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The functions of many eukaryotic genes are still poorly understood. Here, we developed and validated a new method,

termed GeneBridge, which is based on two linked approaches to impute gene function and bridge genes with biological

processes. First, Gene-Module Association Determination (G-MAD) allows the annotation of gene function. Second,

Module-Module Association Determination (M-MAD) allows predicting connectivity among modules. We applied the

GeneBridge tools to large-scale multispecies expression compendia—1700 data sets with over 300,000 samples from hu-

man, mouse, rat, fly, worm, and yeast—collected in this study. G-MAD identifies novel functions of genes—for example,

DDT in mitochondrial respiration and WDFY4 in T cell activation—and also suggests novel components for modules, such as

for cholesterol biosynthesis. By applying G-MAD on data sets from respective tissues, tissue-specific functions of genes were

identified—for instance, the roles of EHHADH in liver and kidney, as well as SLC6A1 in brain and liver. Using M-MAD, we

identified a list of module-module associations, such as those between mitochondria and proteasome, mitochondria and

histone demethylation, as well as ribosomes and lipid biosynthesis. The GeneBridge tools together with the expression com-

pendia are available as an open resource, which will facilitate the identification of connections linking genes, modules, phe-

notypes, and diseases.

[Supplemental material is available for this article.]

The identificationof gene function and the integrated understand-
ing of their roles in physiology are core aims of many biological
and biomedical research projects—an effort that is still far from be-
ing complete (Edwards et al. 2011; Pandey et al. 2014; Dolgin
2017; Stoeger et al. 2018). Traditionally, gene function has been
elucidated through experimental approaches, including the evalu-
ation of the phenotypic consequences of gain- or loss-of-function
(G/LOF)mutations (Austin et al. 2004;Dickinson et al. 2016), or by
genetic linkage or association studies (Williams and Auwerx 2015).
A large number of bioinformatics tools have been developed to
predict gene function based on sequence homology (Marcotte
et al. 1999; Radivojac et al. 2013; Jiang et al. 2016), protein struc-
ture (Roy et al. 2010; Radivojac et al. 2013; Jiang et al. 2016), phy-
logenetic profiles (Pellegrini et al. 1999; Tabach et al. 2013; Li et al.
2014), protein-protein interactions (Rolland et al. 2014; Hein et al.
2015; Huttlin et al. 2017), genetic interactions (Tong et al. 2004;
Costanzo et al. 2010; Horlbeck et al. 2018), and coexpression
(Langfelder and Horvath 2008; Warde-Farley et al. 2010; Greene

et al. 2015; van Dam et al. 2015; Szklarczyk et al. 2016; Li et al.
2017; Obayashi et al. 2019).

With the development of transcriptome profiling technolo-
gies, thousands of high-throughput studies have generated a
wealth of genome-wide data that has become a valuable resource
for systems genetics analyses. A few web resources, including
NCBI Gene Expression Omnibus (GEO) (Barrett et al. 2013),
ArrayExpress (Kolesnikov et al. 2015), GeneNetwork (Chesler
et al. 2004), and Bgee (Bastian et al. 2008) among others, have cre-
ated repositories of such expression data for curation, reuse, and
integration. Several tools, such as GeneMANIA (Warde-Farley
et al. 2010), GIANT (Greene et al. 2015), SEEK (Zhu et al. 2015),
GeneFriends (van Dam et al. 2015), WeGET (Szklarczyk et al.
2016), COXPRESdb (Obayashi et al. 2019), WGCNA (Langfelder
and Horvath 2008), and CLIC (Li et al. 2017), are able to assign pu-
tative new functions to genes bymeans of correlations or coexpres-
sion networks. At their core, these methods rely on the concept of
guilt-by-association—that transcripts or proteins exhibiting simi-
lar expression patterns tend to be functionally related (Eisen
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et al. 1998). By using overrepresentation analyses on subnetworks
or modules, one can then deduce aspects of gene functions.

However, these approaches generally depend on discrete sub-
sets of genes whose expression correlations exceed either a hard or
soft threshold, whichwould strongly influence the final results. In
addition, such analyses typically focus on positive or absolute val-
ues of correlations among data sets. The key polarity of interac-
tions is often lost among gene products and linked modules
(Warde-Farley et al. 2010; Greene et al. 2015; van Dam et al.
2015; Zhu et al. 2015; Li et al. 2017). Gene set analyses, such as
gene set enrichment analysis (GSEA) (Subramanian et al. 2005),
have been developed to identify processes or modules that are af-
fected by certain genetic or environmental perturbations (Khatri
et al. 2012). While GSEA uses all measured genes in the analysis,
its application has mainly been limited to studying G/LOFmodels
or environmental perturbations, where comparisons are inherent-
ly among discrete categories. This limits its applicability in most
populations, in which variations among individuals are often
subtle and continuous (Williams and Auwerx 2015).

