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Abstract
Issue: Approaches to predicting species assemblages through stacking individual 
niche‐based species distribution models (S‐SDMs) need to account for community 
processes other than abiotic filtering. Such constraints have been introduced by im‐
plementing ecological assembly rules (EARs) into S‐SDMs, and can be based on pat‐
terns of functional traits in communities. Despite being logically valid, this approach 
has led to a limited improvement in prediction, possibly because of mismatches be‐
tween the scales of measurement of niche and trait data.
Evidence: S‐SDM studies have often related single values of a species’ traits to envi‐
ronmental niches that are captured by abiotic conditions measured at a much finer 
spatial scale, without accounting for intraspecific trait variation along environmental 
gradients. Many pieces of evidence show that omitting intraspecific trait variation 
can hinder the proper inference of EARs from trait patterns, and we further argue 
that it can therefore also affect our capacity to spatially predict functional properties 
of communities. In addition, estimates of environmental niches and trait envelopes 
may vary depending on the scale at which environmental and trait measurements 
are made.
Conclusion: We suggest that to overcome these limitations, surveys sampling both 
niche and trait measurements should be conducted at fine scales along wide environ‐
mental gradients, and integrated at the same scale to test and improve a new genera‐
tion of spatial community models and their functional properties.
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1  | STATING THE CHALLENGES

Species assemblages are commonly modelled in geographic 
space (D'Amen, Rahbek, Zimmermann, & Guisan, 2017) by stack‐
ing predictions of individual species distribution models (here‐
after S‐SDMs; Ferrier & Guisan, 2006; Guisan & Rahbek, 2011; 
Hortal, Marco, Santos, & Diniz‐Filho, 2012; see Guisan, Thuiller 
& Zimmermann, 2017) based on estimates of species’ realized 
abiotic environmental niches (i.e., the multidimensional envelope 
of abiotic requirements occupied by a species in the field, sensu 
Hutchinson; e.g., Soberon & Nakamura, 2009; see Figure 1 and 
Kearney, 2006). S‐SDMs have already been applied to various tax‐
onomic groups (e.g., plants, birds, insects, amphibians; see review 
by D'Amen et al., 2017, and Calabrese, Certain, Kraan, & Dormann, 
2014) and to model different properties of assemblages, such as 
their phylogenetic, functional or taxonomic diversity (D'Amen, 
Mateo, et al., 2018). However, these models can overestimate local 
species richness or yield inaccurate community predictions when 
they ignore assembly mechanisms such as dispersal processes, 
biotic interactions and community carrying capacities (Mateo, 
Mokany, & Guisan, 2017; Soberon & Nakamura, 2009; Wisz et al., 
2013). Dispersal is a component that is increasingly being consid‐
ered in species distribution predictions (Zurell et al., 2016), and the 

use of community carrying capacity is still debated (Mateo et al., 
2017). Meanwhile, the incorporation of biotic ecological assembly 
rules (EARs; Gotzenberger et al., 2012) into S‐SDM building holds 
much promise (Kissling et al., 2012; Wisz et al., 2013), yet is still in 
its infancy (D'Amen, Mod, Gotelli, & Guisan, 2018).

How should biotic assembly rules be defined? One way is to 
use trait‐based approaches (Ackerly & Cornwell, 2007; McGill, 
Enquist, Weiher, & Westoby, 2006) to infer them, as derived from 
the distribution of a few to multiple functional traits (i.e., spe‐
cies characteristics representing ecological strategies and adap‐
tations to local environments; Cornelissen et al., 2003; Laughlin 
& Messier, 2015; Diaz et al., 2016) within and among species in 
a community (Fitzpatrick & Keller, 2015; Laughlin, 2014; Moran, 
Hartig, & Bell, 2016), and especially across assemblages along 
environmental gradients (Figure 2; Blonder et al., 2018; Cadotte, 
Arnillas, Livingstone, & Yasui, 2015; Levine, 2016; Scherrer et al., 
2019). The logic behind this is that observed non‐random patterns 
of trait variation (e.g., convergence versus divergence) within 
assemblages reflect community assembly rules (Gotzenberger 
et al., 2012), including the role of interspecific competition  
(Funk & Wolf, 2016; Gaudet & Keddy, 1988; Kunstler et al., 2016) 
and trophic interactions (Morales‐Castilla, Matias, Gravel, & 
Araújo, 2015). In particular, in homogenous habitats (as variations 

