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Chromatin remodeling and spatial concerns in DNA
double-strand break repair
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Abstract
The substrate for the repair of DNA damage in living cells is not
DNA but chromatin. Chromatin bears a range of modifications,
which in turn bind ligands that compact or open chromatin
structure, and determine its spatial organization within the
nucleus. In some cases, RNA in the form of RNA:DNA hybrids
or R-loops modulates DNA accessibility. Each of these pa-
rameters can favor particular pathways of repair. Chromatin or
nucleosome remodelers are key regulators of chromatin
structure, and a number of remodeling complexes are impli-
cated in DNA repair. We cover novel insights into the impact of
chromatin structure, nuclear organization, R-loop formation,
nuclear actin, and nucleosome remodelers in DNA double-
strand break repair, focusing on factors that alter repair func-
tional upon ablation.
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DNA repair in heterochromatin vs
euchromatin
Both the positioning of DNA damage within the nucleus
and the character of its flanking chromatin can influence
the choice and efficacy of DNA repair mechanisms,
particularly in higher eukaryotes (reviewed in
Refs. [1,2]). Although an early study showed that, in
flies, double-strand breaks (DSBs) could be repaired by
either nonhomologous end joining (NHEJ) or homolo-
gous recombination (HR) with similar kinetics in both

euchromatin and heterochromatin [3], it is now clear
www.sciencedirect.com
that repair mechanism choice between HR and NHEJ is
not random. Pathway choice is biased first and foremost
by phases of the cell cycle [4], something first shown in
budding yeast: NHEJ dominates DSB repair in G1
phase, while HR, which requires S-phase-specific
CDK1-dependent end resection, is favored in S and G2
phases [5]. Similar observations were made in verte-
brates (e.g. Refs. [6,7]). Going beyond cell-cycle, recent

research suggests that chromatin marks in mammals,
and in particular those found in lamin-associated do-
mains (LADs), which are transcriptionally repressed and
enriched for H3K9me2/3, preferentially use error-prone
mechanisms such as microhomology-mediated end-
joining (MMEJ), rather than NHEJ [8]. This bias cor-
relates strongly with local histone marks and their dy-
namics [8,9]: genomic domains bearing active marks
(H3K4me2) were more often repaired by NHEJ, while
repressive marks (H3K9me2/3) favored MMEJ. Unfor-
tunately, HR was not monitored in this genome-wide

study, yet earlier work had clearly implicated active
chromatin marks in the choice of HR as a repair pathway
[10]. Finally, it was shown that the loss of the polycomb
mark, H3K27me3, reverted the MMEJ-NHEJ balance
back toward NHEJ [8]. Altogether these results argue
for a role for chromatin context in repair pathway choice.

Spatial positioning of damage within the nucleus may also
influence outcomeof repair. Itwas first shown in yeast that
DSBs lacking an intact template for repair by recombina-
tion [11e13], behave like uncapped yeast telomeres

[14,15], and shift to the nuclear periphery or to nuclear
pores. The processing that occurs there eventually pro-
motes alternative repair pathways, such as break-induced
replication (BIR), which leads to a loss of distal chromo-
somal information, or imprecise end-joining through
MMEJ, such as that measured in LADs [8,16,17].

In mammals and flies, the relocation of DSBs was also
observed, particularly those found in the repetitive
heterochromatin of pericentric domains. By tracking
irradiation-induced damage in Drosophila, DSBs were

seen to shift away from centromeric satellite-enriched
heterochromatin (or chromocenters) to the nuclear pe-
riphery, presumably as a prerequisite for repair by a
mechanism that reduces chromosomal translocations
[18,19]. In mouse cells, cell-cycle restriction was
superimposed on this behavior: in G1 phase, DSBs in
pericentric heterochromatin were repaired by NHEJ
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and did not shift position, whereas in S or G2 phases
they did shift to the edge of their respective repetitive
domains, enabling repair by HR [4]. In human cells,
however, breaks that occur in the SatIII centromeric
repeat did not shift position and centromeric hetero-
chromatin was surprisingly permissive to HR (to be
discussed below) [20].

