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ABSTRACT: Extreme weather events have devastating impacts on human health, economic 
activities, ecosystems, and infrastructure. It is therefore crucial to anticipate extremes and their 
impacts to allow for preparedness and emergency measures. There is indeed potential for proba-
bilistic subseasonal prediction on time scales of several weeks for many extreme events. Here we 
provide an overview of subseasonal predictability for case studies of some of the most prominent 
extreme events across the globe using the ECMWF S2S prediction system: heatwaves, cold spells, 
heavy precipitation events, and tropical and extratropical cyclones. The considered heatwaves 
exhibit predictability on time scales of 3–4 weeks, while this time scale is 2–3 weeks for cold 
spells. Precipitation extremes are the least predictable among the considered case studies.  Tropical 
cyclones, on the other hand, can exhibit probabilistic predictability on time scales of up to  
3 weeks, which in the presented cases was aided by remote precursors such as the Madden–Julian 
oscillation. For extratropical cyclones, lead times are found to be shorter. These case studies clearly 
illustrate the potential for event-dependent advance warnings for a wide range of extreme events. 
The subseasonal predictability of extreme events demonstrated here allows for an extension of 
warning horizons, provides advance information to impact modelers, and informs communities 
and stakeholders affected by the impacts of extreme weather events.
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E xtreme weather events pose threats to humans, infrastructure, and ecosystems. In a 
changing climate, many extremes are projected to increase in strength, frequency, and/
or duration, and it is therefore increasingly important to anticipate extreme events 

and their impacts as early as possible. A successful prediction several weeks in advance 
will benefit stakeholders’ decision-making for emergency management (White et al. 2017; 
Merz et al. 2020; White et al. 2022). Indeed, there is increasing potential for probabilistic 
subseasonal prediction on time scales of several weeks for extreme events (Vitart 2014; Vitart 
and Robertson 2018; Robertson et al. 2020). Increased predictability can arise from remote 
drivers or long-lived precursor patterns that are conducive to the occurrence of extreme 
events. These drivers include tropical precursors such as the Madden–Julian oscillation (MJO)  
(e.g., Vitart and Molteni 2010; Rodney et al. 2013) and El Niño–Southern Oscillation (ENSO) 
(e.g., Domeisen et al. 2015), surface interactions with snow cover (e.g., Cohen and Jones 2011) 
or sea ice (e.g., Sun et al. 2015), the upper atmosphere (e.g., Domeisen et al. 2020b; Domeisen 
and Butler 2020), or a combination of predictors (Muñoz et al. 2015, 2016; Doss-Gollin  
et al. 2018; Dobrynin et al. 2018). A better understanding of these precursors can contribute 
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to increased predictability. At the same time, improvements in the prediction of extremes 
arise from progress in the performance of prediction systems through advancements in 
process representation, coupling, and parameterization, as well as model resolution (Bauer 
et al. 2015). Merryfield et al. (2020) recommended an assessment of the predictability of 
historical high-impact weather events as a way forward to demonstrate the potential benefits 
of subseasonal-to-seasonal (S2S) forecasts. Here we discuss extreme event predictability 
based on a state-of-the-art subseasonal prediction system and a range of precursors for 
selected case studies of high-impact extremes in Europe, Africa, Asia, and Australia, as 
well as South, Central, and North America for the most prominent types of extreme events 
on a global scale: heatwaves, cold spells, heavy precipitation events, and both tropical and 
extratropical cyclones. The following sections provide a brief overview of the physical drivers 
and potential for predictability for these extreme events, while the subsequent sections dive 
into the specific case studies.

Heatwaves. Heatwaves over land have devastating impacts on human health and ecosystems  
(Campbell et al. 2018; Yang et al. 2019), agriculture (Brás et al. 2021), and energy  
demand (Auffhammer et al. 2017; Bloomfield et al. 2020). Over the past decades, heatwaves 
have significantly increased in frequency and intensity (Perkins et al. 2012) with further  
increases predicted for the future (Watanabe et al. 2013; Lopez et al. 2018), largely due to 
anthropogenic global warming (IPCC 2013; Shiogama et al. 2014). Heatwaves are commonly  
characterized by temperature and duration thresholds (Russo et al. 2014), in addition to 
humidity and diurnal temperature cycle characteristics for applications to human morbidity 
and mortality (e.g., Raymond et al. 2020).

Heatwaves are often associated with persistent anticyclonic circulation patterns (Li et al. 
2015; Freychet et al. 2017) that can sometimes be identified as blocking (Pfahl and Wernli 
2012; Schaller et al. 2018; Brunner et al. 2018; Carrera et al. 2004; Dong et al. 2018; Li  
et al. 2019; Yeo et al. 2019), long-lived Rossby wave packets (RWPs; Wirth et al. 2018), 
which can contribute to predictability (Fragkoulidis et al. 2018; Grazzini and Vitart 2015), or  
quasi-stationary wave trains (Enomoto 2004; Kim et al. 2018; Li et al. 2019). These patterns 
can be triggered or enhanced by remote effects. For instance, sea surface temperature (SST) 
anomalies in subtropical and extratropical ocean basins can help induce European and North 
American heatwaves (Wulff et al. 2017; Duchez et al. 2016; McKinnon et al. 2016; Hartmann 
2015), and East Asian heatwaves can be triggered by the North Atlantic Oscillation (NAO), 
Ural blocking, and diabatic heating in the eastern Mediterranean (Yasui and Watanabe 2010; 
Sun 2012; Wu et al. 2016; Gao et al. 2018; Li et al. 2019).

These remote forcings can enhance the predictability of heatwaves. Recent research has 
indeed shown potential for the extended-range prediction of heatwaves on subseasonal- 
to-seasonal time scales (Kueh and Lin 2020; Koster et al. 2010; Luo and Zhang 2012; Pepler 
et al. 2015; Tian et al. 2017; Wulff and Domeisen 2019). In addition, heatwaves can also be 
exacerbated by land–atmosphere feedbacks (e.g., Fischer et al. 2007; Mueller and Seneviratne 
2012; Miralles et al. 2014; Hauser et al. 2016; Seneviratne et al. 2010; Berg and Sheffield 
2018; Tian et al. 2016, 2018) and improvements in soil moisture initialization can therefore 
increase the predictability of heatwaves (Ferranti and Viterbo 2006; Dirmeyer et al. 2018; 
Bunzel et al. 2018).

Cold spells.  Cold spells can affect electricity production (Beerli et al. 2017; Gruber et al. 
2021; Doss-Gollin et al. 2021) and demand (Cradden and McDermott 2018; Bloomfield et al. 
2018, 2020), human mortality (Charlton-Perez et al. 2019, 2021), and agriculture (Materia 
et al. 2020). Similar to heatwaves, cold spells are often defined by temperature and duration 
thresholds (de Vries et al. 2012). Like heatwaves, cold spells can be related to atmospheric  
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blocking, and hence, model biases in blocking frequency can impair predictions at lead 
times beyond 2 weeks (Hamill and Kiladis 2014; Quinting and Vitart 2019). Predictability can 
be gained from tropical drivers such as the MJO, and model performance can be enhanced 
by capturing the predictable signal of large-scale weather patterns such as the NAO at the  
extended range (Ferranti et al. 2018). Blocking associated with the negative phase of the 
NAO can also be induced through sudden stratospheric warming (SSW) events (Thompson  
et al. 2002; Lehtonen and Karpechko 2016; Charlton-Perez et al. 2018; Domeisen 2019), which 
can induce cold spells over both land (Kolstad et al. 2010) and ocean (Afargan-Gerstman  
et al. 2020). However, not all regions gain predictability skill from stratospheric forcing  
(Domeisen et al. 2020b; Materia et al. 2020).