F I G U R E  1   Definitions of specific combinations or envelope (and their centre and width) of environmental conditions and traits 
associated with a given species i, which allow definition of specific (micro‐)habitat, realized niche, niche breadth, trait combination 
(phenotype), trait envelope (“functional niche”), mean trait (mean phenotype) and trait range. The definition of environment, niche and 
habitat follows Kearney (2006), although here the niche is always the realized niche (not the fundamental niche). Note that, as shown in the 
figure, trait or micro‐habitat variation within a community can also yield an envelope at the community level (e.g., Carmona et al., 2016 for 
traits) [Colour figure can be viewed at wileyonlinelibrary.com]

* or ramet in the case of clonal plants
** and sub-envelope of micro-habitats or phenotypes
*** if the physiological conditions would be considered instead of the observed ones (only possible experimentally), then the
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in habitat heterogeneity could also lead to trait variations), a 
constraint that demands greater trait variation than expected by 
chance (i.e., trait divergence or overdispersion as driven by limiting 
similarity) could be used to infer competitive effects, while trait 
convergence (or underdispersion) could be used to account both 
for environmental filtering (i.e., selection for similar adaptations 
to the abiotic environment) and exclusion of inferior competitors  
(i.e., selection for traits conferring high competitive ability) 
(Cadotte & Tucker, 2017; Kraft, Godoy, & Levine, 2015; Mason, 
Bello, Dolezal, & Leps, 2011; Mayfield & Levine, 2010). These de‐
viations from random expectations indicate trait‐based EARs (e.g., 
combination of traits) that could theoretically be used to constrain 
niche‐based S‐SDMs (e.g., D'Amen et al., 2015), be it through single 
traits or trait combinations (Kraft et al., 2015), thus combining niche 

and trait information to improve spatial predictions of communi‐
ties (D'Amen et al., 2017; Laughlin, 2014). The power of combining 
niche and trait information is further supported by accumulating 
evidence that relationships exist, for a given species, between 
traits (or combinations of traits) and particular features of its  
environmental niche (Hawkins, Rueda, Rangel, Field, & Diniz‐Filho, 
2014; Kuhner & Kleyer, 2008; Rueda, Godoy, & Hawkins, 2017, 
2018; Siefert, 2012; Thuiller, Albert, Dubuis, Randin, & Guisan, 
2010). Therefore, traits can explain the outcome of interactions 
between species (Kraft et al., 2015; Mason et al., 2011) and ulti‐
mately explain their coexistence (Chesson, 2000).

However, most studies attempting to infer assembly rules from 
patterns of functional traits within communities across environmen‐
tal gradients (e.g., D'Amen, Mateo, et al., 2018; de Bello et al., 2013; 