Here,wedeveloped theGeneBridge toolkit that uses two inter-
connected approaches to improve upon the identification of
gene function and to bridge genes to phenotypes using large-scale
cross-species transcriptome compendia collected for this study.
First, we describe a computational approach, named Gene-
ModuleAssociationDetermination (G-MAD), to imputegene func-
tion. G-MAD considers expression as a continuous variable and
identifies the associations between genes and modules. Second,
we developed the Module-Module Association Determination
(M-MAD)method to identify connections betweenmodules based
on the transcriptome compendia. The data and GeneBridge tools
described here are available at systems-genetics.org, an open re-
source,whichwill facilitate the identificationofnovel connections
between genes, modules, phenotypes, and diseases.

Results

Gene-Module Association Determination (G-MAD)

Owing to the fact that a large number of genes are still not well
annotated or even uncharacterized (Supplemental Fig. S1), we pro-
pose here a new computational strategy, Gene-Module Association
Determination (G-MAD), which uses expression data from large-
scale cohorts to propose potential functions of genes. We use the
term “modules” to refer to the knowledge-based gene sets, ontolo-
gy terms, and biological pathways from different resources for sim-
plicity in the rest of the paper. The differences between gene sets or
directed or undirected pathways are important in many contexts,
but for our purpose, they can be treated in the same manner as
modules andwill not be distinguished. The basic concept is similar
to classic pathway/gene set analysis, i.e., genes that possess similar
functions tend to have similar expression patterns (Subramanian
et al. 2005). However, instead of using binary group settings
(e.g., control vs. treatment, or wild type vs. knockout) as common-
ly used in gene set analysis, we consider the continuous expression
levels of the gene-of-interest across a population and determine its
possible functions based on its coexpression patterns against all
genes.

In this study, we collected transcriptome data sets with over
80 samples obtained from six species (human, mouse, rat, fly,
worm, and yeast) from GEO, ArrayExpress, dbGaP, GeneNetwork,
and other data repository sources (Supplemental Table S1). For ex-
ample, 1337 data sets containing over 265,000 human samples

with whole-genome transcript levels were analyzed in this study
(Supplemental Table S1). The expression data sets were prepro-
cessed using PEER (Stegle et al. 2012) to remove the known and
hidden covariates that would influence the analysis (Supplemen-
tal Fig. S2). We applied a competitive gene set testing method—
Correlation Adjusted MEan RAnk gene set test (CAMERA), which
adjusts for inter-gene correlations (Wu and Smyth 2012)—to com-
pute the enrichment between gene-of-interest and biologicalmod-
ules. Gene-module connections with enrichment P-values that
survived multiple testing corrections of the gene or module num-
bers were allocated connection scores of 1 or −1, based on the
enrichment direction, and 0 otherwise. The results were then
meta-analyzed across data sets, and gene-module association
scores (GMASs) were computed as the averages of the connection
scores weighted by the sample sizes and inter-gene correlation co-
efficients within modules (�r) (Fig. 1A).

One should be aware of the fact thatmodules can overlap par-
tially or completely. For example, Gene Ontology (GO) categories
have a hierarchical structure (Ashburner et al. 2000), and modules
from different sources can be very similar in composition.
Therefore, we computed the similarities across all modules and
generated a global module similarity network. As expected, redun-
dant modules formed clusters in the network, and we were able to
extract 62 distinctmodule clusters in the humanmodule similarity
network (Fig. 1B; Supplemental Table S2). This network can be
used as a way to visualize the results of gene-module associations.

We assessed the performance of G-MAD in prioritizing
known genes for modules through cross-validation.We then com-
pared the area under the receiver operating characteristic (ROC)
curve (AUC) with the ones obtained from WeGET (Szklarczyk
et al. 2016) andCOXPRESdb (Obayashi et al. 2019). G-MAD exhib-
its better predictive performance than WeGET and COXPRESdb,
especially for largermodules (e.g., thosewithmore than 50 genes),
as well as a much simpler method based on the average of correla-
tion coefficient between gene pairs using the same expression
compendium of our method (average r) (Supplemental Fig. S3A,
B). To estimate if the performance gained from larger data set num-
bers in our study, we repeated G-MAD using a subset (800) of
the data sets (G-MADsub). We observed that G-MADsub had sim-
ilar performance as G-MAD and better than COXPRESdb and
WeGET, where around 1000 data sets were used. We investigated
the influence of the inter-gene correlations within modules
(�r) and module size on the predictive performance of G-MAD
and noticed that modules with higher inter-gene correlations
and smaller modules tend to have better performances (Supple-
mental Fig. S3C,D).

Furthermore, in order to determine the threshold of signifi-
cance of gene-module associations, we computed the GMAS of
all the gene-module pairs, including both known and unknown
pairs. We then created the ROC curve by varying the threshold
of significance and calculating the true positive rate (percentage
of known genes above the threshold against all known genes)
and false positive rate (percentage of unknown genes above the
threshold against all unknown genes) (Fig. 1C). Detecting more
true positives by lowering the threshold comes with a cost of a
higher false positive rate. Therefore, to be stringent in proposing
novel gene-module associations and restrain the likelihood of rais-
ing false positives, we considered a true positive rate of 0.1 (only
10% of all the known gene-module pairs as significant), and
used a GMAS threshold of 0.268 (Fig. 1C). With this threshold,
we saw that only 0.24%of unknown gene-module pairs are signifi-
cant, which is 40 times less than the known pairs.
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The gene-module connections predicted byG-MADprovide a
resource that researchers can use as a reference when annotating
gene functions. We describe below some examples on how the
G-MAD results can be used to facilitate the discovery of novel
gene functions or the identification of new members of modules.
WDFY4 was recently annotated as a crucial gene in activating im-
munological T cells in antiviral and antitumor immunity through
a functional CRISPR screen (Theisen et al. 2018). ThroughG-MAD,
we found thatWDFY4 indeed associated with antigen processing,
T cell activation, and immune response in human, mouse, and rat