Precipitation events.  Heavy precipitation events can lead to flooding as well as land-  
or mudslides, and they are often accompanied by strong winds and low temperatures, 
the combination of which can be detrimental to humans, agriculture, and infrastructure  
(Zscheischler et al. 2020). Heavy precipitation events are projected to become more frequent 
in many regions (Donat et al. 2016; Prein et al. 2017) due to anthropogenic climate change 
(Westra et al. 2013; Zhang et al. 2013; C. Li et al. 2021). Similar to temperature extremes, 
rainfall extremes arise through persistent atmospheric conditions, which can be triggered  
or maintained by large-scale forcing, e.g., from ENSO and the MJO (Jones et al. 2004;  
Kenyon and Hegerl 2010; Muñoz et al. 2015), atmospheric blocking (Lenggenhager and  
Martius 2019), or monsoon systems (Zhang and Zhou 2019).

Precipitation extremes tend to be less predictable than temperature extremes such as warm 
and cold spells (de Andrade et al. 2019). The ability of a prediction system to predict rainfall 
extremes beyond deterministic time scales is related to the simulation of the connection  
between precipitation and its large-scale forcing such as ENSO and the MJO (Vigaud et al. 
2017; Specq et al. 2020) or atmospheric rivers (DeFlorio et al. 2019). Regions with strong 
ENSO teleconnections exhibit better predictability of rainfall extremes, as, for example, in 
Australia (King et al. 2020) or the southwestern United States (Gershunov 1998; Pan et al. 
2019), if ENSO is correctly simulated (Bayr et al. 2019). Interference of drivers on multiple 
time scales can further modulate the intensity, occurrence, and predictability of precipitation 
extremes (Muñoz et al. 2015, 2016).

Tropical cyclones and medicanes. Tropical and extratropical cyclones impact human lives 
and livelihoods and lead to large environmental impacts and economic losses (Camargo 
and Hsiang 2015; Hsiang 2010; Hsiang and Narita 2012). Anthropogenic climate change  
affects various properties of tropical cyclones (TC), in particular their intensity, as well as the  
precipitation and storm surge associated with these events (Knutson et al. 2019, 2020). 
While individual cyclones’ genesis, tracks and intensity are not predictable beyond deter-
ministic time scales, large-scale drivers can provide predictability in a probabilistic sense on 
S2S time scales. On seasonal time scales, ENSO modifies the characteristics of TC frequency, 
intensity, and tracks (e.g., Vitart et al. 2003; Lin et al. 2017; Nicholls 1979; Evans and Allan 
1992). On subseasonal time scales, TC activity is enhanced (decreased) during and after an 
active (suppressed) MJO (e.g., Camargo et al. 2019), especially in the Southern Hemisphere 
(e.g., Hall et al. 2001; Camargo et al. 2009), allowing for successful statistical forecasts  
(Leroy and Wheeler 2008). Recently, the performance of dynamical models for forecasting 
TCs on subseasonal time scales has significantly improved (Camp et al. 2018; Camargo et al. 
2019; Robertson et al. 2020; Vitart et al. 2010; Camargo et al. 2021). A successful example is 
Cyclone Hilda, which made landfall in northwestern Australia and was predicted 3 weeks in 
advance (Gregory et al. 2019). However, this success is not consistent across models, and is 
likely linked to a successful prediction of the MJO (Vitart 2017; Lee et al. 2018, 2020).
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In addition to tropical cyclones, we also consider medicanes (“Mediterranean hurricanes”), 
rare intense and high-impact extratropical cyclones in the Mediterranean region (Ulbrich  
et al. 2009; Cavicchia et al. 2014; Mylonas et al. 2018; Flaounas et al. 2021). These events 
occur on average 1.6 times per year (Flaounas et al. 2015) and can lead to severe damage in 
coastal areas associated with flooding and high winds.

Data and methods
To evaluate the subseasonal prediction of the above extreme events we use both forecasts 
and hindcasts (historical forecasts) from the extended-range operational ensemble predic-
tion system (Vitart et al. 2008) from the European Centre for Medium-Range Weather Fore-
casts (ECMWF), which is part of the S2S database (Vitart et al. 2017). The prediction system 
includes coupling with the ocean and sea ice (Buizza et al. 2017). The atmospheric model 
has a horizontal resolution of approximately 36 km and 91 vertical levels with a model lid 
at 0.01 hPa (at the time of data download for this study). Where available, that is, for case 
studies after June 2015, forecasts from the prevailing model version were used (cycles 43R1, 
43R3, and 45R1); these ensemble forecasts consist of 51 members. For the case studies using 
hindcasts, the 11-member hindcast ensemble from model cycle 46R1 was used. Both forecasts 
and hindcasts are initialized twice weekly.

The target weeks are selected for each case study individually based on the week of the 
most extreme anomalies. Since the forecasts are only initialized twice weekly, it is not always 
possible to find a forecast that is initialized exactly the day before week 1. Week-1 lead time 
for a specific case study is therefore chosen such that the target week lies directly on or after 
the initialization, that is, the forecast is initialized either on the first day of week 1 or up to 
2 days earlier. The additional forecast lead weeks (weeks 2–4) then lie exactly adjacent to 
week 1.

To compute anomalies for the subseasonal predictions, a 7-day mean climatology is com-
puted based on the 11-member ensemble hindcasts initialized for the same lead time for the 
corresponding available 20-yr hindcast period. For example, for the California heatwave on 
23 July 2018, the corresponding week-1 climatology is based on the ensemble mean of the 
hindcast ensemble initialized on 23 July for each year from 1998 to 2017. The climatology  
is computed for each lead week separately, yielding a lead-time dependent climatology. 
Anomalies for the predictions are then computed by subtracting the model climatology from 
each ensemble member. For the earlier case studies, the climatology is computed over a 19-yr 
hindcast period excluding the year of the case study to simulate an operational prediction 
setting. Anomalies for reanalysis are computed in a consistent way, by subtracting the daily 
mean climatology computed from reanalysis data for the same years that are used for com-
puting the hindcast climatology for each case study. The use of anomalies for the model and 
reanalysis with respect to their respective climatologies provides a simple bias correction.

The temperature predictions are verified against the 2-m temperatures from ERA5  
(Hersbach et al. 2020), as temperatures are well represented in reanalysis. Precipitation can 
show greater biases in reanalysis (Alexander et al. 2020); hence, precipitation is verified 
against observational datasets from the Australian Water Availability Project (AWAP) 5-km 
daily gridded rainfall analysis (Jones et al. 2009) and the CPC Global Unified Gauge-Based 
Analysis of Daily Precipitation (Chen et al. 2008).