F I G U R E  2   Illustration of the measurement levels of species’ environmental conditions (niche) and functional traits in a simplified 
situation with maximum three species (here plants) sampled in three plots (a, b, c) along one or two environmental gradients Env1 and Env2. 
Provided the three plots are sufficient to sample all possible conditions for the three species, three levels of measurements of environmental 
conditions and traits can be defined for each species: (I) the individual level, measured for each individual within a community (or plot); (II) 
community level, mean environmental conditions or mean trait values along environmental or trait gradients, with associated response 
curves displayed to illustrate within‐plot variation; and (III) species level, values measured across the whole range of a species. To represent 
a simplified multidimensional niche or trait space for the whole‐species level, a second variable was added (Env2). As shown in Figure 1, 
several measures can be used at the whole‐species level: envelope, response curves, centroid and breadth. Trait–environment (niche and 
lower levels) relationships are best assessed at the same level (I, II or III). CWM = weighted means of community properties 
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Pottier et al., 2013; Scherrer et al., 2019; Spasojevic & Suding, 2012) 
have used single values per trait (e.g., the average of a few measure‐
ments) and per species, ignoring the large intraspecific trait variation 
(ITV; Albert, Thuiller, Yoccoz, Soudant, et al., 2010; Bolnick et al., 
2011; Moran et al., 2016) that is observed along many environmen‐
tal gradients (Albert et al., 2012; Albert, Thuiller, Yoccoz, Douzet, 
et al., 2010; Jung, Violle, Mondy, Hoffmann, & Muller, 2010; Midolo, 
Frenne, Hölzel, & Wellstein, 2019; Read, Henning, & Sanders, 2017). 
Here we argue that ignoring this variation can have profound effects 
on the spatial predictions of communities and should thus not be 
done naively. It has been shown that ITV can influence measures of 
functional diversity (Albert et al., 2012; Carmona, Bello, Mason, & 
Lepš, 2016), community assembly (Carmona, Rota, Azcarate, & Peco, 
2015; Chalmandrier et al., 2017; Siefert, 2012) and community pre‐
dictions (Laughlin, Joshi, Bodegom, Bastow, & Fule, 2012; Moran et 
al., 2016; Read et al., 2017). It is thus expected that a single value 
for species‐level trait information is insufficient to correctly capture 
community assembly processes constraining local species richness 
and trait distributions (Carmona et al., 2016). The next challenge to 
fully exploit the linkage between environmental niches and func‐
tional traits for improved spatial predictions of communities is thus 
to use trait values corresponding to the environmental conditions 
prevailing at each observation site.

The choice of the scale of trait and niche measurements is par‐
ticularly important and will depend on the goal of the analysis. Each 
spatial resolution potentially carries different information about 
species and their assemblages (de Bello et al., 2013; Carmona et al., 
2015; Messier, McGill, Enquist, & Lechowicz, 2017; see next sec‐
tion and Figure 2), and scale mismatches between measurements of 
niche and traits have been shown to potentially affect the detection 
of species assembly processes (Carmona et al., 2016; Chalmandrier 
et al., 2017; Hart, Schreiber, & Levine, 2016; Scherrer et al., 2019; 
Thuiller, Pollock, Gueguen, & Münkemüller, 2015). Here, we address 
two challenges related to such niche‐trait scale mismatches and the 
need to account for ITV when complementing niche‐based S‐SDMs 
by trait‐based EARs (Figure 3): (a) deriving trait‐based EARs from 
field‐measured data on species’ occurrences (and ideally abundance) 
and species’ traits within communities, thus accounting for ITV 
(Figure 3a); and (b) predicting trait distributions in space and along 
environmental gradients, and using these through the previously  
developed trait‐based EARs to constrain, and thus improve, the raw 
S‐SDM predictions of functional and structural properties of com‐
munities in space (Figure 3b). We argue that, to tackle these chal‐
lenges, we must: (a) collect fine‐scale data on species assemblages, 
species traits (for all co‐occurring species or at least the dominants) 
and abiotic (micro‐)habitat characteristics along key environmental 

F I G U R E  3   A framework for incorporating trait distributions into the spatial modelling of biological communities. As species distribution 
data coupled with environmental predictors allow predictions from stacked species distribution models (S‐SDMs), and thus community 
composition (binary or probabilistic), the newly gathered data on variation of species traits sampled in geographic space could also be 
coupled with environmental maps to obtain spatial predictions of trait values per species. The original or modelled trait distribution data 
could then be used to either: (a) develop or refine rules of species interactions, or quantify the strength of biotic interactions along gradients, 
to be used as assembly rules in S‐SDMs; or (b) be combined with stacked species distribution predictions (probability of occurrence) to 
predict functional or structural patterns of communities spatially. See main text for explanations. Parts of the figure inspired by graphs taken 
from Guisan et al. (2017) [Colour figure can be viewed at wileyonlinelibrary.com]
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gradients, and (b) harmonize scales (or levels) between environmen‐
tal niche and trait measurements for subsequent analyses.

