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Abstract

Nowadays, genome-wide association studies (GWAS) and genomic selection (GS) methods which use genome-wide marker
data for phenotype prediction are of much potential interest in plant breeding. However, to our knowledge, no studies have
been performed yet on the predictive ability of these methods for structured traits when using training populations with
high levels of genetic diversity. Such an example of a highly heterozygous, perennial species is grapevine. The present study
compares the accuracy of models based on GWAS or GS alone, or in combination, for predicting simple or complex traits,
linked or not with population structure. In order to explore the relevance of these methods in this context, we performed
simulations using approx 90,000 SNPs on a population of 3,000 individuals structured into three groups and corresponding
to published diversity grapevine data. To estimate the parameters of the prediction models, we defined four training
populations of 1,000 individuals, corresponding to these three groups and a core collection. Finally, to estimate the accuracy
of the models, we also simulated four breeding populations of 200 individuals. Although prediction accuracy was low when
breeding populations were too distant from the training populations, high accuracy levels were obtained using the sole
core-collection as training population. The highest prediction accuracy was obtained (up to 0.9) using the combined GWAS-
GS model. We thus recommend using the combined prediction model and a core-collection as training population for
grapevine breeding or for other important economic crops with the same characteristics.
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Introduction

Thanks to new sequencing technologies (NGS), use of molecular

markers is nowadays much less expensive, allowing the develop-

ment of genome-wide approaches for characterizing the genetic

architecture of complex traits, or for marker assisted selection,

such as genome-wide association studies (GWAS) or genomic

selection (GS).

Recently, GWAS has been widely used in plant genetics to

understand genetic architecture and identify molecular polymor-

phisms explaining part of the variation for traits of agricultural

interest [1–3]. These markers can then be used in marker-assisted

selection (MAS) programs. GWAS has identified many common

alleles of major effect, however it is less efficient to detect

associations for structured traits [4,5]. Indeed, traits of agricultural

interest may be correlated with environmental gradients and lead

to confounding effects in association tests. In a similar way, the

impact of human selection may also strengthen population

structure, all the ‘‘elite’’ breeds sharing a narrow genetic base,

thus leading to false positives (type II errors) in association tests.

Moreover the efficiency of GWAS is also impacted by the genetic

architecture of the studied trait: indeed, the detection of linked

molecular markers in polygenic traits strongly depends both on the

size of the sample and on the density of molecular marker used [6–

8].

Genomic selection (GS) is a more recent methodology to make a

more efficient use of whole genome information in MAS. In

contrast to GWAS methodology which identifies molecular

polymorphisms linked to the variation for selected traits, GS

allows the prediction of a breeding value – genomic estimated

breeding values (GEBV) – for the genotypes tested [9] based on

large sets of markers. Previous studies on animal and plant models,

based on both simulated and real data, demonstrated the interest

of GS, especially for capturing small-effect quantitative trait loci

[10–14]. In breeding programs, GS could significantly reduce

costs by limiting both size and number of field experiments and by
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facilitating early selection through an efficient use of molecular

information. Genotype-based prediction also allows selection in

breeding schemes when the phenotyping of breeding candidates is

impossible or difficult [15–18].

In GS, as the number of markers greatly exceeds the number of

individuals, advanced statistical methods are definitely required. In

recent years, many different methods were developed to realize

these predictions (reviewed and compared in [17,19,20]). To take

into account a large variety of genetic architectures, some models

assume that all genomic segments equally affect phenotype,

whereas others assume heterogeneity among SNP effects and

consider different shapes of the prior distribution for marker effects

(Bayesian approaches).

Today, most studies have concentrated on animal models or

annual plants, with large pedigrees or complex breeding schemes.