The temperature extremes case studies compare the probability density functions (PDFs) 
of the ensemble members for different lead weeks. Tercile limits (below normal, normal, and 
above normal, as well as the 10th and the 90th percentiles) are computed with respect to the 
lead time–dependent model climatology, based on 11 hindcast members. For the rainfall 
extremes, forecast performance is assessed by measuring the forecast system’s association 
and discrimination attributes, using the Spearman correlation coefficient (Wilks 2019) and 
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the area under the relative operating characteristic (ROC; Wilks 2019) curve for the above-
normal category, respectively. The Spearman correlation is a nonparametric measure of how 
in-phase the forecasts and observations are (correlation values of 1 indicate perfect associa-
tion), and the ROC area for the above-normal category measures how well the forecast system 
discriminates between the above-normal and the other tercile-based categories, with values 
at 50% indicating a discrimination as good as that of climatology-based forecasts, and values 
above (below) 50% indicating better (worse) discrimination than climatology-based forecasts. 
The precipitation forecasts are calibrated according to a pattern-based model output statistics 
approach using canonical correlation analysis (CCA; Tippett et al. 2008), implemented via  
PyCPT, a set of Python libraries interfacing the Climate Predictability Tool (Muñoz 2020; 
Muñoz et al. 2019; Mason et al. 2021), using IRI’s “NextGen” forecast approach (Muñoz  
et al. 2019; WMO 2020). To obtain a robust sample size, these metrics were computed using 
all eight initializations (20 years per initialization) available for the months and target dates 
listed in Table 1, conducted independently for each rainfall extreme case study. For example, 
for the Guatemala case study (see next section), eight 20-yr-long hindcasts were used, corre-
sponding to all initializations available for June 1998–2017, providing a total of 160 hindcast 
weeks to compare against the corresponding 160 weeks of observed rainfall. For additional 
details, see Materia et al. (2020).

For evaluating the model performance for the cyclones, their observed tracks are com-
pared against the probability of cyclone occurrence given by the probability of a cyclone 
passing within 300 km of each grid point using the ECMWF tracker (Vitart et al. 1997) from 
the 51-member ensemble of the prediction system. The observed tropical cyclones data are 
obtained from the International Best Track Archive for Climate Stewardship (IBTrACS) (Knapp 
et al. 2010). The observed track for the medicane is obtained from the ECMWF operational 
analysis. The medicane is further evaluated using convective available potential energy 

Table 1. Overview of the case studies evaluated in this study.

Location/target region Forecast target period

Heatwaves

Western United States (California) (32°–48°N, 110°–125°W) 23–29 Jul 2018

Central/northeastern Europe (50°–60°N, 10°–20°E) 23–29 Jul 2018

Southeastern United States (25°–45°N, 92°–70°W) 24–30 May 2019

East Asia (eastern China, Korean Peninsula, Japan)  
(30°–40.5°N, 105°–130.5°E)

5–11 Aug 2013

Cold spells

Southeastern Europe (37.5°–54°N, 10.5°–30°E) 3–9 Apr 2003

Central/northern Europe (37.5°–65°N, 12.5°W–30°E) 26 Feb–3 Mar 2018

Southwestern Europe (France) (43.5°–49.5°N, 4.5°W–7.5°E) 16–22 Jan 2017

Northern Europe (United Kingdom, Germany, Scandinavia)  
(45°–65°N, 10°W–30°E)

27 Nov–3 Dec 2010

Precipitation events

Volcán de Fuego, Guatemala (14.5°N, 91°W) 18–24 Jun 2018

Northwestern Ecuador (0°, 79°W) 21–27 Jan 2016

Northwestern Italy (43.5°–46.5°N, 6.5°–10°E) 21–27 Nov 2016

Northeastern Australia (18°–22°S, 138°–147°E) 31 Jan–6 Feb 2019

Cyclones

Western Australia: Cyclone Claudia (no landfall) 5 Jan 2020 (formation)/18 Jan 2020 (dissipation)

Mozambique Channel: Cyclone Belna (landfall: Madagascar) 2 Dec 2019 (formation)/9 Dec 2019 (landfall)

Western North Pacific: Typhoon Chan-hom (landfall: China) 29 Jun 2015 (formation)/11 Jul 2015 (landfall)

Mediterranean: Medicane Zorbas (landfall: Peloponnese, Greece) 27 Sep 2018 (formation)/29 Sep 2018 (landfall)
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(CAPE), an indicator of atmospheric instability, which is a necessary condition for the develop-
ment of severe weather events. CAPE has been found to be a prominent indicator and potential 
predictor for tropical cyclones (Huang and Liang 2010; Lee and Frisius 2018; Mylonas et al. 
2018) but has not been prominently used for medicanes.

Extreme event case studies
This section presents specific case studies for the four types of extremes. The case studies were 
selected based on their extreme nature and societal impacts. While this selection should not 
be seen as a complete assessment of model performance or intercomparison of predictability 
between event types or within the same event type, these case studies serve as a representa-
tive selection of extreme events and their predictability, which can translate into time scales 
of emergency preparedness (White et al. 2022). Table 1 provides an overview of the timing 
and location of each case study.

Heatwaves. We first examine the predictability of four extreme heatwaves in North America, 
Europe, and East Asia between 2013 and 2019 (Fig. 1). The first two heatwaves are part of 
the extreme Northern Hemisphere heatwave in summer 2018, when heatwaves simultane-
ously affected North America and Eurasia. We focus on the week of 23–29 July 2018, when 
temperatures over California reached 51°C in Death Valley. California monthly mean tem-
peratures for July surpassed the previous record set in 1931 (NOAA 2018) as heatwaves also 
occurred earlier that month. Similarly in Europe, the seasonal mean was strongly affected as 
the heat arrived in two waves, one from mid-May to mid-June and the second from mid-July 
to the beginning of August.

The model successfully predicts the concurrent 2018 heatwaves for the target period  
3 weeks ahead in terms of the spatial structure of the anomalies for both considered regions, 
although with reduced amplitudes, meaning that most ensemble members remain well be-
low the observed anomalies (Figs. 1a–d). For Europe, at lead times of 2 weeks, 49 out of 50 
ensemble members exceed the upper third of the climatological distribution (Fig. 2b). The 
forecast probability for the upper tercile is still 86% at lead times of 3 weeks and reduces to 
60% for lead week 4, but with a long tail of the distribution toward extreme heat. For California,  
the model also predicts the extreme heat with some confidence out to 4 weeks (Fig. 2a). The 
2-week lead forecast yields the most confident prediction, with 29% of ensemble members  
predicting temperatures above the 90th percentile, and 78% predicting above-normal  
temperatures. Interestingly, although the 3-week lead forecast distribution is still shifted 
toward above-normal temperatures, it is arguably the weakest prediction, with only 12% of 
members predicting temperatures above the 90th percentile, as compared to 24% for week 4.

Generally, California/western U.S. heatwaves tend to be associated with high pressure 
over the Great Plains, low pressure off the California coast, and warm moist air transport 
from the south. There has been an increasing trend in this type of humid heatwave in recent 
years due to warming ocean temperatures (Gershunov and Guirguis 2015). When present, 
this ocean–atmosphere pattern can lead to higher predictability of heatwaves, although 
forecast accuracy over the western United States and California is on average lower relative 
to other U.S. regions (Gershunov and Guirguis 2012; Ford et al. 2018; Kornhuber et al. 2019). 
However, July 2018 was atypical in that it was characterized by a wave-7 pattern (Kornhuber 
et al. 2019) associated with a strong and persistent region of high temperatures over much 
of the United States in the first half of July, and high pressure anomalies off the coast of and 
over the western United States in the last 2 weeks of July. Land–atmosphere and vegetation 
feedbacks are further suggested to have played a role in the 2018 heatwave, especially over 
central Europe (Liu et al. 2020; Sinclair et al. 2019; Albergel et al. 2019). Finally, the event 
was made more likely due to anthropogenic climate change (Yiou et al. 2019).
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Fig. 1. Heatwaves: (a),(c),(e),(g) 2-m temperature anomalies for the target week (indicated in the panel titles) from ERA5 
data and (b),(d),(f),(h) those predicted by the ECMWF week-3 forecasts (hindcasts prior to 2016), with initialization dates 
indicated in panel titles. Rows show the (a),(b) California heatwave, (c),(d) European heatwave, (e),(f) U.S. heatwave, and 
(g),(h) East Asian heatwave. White boxes indicate the averaging areas used for Fig. 2. All case studies use model version 
CY45R1, except for the East Asia heatwave, which uses CY46R1.