(Fig. 1D; Supplemental Fig. S4A,B), verifying that its function is
conserved across species. Cholesterol is critical in cell differentia-
tion and growth. We identified 20 genes (AACS, ACLY, ACSL3,
ACSS2, CYB5B, DBI, ELOVL6, ERG28, FADS1, FASN, INSIG1,
PANK3, PCSK9, PCYT2, PNPLA3, RDH11, SLC25A1, STARD4,
TMEM41B, TMEM97) associated with cholesterol biosynthesis
conserved in human, mouse, and rat (Fig. 1E; Supplemental Fig.
S4C–E). Several of these genes, including FASN (Carroll et al.
2018) andTMEM97 (Bartz et al. 2009), have already been described
to have relevant functions in cholesterol metabolism.

A

B D

E

C

Figure 1. Gene-Module Association Determination (G-MAD). (A) G-MADmethodology. See text andMethods for detailed description. (B) Module sim-
ilarity network showing the composition similarities across all module pairs. Modules were detected using a community detection algorithm embedded in
Gephi and indicated in different colors. The 10 most frequent words of the module terms in each module were used to represent the module and can be
found in Supplemental Table S2. (C) Influence of the GMAS threshold (t) on the true positive rate (TPR) and false positive rate (FPR) of G-MAD. Using a
threshold of 0.268, G-MAD identified 10% of true positives and 0.24% of false positives (reflected by the red lines intersecting the x- and y-axes).
(D) G-MAD revealed the potential role ofWDFY4 in T cell activation and immune response. The threshold of significant gene-module association is indicated
by the red dashed line. Modules are organized by the module similarities. Known modules connected to WDFY4 from annotations are shown in red dots
(there is no known connectedmodule forWDFY4) and other modules with GMAS over the threshold are shown in black dots. Dot sizes reflect the GMAS of
WDFY4 against the respective modules. Detailed information of all the modules is available at www.systems-genetics.org/modules_by_gene/WDFY4?
organism=human. (E) G-MAD identified the involvement of known as well as 20 novel genes in cholesterol biosynthesis. The threshold of significant
gene-module association is indicated by the red dashed line. Genes are organized by the genetic positions across chromosomes. Genes annotated to
be involved in cholesterol biosynthesis are shown in red dots and novel genes with GMAS over the threshold are shown in black dots. Novel genes con-
served in human, mouse, and rat are highlighted in red bold text.
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G-MAD identifies tissue-specific associations

Using the expression compendia, we noticed that genes annotated
to some modules have higher coexpression in data sets from cer-
tain tissues than others (Fig. 2A), suggesting the tissue-specific ac-
tivation of these modules. For instance, genes involved in
“pancreatic secretion” have much higher coexpressions in data
sets obtained from pancreas (Fig. 2B). To predict the tissue specif-
icity of modules, we compared the inter-gene correlations within
each module (�r) in every tissue against those in the other tissues
using the nonparametric Kolmogorov–Smirnov (K–S) test. The re-
sulting P-values are used as a measure to indicate tissue specificity
of themodules (Fig. 2C). As an example, the “pancreatic secretion”
module has higher specificity in the pancreas than in other tissues,
such as the blood (Fig. 2D). Similarly, genes belonging to the “col-
lecting duct acid secretion”module are highly coexpressed in kid-
ney (Supplemental Fig. S5A–E), while genes in the “lamellar body”
module are highly coexpressed in lung (Supplemental Fig. S5F–J).

Therefore, G-MAD can also highlight tissue-specific gene-
module associations using data sets from specific tissues. EHHADH
is a peroxisomal protein highly expressed in liver and kidney (Fig.
3A; Uhlen et al. 2015). Although best known for its key role in the
peroxisomal oxidation pathway, a recent report demonstrated that
EHHADH mutations cause renal Fanconi’s syndrome (Klootwijk
et al. 2014). G-MAD of EHHADH in liver and kidney identifies its
conserved role in peroxisome and fatty acid oxidation and also re-
covers its specific functions in liver (e.g., bile acid biosynthesis)

and kidney (e.g., brush border membrane) (Fig. 3B–E; Supplemen-
tal Table S3). SLC6A1 is one of the major gamma-aminobutyric
acid (GABA) transporters in the neurotransmitter release cycle in
brain (Carvill et al. 2015). However, SLC6A1 is also highly ex-
pressed in the liver (Supplemental Fig. S6A), and its function in liv-
er remains poorly understood. G-MAD of SLC6A1 was performed
in all data sets and only data sets from brain confirm its function
as a neurotransmitter transporter in the GABA release cycle (Sup-
plemental Fig. S6B,C), while G-MAD using data sets from liver
identifies its possible role in carboxylic acid transport and metab-
olism (Supplemental Fig. S6D,E; Supplemental Table S4).