However, in several economically important species, such as

coffee, orange and grapevine, this type of information and

breeding material are not available (no pre-breeding population)

due to the biological characteristics of these crops. Grapevine is

one of the earliest domesticated fruit crops [21] that has been

widely cultivated for its fruits and wine. Studying molecular data of

a very large set of Vitis vinifera L. subsp. vinifera, [22] identified

three groups of varieties based on their geographical origin and

their use. The most commonly acknowledged scenario [23–26]

dates grape domestication back to circa 5,000 years BC in the

Eastern Caspian region (primary domestication center). Through

selection, mostly targeted at large-sized, clear-colored berries and

hermaphrodite flowers, a coherent sub-population emerged

(denoted ‘‘Table-East’’, TE). Due to human migrations, domes-

ticated varieties were introduced in the Balkans around 4,000 BC

where they crossed with local wild individuals and were then

selected for small berries to produce wine, forming the group

denoted ‘‘Wine-East’’ (WE) group [22]. Finally viticulture arrived

in Western Europe around 1,000 BC and wine varieties from the

Balkans crossed with local wild individuals forming the ‘‘Wine-

West’’ (WW) group.

In grapevine, no advanced breeding lines from complex

schemes are available. Instead, breeders are handling a large

parental panel with a high diversity both at morphological and

molecular level. This material is highly heterozygous (He = 0.76)

[27], as a result of a strong inbreeding depression and the

predominance of vegetative propagation which maintained a high

level of molecular diversity [27–30]. This panel is also character-

ized by a low level of linkage disequilibrium (LD) between marker

loci (r2,0.2 at 5-10 Kb) [29,30]. Most cultivars are interconnected

by a series of first-degree relationships (for example, Pinot noir –

Chardonnay – Gouais blanc, Cabernet franc – Merlot [31,32]),

but the number of connected generations is rather low [33,34].

Furthermore some major agricultural traits (for example berry

size) are linked to population structure, making association studies

difficult [35].

Since the demand for new grapevine cultivars with sustainable

resistance/tolerance traits and well adapted to climate changes is

increasing [36–38], and since the number of molecular tools

available for this species is soaring, GWAS and GS are indeed

becoming relevant in this crop. The first set of high density

genome-wide molecular markers, developed on eight Vitis species

comprised 9K SNP (Vitis9KSNP array) and was successfully used

for preliminary assessment of germplasm collections [30]. A new

18K genotyping chip is already available [39] but will only

increase the number of markers available for Vitis vinifera L. up to

20K. Because of the rapid decay of LD observed in grapevine [30]

hundreds of thousands of markers would be necessary to perform

efficient GWAS and GS. Such number would only be reached by

resequencing hundreds of cultivars. Since developing the resources

enabling marker-assisted selection at the whole genome level in

grape will still require heavy work, it is indispensable to perform a

preliminary assessment of the feasibility of MAS, targeting

structured or unstructured traits using GS in a broad pool of

unrelated genetic resources. This will allow testing the limitations

and potential uses of GWAS and GS in grapevine through

simulated data sets.

In this work we simulated genomic and phenotypic data for a

large set of individuals to obtain highly polymorphic, heterozy-

gous, structured populations similar to the present population of

cultivated Vitis vinifera L. Using these virtual populations, we

performed both GWAS and GS for traits of different complexity

using a large set of markers compatible with the extent of LD in

this species. The objectives were i) to test GWAS ability to detect

simulated quantitative trait loci ii) to analyze and to compare the

performance of a prediction based on markers identified through

GWAS (classic MAS) with all marker using GS methods iii) and to

estimate the influence of trait complexity and structure on

prediction accuracy, using different combination of training and

candidate sets defined in a structured population.

Materials and Methods

Simulation
We simulated a population of 3,000 individuals representing the

genetic diversity of Vitis vinifera L., based on the knowledge

presently available on the history of this species [22–27,34,40,41].