In yeast, the relocation of DSB away from repetitive
rDNA required the Smc5/Smc6 complex and SUMOy-
lation by its associated SUMO ligase, Mms21 [21].
Similar dependencies were observed for the relocation
of breaks in unique sequence in both budding and
fission yeast [11,12,16,22]. Finally, similar requirements
were also found in Drosophila [18,19] and in mammalian
cells as well, for the relocation of DSBs in the rDNA
away from the nucleolus [23,24]. Importantly, the
movement and repair of rDNA breaks required the
action of the p97/Cdc48 ATPase, which recognizes

ubiquitinated and sumoylated substrates to catalyze
either protein unfolding or factor release [25]. One
target of the p97 ATPase in yeast is a phosphorylated
and sumoylated form of CLIP-cohibin, a specialized
Figure 1

Simplified scheme of spatial relocation events at DNA breaks. When DN
immediately, but shift away in a manner dependent on sumoylation and ubiquiti
to nuclear pores (thanks to mono- and poly-sumoylation, respectively). Reloca
are either degraded or removed and processing occurs to enable recombinatio
overhangs can shift to NUMEN and be cleaved to favor NHEJ. Alternatively, e
short telomeres in telomerase deficient cells. Ends are then repaired by recom
in the text. Figure is modified from Stutz and Gasser [28]. Factor names are g
envelope; NPC: nuclear pore complex.
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complex containing homodimers of Lrs4 and Csm1,
which interact with components of the inner nuclear
membrane to tether the rDNA at the nuclear envelope
[26]. This suggests that release from tethering might
actually increase repair.

Taken together, the available data support the following
scenario (for reviews see Refs. [27,28]; Figure 1): first,

sumoylation inhibits HR, permitting and perhaps pro-
moting DSB movement away from zone of repetitive
DNA. Thereafter, SUMO-dependent ubiquitination
and/or proteasomal degradation triggers the release of
factors that block the DNA end from appropriate
processing. Since both degradation and desumoylation
by Ulp1 are favored by nuclear pore complex proximity,
this relocation will in turn enable either ectopic
recombination, BIR, or if an appropriate template is
found, HR, which will likely require release from the
nuclear rim [25,26]. The question remains whether this

pathway is functional for normal DSB repair or serves as
a last-ditch effort to overcome persistent breaks or the
dangers of broken replication forks, which were the
experimental conditions used in most of these studies.
Current Opinion in Cell Biology

A DSBs occur in rDNA or repetitive DNA, they are not processed for HR
nation. In yeast, these either shift to the peripheral SUN domain complex or
tion also requires INO80C in budding yeast [40–42]. Proteins blocking HR
n-mediated repair. In mammals there are two further options: DSBs with 3’
nds cluster in repair foci or in PML bodies. This is particularly relevant for
bination mechanisms leading in some cases to translocations. Details are
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A new twist to the question of spatially localized repair
arose recently with the discovery of NUMEN, an
enzyme that generates short 5’ overhangs through its
endonuclease and 3’ to 5’ exonuclease activities, and
which is an integral component of the inner nuclear
membrane [29]. This enzyme is found in vertebrates at
the nuclear periphery between pores. It cleaves over-
hangs to eliminate the 30 overhang that is needed for

HR, and thereby favours end-joining by NHEJ [29].
This provides a new rationale for the relocation of
difficult to repair DSBs to the nuclear periphery, and
may explain dichotomies between positioning damage at
the nuclear envelope as opposed to nuclear pores [30].
The impact of damage clustering
When DSBs cluster near pores, which are enriched for
both SUMO proteases and proteasomes [31], they
juxtapose breaks from multiple chromosomes. This is
reminiscent of the clustering of short telomeres in
human ALT (alternative lengthening of telomeres)
cancer cells, which assemble in PML bodies for repair
[32]. This inter-chromosomal contact also occurs for
centromeric repeats in mouse, which form chromocen-
ters even in the absence of damage. The impact of such

chromatin clustering on repair has been addressed in
two recent papers. The first examined damage in the
DAPI-bright chromocenters of mouse: they were found
to block the recruitment of RAD51 and other HR repair
factors to induced DNA DSBs, apparently due to the
dense structure of the repetitive DNA [4,20]. Indeed,
the barrier to resection and RAD51 binding can be
generated artificially by tethering repeats together [20].
Based on this mouse data, it was proposed that extrusion
of breaks from heterochromatic repeats was necessary to
prevent translocations between chromosomes, as these
would be favored if DSB repair occurred within a chro-

mocenter. Intriguingly, DSBs found in the human peri-
centromeric repeat SatIII, do not shift out of the zone of
repetitive DNA and can bind RAD51 and be efficiently
repaired by HR within the heterochromatic domain (i.e.
as defined by H3K9me2/3 modification) [20]. The fact
that human centromere-proximal heterochromatin does
not block access to the HR machinery as it does in mice,
argues that the barrier is not simply a function of HP1
density e in fact, HP1 dimerization helps promote the
resection of DSBs in repetitive domains in both mouse
and human cells [33]. Rather, the authors suggest that

another, unknown feature of mouse chromocenters
blocks access to DSB processing and the HR machinery.
Importantly, disruption of the barrier created by mouse
centromeric heterochromatin, or artificial generation of
centromere clustering in human cells, led to a 5- to 10-
fold increase in RAD51-dependent chromosomal trans-
locations during DSB repair [20].