G-MAD determines novel genes linked to mitochondria

Mitochondria are the main powerhouses of cells and harvest ener-
gy in the formof ATP throughmitochondrial respiration. There are
around 1100 genes known to encode mitochondria-localized pro-
teins (mito-proteins), depending on the source used (e.g., 1158
mito-proteins in MitoCarta [Calvo et al. 2016], 1074 in Human
Protein Atlas [Uhlen et al. 2015]); however,many of these genes re-
main uncharacterized, and the list of mito-proteins is still incom-
plete (Williams et al. 2018).

By using the genes annotated to be involved in the respiratory
electron transport chain (ETC, Reactome: R-HSA-611105), we
searched for genes potentially related to respiratory electron trans-
port, by applying G-MAD to expression data sets in human,

B

A C

D

Figure 2. Predicting tissue specificity of modules. (A) Heatmap showing the correlation coefficient averages of genes (�r) inmodules from expression data
of a subset of human data sets. Data sets from different tissues are arranged and colored (top bar). Modules are clustered in rows using hierarchical clus-
tering. �r values for each module are centered and scaled. (B) Coexpressions among genes of pancreatic secretion module across tissues in human. The
average correlation coefficients across the genes in the pancreatic secretionmodule in human data sets are used to illustrate the coexpressions of this mod-
ule across tissues. Genes in the pancreatic secretionmodule have higher coexpression in data sets from the pancreas compared to those from other tissues.
(C) Heat map showing the tissue specificity of modules inferred from the correlation coefficient of respective tissues against the other tissues. Modules are
clustered in rows using hierarchical clustering. The −log10(P-values) obtained from the K–S test are centered and scaled for each module. (D) The tissue-
specificity of pancreatic secretion in pancreas (left) and blood (right) is illustrated by the empirical cumulative distribution function (ECDF). The red dotted
lines indicate the K–S statistic, which is based on the maximum distance between the two curves. Curves shifting toward the right indicate that data sets
from the respective tissue have a higher correlation coefficient and, therefore, greater specificity for this tissue. In this case, the steeply rising part of the
ECDF, also shown as the peak of the density of the correlations in B, is shifted toward higher correlations.
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mouse, and rat. As expected, genes annotated in the ETC module
are strongly enriched; moreover, other known ETC genes that
were not included in the module were also positively enriched,
providing proof that G-MAD can recover known gene functions
(Fig. 4A; Supplemental Fig. S7A,B). Based on G-MAD results from
human, mouse, and rat, there were 707 genes showing conserved
associations with the ETC (Fig. 4B). Many of these genes—for ex-
ample, DMAC1 (previously known as C9orf123) (Arroyo et al.
2016; Stroud et al. 2016; Horlbeck et al. 2018), NDUFAF8
(previously known asC17orf89) (Floyd et al. 2016), and FMC1 (pre-
viously known as C7orf55) (Lefebvre-Legendre et al. 2001; Li et al.
2017)—were not included in the respiratory electron transport
module but have been recently validated to be involved in mito-
chondrial respiration (Fig. 4B; Supplemental Table S5). DDT is
among the top genes associatedwith the ETC (Fig. 4A,B), and there
is no previous study linking it to mitochondria. G-MAD reveals
that DDT is strongly associated with mitochondrial respiration
across different species, including the invertebrate Caenorhabditis
elegans (Fig. 4C,D; Supplemental Fig. S7C–G), suggesting a con-
served role of DDT in mitochondria. We validated the mitochon-
drial localization of DDT through immunofluorescence staining
(Fig. 4E). The function ofDDTwas confirmed through RNAi-medi-
ated knockdown in HEK293 cells, which led to reduced transcript
levels of genes encoding for the ETC subunits (Supplemental Fig.
S7H; Supplemental Table S6) and decreased oxygen consumption
rate (OCR) (Fig. 4F; Supplemental Fig. 7I), verifying that DDT im-
pacts mitochondrial respiration. Similarly, we also validated the

involvement ofBOLA3 in the ETCusingG-MADand further exper-
imental validations (Supplemental Fig. S8; Cameron et al. 2011).

Contrary tomost of the existing sources that predict only pos-
itive gene-module associations, G-MAD is also able to exploit neg-
ative associations. For example, ARID1A exhibits significant
negative associations with the respiratory electron transport in hu-
man and mouse (Fig. 4A,G,H; Supplemental Fig. S9). ARID1A is a
known member of the SWI/SNF family, and the inactivating mu-
tations of SWI/SNF complex genes (mainly SMARCA4 and
ARID1A) have recently been linked to increased expression of
ETC genes and mitochondrial respiration (Lissanu Deribe et al.
2018). To further validate its regulatory role, we checked an extant
public data set from mice with uterus-specific Arid1a knockout
(Kim et al. 2015) and confirmed that dysfunction of Arid1a led
to the increased expression of mitochondrial genes (Fig. 4I), espe-
cially those involved in respiratory electron transport (Fig. 4J).