2  | DIFFERENT SPATIAL ME A SUREMENT 
SC ALES FOR SPECIES’  NICHES AND TR AITS

Using common definitions of environmental niches and functional 
traits (Figure 1), three key scales can be described that are most 
often used in ecological research (Figure 2). Firstly, at the finest 
scale, point measurements can be made of the traits of individuals 
within a plot and of the microenvironmental conditions where those 
individuals precisely occur («individual level» in Figures 1 and 2‐I; see 
e.g., Blonder et al., 2018; Carmona et al., 2015, 2016). This level is 
still rarely considered in community analyses and modelling (but see 
Taylor et al., 2014; Thuiller, Gallien, et al., 2010 and references in 
table 1 of Silvertown, 2004). Secondly, mean values of traits and  
environmental conditions – or other summary statistics (e.g., median,  
variance or envelope) – can be calculated per plot (as sampling units; 
«community level» in Figures 1 and 2‐II). This is the level of a com‐
munity that allows comparison of mean traits and conditions in 
plots (or other summary statistics) along wide environmental gra‐
dients. For environmental niche measurement in modelling stud‐
ies over large spatial extents, these are thus expected to be the 
values associated with each pixel in raster environmental maps  
(e.g., mean annual temperature for the pixel). Defining traits at 
this level would require calculating a mean (or other metric) value 
from multiple within‐plot measurements across many spatial loca‐
tions, but this is not commonly done (but see Albert et al., 2012; 
Carmona et al., 2015). Thirdly, measures of niches and traits can be 
aggregated across whole species’ ranges (or possibly subspecies or 
ecotypes) («species level» in Figures 1 and 2‐III), yielding an envelope 
of values (e.g., environmental niche or trait envelope), a central value  
(e.g., niche centroid, mean trait) or a range of value (niche breadth, 
trait range) (Figure 1; note that all these can similarly be calculated 
within a plot at the community level; see Carmona et al., 2016).

In many studies to date, there is a scale mismatch in the availabil‐
ity of niche and trait data. The environmental measures used to de‐
pict species niches are often derived from spatial layers (or plot level 
measures of abiotic conditions) with a specific resolution matching 
the spatial accuracy of occurrence records (e.g., climatic information 
at 25‐m resolution; D'Amen et al., 2015), and are thus mainly based 
on habitat measurements, that is, mean community level environ‐
mental conditions. For trait envelopes, however, although intraspe‐
cific trait measures across species ranges or environmental gradients 
are rapidly accumulating (Albert et al., 2012; Anderegg et al., 2018; 
Bolnick et al., 2011; Carmona et al., 2015; Chalmandrier et al., 2017; 
Read et al., 2017; Siefert, 2012), most large‐scale trait databases 
(e.g., Kattge et al., 2011) only provide a single value (or a few values)  
per trait and per species (Albert, Thuiller, Yoccoz, Douzet, et al., 
2010; Carmona et al., 2016, 2015). This is problematic, because 
these single trait values may be based on observations made outside 
the area of interest or covering only a part of the values observed 

for the species along the studied/modelled environmental gradients, 
potentially biasing estimations of trait–niche relationships. In the 
next section, we provide two examples of such scale mismatches 
between niche and trait measurements using functional traits to 
constrain (through deriving EARs) or predict species assemblages 
(Laughlin et al., 2012; but see Read et al., 2017).

3  | E VIDENCE OF SC ALE MISMATCHES 
BET WEEN TR AIT AND ENVIRONMENTAL 
NICHE ME A SURES

A first example of niche–trait scale data mismatches comes from stud‐
ies attempting to detect functional signatures and unravel processes 
driving community assembly (e.g., Gotzenberger et al., 2012; Scherrer 
et al., 2019; Spasojevic & Suding, 2012), especially biotic interactions 
(Morales‐Castilla et al., 2015), along environmental gradients without 
accounting for ITV (Carmona et al., 2016; Hart et al., 2016; Jung et al., 
2010). Many studies in functional ecology have analysed trait disper‐
sion patterns within plots based on single trait values per species  
(i.e., without accounting for ITV; e.g., D'Amen et al., 2015; Pottier et al., 
2013; Spasojevic & Suding, 2012; see Violle et al., 2012). If these trait 
values differ from the locally expressed trait patterns (under given 
environmental conditions), conclusions about the underlying assem‐
bly process are inaccurate (Carmona et al., 2016; D'Andrea & Ostling, 
2016). Instead, mean trait values per species in a community, or 
even better a probability distribution function derived from all indi‐
vidual measurements per species within a plot, should be obtained to 
infer trait patterns at the community scale (Figure 2; Carmona et al., 
2015), and the latter be used to identify EARs and infer community 
assembly processes (Hart et al., 2016). Omission of ITV (and thus of 
measurements of trait variation at the individual/microhabitat or com‐
munity/habitat scale) could help explain the failure of the few early 
attempts to use traits to refine S‐SDM‐based community predictions 
across large gradients that used a single value per trait and per species  
(e.g., D'Amen et al., 2015).