Unauthenticated | Downloaded 10/07/22 04:21 PM UTC



A M E R I C A N  M E T E O R O L O G I C A L  S O C I E T Y J U N E  2 0 2 2 E1481

Fig. 2. Heatwaves: PDF of the predicted 2-m temperature anomalies from the model ensemble averaged over the target 
week (indicated in Table 1) for the heatwave case studies, averaged over the white boxes in Fig. 1 and initialized at (from left 
to right) 4, 3, and 2 weeks before the start of the target week. Panels show the (a) California heatwave 2018, (b) European 
heatwave 2018, (c) southeastern U.S. heatwave 2019, and (d) East Asian heatwave 2013. Tercile limits (below normal: blue; 
normal: gray; above normal: red) are computed with respect to the lead time–dependent model climatology. Values above 
the 66th percentile (below the 33rd percentile) are represented by red (blue) shading. Gray shading represents values bet-
ween these terciles. The yellow dots indicate the ensemble members that were used to construct the PDF (51 for forecasts, 
11 for hindcasts). The extremes above the 90th (below the 10th) percentile are hatched and their probabilities are indicated 
by red (blue) numbers. The purple dashed line represents the anomaly in ERA5 averaged over the target week.
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Less than a year after the devastating 2018 heatwave, another series of heatwaves  
affected the United States in 2019. In late May 2019 (we here consider the week of 24–30 May), 
an early season heatwave affected the southeastern United States, tied to a wavy jet stream 
pattern with anomalously high (low) pressure over the southeastern (southwestern) United 
States (Di Liberto 2019). The model captures the temperature anomalies at 3 weeks’ lead time, 
but it notably underestimates the extreme temperature anomalies (Figs. 1e,f), which is also 
found in the NCEP CFSv2 model (Luo and Zhang 2012). This underestimation is evident in 
the ensemble spread (Fig. 2c).

A further devastating heatwave was observed in East Asia in August 2013. The heatwave  
persisted for over 2 weeks from late July to mid-August, resulting in severe socioeconomic  
losses in the region (Duan et al. 2013; Sun et al. 2014; Li et al. 2019). South Korea  
experienced the hottest summer nights and the second-hottest summer days since 1954  
(Min et al. 2014). In western Japan, daily maximum temperature records were broken or 
tied at 143 weather stations (JMA 2013), many of which were broken again during the 2018 
heatwave. The extreme persistence and severity of the event resulted from the combination 
of a westward extension of the North Pacific subtropical high (Peng 2014; Li et al. 2015) 
and a zonal wave train (Yeo et al. 2019) resembling the circumglobal teleconnection (Ding 
and Wang 2005).

For the considered target week of 5–11 August 2013, a warm anomaly of over 4°C was 
observed in the large metropolitan areas of eastern China, while the heatwave extended to 
the Korean Peninsula and Japan (Fig. 1g). The temperature anomaly was larger in the urban 
areas than in rural areas (Wang et al. 2017), possibly due to the urban heat island effect. The 
temperature distribution is well captured by the model over land at a 3-week lead time, though 
the magnitude is slightly underestimated, while the warm anomaly over the eastern China Sea 
is not reproduced (Fig. 1h). When initialized four weeks before the target period on 15 July, 
more than a third of the ensemble members point to below-normal temperatures, although 
20% already predict temperatures above the 90th percentile (Fig. 2d). However, starting at 
the 3-week lead time, essentially all ensemble members predict above-normal temperatures, 
and only one ensemble member at 2 weeks’ lead time predicts temperatures below the 90th 
percentile. More importantly, the ensemble mean of these initializations quantitatively well 
captures the observations (i.e., individual ensemble members are well centered about the 
observed value). This result indicates that the 2013 East Asia heatwave is quantitatively well 
predicted by the model at a maximum lead time of 3 weeks.

Cold spells. Several examples of extreme cold spells in Europe are studied in this section. 
We start with a cold spell in eastern and southeastern Europe in late winter and early spring 
of 2003 (Levinson and Waple 2004) that preceded a record-breaking summer heatwave. The 
month of February was the coldest on record in Albania and Macedonia, and temperatures 
in southeastern Europe were between −2° and −5°C below normal for much of February and 
early March (Dittmann et al. 2004). The target week of 3–9 April (Fig. 3a) marked the end of 
this cold period, but was cold enough that the month of April registered record minimum 
temperatures in the Baltic region, the Danube watershed, and part of Italy and the Balkans 
(Dittmann et al. 2004). The extreme cold was associated with atmospheric blocking over the 
United Kingdom leading to southward advection of cold air masses from the Arctic, reaching 
southeastern Europe on 7 April. The temperature contrasts between the frigid air mass and 
the southern Adriatic Sea caused strong convective precipitation, with heavy snowfall along 
the coasts of western Greece, Albania, and southern Italy.

The model predicts the cold anomaly in central Europe (Fig. 3b), though with a south-
eastward shift and smaller anomalies than observed. The ensemble starts encompassing 
the observed anomaly at the 3-week lead time (19 March initialization, Fig. 4a), indicating a 
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51% probability of temperatures in the lower tercile for the target week, and a 29% chance 
of temperatures below the 10th percentile. At the 2-week lead time, the confidence about the 
occurrence of cold weather is clearly increased, with 72% of the ensemble members indicat-
ing temperatures below normal, and 53% below the 10th-percentile threshold.

Fig. 3. As in Fig. 1, but for the cold spell case studies: (a),(b) Southeastern European cold spell in 
2003 (model version CY46R1), (c),(d) central/northern European cold spell in 2018 (model version 
CY43R3), (e),(f) France cold spell in 2017 (model version CY43R1), and (g),(h) northern European 
cold spell in 2010 (model version CY46R1).
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Fig. 4. As in Fig. 2, but for the cold spell case studies: (a) Southeastern European cold spell in 2003, (b) European cold spell 
in 2018, (c) France cold spell in 2017, and (d) the northern European cold spell in 2010.
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Another cold spell preceding a hot summer occurred in late February/early March 2018 in 
central and western Europe after an otherwise mild winter. The cold wave was likely linked 
to a major SSW event in mid-February 2018, which enhanced the probability of the negative 
NAO and Greenland blocking during the peak of the cold event (Kautz et al. 2020). The SSW 
itself was anticipated 10 days ahead (Karpechko et al. 2018)—a typical predictability time 
scale for SSWs (Domeisen et al. 2020a). Knight et al. (2021) identified the extreme MJO event 
of January 2018 as an important driver of this SSW.

The blocking associated with this cold spell shows predictability in the ECMWF system 
(Ferranti et al. 2019). The forecast initialized on 12 February 2018, the day of the SSW event 
(a lead time of around 3 weeks), captures the cold anomaly over central Europe and part 
of the British Isles, but the anomaly is significantly underestimated (Figs. 3c,d). Already at  
4 weeks lead time (initialization on 5 February) the most likely category is the below-normal 
tercile (with 54% of ensemble members) for temperature over western Europe (Fig. 4b).  
Further analysis using North Atlantic weather regimes suggests that the sequence of weather 
regimes before and during the cold spell [positive NAO, blocking, followed by negative 
NAO, as documented in Kautz et al. (2020)] were correctly anticipated by the model from the  
12 February start date (not shown).

