectors.

When we look closely at mixed stable populations, i.e. populations where both strategies

are still present when the stable state has been reached, we see that the clusters of the networks

are often monomorphic, or at least with one of the strategies more strongly represented as the

low connectivity between different clusters allows an high degree of diversity to exist in what

can be interpreted as different social groups. This phenomenon is particularly evident in the

case of coordination games.

To sum up, the presence of communities and high clustering coefficient is a key factor for

sustaining an high level of cooperation, and an heterogeneous degree is the channel that allows

cooperators to expand their influence in the population, especially when combined with some

assortativity, i.e. highly connected nodes have more connection to other highly connection nodes

than with weakly connected nodes.

On conformity

Conformity, i.e. complying to the action of the majority, also has consequences that depend on

the network structure of the population. However, in general, the effect of conformity coupled

with replicator dynamics produce an acceleration of the evolution towards the steady state, and

a reduction of the occurrence of the situations with stable mixed populations.

For the Prisoner’s Dilemma there is also a sizable reduction of cooperation especially on

scale-free networks which are otherwise the more favorable structure for cooperators.

This phenomenon happens because of the dynamical evolution of the strategies in a popula-

tion. If we look at figure C.9 and at figure 5.1 we can clearly see that at the very beginning of the

evolution, defectors are able to increase their share of diffusion in the populations; this is caused

by the fact that the initial random distribution of the agents does not favor the cooperators,

that need to be together to succeed. After the initial phase, when cooperators tend to cluster

together, they may be able to expand their influence because by clustering together they are

able to greatly increase their payoff.

When we add conformity to the picture, isolated defectors, that are stronger than cooperators

when the only rule is payoff-based, they became vulnerable to adopt the cooperative strategy

because of their isolated position between cooperators. This phenomenon leads, especially in

regular networks like rings but also on other networks, to a situation where the two strategies
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Figure 5.1: First time steps of the evolution of a single population of agents interacting according
to the rules of the Prisoner’s Dilemma on Barabási-Albert scale-free networks (left image) and
1D lattices(right image). The four lines in each image represent the cases without conformity
(in black) and with 30% of conformity (in gray), for two different values of the temptation value
T (the solid lines are for T = 1.2 and the dotted lines for T = 1.5). The used networks have
N = 2000 agents and an average degree k̄ = 8.

are clustered together. Conformity is good for cooperators in this initial situation as it allows

the suppression of isolated defectors; because of this the initial drop of cooperation is smaller

than in cases without conformity. In figure 5.1 the gray lines drop slower at the beginning than

the black lines.

Especially in the case of scale-free networks, the initial increase in the number of defectors

can trigger the “majority rule” implied by conformity. Even if the initial drop in cooperation

is slower than when only replicator dynamics is used, the frequency of cooperators drops to a

value so low than the effect of the hubs is not enough to recover. It’s also important to take into

account that a cooperator hub, with few cooperator neighbors and many defector neighbors can

spread his strategy because of his higher accumulate payoff, but he can be easily mutated into

a defector under the effect of conformity. That’s why by increasing the amount of conformity

the success of cooperators on scale-free network is reduced.

On the other hand, on regular networks like lattices, the initial phenomenon that reduces the

devastating effects of initial isolated defectors is able to produce a situation where cooperators

can succeed. Once the initial situation stabilizes and the population reaches a state where only

big homogeneous clusters exist, due to the regular degree of the network imitation by conformity

becomes almost impossible. In this case the clusters of cooperators are bigger when conformity

is higher because isolated defectors disappear quickly. When these clusters are formed, if the

temptation to defect is low enough, there will be more defectors that may imitate an efficient

cooperator than the contrary, as can be seen in figure 5.2. The cause of the growth in cooperation

when the ratio α of conformity is higher is exactly this faster absorption of defectors invaders.

When invaders are eliminated and cooperative population is not fragmented anymore, the task

for defectors is harder, and they will slowly adopt the cooperative strategy.
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Figure 5.2: The border region between two population in a lattice. No one will change strategy
because of conformity, because in this situation each agent has more neighbors like himself then
of the other strategy, this because he counts himself too in the distribution share. When we
look at the payoff based imitation only cooperators c1 has a possibility to imitate a defector, d1.
On the defector side however, both d1 and d2 can imitate a cooperator, the former may imitate
c2 and the latter c1. The numerical values inside the nodes represent their accumulated payoff,
this is for the case where T = 1.2, R = 1, and P = S = 0; the degree of the nodes is k = 4.

On dynamic networks

To try to further extend the understanding of the relationship between structure and strategy

evolution we introduced a supplementary degree of freedom consisting in allowing links to be

cut and formed, as well as the update of player strategies. The co-evolution of the network

topology, starting from a random network, showed that in a dynamic population, the network

of the interactions between the agents evolves towards a more complex structure and allows

different strategies to coexist inside different clusters that can became disconnected to protect

their diversity in the case of pure coordination games.

Of course our implementation of dynamic networks is biased and represents an important

factor that leads to an increased success for the cooperative strategies. By changing these

mechanisms the direction of evolution of the dynamical system can be completely different,

e.g. by using random rewire instead of our trust–based rewire, the formation of clusters is not

promoted in the population, thus cooperators are not able to cultivate one of the key factory

that allows cooperation to be sustained in a population.

We believe that we have only scratched the surface in the issue of network/strategy co-

evolution and our feelings are that this field will rapidly expand in the close future.

Future developments

Among the possible future developments, one is the investigation of the influence of weighted

links in the dynamic. The reason is very simple: in a society, some links are more important

than others, by using weighted edges this aspect would be included in the model. Of course, the

weight should be first taken as constants of the system and then, in a second step, allowed to

evolve. We already include weighted links in our co-evolutionary models but there is still more
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to be investigated.

A second development is the introduction of more complex games such as games with more

than two strategies or repeated games, where players have a memory of past encounters.

Another likely extension is the inclusion of more sophisticated forms of learning that should

allow the agents to adapt over time and to take more efficient decisions.
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