Module-Module Association Determination (M-MAD)

Biological processes and modules such as metabolism, cellular
signaling, biogenesis, and degradation are interconnected and co-
ordinated (Barabási et al. 2011). However, there are few reports ex-
ploring the connections between modules in a systematic fashion
(Li et al. 2008). Here, we extend G-MAD to develop Module-
Module Association Determination (M-MAD) to investigate the
connections between modules based on the expression compen-
dia. Results for individual modules against all genes, obtained
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Figure 3. G-MAD identifies tissue-specific associated modules for EHHADH by using data sets from different tissues. (A) Expression patterns of EHHADH
across tissues. The figure was adapted from the Human Protein Atlas (www.proteinatlas.org/). (B–D) G-MAD of EHHADH in human using data sets from all
tissues (B), from liver (C), or from kidney (D). The threshold of significant gene-module association is indicated by the red dashed line. Modules are orga-
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threshold are shown by black dots. (E) Comparison of G-MAD results of EHHADH in liver and kidney. Known modules connected to EHHADH are shown in
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Figure 4. G-MAD predicts novel genes linked to mitochondria. (A) G-MAD Manhattan plot of the respiratory electron transport (Reactome: R-
HSA-611105) module in human. Genes are arranged based on their genetic positions and genes annotated to be involved in the module are colored
red. Genes with absolute GMAS over 0.268 are considered significantly associated. DDT, BOLA3, and ARID1A are labeled. (B) Venn diagram of novel genes
associated with respiratory electron transport module in human, mouse, and rat; 707 genes were predicted to be mito-proteins by G-MAD in all three spe-
cies, and 351 genes, including DMAC1, NDUFAF8, FMC1, and BOLA3, were recently annotated to be involved in mitochondrial respiration in at least one
species, whereas 356 genes, including DDT, C16orf91, C15orf61, FLAD1, and GRHPR, have not been previously linked with mitochondria based on the cur-
rent annotations. The association results for all genes in human, mouse, and rat can be found in Supplemental Table S5. (C) DDT associates with mitochon-
drial respiratory chain modules in human. The threshold of significant gene-module association is indicated by the red dashed line. Modules are organized
by module similarities. Known modules connected to DDT from annotations are highlighted in red and other modules with GMAS over the threshold are
colored in black. Dot sizes reflect the GMAS of DDT against the respective modules. (D) Module similarity network showing the modules associated with
DDT. Modules are plotted based on their layout in Figure 1B and colored based on their GMAS againstDDT. (E) Mitochondrial localization ofDDT in mouse
embryonic fibroblasts (MEFs). DDT expression is overlapped with theMitotracker red label. (F)DDT knockdown leads to the reduction of oxygen consump-
tion rate (OCR) as a reflection of mitochondrial respiration in human HEK293 cells. Addition of specific mitochondrial inhibitors, including the oligomycin
(ATPase inhibitor), FCCP (uncoupling agent), and rotenone/antimycin A (electron transport chain inhibitors), are indicated by arrows. (G) ARID1A nega-
tively associates with the mitochondrial respiratory chain in human. The threshold of significant gene-module association is indicated by the red dashed
line. Modules are organized by the module similarities. Known modules connected to ARID1A from extant annotations are highlighted in red and other
modules with GMAS over the threshold are colored in black. Dot sizes are proportional to GMAS of the respective modules. (H) Module similarity network
showing themodules associatedwith ARID1A.Modules are colored based on their GMAS against ARID1A. (I)Micewith the uterine-specific Arid1a knockout
showed positive enrichment in mitochondrial respirationmodules. Nominal P-values from the GSEA results are used to plot against normalized enrichment
score (NESs), with dot sizes indicating the number of genes in themodules and transparencies indicating the false discovery rate (FDR). (J) Enrichment plot
showing the enrichment of genes included in respiratory electron transport in uterus-specific Arid1a knockout mice compared to wild-type controls. Genes
are ranked based on the fold change between Arid1a knockout and wild-type mice, and the ranking positions of genes in respiratory electron transport are
labeled as vertical black bars. (NES) Normalized enrichment score.
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Figure 5. Module-Module Association Determination (M-MAD) reveals module connections. (A) Scheme of the M-MAD methodology in detecting
module connections. Intermediate results of G-MAD for all modules are further processed and used as the basis of M-MAD. The −log10(P) values of
G-MAD for the target module against all genes in each data set are used as the gene statistic for the module, and connections between the target module
and all modules are calculated using CAMERA. The results are then meta-analyzed by taking the sample sizes and inter-gene correlations of all data sets to
compute the module-module association score (MMAS) between modules. (B) Module association network showing the connections across all modules.
Colors of nodes represent the modules defined in the global module similarity network in Figure 1B. Module clusters with respective colors are identified
and labeled.Modules used as examples in the following figure panels are highlighted with a circle. (C) Comparison of pairwise module connections derived
frommodule similarities in Figure 1B and associations (fromM-MAD) in Figure 5B. A red dashed line is plotted when the pairwise module similarity equals
association. The distributions of module similarity and association scores are illustrated in the top and at the right of the plot and are colored in red and blue,
respectively. Two examples of novel module connections are encircled. (D,E) Subnetworks showing the association between mitochondrial and proteaso-
mal modules (D), and mitochondrial and histone demethylation modules (E). Edge colors indicate the significance of module connections, with red as
positive and blue as negative.
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from G-MAD, were used to compute their associations against all
modules. The enrichment scores of all genes for the target module
were used as the gene-level statistics to calculate the enrichment
against all modules using CAMERA (Wu and Smyth 2012). The re-
sulting enrichment P-values acrossmoduleswere transformed to 1,
0, or −1 based on the Bonferroni threshold and then meta-ana-
lyzed across all data sets to obtain the module-module association
scores (MMASs) (Fig. 5A).