A second, closely related way in which scale mismatches in 
niche–trait data can bias community analyses is associated with spa‐
tial predictions of functional properties of communities (D'Amen, 
Mateo, et al., 2018; Ferrier & Guisan, 2006; Figure 3b). The previ‐
ously reported failures to quantify local trait patterns from species‐
level trait values may lead to large uncertainty in the relationship 
between community functional patterns and environmental factors, 
and therefore ultimately affect niche‐based predictions of functional 
properties (Figure 3b). Spatial predictions of community trait varia‐
tion, such as functional diversity (FD) indices or weighted means of 
community properties (CWM), can be based on a single value per 
species and per trait (applied to all plots), or on local trait estimates 
per plot conditional on the specific environmental conditions. A mis‐
match arises when single trait values measured at the species level 
are related to community‐ or plot‐level niche estimates. As a result, 
most S‐SDM studies that tested the use of species traits to detect 
assembly rules (e.g., Pottier et al., 2013) or predict the outcome of 
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biotic interactions and community properties (e.g., D'Amen et al., 
2015; D'Amen, Mateo, et al., 2018) without accounting for ITV are 
likely to have improperly estimated trait distributions (e.g., mean, 
variance, skewness, kurtosis) within and between communities 
along environmental gradients (Carmona et al., 2015; Read et al., 
2017). Furthermore, this problem likely worsens when using such 
models to predict spatial patterns of community properties under 
future global change (Moran et al., 2016). Indeed, neglecting ITV was 
already shown to increase the risk of overestimating future commu‐
nity changes under changing environments (Bolnick et al., 2011), 
and could also impact future spatial predictions of trait distributions 
under climate change (as e.g., in Dubuis et al., 2013).

4  | A REL ATED SC ALE ISSUE: 
QUANTIF YING NICHE OR TR AIT 
ENVELOPES WITH INDIVIDUAL‐ OR 
COMMUNIT Y‐LE VEL ME A SUREMENTS

A related scale issue may also affect trait and niche perception, and 
therefore community predictions. Research into species environ‐
mental niches has typically focused so far on the representation of 
niche envelopes at the whole species level (see Figures 1 and 2) from 
field observations measuring the mean value of environmental con‐
ditions in each plot or modelling unit (Guisan et al., 2017). While such 
representations are applicable for modelling and predicting species 
distributions, there has been little assessment so far of whether 
niche envelopes (or even the full trait space, as in Diaz et al., 2016) 
based on finer measurements at the individual level might provide a 
more accurate picture of species requirements and a better linkage 
with traits (e.g., to compare niche and trait envelopes; Blonder, 2017; 
Blonder et al., 2018; Figure 2). For example, species could occupy 
distinct microhabitats within a given plot (i.e., habitat), which might 
in some cases display as much variability in microclimatic conditions 
across relatively short distances as variability observed along envi‐
ronmental gradients across larger distances (e.g., Scherrer & Körner, 
2011), and could thus promote within‐plot species coexistence and 
impact community assembly inference (Scherrer et al., 2019). This 
therefore also depends on the size of the sampling unit and where 
its surface lies along a species–area curve for the type of habitat or 
ecosystem considered. Reducing the size of the sampling and mod‐
elling units down to presumably homogenous habitats (i.e., where  
all individuals experience the same conditions) may reduce the 
need for individual‐level measurements. Evaluation of the predic‐
tive power gained from small‐scale characterization of niches is thus 
needed, not only to provide insight into how scale influences niche 
quantification (Moran et al., 2016), and detection of biotic interac‐
tions (Araujo & Rozenfeld, 2014; Scherrer et al., 2019), but also to 
assess how it could affect spatial predictions of species and com‐
munities. For example, in attempts to estimate species sensitivity to 
climate changes, niches fitted from community‐level (habitat) meas‐
urements (i.e., the approach currently used in the large majority of 
cases) could be different from niches estimated from individual‐level 

(microhabitat) measures, which could in turn affect community pre‐
dictions. The same could apply to trait envelopes, whose shapes and 
sizes could vary depending on whether the envelope is quantified 
from microhabitat measures (within plots) or community (plot) mean 
trait measurements, although examples are more difficult to find 
given the scarcity of studies including trait envelope quantifications 
(Blonder, 2017).

