






















































































































































@ is slightly lower in all memory CD4+ cells, as compared to expression in naïve CD4+ 

cells. 

Within the CD8+ T cell population, FLIPs gene expression has been found to be globally 

upregulated in all the memory subsets; increased expression levels, however, predominated in 

the T TEM (CD45RA +CCRT) population. The anti-apoptotic role of FLIPs mainly consists in 

protecting T cells from activation-induced-cell-death (AICD). It does so by intervening in the 

extrinsic, predominantly Fas-mediated pathway of apoptosis by inhibiting caspase-8 

activation and consequent apoptosis. TCR-mediated upregulation of FLIPs has also been 

reported to correlate with FasL-resistance in a proportion of restimulated T cells, indicating it 

may contribute to T-cell survival and memory development in this manner. 124
'
158 Indeed, in 

vivo, highly activated cells are placed in the terminally differentiated subset (TEM). This 

population consequently requires the most active protection from AICD. Thus, the 

upregulation of FLIPs found in the TEM subset of CD8+ cells seems to reflect this necessity. 

Why however, were the lowest FLIPs levels found in the EM population? Why should the 

EM subset be more sensitive to AICD? The cells of the EM population reside in the target 

organ of the infection, so that they are likely to receive the most antigen stimulation during 

the immune response. The low levels of FLIPs could enhance their sensitivity to AICD, thus 

controlling their expansion and limiting the number of EM cells. The reduced survival of the 

EM population would then be proportional to the antigen load, allowing the EM population to 

act as an accurate sensor of antigen load. By this mechanism, the EM cell number could drive 

the replenishment of the effector pool from the CM population. 

The situation in CD4+ T cells seems to be quite different since, in contrast to CD8+ cells, 

FLIPs mRNA levels have been found to be preferentially downregulated in all the CD4+ 

memory subsets. This suggests that CD4+ memory T cells might be intrinsically less 

susceptible to Fas-mediated death than CD8+ memory T cells. One should note that, 

analogous to the situation in CD8+ T cells, the EM population seems to express the least 

amount of FLIP, making it the most AICD-sensitive population. The results obtained, 

however, are not as clearly interpretable as in CD8+ cells, since the differences in expression 

levels of naïve and memory cells are qui te small, making it difficult to judge the significance 

of the changes. 



Discussion 

Bad and Bax 

The data for Bad expression in CDS+ T cells demonstrates a high inter-individual variability 

of the expression of this gene in the different memory subsets. Even though mRNA levels are 

present in a more consistent way amongst the CD4+ population of the donors tested, CD4+ 

memory T cells showed only very slight differences of Bad expression levels in comparison 

to naïve CD4+ cells. Thus, it would seem that Bad does not play an impmiant and obvious 

role in regulating the sensitivity to cell death in either CDS+ or CD4+ memory cells. 

Bax gene express10n on the other hand, even though also quite variable amongst the 

individual donors tested, seems to follow clearer tendencies. It is apparently preferentially 

upregulated in CD4+ memory cells, in contrast to a discrete downregulation observed in CDS+ 

memory cells. CD4+ memory cells might therefore be more susceptible to apoptosis mediated 

by Bax than their CDS+ counterparts. 

FasL 

The interactions between Fas and its ligand FasL are supposedly the major mechanisms 

involved in AICD. Naïve human T lymphocytes, however, are known to be insensitive to 

death receptor-induced apoptosis or to AICD. Indeed, activation of naïve T cells results in 

proliferation, cytokine secretion, and effector function. In fact, T cell blasts have been shown 

to start to be sensitive to AICD induction only at day 6 post-activation. 159
-
161 In this study, the 

resistance of naïve T cells to AICD is reflected by the total absence of FasL expression in 

naive T cells, both for CDS+ T cells and CD4+ T cells, in all the individuals tested. 

In the memory cells of the CDS+ compartment, FasL expression has been shown to increase 

progressively from central memory to terminally differentiated effector cells. Restimulated T 

cells are known to be more sensitive to Fas-mediated apopoptosis. 162 The progressive increase 

of FasL expression in CDS+ memory T cell subsets could thus be interpreted as the result of a 

greater replication history of the effector subsets. Alternatively, one should take into 

consideration another possible interpretation: CDS+ cells are also known as cytotoxic cells 

CTLs) or killer lymphocytes. Their cytotoxic activity is mediated directly by either granzymes 

or perforin, but they can also induce cell death via FasL. The interaction of FasL with Fas, 

expressed on cells other than T cells, enables the induction of immediate cell death in these 

cells through the membrane-bound FasL, expressed on CTLs. The extremely high 
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upregulation of FasL expression could therefore simply be the reflection of the increased 

cytotoxic potential in increasingly effector memory populations. 