In further support of the risks that might arise fromDSB
clustering, it was recently shown that the coalescence of
www.sciencedirect.com
breaks into foci promotes aberrant chromosomal trans-
locations, rather than accurate repair by HR or other
error-free recombination pathways [34]. As part of a
multiscale reorganization of chromatin, Hi-C analysis
was used to show that DSBs cluster independently of
chromosomal linearity [34]. Clustering was sensitive to
inhibitors of the actin filament chaperone, Arp2/Arp3,
and potentially required the formation of short and

transient nuclear actin filaments in the nucleus [35,36].
But rather than promoting or enabling repair by HR, this
nuclear actin-dependent clustering led to aberrant
NHEJ-mediated end-joining events, and higher trans-
location frequencies. Far from being beneficial, actin-
mediated break clustering appears to be pathological, a
fact that is particularly interesting given that the shift of
DSBs out of the mouse chromocenters, which counter-
acts translocations, did not require nuclear actin poly-
merization nor Arp2/Arp3 [20]. Excess nuclear G-actin is
also shown to be toxic in budding yeast after exposure to

the base-oxidizing agent Zeocin (Hurst et al., personal
communication; [37]).

The importance of chromatin compartments in regu-
lating repair was further demonstrated in an impressive
study that combined Hi-C, 4-C, and extensive genetic
analysis to identify a new A-type compartment which is
formed in response to DNA damage [38]. This so-called
D-compartment largely contains open chromatin, and it
showed enhanced intra-TAD contacts upon damage in-
duction, while contact with undamaged neighboring

TADs was decreased. D-compartment formation was lost
upon ATM kinase inhibition, but was enhanced by loss of
DNA-PK, presumably because the HR pathway of repair
was favored. NHEJ, on the other hand, increased when
D-compartment clustering was reduced. These clusters
are thought to be mediated by polymerepolymer in-
teractions, and not the ever-popular liquideliquid phase
separation, and only rarely involved DSBs in hetero-
chromatin (4 of 22 heterochromatic DSBs). Interestingly,
the D-compartment also appeared to recruit a subset of
genes that are induced by the DNA damage response,
possibly through R-loop enrichment (see below).

Importantly, and consistent with the findings in Zagel-
baum et al. [34], illegitimate DSB rejoining events were
enhanced by clustering of DNA damage in the D-
compartment [38]. In conclusion, it is amply demon-
strated that the clustering of DSBs is largely detrimental
to genomic integrity.
Diverse roles attributed to nuclear actin in
DSB and chromatin movement
In vertebrates and flies, several papers have argued that
nuclear actin filaments play a role in DSB movement.
This contrasts with yeast, where the increased chro-
matin expansion and mobility occurs at DSBs in
response to the DNA damage checkpoint and does not
require nuclear actin filament formation [39]. The
Current Opinion in Cell Biology 2024, 90:102405
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break-induced increase in chromatin mobility in yeast
correlated with a drop in nucleosome density, both
flanking the break and genome-wide, which is driven by
a limited ubiquitin-medicated degradation of histones
[40,41]. This transient drop in nucleosomal density also
facilitated the ectopic homology search that is necessary
for repair by recombination [42], either through BIR or
the usual bidirectional strand invasion that occurs at

resected breaks, and was independent of actin poly-
merization. In contrast to the situation in yeast, higher
eukaryotic WASP and Arp2/Arp3 moonlight in the nu-
cleus, and may actually nucleate short, transient actin
filaments at sites of damage. These filaments were
proposed either to provide “tracks” for the movement of
breaks to the nuclear periphery [35] or to drive forma-
tion of damaged DNA clusters [36]. Given the conclu-
sion of Zagelbaum et al. [34], however, one must
question whether nuclear actin filament formation is a
physiological repair pathway or a pathological event that

leads to chromosomal translocations.