Another cold spell linked to atmospheric blocking occurred in winter 2016/17 (Fig. 3e). 
The block over Europe brought warm air to Scandinavia and Arctic air to eastern–central 
Europe in the second week of January (Magnusson 2017). A cutoff low developed, causing 
exceptionally low temperatures in the Balkan Peninsula as well as snowfall in Greece and 
southern Italy with significant socioeconomic impacts due to the long duration of the event 
(Anagnostopoulou et al. 2017). The following week (16–22 January 2017), central Europe  
was affected by further cold-air advection due to a tripole in surface pressure, with high 
pressure from the United Kingdom toward the Black Sea, and low pressure in the western 
Mediterranean and to the north of Scandinavia. This tripole was consistent with quiescent, 
cold, and dry conditions over central Europe in the region of the anticyclone (Fig. 3e).

The forecast issued on 2 January (3 weeks’ lead time) already indicates an enhanced prob-
ability of below-normal temperatures (Fig. 3f). Four weeks before the event, the probability 
for temperatures in the lower tercile already reaches 45% and increases to 63% (89%) at  
3 (2) weeks before the event (Fig. 4c). The ensemble clearly narrows toward the observed 
anomaly at shorter lead times. The probability of temperature anomalies below the  
10th percentile increases closer to the event, from 18% (4 weeks before), to 29% (3 weeks 
before), and finally to 64% 2 weeks before the event.

The cold spell produced a peak in electricity demand, particularly in France, where most 
of the heating is powered by electricity. The concomitant low wind speeds led to a lower-
than-normal wind power generation, and several nuclear power plants in France were under 
maintenance (RTE 2017). This combination caused a high-risk situation for France’s energy 
system that could have been better managed given the forecasts, for example, through a 
postponement of the planned maintenance operations in the nuclear power plants.

Another extreme cold spell occurred in late 2010. From late November to early December 2010, 
Germany and France recorded the coldest December in 40 years, while in the United  Kingdom 
this was the coldest December in 100 years (Fig. 3g). December 2010 was characterized  
by an unusually strong negative NAO (Maidens et al. 2013) with strong cold-air advection 
from northern Europe and Siberia (Prior and Kendon 2011). The cold anomaly over land was 
accompanied by a marine cold-air outbreak [MCAO; according to the MCAO index used in 
Afargan-Gerstman et al. (2020)] in the Norwegian and the Barents Seas. MCAOs can have 
devastating impacts on marine infrastructure and offshore activities, for example, by creating 
favorable conditions for the formation of polar lows (Rasmussen 1983; Kolstad et al. 2009; Noer 
et al. 2011; Landgren et al. 2019). Indeed, a polar low was detected in satellite imagery in the 
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Norwegian Sea off the coast of Norway on the 25 November 2010, 2 days before our selected 
target date, based on the STARS database of polar lows (http://polarlow.met.no/), but no records 
regarding damages from this polar low have been found. Although the occurrence of cold-air 
outbreaks in the North Atlantic and over northern Europe is often associated with stratospheric 
weak polar vortex events (e.g., Kolstad et al. 2010; Afargan-Gerstman et al. 2020), this event 
is unlikely to have been driven by the stratosphere, possibly reducing its predictability.

Cold anomalies had been predicted for northern Europe 3 weeks earlier by the hindcast 
initialized on 11 November; however, the prediction clearly underestimates the magnitude 
of the observed event (Figs. 3g,h). Hindcasts for lead times beyond 3 weeks (initialization on 
4 November) already provide an indication of the cold anomaly, with probabilities around 
20% for temperatures below the 10th percentile. Hindcasts initialized at lead times of 2 and 
3 weeks capture the below-normal temperatures with a probability of above 90% and 50%, 
respectively (Fig. 4d). Hence, although the probability of a cold extreme is significantly in-
creased already 3 weeks before the event, the magnitude of the extreme event is only captured 
at 2 weeks’ lead time.

Precipitation events. In this section we focus on four events with anomalous precipitation 
in Central and South America, Europe, and Australia. The first considered event is analyzed 
in the context of a volcanic eruption, as an example of using subseasonal forecasts for com-
pound events, where the possibility of heavy rainfall was a concern. Guatemala’s Volcán de 
Fuego, a stratovolcano, erupted on 3 June 2018, killing at least 113 people, while more than 
300 remained unaccounted for (Global Volcanism Program 2018). Ash plumes and pyroclastic  
flow material affected communities up to 25 km away from the volcano. The pyroclastic flows 
produced lahars (i.e., mudflow or debris flow) intermittently for several weeks, leading to 
evacuations of the nearby communities and displacing thousands of Guatemalans, destroying 
infrastructure and damaging crops. Overall, the eruption impacted 1.2 million Guatemalans, 
and cost more than $219 million (U.S. dollars; CEPAL 2018; CONRED 2018; WorldBank 2018).

The impacts could have been worse if precipitation, which typically peaks in the region 
in June, had been higher. Intense or persistent rainfall events (i) tend to make lahar viscosity 
thinner, which sustains the flow of pyroclastic debris for a longer duration, potentially causing 
more damage; (ii) can remobilize unconsolidated pyroclastic deposits, causing posteruption 
lahars; (iii) can displace hanging slabs of solidified mud, debris, and boulders down steep 
slopes, with the potential to destroy infrastructure and kill people; and (iv) tend to interfere 
with evacuation, search and rescue, cleaning, and rebuilding operations. Due to the activi-
ties deployed at the time in Guatemala by the Columbia University World Project “Adapting 
Agriculture to Climate Today, for Tomorrow” (IRI 2018), the International Research Institute 
for Climate and Society and INSIVUMEH—the Guatemalan national meteorological agency—
started working together immediately after the eruption to provide calibrated subseasonal 
rainfall forecasts from the prediction system to the national government and a wide variety 
of local institutions.

Calibrated rainfall NextGen forecasts (Muñoz et al. 2019) initialized on 4 June indicated 
low chances of exceeding the weekly median for the following 4 weeks for most of Guatemala  
(cf. to Figs. 5a,b; Figs. 6a,b), and further analysis for the location of interest helped  
INSIVUMEH advise government institutions on evacuation, search and rescue, and cleaning  
and rebuilding operations. Subsequent weekly forecast updates confirmed the original 
expected outcomes. These results build evidence on the advantages of using real-time  
subseasonal rainfall forecasts to help decision-makers during and after volcanic eruptions, 
and potentially other seismologic and compound environmental events. Using a combination  
of forecasts at multiple time scales is suggested to be an optimal practice in these cases, 
consistent with the “ready–set–go” approach (Goddard et al. 2014).
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Another event of interest oc-
curred in January 2016, when 
a series of heavy precipitation 
events affected northwestern 
South America, leading to wide-
spread flooding in coastal north-
ern Ecuador, especially in the 
Province of Esmeraldas. The flood 
displaced 120 families, left one 
casualty, and was the largest such 
event in 20 years (Davies 2016).  
The f looding was associated 
with an early onset of the heavy 
rainfalls and severe mesoscale 
convective systems (MCSs) that 
would normally not be expected 
until annual precipitation peaks in 
April/May (Mohr and Zipser 1996; 
Bendix et al. 2009). On 25 January, 
convective storms developed into 
an MCS with an extent of around 
250 km over the western Andes 
foothills of the Esmeraldas River 
basin, a region of abundant low-
level moisture bounded by the 
Andes. This heavy precipitation 
event was favored by interactions 
between the very strong El Niño 
event and an unusually persistent 
MJO in phases 2 and 3 (Pineda  
et al. 2021).