The interpretation of the results is less obvious in CD4+ memory T cells, since FasL 

expression was absent in the first two memory subsets (CM and EM). It seems that circulating 

memory CD4+ cells are less susceptible to AICD than their CD8+ counterparts. 

Tob 

The results obtained indicate that Tob expression in CD8+ T cells seems to be lost in the 

process of acquiring a more differentiated state. Since forced Tob expression has previously126 

been shown to inhibit anti-CD3 / anti-CD28-mediated proliferation, the downregulation of 

Tob in vivo should, oppositely, enhance proliferation in response to antigen and co­

stimulation. It is therefore perceivable that activation threshold levels are lowered in memory 

CD8+ T cells by the means of Tob downregulation. This makes sense, as one would expect 

memory CD8+ T cells to react faster and to lower levels of antigen than naïve cells. Inversely, 

constitutive expression of Tob in naïve CD8+ cells could confer peripheral tolerance to 

circulating naïve CD8+ T cells by increasing their activation threshold. This may be a possible 

explanation of the fact that naïve T cells are known to have more restrictive requirements for 

co-stimulation than memory T cells. It is also consistent with the results of Tzachanis et al., 126 

who showed that only TCR-stimulation coupled with appropriate co-stimulation would induce 

a downregulation of Tob, enabling progression of the cell cycle and cell division. 

In this study, as opposed to Tob expression in CD8+ T cells, CD4+ memory cells in general 

and the CD4+ effector-memory populations in particular, have not been shown to 

downregulate Tob mRNA levels. This seems to be in contradiction to the results obtained in 

the above cited study, 126 which had shown a greater downregulation of Tob mRNA in total 

CD4+ cells as compared to CD8+ cells upon stimulation. In their experimental system 

however, the authors measured expression levels between 3 and 24 hours after stimulation. It 

could thus be possible that, upon stimulation, CD4+ T cells transiently downregulate Tob 

expression, which is then regained in circulating memory cells. This would implicate that 

CD4+ T cells require efficient co-stimulation at any stage of differentiation, showing no 

significant difference of the activation thresholds between subsets of memory CD4+ T cells, 

or between memory and naïve CD4+ T cells. Again, this does not correspond well with the 

known fact that memory CD4+CCR7+ and CD4+CCRT, to an even greater extent, show 
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enhanced responsiveness to T-cell receptor triggering.7 Hence, how can activation thresholds 

be modulated without affecting Tob mRNA levels? The inhibitory effect of Tob has been 

shown to be inactivated by phosphorylation through Erkl and Erk2. 129 One could therefore 

also imagine that in CD4+ cells, in contrast to the case of CD8+ cells, Tob activity may be 

regulated not by lowering expression levels, but by phosphorylation instead. This is supported 

by the fact that ERK MAP kinases are essential for TCR-induced responses. 163 Of course, an 

alternative pathway, not implicating Tob at all, may also be involved. 

Results in CDS+ memory cells 

When looking at the gene expression pattern in the CD8+ T cell compartment as a whole, the 

more cytotoxic, directly effector CD8+ memory cells, e.g. the T EM and T TEM subsets, seem to 

be much more susceptible to cell death than the central memory subset. This is reflected not 

only in their extremely prominent upregulation of FasL, but also in the downregulation of 

protective factors such as Bcl-2, IL-7Ra, BAFF-R, and APRIL. Their decreased expression of 

Tob also indirectly increases the AICD susceptibility by lowering the activation threshold. On 

the other hand, they are actively protected against cell death by higher levels of the anti­

apoptotic factors Bcl-xL and FLIP, as well as possibly through a higher responsiveness to IL-

15. 

Thus, generally speaking, the results of this study indicate that in CD8+ T cells there is a 

greater sensitivity to cell death in the CCR T effector memory subsets (T EM and T TEM), as 

compared to the CCR 7+ population consisting of naïve and central memory (T cM) CD8+ T 

cells. In the CCR T cells, re-encounter with antigen would therefore not only induce execution 

of effector functions, but also rapidly cause apoptosis. CD8+ CCR T cells have been shown to 

mediate particularly effective effector function through IFNy and also express high levels of 

perforin. Why then should the most effective cells die? One possible explanation is that, in 

viral infections, the cells that accumulate in the target organ of the infection are mostly of the 