WASP, which serves both as an actin chaperone and
cofactor for the Arp2/Arp3 nucleation of actin filaments,
has also been implicated in the replication protein A
complex (RPA) stabilization on ssDNAduring replication
stress in the nucleus of vertebrate cells [43,44]. These
studies highlight the roles of actin filament formation at
sites of replication fork stress and fork reversal. The
appearance of RPA foci and RPA-bound ssDNA at repli-
cation forks stalled on HU is dependent on WASP, ARP2/

3, DIAPH1, and N-WASP. Loss of these actin chaperones
attenuates the checkpoint response, although resection
proceeds normally in their absence. Nieminuszczy et al.
[43,44] show that HU-arrested replication forks are
degraded in the absence of actin nucleating factors.
Table 1

Chromatin remodelers, grouped by homology, involved in the repa
containing actin and actin-related proteins (ARPs) are indicated with

ATPase (yeast) Complex(es) ATPase (human) Com

Isw1 ISW1A, ISW1B SMARCA5/SNF2H ACF, CHRAC and
Isw2 ISW2
Snf2/Swi2 SWI/SNF* SMARCA2/BRM SWI/SNF* comple

BAF (contains AR
Sth1 RSC* SMARCA4/BRG1 SWI/SNF* comple

BAF (contains AR
Chd1 CHD1

CHD2
CHD3 NuRD
CHD4 NuRD
CHD7
ALC1/CHDL1

Ino80 INO80C* INO80 INO80*
Swr1 SWR1C* SRCAP SRCAP*

P400 TIP60*
Fun30 SMARCAD1

HELLS/SMARCA6
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Another study on the same topic argued that nuclear actin
polymerization at stalled forks served to prevent the
binding of PrimPol, an error-prone polymerase that can
initiate DNA synthesis on ssDNA by both priming and
elongating, thereby thwarting the more robust events of
fork reversal and restart [45].This intriguing role for short
transient actin filaments in the nucleus suggests that
rather than forming a “track for movement” transient

nuclear actin network buffer accessibility. This is remi-
niscent of the recruitment of H3K9 methylation activity
at reversed forks, which also prevented alternative
processing and enabled fork restart [46].

An alternative or parallel hypothesis for the role of nu-
clear actin, is that it regulates actin-dependent chro-
matin remodelers, such as BRG1/BAF, (Sc Snf2/Swi2) or
INO80 (reviewed in Ref. [47]; see Table 1). The
neglected role of nuclear actin as an integral component
and key regulator of nucleosome remodelers provides

alternative interpretations for the impact of genetic
manipulations that lead ultimately to altered G-:F-actin
ratios, driving a nuclear accumulation of globular actin,
and indirectly influencing repair [48]. This is particu-
larly relevant in yeast where the WASP homolog, Las17,
does not enter the nucleus nor nucleate nuclear actin
filaments, but instead appears to influence actin-
dependent chromatin remodeler function indirectly by
increasing nuclear actin concentration (Hurst et al.,
personal communication; [37]).
Chromatin remodeling and the interplay
between transcription, R-loops, and DNA
DSB repair
The recognition, signaling, and repair of DNA DSBs
require access to the repair substrate and, in some cases,
ir (NHEJ or HR) or signaling (DDR) of DNA DSBs. Complexes
an asterisk.

plex(es) Repair activities

RSF DDR, HR, NHEJ, repair in heterochromatin
HR

xes:
ID1A), PBAF, or ncBAF

DDR, HR, NHEJ, HR in heterochromatin

xes:
ID1A), PBAF, or ncBAF

DDR, HR, NHEJ

HR
NHEJ
NHEJ in heterochromatin
DDR, HR
NHEJ
NHEJ
DDR, NHEJ, HR
NHEJ (yeast)
HR, NHEJ
HR
HR in heterochromatin
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quite extensive manipulation of DNA. It is not sur-
prising, therefore, that many nucleosome remodelers
have been shown to play a direct role at the site of DNA
breaks to promote these changes (reviewed in
Refs. [49e52]). Remodelers have been implicated in
promoting both NHEJ and HR, as well as promoting
DNA damage response (DDR) signaling (Table 1). An
emerging theme in the response to DNA DSBs is the

interplay between transcription and RNA:DNA hybrids,
and in particular, those in which an RNA displaces one
strand of its complementary DNA forming a so-called R-
loop, in chromatin flanking the break in the repair pro-
cess (for review, see Refs. [53,54]). Here, we focus on
how chromatin remodeling complexes contribute to
repairing DNA breaks near actively transcribed genes
and their connection with R-loop formation.