Module-module associations with an absolute MMAS of over
0.268, corresponding to 4% of the total number of module pairs,
were considered significant and were used to construct a module
association network (Fig. 5B). Modules were represented as nodes
with the same colors as the module clusters from Figure 1B.
While the module similarity network in Figure 1B is based solely
on existing gene annotations, the module association network re-
lies on analyzing the full expression data sets. It can thus reveal
new biological connections among modules, which were not in-
cluded in literature-based annotations. We compared the two net-
works (Supplemental Fig. S10) obtained from module similarity
(Fig. 1B) and module association (Fig. 5B). There are numerous
module pairs with no similarity (overlap of annotated genes) but
with high association based on expression (M-MAD) (Fig. 5C).
Moreover, many module pairs have predicted negative associa-
tions (Fig. 5C). Therefore, these results provide a resource for hy-
pothesis generation and validation of the module connections.

By applying M-MAD, we observed a strong positive link
between mitochondrial modules and the proteasome (Fig. 5D;
Supplemental Fig. S11A–C).Most of the genes encoding for protea-
somal subunits exhibit strong association with the ETC in human
and mouse (Supplemental Fig. S11G), indicating a conserved cor-
egulatorymechanism. Dysfunction ofmitochondria and the ubiq-
uitin-proteasome system (UPS) are hallmarks of aging and aging-
related neurodegenerative diseases, such as Alzheimer’s, Parkin-
son’s, and Huntington’s diseases (Ortega and Lucas 2014; Ross
et al. 2015; D’Amico et al. 2017). Abnormalities that perturb the
crosstalk between these two modules have been demonstrated
to contribute to the pathogenesis of these diseases, and several
mechanisms have been proposed (D’Amico et al. 2017; Harrigan
et al. 2018). It has also been shown that ETC disruption leads to
proteasome impairment (D’Amico et al. 2017), while conversely
the inhibition of the UPS causes mitochondrial dysfunction
(Ross et al. 2015).

Similar to G-MAD, M-MAD can also predict negative connec-
tions between modules. For example, we found strong negative
connections between histone demethylation processes and mito-
chondrial modules (Fig. 5E; Supplemental Fig. S11D–F). The link
between epigenetics and mitochondria is a research focus for
many groups, including ours (Schroeder et al. 2013; Merkwirth
et al. 2016; Tian et al. 2016). It has been reported that mitochon-
drial dysfunction affects histonemethylation and, conversely, his-
tone lysine demethylases can impact mitochondrial functions
(Merkwirth et al. 2016). Most of the histone lysine demethylases
showed negative associations with the ETC in human and mouse
(Supplemental Fig. S11G), suggesting a conserved negative con-
nection between histone demethylation and mitochondrial
function.

As another example ofM-MAD,we investigatedmodules con-
nected with lipid biosynthetic modules. Of note, ribosome mod-
ules exhibited strong negative association with lipid biosynthetic
modules (Fig. 6A,B; Supplemental Fig. S12A,B). This is in line
withourprevious finding that a ribosomalprotein,Rpl26, negative-
ly correlates with body weight and fat mass (Li et al. 2018). In sup-

port of this connection, liver and adipose transcripts of most
ribosomal protein genes negatively correlated withmetabolic phe-
notypes, such as body weight, fat mass, and cholesterol levels, in
the BXD mouse cohort (Fig. 6C; Supplemental Fig. S12C; Wu
et al. 2014), as well as in a CAST/EiJ and C57BL/6J F2 intercross
(Fig. 6D; Supplemental Fig. S12D; Schadt et al. 2008). Finally,
RNAi targeting nine of the identified ribosomal protein genes
out of total 13 tested led to the accumulation of lipid droplets in
C. elegans (Fig. 6E; Supplemental Fig. S12E–G), further validating
the robustness of the lipid synthesis-ribosome connection across
species.

Discussion

Significant efforts in biological research have been devoted to de-
fining the molecular and physiological functions of genes.
However, many genes are still not well annotated or even remain
uncharacterized (Edwards et al. 2011; Dolgin 2017; Stoeger et al.
2018). Here, we developed an approach, termed G-MAD, to facili-
tate the identification of novel gene functions and to establish
robust connections between genes and modules. Using transcrip-
tome data sets from cohorts ranging from human to mouse, rat,
fly, worm, and yeast, we identified millions of gene-module con-
nections, many of which are novel. Unlike most available sources
relying on coexpression to predict gene functions, G-MAD can
identify not only positive gene-module connections but also neg-
ative associations between genes and modules or processes. We il-
lustrated the predictive power of G-MAD by predicting novel
mitochondrial protein genes and validated DDT and BOLA3
through experiments. Meanwhile, tissue-specific functions of
genes, for example, EHHADH and SLC6A1, can also be identified
using data sets derived from respective tissues.