TTEM cell-type, reflecting the capacity of CCRT cells to preferentially home to non-lymphoïd 

tissue. Upon re-exposure, one can imagine that the already present T TEM cells would rapidly 

intervene and their frequency in situ might be sufficiently elevated to mediate an effective 

immune response without requiring cell proliferation. Additionally, AICD in T cells in vivo 

has been proposed to limit the expansion of an immune response by eliminating effector cells 

that are no longer needed. Indeed, after antigen or pathogens have been eliminated from the 
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organism, these T cells are potentially dangerous because of their potent effector functions 

and low activation requirements. Hence, their increased susceptibility to death is also 

extremely important to counterbalance these traits, which would otherwise lead to 

uncontrolled cytotoxicity, harmful to the host. Another influence on the results may be the 

fact that the terminally differentiated effector population (T TEM) might be the population 

containing the most in vivo expanded clones in any individual. The sensitivity to cell death 

would then simply be a reflection of the cell age, e.g. the number of prior cell divisions. This 

was shown in previous reports stating that, in the CD8+ compartment, the loss of CD28 

identifies a subset of antigen-experienced T cells with high cytotoxic potential and reduced 

proliferative capacity, and which frequently contains in vivo-expanded clones in the elderly or 

in human immunodeficiency virus (HIV-) infected individuals. 164
-
166 

Apart from showing a possible linear differentiation pattern in CD8+ T cells with progressive 

susceptibility to apoptosis in the CCR T memory subsets, there seems to be a differential 

responsiveness to cytokines amongst the memory subsets. Cytokines may therefore play a 

crucial role in modulating the function of the distinct memory subsets. Thus, the upregulation 

of IL-7Ra on the central memory subset of CD8+ T cells may confer a selective survival 

signal to this population, making them the true memory cells of the immune response. 

Results in CD4+ memory cells 

One of the most notable features of the gene expression patterns observed in CD4+ cells has 

been the greater inter-individual variability, as compared to CD8+ T cells. Secondly, the 

differences in expression levels of memory and naïve cells were found to be much less 

contrasted than in the CD8+ compartment. One can conclude that gene expression levels 

between circulating memory cells and naïve cells are quite stable. One might argue that CD4+ 

cells possibly do not control their survival pathways at the gene expression level, but that they 

regulate it though activation and inactivation at a protein level. This may of course be true for 

individual pathways, but it does not explain the variability in expression between the donors. 

Another possible explanation is that CD4+ cells modify their gene expression profiles in a 

much more transient manner, regaining stable expression levels in a resting, circulating state. 

This option would need further clarification by analyzing gene expression in recently primed 

CD4 cells and combining it with a chronologically progressive follow-up of the gene profile. 
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CD4+ memory T cells have been shown to present less downregulation of the survival factor 

IL-7Ra and the anti-apoptotic factors Bcl-2, as also lower levels of FasL mRNA, suggesting 

them to be generally less sensitive to cell-death than their CD8+ counterparts 

Differences between CD4+ and CDS+ memory cells 

Firstly, the point to be emphasized is that there seems to be a considerable difference between 

the CD4+ and CD8+ compartments of memory T cells. This is interesting in itself since even 

though CD4+ and CD8+ T cells have different roles in the immune response, one could have 

imagined that the conditions allowing them to maintain memory traits would be quite similar. 

On the whole, CD4+ memory T cells have been shown to be less sensitive to activation­

induced cell death (less downregulation of Bcl-2, lower levels of FasL mRNA). This mirrors 

the inherent difference in the functional roles of CD8+ and CD4+ cells. CD4+ T cells have a 

"helper" role, as opposed to the "killer" role of CD8+ lymphocytes. One could imagine that 

the heterogeneity in survival and apoptosis gene expression patterns observed between 

CD8+ and CD4+ T cells may also reoccur on the level of their differentiation pathways. In the 

CD8+ compartment, a linear differentiation pattern makes sense. It associates replication 

history to differentiation, and differentiation to increased cell death susceptibility. The rather 

straight-forward role of CD8+ T cells is compatible with this; they differentiate to kill and, 

once they have executed their mission, their function is superfluous. The role of CD4+ 

memory T cells is more complex. Their effector role consists in communicating with other 

components of the immune system and enhancing the overall effectiveness of the immune 

response. Moreover, the effector CD4+ T cells are quite heterogeneous, consisting of Th-1 

cells with an IFNy-secreting profile, IL-4 secreting Th-2 cells and the immunosuppressive 

CD4+CD25high Treg cells amongst others. Only a more complex differentiation pattern with 

multiple checkpoints would enable the generation of such a heterogeneous population. The 

overall increased relative resistance to activation-induced cell death could thus guarantee a 

higher plasticity in the differentiation of memory CD4+ cells. 
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8 CONCLUSIONS 