In mammalian cells, DNA breaks near ongoing transcrip-
tion trigger rapid ATM-dependent transcriptional

silencing, carried out in part through polycomb-mediated
H2A K119 ubiquitination [55]. These breaks are prefer-
entially repaired by HR [10], and failure to repress tran-
scription leads to increased genome instability [56]. Early
work established that the PBAF chromatin remodeling
complex is required for break-induced silencing to take
place [57], butmore recently, the other two closely related
SWI/SNF complexes, BAF and ncBAF, have also been
implicated [58]. Multiple factors have since been shown
to be involved in this pathway, including the CHD4-
containing NuRD remodeling and histone deacetylase

complex ([59]; for review see Ref. [54]).

It has become apparent that R-loops are formed in the
vicinity of DNA DSBs [60]. While R-loops can be detri-
mental to genome stability and causeDNAdamage under
some circumstances, evidence suggests they play a posi-
tive role in during the repair of DSBs [60]. R-loops can be
formed through stalled or paused transcription, and
consequently, transcription inhibition in the vicinity of a
DNA break is a likely source of R-loop formation. RNA
molecules produced elsewhere could also be used, pro-
vided there is sufficient homology.Moreover, there is new

transcription at the break that contributes to DNA
damage signaling [53], which, when not processed into
shorter noncoding species, also provides a source of RNA
for R-loop formation. When DNA is resected, RNA mol-
ecules with homology to the single-stranded DNA over-
hang will form RNA:DNA hybrids rather than R-loops.

Negative supercoiling promotes the generation of R-
loops [61], and SWI/SNF remodeling can alter torsional
characteristics of chromatin and generate noneB form
DNA structures [62e64]. This raises the intriguing

possibility that SWI/SNF activity at DSBs in actively
transcribed genes promotes R-loop formation (in addi-
tion to promoting their resolution, as described below).
While potentially a by-product of remodeler activity
during DSB-induced transcriptional repression, it could
www.sciencedirect.com
also serve as a deliberate strategy to facilitate the repair
process (Figure 2).

Once stabilized at DSBs, R-loops can act as a recruit-
ment platform. Repair factors such as RPA, PARP1,
BRCA1, and RAD52 can bind to R-loops, and evidence
suggests their recruitment or retention at DNA DSBs is
influenced by both transcription and RNA:DNA hybrids

[60]. Consistent with their occurrence and role at DSBs
in actively transcribed genes, R-loops influence pathway
choice by favoring HR over NHEJ [65].

How does this work? There is evidence that R-loops can
both impede long-range resection and promote exten-
sive non-canonical resection [60]. Notably, a recent
paper demonstrated that the NuRD complex is
recruited to DNA breaks in an R-loop dependent
manner and that NuRD-dependent deacetylation cre-
ates a heterochromatin barrier that prevents hyper-

resection [66]. When R-loops have been mapped in
relation to DSBs, they appear to be enriched in chro-
matin several kb from the break [65,66], consistent with
the idea that they form a restrictive boundary (Figure 1).
Whether and how these species differ from (or indeed,
interact with) R-loops or RNA:DNA hybrids formed at
DNA break ends is not yet clear (for review, see
Ref. [60] and discussed below).

In addition to delineating a boundary between
euchromatin and heterochromatin, R-loops could

orchestrate three-dimensional chromatin organization
around DNA DSBs by interacting with cohesin
(Figure 2). Cohesin dynamics at DSBs influence the
architecture of DNA damage foci formed intra-
chromosomally (in cis) and regulate the spread of
gH2AX [67,68]. Notably, the STAG1 and STAG2
subunits of cohesin can bind R-loops and promote
cohesin loading at these sites [69]. R-loops also act as a
barrier to cohesin translocation [70], which defines
gH2AX spreading [68]. Consequently, by modulating
cohesin dynamics, R-loops could regulate the topology
and organization of DNA damage foci, thereby facili-

tating synapsis or repair, regulating resection, or influ-
encing strand invasion.