Weekly ensemble-mean rain-
fall anomaly hindcasts represent 
the spatial pattern of the anoma-
lous precipitation extreme over 
the catchment over all lead times 
(Figs. 5c,d), with the best event 
identification for week 3 initial-
ized on 28 December 2015 [i.e., 
the week-3 anomaly was closer 
to the observations as compared 
to week 2 (not shown)]. For the 
Esmeraldas River basin the ROC 
scores for week 3 range from 
0.5 to 0.6 (Fig. 6c), indicating 
low to modest discrimination 
of the above-normal rainfall on 
25 January. The Spearman rank 
correlations range from −0.25 to 0.25 (Fig. 6d); thus, based on the hindcast, the model 
performance is limited for the region where the extreme rainfall occurred at a lead time of  

Fig. 5. Precipitation events: Accumulated precipitation 
anomalies over the target week (week 3, indicated in the 
panel titles) for (a),(c),(e),(g) observations and (b),(d),(f),(h) 
the ECMWF model prediction (initialization date indicated 
in the panel titles). Rows show (a),(b) Guatemala, (c),(d) 
western Ecuador, (e),(f) northwestern Italy, and (g),(h) 
northeastern Australia. The blue boxes and dots indicate 
the target location for each case study, as indicated in  
Table 1. Observations are from (a),(c),(e) CPC and (g) AWAP.
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3 weeks. However, the positive 
precipitation anomaly of more 
than one standard deviation aver-
aged over the grid points closest 
to the catchment was captured 
for all lead times of 1–3 weeks 
(Pineda et al. 2021). Therefore, 
the use of the S2S rainfall forecast 
could have provided decision-
makers with useful information 
about the onset of this extreme 
precipitation event. A timely 
uptake of the available forecasts 
2–3 weeks in advance by the 
National Met-Hydro Service could 
have allowed for an early warning 
for this catastrophic flood event.

Another heavy precipitation 
event affected northwestern Italy 
(Piedmont and Liguria) in the 
period from 21 to 25 November 
2016. Over these 5 days, more 
than 50% of annual precipitation 
was recorded in several areas, 
with peaks above 600 mm (ARPA 
Liguria 2017; ARPA Piemonte 
2017). Severe damage was caused 
by river floods with flow-rate re-
turn times up to 200 years, and 
widespread occurrence of shal-
low landslides (Cremonini and 
Tiranti 2018). This episode devel-
oped in the middle of a persistent 
drought affecting most of central 
and western Europe in 2016/17 
(García-Herrera et al. 2019). The 
precipitation anomaly is un-
derestimated by the model and 
exhibits a misplaced maximum 
for the forecast initialized on 
7  November 2016 for week 3 (lead 
times of 15–21 days, Figs. 5e,f). 
However, the positive anomaly  
over northwestern Italy is repro-
duced more than 2 weeks in  
advance. Positive anomalies were also correctly located in the western Mediterranean region. 
These anomalies are significantly different at the 10% level from the ensemble climatology 
according to a Wilcoxon–Mann–Whitney test (not shown).

The large-scale midtropospheric configuration leading to this precipitation event was 
characterized by a persistent low pressure anomaly over the Iberian Peninsula, surrounded 

Fig. 6. Precipitation extremes: Predictability scores for 
week 3, (a),(c),(e),(g) assessed through the area under the 
ROC curve for the above-normal category and (b),(d),(f),(h) 
Spearman’s rank correlation coefficient. The results were 
interpolated to the CPC unified grid. For details of the 
scores, see “Data and methods” section. Rows show (a),(b)  
 Guatemala, (c),(d) western Ecuador, (e),(f) northwestern 
Italy, and (g),(h) northeastern Australia. The blue boxes and 
dots are as in Fig. 5.
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by areas of high pressure extending from the North Atlantic to eastern Europe (ARPA 
Piemonte 2017). This dipole in pressure anomalies favors meridional moist advection across 
the complex orography downstream, leading to heavy precipitation in the Mediterranean 
in this season (e.g., Buzzi et al. 2014; Khodayar et al. 2018). The anomalous persistence 
of the large-scale pattern likely favored the predictability of the event (Vitart et al. 2019). 
Although the verification scores of the week-3 forecasts for this area (Figs. 6e,f) indicate, 
on average, a relatively low predictive performance, the sufficiently correct representation 
of the atmospheric dipole in the extended range may have enhanced the predictability of 
precipitation for this event. Similarities are found with the historical Piedmont 1994 flood 
(Davolio et al. 2020), when heavy precipitation was triggered by a similar but less persistent 
large-scale pattern.

The last precipitation extreme considered here investigates extreme rainfall, strong winds, 
and below-normal daytime temperatures over tropical northeastern Australia in early February 
2019. The event caused widespread infrastructure damage, coastal inundation to homes, and 
destroyed over 500,000 livestock, predominantly beef cattle (losses were in the dark green 
areas in Fig. 5g). The total economic loss was estimated at $5.68 billion AUD (Deloitte 2019). 
The extreme rainfall was associated with a quasi-stationary monsoon depression that lasted 
around 10 days, with weekly rainfall totals above 1,000 mm in some locations, maximum 
temperatures of 8°–12°C below average, and sustained winds between 30 and 40 km h−1 
(Bureau of Meteorology 2019). The event was associated with an active MJO that stalled over 
the western Pacific (Cowan et al. 2019). Even though most of the predictability in extreme 
austral summer precipitation for northeastern Australia comes from equatorial Pacific SSTs 
(King et al. 2014), ENSO conditions were neutral and likely did not contribute to this event. 
Consistent with the neutral ENSO conditions, the Australian Bureau of Meteorology issued 
a monthly rainfall outlook for February with little indication of the impending event. Only  
in the week prior to the event, the Bureau’s dynamical prediction system, the Australian 
Community Climate and Earth-System Simulator–Seasonal version 1 (ACCESS-S1), predicted 
a more-than-doubled likelihood of extreme rainfall (Cowan et al. 2019).

The operational real-time forecasts initialized on 17 January 2019 (i.e., a week-3 forecast) 
confirm the above analysis (Fig. 5h). The region with the highest observed rainfall accu-
mulations (blue box in Fig. 5g) has a ROC score between 0.4 and 0.6, indicating low model 
performance (Fig. 6g). Likewise, widespread Spearman-rank correlations of between 0 and 
0.25 (Fig. 6h) provide further evidence that the week-3 forecast does not predict the extreme 
rainfall week. This confirms separate results from eleven S2S models that suggest the rainfall 
event’s very extreme nature could not be predicted with certainty more than a week ahead 
(not shown).

Cyclones.  We here analyze the subseasonal predictability of four cyclones (three tropical  
cyclones and one medicane). While all selected tropical cyclones occurred in different  
regions, all were associated with an active MJO, as discussed below.