In addition, we extendedG-MAD toM-MAD, to uncover con-
nections between modules. Association scores of one module
against all genes from G-MAD were used to compute its associa-
tions with all modules. Similar to G-MAD, M-MAD can identify
both positive and negative module associations. For example, in
humans we identified around 2,000,000 associations between all
modules, over 170,000 of which were negative. We constructed a
module association network based on these connected modules
and compared it to the module similarity network. Many of
the associated module pairs have low or no similarities in gene
compositions. By applyingM-MADon the ETCmodule,wediscov-
ered a conserved connection between mitochondria and the pro-
teasome in various organisms (D’Amico et al. 2017). In addition,
we identified negative associations between histone lysine deme-
thylation and mitochondrial modules, underscoring the inverse
connection between epigenetic regulation and mitochondrial
function (Schroeder et al. 2013; Merkwirth et al. 2016; Tian et al.
2016).Moreover, we discovered and validated a novel negative reg-
ulatory role of ribosomal proteins on lipid biosynthesis (Li et al.
2018).

In summary, we described here a set of approaches to identify
gene function and module connectivity that we collectively
termed GeneBridge to reflect their capacity to bridge genes to bio-
logical functions and phenotypes. TheGeneBridge toolset is acces-
sible through our open web resource (systems-genetics.org) to the
research community for hypothesis generation or validation. It
should be noted that we selected a stringent threshold of 0.268
to limit the probability of detecting false positives. Researchers,
however, have the possibility to fully explore the results by altering
the thresholds on the open web resource. Although only protein-
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coding geneswere included in our analysis, the same approach can
be applied to noncoding genes to reveal their potential functions.
Similarly, GeneBridge can also be utilized to identify novel gene-
disease associations based on known disease-associated genes
from databases, such as the Human Disease Ontology (DO)
(Schriml et al. 2019) or DisGeNET (Piñero et al. 2017). The
GeneBridge toolkit could also be applied to large-scale proteomics
data sets after correcting for the background of all measured pro-
teins. Integration of GeneBridge with other well-established data-
bases, such as BioGRID (Stark et al. 2006) and STRING (Szklarczyk
et al. 2015), will facilitate the investigation of the connections be-
tween genes, modules, and diseases.

Methods

Gene-Module Association Determination (G-MAD)

G-MADmakes use of the PEER-resulted expression residuals (Stegle
et al. 2012) of transcriptome data sets from large cohorts (data sets
with over 80 samples). The expression levels of the gene-of-interest
(target geneT) are used as a continuous trait to test whether amod-
ule M is enriched when T is highly expressed or, alternatively,
whether it is depleted. The analysis uses the competitive gene set
testingmethodCAMERA,which adjusts for inter-gene correlations
(Wu and Smyth 2012). This adjustment is important because, left
unadjusted, too many significant results would emerge. To per-

form CAMERA, we first regress all genes G on T according to the
following relationship:

G = m+ bT�GT + e.

The fitting of this model equation to the observations is done
separately for each data set by using the least squares method. The
result is one fitted value βT→G per gene. These coefficients define a
set of statistics numerically characterizing the connection between
the target gene T and any gene G. CAMERA provides a test of the
null hypothesis that the average values of the β coefficients for
the genes G in the module M are equal to the values for the
genes not in the module. In order to correct for the inter-gene cor-
relations, a variance inflation factor is computed based on the aver-
age correlation coefficient �rM computed from the expression
residuals obtained from PEER and only using the genes in the
module M. When the average association scores between genes
in the set and genes outside the set,

∑
G[M bT�G/|M| and∑

G�M bT�G/|Genes\M|, are compared on the final step, �rM is in-
cluded in thevariance inflation factor. The resulting statistic reveal-
ing the association between the target gene T and M we refer to as
the enrichment score ESM(T).

The same procedurewas conducted for all the genes in the an-
alyzed data sets to obtain the enrichment P-value matrix between
genes andmodules in all the data sets. Two types of analyses can be
applied on the gene-module P-value matrix. One can extract the
P-values for one gene against all modules across the data sets to
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Figure 6. M-MAD reveals a negative association between the ribosome and lipid biosynthetic modules. (A) Subnetwork for the ribosome and lipid bio-
synthetic modules. The colors of the edges indicate the significance of module connections, with red as positive and blue as negative. (B) Lipid biosynthetic
process negatively connected with ribosomal modules in human. The threshold of significant module-module connection is indicated by the red dashed
line. Modules are organized by themodule similarities. Dot sizes are proportional toMMASs of the respectivemodules. (C,D) Transcripts of genes encoding
for ribosomal proteins in the liver negatively correlate withmetabolic traits, such as bodyweight, fatmass, plasma glucose and cholesterol levels, in the BXD
(C) and CTB6F2 (D) mouse cohorts. (∗) P<0.05, (∗∗) P<0.01, (∗∗∗) P<0.001. (E) Feeding adult C. eleganswith RNAi clones of ribosomal proteins, including
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obtain the association between this gene and all modules; or ex-
tract the P-values for one module against all genes to check the as-
sociation between this module and all genes. To restrict the final
scores into the range of (−1, 1), we converted the P-values to 1/
0/−1 based on the significance threshold using Bonferroni correc-
tions for each data set (i.e., the thresholds are either 0.05/# genes
when assessing genes for a given module or 0.05/# modules
when assessing modules for a given gene). Gene-module associa-
tions with P-values that survived multiple testing corrections
were set to 1 or −1, based on the enrichment direction, and 0 oth-
erwise:

S( pG|M ) = +1, pG|M ,
0.05

# modules
0, otherwise

⎧⎨
⎩ ,

where pG|M are one-sided P-values, corresponding to either positive
or negative associations. The resulting S(pG|M) values were then
meta-analyzed across the data sets, and the gene-module associa-
tion scores (GMAS) were computed as the weighted averages of
the scoreswith theweights functions of the sample sizes combined
with the inter-gene correlation coefficients within modules. In
this way, data sets with more samples and with higher coexpres-
sion of genes in modules are given more weight. Denote Dj, j=1,
…, J available data sets with corresponding sample sizes nj, j=1,
…, J, and average inter-gene correlations �rj, j=1,…, J. Let the P-val-
ue obtained for the jth data set be pG|M( j). The final association
score is then computed as

GMAS =
∑J

j=1 wjS(pG|M (j))
∑J

j=1 wj
,

where weight for the jth data set iswj = ���nj
√

�rj. Under the null hy-
pothesis, if we consider the positive and negative associations sep-
arately, the random variables S(pG|M( j)) follow a Bernoulli
distribution with probability of success = (0.05/# modules).
Therefore, statistic GMAS is the weighted sum of Bernoulli vari-
ables, whose theoretical distribution is hard to establish. The
weight is proportional to the square root of the sample size in
the jth data set. Another important component ofwj is the average
correlation coefficients among genes in the module in the jth data
set, �rj, which reflects the coexpression or “level of activation” of
the module for this data set.

In summary,G-MAD employed PEER to remove the influence
of covariates, CAMERA to compute P-values between genes and
modules in each data set, Bonferroni correction to transform P-val-
ues into the range of [−1, 1], and meta-analysis to summarize the
results from all data sets.

For the final decision, we computed the true positive rate
(percentage of known genes above the threshold against all known
genes) and false positive rate (percentage of unknown genes above
the threshold against all unknown genes) by varying the threshold
of significance. We noticed that decreasing the threshold would
increase the true positive rate (TPR) but also the false positive
rate (FPR). Therefore, we selected a very stringent threshold for
GMAS of 0.268, where only 10% of the known (TPR) and 0.24%
of the unknown (FPR) gene-module connections are recovered.

Module-Module Association Determination (M-MAD)

M-MAD takes the association P-valuematrix between a targetmod-
ule and all genes computed by CAMERA in all data sets (Fig. 1A,
bottom left) and uses the −log10(P) values as a continuous mea-
sure to test whether other biological modules are enriched by hav-
ing genes that are highly associated with the target module.
As CAMERA generates P-values that are uniformly distributed,

−log10(P) transformed values have an exponential distribution
skewed toward 0. The following analysis again uses the competi-
tive gene set testing method CAMERA to compute a P-value for
testing the equality of the average transformed values for the genes
in the other biologicalmodules compared to all other genes. It will
result in a small P-value when many of the genes in the other
biological modules are relatively highly connected to the target
module. The same analysis is performed for all modules to achieve
a final association P-value matrix between modules. The
Bonferroni correction was used to correct for the multiple testing
errors with 0.05/#modules as the significance threshold. To con-
strain the final score into the range between −1 and 1, module-
module connections with enrichment P-values that survived mul-
tiple testing corrections were allocated 1 or −1, based on the en-
richment directions, and 0 otherwise. The results were then
meta-analyzed across the data sets, and themodule-module associ-
ation scores (MMAS) were computed as the weighted averages of
the connection scores by the sample sizes and inter-gene correla-
tion coefficients within modules across data sets.

Cross-validation

In order to test the predictive performance of G-MADand compare
it with the other methods using coexpression (including WeGET,
COXPRESdb, and average r), we performed a cross-validation anal-
ysis by removing groups of genes frommodules, recomputing the
associations between the removed genes and the reduced module,
and testing if we can rediscover the removed genes (Szklarczyk
et al. 2016).We applied leave-one-out cross-validation formodules
with nomore than 50 genes, and 10-fold cross-validation for larger
modules. The area under the receiver operating characteristic curve
is used to estimate the performance of prediction, with an AUC
of 1 indicating perfect prediction and 0.5 indicating randomguess.
Details of the methods are described in the Supplemental
Methods.

Validation experiments in vitro and in C. elegans

Some of the novel associations were validated either using cell
models or C. elegans. Detailed procedures for the validation exper-
iments are described in Supplemental Methods.

Data access

The data and source codes from this study are available in the
Supplemental Code and from https://systems-genetics.org/ and
https://github.com/lihaone/GeneBridge, respectively.
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