At some point during the repair process, DSB proximal
R-loops must be dissolved, and SWI/SNF has been
implicated in this step [58,71] (Figure 2). The ARID1A
subunit of the BAF SWI/SNF complex was shown to
recruit METTL3 and METTL14 to R-loops at DNA
DSBs to promote m6A modification of the RNA, one of
several RNA modifications that have been implicated in
DNA repair (for review, see Ref. [72]). In this study,

m6A incorporation into RNA at DNA break-associated
R-loops was shown to facilitate RNase H1 binding,
thus promoting resolution [71]. However, a previous
study found that m6A incorporation by METTL3 at
DNA breaks led to increased RNA:DNA hybrid stability
Current Opinion in Cell Biology 2024, 90:102405

www.sciencedirect.com/science/journal/09550674


Figure 2

Simplified scheme of events at DNA breaks in actively transcribed genes. Nearby transcription is repressed, and this is dependent on SWI/SNF and
NuRD chromatin remodeling complexes. It is possible that their activity promotes R-loop formation distal to the DNA break (top right). R-loops recruit not
only repair factors, but cohesin and additional NuRD, which could establish topological or heterochromatic boundaries, respectively (bottom right).
Cohesin regulates the spread of gH2AX (purple nucleosomes) and the HDAC activity of NuRD restricts resection. Following repair, SWI/SNF helps
resolve R-loops by recruiting METTL3/14, leading to m6A modification of the RNA (lollipops on RNA) and RNaseH1-mediated degradation (bottom left,
see text for details).
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through interaction with the m6A reader protein
YTHDC1 [73]. It is possible that the timing or location
of the modified RNA determines the impact on down-
stream binding factors. One attractive possibility is that
DNA end-proximal RNA:DNA hybrids are responsible

for signaling and HR factor recruitment, while R-loops
produced more distally to the break function as
boundary elements.

Since ARID1A is exclusive to BAF, the finding that
ARID1A recruits METTL3 and METTL14 to R-loops
suggests that perhaps the other two SWI/SNF com-
plexes, PBAFand ncBAF, are not required for dissolution
of R-loops at DSBs. In support of dedicated functions,
Lans et al. found that the eviction of RNA pol II from
chromatin flanking DSBs is dependent only on BAF and

PBAF, whereas all three SWI/SNF complexes were
required for maintaining transcriptional repression at
later time points [58]. How these activities are coordi-
nated with R-loop establishment and resolution remains
to be determined.
Current Opinion in Cell Biology 2024, 90:102405
The complexity of remodeling complexes in
damage responses
As described above, SWI/SNF and NuRD complexes
mediate repair, R-loop resolution, and transcriptional
silencing at DSBs in actively transcribed chromatin. Yet
these complexes have also been implicated in repairing
DNA breaks in other contexts. SWI/SNF was first
implicated in heterochromatic repair in budding yeast
[74], but more recently, SWI/SNFand NuRD complexes

were found to work with PHF6 to mediate repair in
heterochromatin in mammalian cells as well [75].
Adding to the challenge is the fact that remodelers can
contribute to more than one repair pathway. HR is
preferentially used at actively transcribed genes where
SWI/SNF is working (Figure 2). Notably, however, SWI/
SNF complexes also promote NHEJ [49]. NHEJ activ-
ity at DSBs undergoing HR could be deleterious or even
toxic, suggesting that pathway-specific functions of
SWI/SNF are subject to regulation in a way that can be
toggled on or off, allowing SWI/SNF to promote either

HR or NHEJ depending on the specific context.
www.sciencedirect.com
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In addition to working at DSBs, these complexes regu-
late the expression of genes involved in DSB repair and
signaling. For instance, SWI/SNF maintains the G2/M
checkpoint in response to DNA damage through
remodeling activity at p53-dependent promoters [76].
Likewise, BRD4, which works together with SWI/SNF
at DNA breaks to promote HR [77], regulates tran-
scription of genes involved in controlling R-loop dy-

namics and DNA damage responses [78]. Importantly,
BRD4 also prevents R-loop formation through promot-
ing RNA pol II elongation globally [79e81], and
therefore BRD4 might function antagonistically with
SWI/SNF at DNA breaks to modulate the timing or
extent of R-loop formation. Distinguishing the contri-
bution of gene expression regulation from activities that
directly regulate DSB repair is an ongoing challenge.

Finally, the relationship between reorganization of chro-
matin immediately flanking a break and larger scale

changes in nuclear organization and chromosome mobi-
lization is starting to come to light. For example, as
described above, DSBs are subject to clustering in an
Arp2/3-dependent manner [34], and the broken chro-
mosomes are organized into a new chromatin compart-
ment, referred to as the D compartment [34,38]. This
involves larger scale changes than those occurring in
chromatin flanking breaks, but interestingly, is also
regulated by R-loops and leads to upregulation of DNA
damage-responsive genes [38], a subset of which are also
dependent on SWI/SNF for upregulation [76], raising the

possibility that the activities are coordinated or interde-
pendent. These new insights deepen our understanding
of cellular responses toDNA damage, but also underscore
the complexity of the biological processes at play.
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