As a first case we investigate TC Claudia (Fig. 7a) in the western part of the Australian basin 
classified as a severe TC on the Australian scale. TCs in the western part of the Australian 
basin represent an important challenge to the oil industry since the majority of Australian oil 
rigs are located in this region. Therefore, the predictability of tropical cyclones a few weeks 
in advance in western Australia has important economic value, as well as societal impact in 
the case of landfall. Climatologically, 5.2 cyclones occur in that subbasin per season, with 
2.6 reaching severe TC intensity and 1.2 making landfall in Australia (Chand et al. 2019). 
The Australian TC season typically lasts from November to April, with a peak in January to 
March. Claudia’s characteristics (e.g., lifetime, latitude of genesis, maximum intensity, and 
dissipation) were very typical of western Australia TCs (Chand et al. 2019). Claudia developed 
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over Indonesia’s Maluku Island on 4 January 2020 and moved southwestward along the 
northwestern coast of Australia for about 2 weeks (including a period as a tropical depression) 
(Figs. 7a,b). It reached a peak intensity of 968 hPa (140 km h−1) on 13 January.

The prediction system initialized on 30 December 2019 predicted probabilities of up to 40% 
for a TC northwest of Australia for lead times of 15–21 days (week 3) (Fig. 7b)—significantly 
higher than the climatological probability (about 5%) for this season. Although the observed 
TC track is located slightly north of the area of maximum probability, this result suggests that 
the forecast could have provided a useful early warning for this TC. While other models from 
the S2S database also predicted an increased risk of TC activity in this region, the multimodel 
ensemble probability of TC strike was only around 10%–20%. Claudia coincided with an 
exceptionally intense MJO (three standard deviations above climatology of the RMM index; 
Wheeler and Hendon 2004) over the Maritime Continent and warm SST anomalies over the 
eastern Indian Ocean. This combination is likely to have contributed to make this intense 
and long-lasting tropical cyclone more predictable than usual.

Another recent example of a well-predicted system is Cyclone Belna (Fig. 7c) just a few 
weeks earlier. Belna formed to the north of the Mozambique Channel and eventually moved 
southward. Cyclones occur in the channel on average twice per year (Kolstad 2021). Over 
recent years, multiple tropical cyclones made landfall in that region (Idai and Kenneth in 
2018/19 and Chalane, Eloise, Guambe, and Iman in 2020/21), leading to devastating floods 
in Mozambique and neighboring countries (Emerton et al. 2020).

For Cyclone Belna (Fig. 7c), the model prediction initialized on 18 November predicts a 
probability of cyclone occurrence of up to 30% in the Mozambique Channel at the remark-
able lead time of 4 weeks (Fig. 7d). On 5 December, 17 days after forecast initialization, the 
system was upgraded to a tropical storm and named. On 7 December it attained hurricane 
intensity, and a day later it passed near the Mayotte Islands in the northernmost part of the 
channel. It made landfall in Madagascar on 9 December, to the east of the predicted path 
(Fig. 7d), and it dissipated over land 2 days later. A reason for the successful long-range 
prediction of Belna is likely the strong MJO envelope within which Belna formed (letter B 
in Fig. 8c), although the MJO was not successfully predicted thereafter. The model forecast  
(Fig. 8d) indicates enhanced convection in that area, particularly in early December when 
Belna developed. The very intense TC Ambali (letter A in Fig. 8c) also formed near the MJO 
envelope just to the east of Belna.

Another TC associated with an intense MJO event occurred during a period of unusually high 
TC activity in the western Pacific. In early June 2015, an MJO convective envelope developed 
over the Indian Ocean, intensified, and propagated eastward reaching an amplitude of 2.58 
in the Real-time OLR MJO Index (ROMI) (Kiladis et al. 2014). Only two other MJO events dur-
ing June and July in the period 1979–2018 reached this amplitude. This MJO event provided 
favorable conditions for TC formation leading to the genesis of Typhoons Linfa, Chan-hom  
(Fig. 7e), and Nangka over the western North Pacific, exemplified by the observed OLR 
anomalies and MJO-filtered OLR anomalies (Fig. 8a). Typhoons Linfa, Chan-hom, and Nangka 
(denoted by letters L, C, and N) in late June and early July formed soon after the passage of 
the MJO envelope. All three storms would go on to make landfall; Chan-hom was responsible 
for the second-highest damages [$1.5 billion (U.S. dollars)] in the west Pacific that season 
(Camargo 2016). Additional TCs in both the Indian Ocean and the western Pacific were 
 associated with this MJO event (Fig. 8a).

The ensemble forecast initialized at 0000 UTC 15 June 2015 (Fig. 7f) indicates the increased 
probability of a TC during week 4 of the forecast (valid 7–13 July) in this area. The tracks of 
Typhoons Linfa, Chan-hom, and Nangka (from west to east) overlap this area of enhanced 
TC formation probability. The forecast also captures the eastward propagation of the MJO 
envelope (Fig. 8b), although the MJO amplitude is weaker than observed.
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Fig. 7. Cyclones: Satellite images at a time close to the maximum intensity of the storms for (a) Cyclone Claudia on 13 
Jan 2020 (NOAA) (c) Cyclone Belna on 7 Dec 2019 (NASA), (e) Typhoon Chan-hom on 10 Jul 2015 (SSEC/CIMSS, University 
of Wisconsin–Madison), and (g) Medicane Zorbas (2018M02) on 29 Sep 2018 (MODIS NASA). (b),(d),(f),(h) Probability of 
cyclone occurrence for (b) Claudia initialized on 30 Dec 2019 for lead times of 15–21 days, (d) Belna initialized on 18 Nov 
2019 for lead times of 22–28 days, (f) Chan-hom initialized on 15 Jun 2015 for lead times of 22–28 days, and (h) Medicane 
Zorbas initialized on 13 Sep 2018 for lead times of 0–32 days. Black lines indicate the observed cyclone tracks during the 
verification period, and the names of the cyclones corresponding to the tracks are indicated. The different choice of lead 
times for the case studies refers to the longest lead time for which the events were possible to be predicted.
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As a last case we investigate a medicane, specifically the Mediterranean Cyclone 2018–M02 
Zorbas (Fig. 7g). The medicane developed on 27 September 2018 in the eastern Mediterranean 
Sea between Sicily and southern Greece and gradually intensified, developing characteristics 
of a tropical cyclone. As for many medicanes, its origin was related to a potential vorticity 
streamer (Miglietta et al. 2017). On 29 September, the storm made landfall at peak intensity  
in Kalamata, Peloponnese, Greece, with a pressure of 989 hPa and sustained winds of  

Fig. 8. Cyclones: Outgoing longwave radiation (OLR) anomalies (shaded; W m−2) and MJO-filtered 
OLR anomalies (red contours; every 15 W m−2 for negative values) from (a),(c) observations aver-
aged over (a) 0°–10°N and (c) 0°–10°S with tropical cyclone tracks (black lines) and names (first 
letter of the cyclone name in the red circle) and (b),(d) ECMWF ensemble forecasts initialized on  
15 Jun 2015 and 18 Nov 2019. MJO filtering is performed using a wavenumber–frequency filter that  
selects for wavenumbers 0–9 and periods of 20–100 days. MJO-filtered OLR was calculated by  
padding the forecast with observations prior to initialization following the methodology  
described in Janiga et al. (2018). (e) CAPE (J kg−1) from the ECMWF ensemble forecast initialized on 
30 Aug 2018 and valid on 26 Sep 2018.
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120 km h−1 (approximately 33 m s−1). The event was associated with a Dvorak number of T4.0 
(Hellenic National Meteorological Service 2019; ECMWF 2019), corresponding to a marginal 
category 1 hurricane.