By separating T cells into different subsets according to the expression of CD45RA and their 

lymph-homing ability as mediated by expression of CCR 7, human T cells can be separated 

into 4 subsets compromised of naïve cells, central memory cells, effector memory and 

terminally differentiated effector memory cells. In this study, the differential sensitivity to 

survival and cell death of these subsets has been studied by analysis of the gene expression 

pattern of a selection of pertinent genes. The data collected shows that CD4+ memory T cells 

and CDS+ human memory T cells regulate genes implicated in survival and apoptosis in 

different ways. The CDS+ T cell compartment preferentially showed progressive susceptibility 

to cell death from naïve and central memory (CCR7+) subsets to effector and terminally 

differentiated effector (CCRT) subsets. The expression of genes involved in protection from 

apoptosis (Bcl-2), as well as of genes implicated in survival pathways (IL-7R, APRIL, BAFF­

R), is progressively lost. In contrast, expression of pro-apoptotic factors such as Bax and FasL 

is gradually increased (Figure 7). 

Importantly, the CDS+ CD45RA- CCR7+ central memory subset was shown to selectively 

upregulate the expression of the functional IL-7 receptor (IL-7Ra), proposing the enhanced 

responsiveness to IL-7 as a selection bias for long-term memory. On the other hand, IL-15Ra 

expression was selectively increased in the CDS+ CD45RA-CCR T effector memory subset, 

suggesting a role for IL-15 in enhancing long-term effector responses. 

From this study, it is clear that human T cell memory subsets depend on many factors that 

influence their ability to survive, on the one hand, and their susceptibility to cell death on the 

other. The balance of these interactions seems to influence their long-term survival. The 

differences observed between the gene expression patterns of CD4+ and CDS+ cells speak in 

favour of distinct memory cell differentiation patterns in these two T lymphocyte 

compartments. 

To further unravel the interactions of survival and death signals in memory T cell subsets is 

crucial to our understanding of the secondary immune response and of adaptive cell-mediated 

immunity in general. It is thus central to our comprehension of the natural evolution of 

infectious diseases, such as acute infection and resolution versus establishment of chronic 

disease. As such, it will help discovering mechanisms of inducing and enhancing long-term 

immunological memory, which is essential to the field of vaccine development. 
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Expression of survival and pro-apoptotic genes in CDS memory subsets. Genes 
potentially mediating survival enhancing mechanisms (e.g. BAFF-Receptor, IL-7Ra 
and Bcl-2) are expressed in higher levels in central memory T cells (TcM). Pro­
apoptotic genes ( e.g. Bax and Fas-Ligand) are suppressed in this population, but 
expressed at higher levels in the effector populations (T EM and T TEM), implying a 
higher susceptibility to apoptosis. 
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9 PERSPECTIVES 

The present study has reported tendencies in gene expression patterns of memory T cells of 

healthy individuals. Considering the great inter-individual heterogeneity in gene expression, a 

larger study including more individuals should be performed to evaluate the significance of 

the differences observed. 

Additionally, it would be of great interest to follow this up with studies on antigen-specific 

memory T cells. Extremely little is lmown of the relative sensitivity to apoptosis in vivo of 

these cells. This would be possible using the same experimental design which combines flow­

cytometric sorting with a sensitive RT-PCR assay. Indeed, this methodology has allowed the 

use of extremely few cells per subset and to evaluate a fairly large gene panel. By further 

confining the gene panel to maybe just four genes per run, this approach could allow the 

investigation of gene expression in even more restricted subsets, such as tetramer positive or 

cytokine positive T cells from CMV, EBV or HIV-infected individuals. This could provide 

insights into the specific genetic pattern of "real" antigen-specific memory T cells. It would be 

interesting to lmow, for example, as to whether in HIV (where the antigen-specific CD8 

memory compartment seems to be skewed) a different expression of apoptosis genes could 

account for the skewing. 

As mentioned earlier, experimental evidence at the protein level is required in order to 

investigate the possible functional importance of the genetic pattern observed. In this context, 

it would be particularly interesting to further examine the expression of transcripts of BAFF, 

APRIL and their receptors in human T cells. Do T cells secrete APRIL and BAFF, or do they 

express them as membrane-bound proteins on their surface? Do BAFF-R mRNA transcript 

levels in T cells correlate with a surface expression of BAFF-R? If so, how is the expression 

induced, which are the cells which will provide the stimulus, what are the consequences of 

ligand-receptor interactions, and which are the downstream signaling pathways implicated? 
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