5  | RESOLVING THE MISMATCHES: 
PREDIC TING BIOLOGIC AL COMMUNITIES 
WITH TR AITS AND ENVIRONMENTAL 
NICHES ME A SURED AT THE SAME SC ALE

Taken together, one major impediment in integrating niches and 
traits to better predict the spatial distribution of communities 
from S‐SDMs is the difficulty of gathering individual and/or com-
munity level measurements for both the abiotic environment and 
traits within the same plots across broad environmental gradients 
(Carmona et al., 2015; Enquist et al., 2017). In the published lit‐
erature, original data are usually aggregated prior to storage and 
analysis (Violle et al., 2012) and, as a result, individual‐level data 
are typically not publicly available, although intraspecific trait in‐
formation is increasingly being added to trait databases (e.g., TRY;  
Kattge et al., 2011). This development would need to be expanded 
to include local measures of environmental data (i.e., micro‐
environments) and to store both types of data, traits and niche  
(as in studies such as Blonder et al., 2018), together with accurate 
geographic positions (e.g., in the Global Biodiversity Information 
Facility database; see Anderson et al., 2016). The issue of scale 
mismatches we identified thus also calls into question studies that 
still combine species‐level traits (i.e., ignoring trait variation) with 
community‐level habitat measurements, and raises the question 
whether other or complementary types of data and/or analyses 
should be used in such cases (e.g., accounting for estimates of trait 
variation from other sources, running sensitivity analyses).

One way to obtain the data necessary to improve the niche–
trait linkage in the context of improving communities’ spatial 
predictions would be to design large field surveys jointly sam‐
pling intraspecific niche and trait variation at the finest level  
(i.e., individuals) spanning a wide range of distinct environmental 
conditions. This becomes increasingly within reach, as shown by 
the increasing number of studies sampling intraspecific trait mea‐
surements along wide environmental gradients (Carmona et al., 
2015; Chalmandrier et al., 2017; see Moran et al., 2016), which will 
allow quantification of trait envelopes and associated central and 
variance measures (Rosenfeld, 2002; Violle & Jiang, 2009) anal‐
ogous to what has been done so far for the environmental niche 
(see Blonder, 2017; Figure 1). With such intraspecific trait mea‐
surements sampled more systematically along wide environmental 
gradients, it will then become possible to test whether niche and 
trait envelopes differ if quantified from individual versus commu‐
nity measurements (Figure 2), and if community predictions from 
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S‐SDMs could be refined with EARs obtained from individual and/
or site level trait patterning. A key challenge thus remains to de‐
fine which dimensions of environmental niches and species traits 
should be jointly measured in the field. In this regard, approaches 
to assess the minimal dimensionality in traits are very useful, and 
some categories of traits (e.g., below‐ground traits for plants) 
might require novel field approaches (Laughlin, 2014). Similarly, 
novel approaches will be required (ideally including experiments) 
to select the most optimal descriptors of species’ environmental 
niches (Mod, Scherrer, Luoto, & Guisan, 2016; Scherrer & Guisan, 
2019). This will also require a better understanding of which trait 
relates to which environmental niche dimension, and thus which 
multi‐trait phenotype is found where across dynamic landscapes 
and complex environmental gradients (Laughlin & Messier, 2015).

Finally, although we mainly discussed ITV as an evolutionary 
component of species that needs to be accounted for through new 
sampling strategies when analysing and predicting community pat‐
terns in space and time, ITV also has an ecological component that 
can modulate population dynamics and therefore buffer potential 
extinctions in the context of future climate or other environmen‐
tal change (Bolnick et al., 2011), and therefore also has implica‐
tions for predicting future community patterns, deserving future 
investigations.
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