The initialization on 13 September 2018 predicts a region of formation shifted to the west 
compared to the actual area of event formation (Gulf of Sirte, Libya) (Fig. 7h). While the low 
probability of formation is an indication of the difficulty of predicting such a rare event, the 
climatological probability of cyclone formation in the model in this region is less than 1%; 
hence, the displayed chance of a cyclone in this region is clearly above the expected prob-
ability. In addition, the prediction shows low probability for the event to follow the observed 
path (black line) toward Greece. One of the reasons for the limited predictability of the event 
was likely the uncertainty in the initial conditions near an upper-level jet streak over the Gulf 
of Saint Lawrence (Portmann et al. 2020).

However, predictability may potentially be improved using CAPE (see “Data and  
methods” section). For an initialization of the model as early as 30 August 2018 and a 
validation on 26 September 2018, very high values of CAPE are found in the formation 
region of Medicane Zorbas (Fig. 8). Hence, CAPE provides evidence of a medicane 3–4 
weeks prior to its formation. Further analysis is needed to assess the full predictability 
capabilities of CAPE for medicanes.

General discussion and outlook
We have here demonstrated subseasonal predictability for selected case studies of some of the 
most prominent and impactful extreme events globally, namely, heatwaves, cold spells, pre-
cipitation events, and cyclones. Heatwaves tend to be the most predictable among the extreme 
events considered. The prediction system can often anticipate the anomalous temperature 
3–4 weeks in advance, though often with a reduced amplitude. Cold spells also often show 
an indication of predictability, generally at lead times of 2–3 weeks. Precipitation events tend 
to be less predictable, but if the large-scale circulation associated with a large-scale driver 
(e.g., an active MJO) is successfully captured, predictability of 2–3 weeks can be obtained. 
For tropical cyclones, their formation region and tracks can often be anticipated 3 weeks in 
advance provided a successful prediction of strong MJO events. Furthermore, CAPE shows 
promise for indicating tracks and formation regions for extratropical cyclones. Note that these 
conclusions are based on the here documented case studies, and although the predictability 
and conclusions obtained here agree with other published results, it is likely that individual 
events may be more or less predictable depending on the region, type, and magnitude of 
the event. Therefore, in addition to differences in predictability between different types of 
extremes there are important differences in predictability within the same event type. In the 
here demonstrated case studies, these interevent differences hint at different processes and 
precursors responsible for forcing, modulating, or amplifying certain extreme events of the 
same type, including remote drivers such as the MJO.

We would like to emphasize that the case studies presented here do not represent a com-
prehensive evaluation; hence, the predictability shown for these events may differ from a 
systematic evaluation across a larger number of events. Hence, while this study only inves-
tigates a limited number of extreme events as case studies, systematic studies of interevent 
differences in predictability will be required to better understand the role of the identified 
drivers. In particular, extreme events with a common remote driver could be cross compared 
in order to more clearly evaluate the driver’s role (or, in fact, its absence). These studies should 
also include an investigation of false alarms, that is, extreme events triggered by remote driv-
ers and predicted in the model that do not verify in observations.

An improved process understanding of the drivers of extremes and their representation in 
prediction systems as well as the development of postprocessing techniques will continue to 
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significantly benefit the subseasonal prediction of extreme events. On the other hand, even 
with significant model improvements, many extremes will retain an inherent unpredictability 
related to the chaotic nature of the climate system. Still, understanding why and when cer-
tain extreme events are more predictable than others will help to identify and use windows 
of opportunity, that is, atmospheric states with enhanced predictability. Event-based and 
region-specific knowledge of the level of predictability of the relevant processes and the related 
extreme events will significantly benefit stakeholders and users of extreme weather data.

While this study has focused on a single prediction system from the ECMWF, an increasing 
number of multimodel studies for the prediction of specific extremes are currently becom-
ing available (e.g., Y. Li et al. 2021; Materia et al. 2020; Domeisen et al. 2020b), highlighting 
intermodel differences rather than interevent differences, which were the focus of this study. 
Furthermore, bias correction and calibration methodologies that refine the forecast’s statisti-
cal properties based on a reference period will further enhance these forecasts. In this study 
we used anomalies in order to correct the systematic bias and model drift, keeping in mind 
that this might affect the chance of the model to predict, for example, hot versus cold spells, 
especially for longer lead times. However, region- and process-specific biases and drifts 
are likely still present in our analysis. In addition, standard bias correction applied here is  
“unfair” (Risbey et al. 2021), since it uses observed data that would not be available to a  
real-time forecast: in fact, in several cases the observations used for the climatology occur 
after the forecast starts, and the hindcast therefore contains artificial skill. This can be  
misleading for users who must take decisions using real forecasts, which are likely to exhibit 
lower forecast skill than what is commonly shown in research studies.

In addition, a wider range of model evaluation and bias correction techniques are available, 
with the most relevant choices depending on the variable and on the desired characteristics for 
the output [see Torralba et al. (2017) and Manzanas et al. (2019) for a comparison of methodolo-
gies for seasonal predictions and Wernli et al. (2008) and Dorninger et al. (2018) for forecast 
evaluation techniques on deterministic time scales]. Although some standard methods and 
tools are starting to be used more widely (Muñoz 2020; Muñoz et al. 2019), implementation 
at subseasonal time scales is nontrivial and requires a robust climatological reference to be 
successful (Manrique-Suñén et al. 2020). One of the challenges is the limited amount of model 
data available for the reference period (short hindcast periods and few ensemble members). 
Examples of implementation of bias-correction methodologies for subseasonal predictions 
can be found in Monhart et al. (2018) and Manrique-Suñén et al. (2020). These statistical ad-
justments are of particular importance in sectoral applications (Materia et al. 2020; DeMott 
et al. 2021; DiSera et al. 2020), when S2S predictions are used as input in impact models to 
calculate sector-relevant indicators or derived variables (e.g., energy production or agricul-
tural yield; White et al. 2022). As S2S predictions increasingly make their way into risk-based 
decision-making contexts, a continued development and assessment of subseasonal models, 
calibration techniques, and combination with other tools will significantly benefit these ap-
plications (Goddard et al. 2014; White et al. 2022).

Last, it remains difficult to quantify the economic value of S2S forecasts. In fact, even for 
very skillful forecasts, there can be significant economic losses that depend on factors beyond 
the forecasts themselves, involving the emergency response and preparedness of the affected 
region. However, it is clear that skillful forecasts on subseasonal to seasonal time scales can 
indeed add economic value, as has been shown for both temperature and cyclone predictions 
(Dorrington et al. 2020; Emanuel et al. 2012).

In summary, this work is meant to showcase the importance of subseasonal forecasts 
in the development and improvement of a large variety of climate services. Therefore, it is  
difficult to homogenize across event type, forecast quality metrics, and prediction format 
(deterministic versus probabilistic). By their own nature, distinct events in different locations 
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of the world require different verification tools, and time aggregations must be meaningful to 
users. This study goes toward this direction by starting to address the recommendations for 
advancing the S2S forecast verification practices recently highlighted by Coelho et al. (2019): 
Appropriate verification methods to deal with extreme events, novel verification measures 
specifically adapted for S2S forecasts, and enlargement of the sample size to address sampling 
uncertainties. All of these techniques are meant to build knowledge about the strengths and 
weaknesses of forecasts, and eventually increase confidence in S2S products among forecast-
ers and users (Coelho et al. 2018).

As the performance of prediction models for extreme events at subseasonal lead times 
continues to increase with improvements in the understanding of extreme events and their 
representation in models, the here documented extreme events can be viewed as demonstra-
tions and examples of this progress, which reaches far beyond these case studies, contrib-
uting to build or strengthen (depending on the case) a robust ecosystem of climate services 
(Goddard et al. 2020).
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