Simulated genomes comprised the typical 19 chromosomes,

each of 79 cM, for a total of 1,500 cM corresponding to the

genetic map of grapevine published by [42]. Ten thousand

markers were randomly positioned on each chromosome, for a

total of 189,500 bi-allelic markers (SNP), and 500 multi-allelic

markers (SSR, 20 alleles per locus) with a mutation rate of 10e-6

and 10e-4 per generation, respectively [43,44]. Considering that

genome length in grapevine is 470 Mb [45], one simulated cM

corresponds to 300 Kb. We simulated four independents quanti-

tative traits: i) structured simple trait (10 QTL), ii) non-structured

simple trait (10 QTL), iii) structured complex trait (100 QTL), iv)

non-structured complex trait (100 QTL, under the assumption of

strict additivity. QTLs were bi-allelic loci, randomly positioned on

the genome. One of the two possible alleles had an effect of zero

(no effect on the trait), while the other had an effect randomly

sampled from a normal distribution (with mean = 0 and

variance = 1).

Simulations were carried out with a modified version of

quantiNEMO, an individual-based program developed for the

analysis of quantitative traits with explicit genetic architecture

potentially under selection in a structured population [46]. We

based our demographic scenario (Figure 1) on grapevine domes-

tication history and our goal was to define a scenario matching the

published population data (FST, LD, heterozygosity and popula-

tion structure; [22,27,30,47]. This demographic scenario consisted

in two steps (burn-in and domestication) to obtain presently

existing material and a third step (breeding) to simulate a breeding

program.

In order to simulate a wild, pre-domestication population with

realistic allele frequencies and LD between neutral loci at

mutation-drift equilibrium, we ran a burn-in step as a common

starting point for the ten replicates of the domestication step. A

single population was simulated with a census population size and

carrying capacity of 3,000. It was run for 6,000 generations with

random mating to obtain the required LD level (r2 value of 0.2

observed at the distance of 10 kb) between neutral markers and to
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generate enough segregating sites for the following analyses. At the

end of the burn-in step, fixed loci were removed and individuals

were randomly organized in three groups (sub-populations) of

1,000 individuals, forming a meta-population.

Step 2 consisted in the domestication step. It was established to

obtain the three diversity groups of the cultivated compartment of

Vitis vinifera L. subsp. vinifera described by [22] in the Vassal

collection: the ‘‘Table-East’’ group (TE) corresponding to the table

grape varieties originated from the primary domestication center,

localized in the Caucasus, the ‘‘Wine-East’’ group (WE) of wine

varieties from the Balkans and Eastern Europe, and the ‘‘Wine-

West’’ group (WW) of wine varieties from Western and Central

Europe.

It is difficult to estimate the number of generations throughout

grape domestication history as grape is a long-lived perennial

species. Propagation type varied greatly between vegetative and

generative methods at different times and in the different

grapevine-growing areas. Based on historical data and personal

communication by J.M. Boursiquot and T. Lacombe, we chose to

run the domestication step for about 500 generations. Simulating

505 generations allowed recreating a population structure (FST

and structure) and linkage disequilibrium (LD) pattern similar to

what is currently observed in cultivated grape.

The migration rate between each pair of population was set to

vary over time in order to fit to historical information and to

obtain the required heterozygosity and FST between populations at

the end of the domestication step. To justify the choice of the

migration rates we tested alternative scenarios varying these values

between no migration and twice more important migration rate.

The size of the bottleneck at the beginning of the domestication

was calibrated in the same way, using alternative scenarios without

bottleneck and with a bottleneck twice more stringent than in the

finally chosen scenario.

Using the same demographic parameters we elaborated two

versions with different quantitative trait architectures: simple

(quantitative trait controlled by 10 QTLs) and complex (quanti-

tative trait controlled by 100 QTLs) following [10] and [48]. To

simulate quantitative traits linked to population structure, we

applied stabilizing selection for the first quantitative trait with both

levels of complexity. Intensity and optima of selection varied

among populations (to simulate different selection objectives) and

over time (time since the selection bottleneck). The genetic

architecture of a quantitative trait under selection affects genetic

diversity evolution at the sub-population level. In order to

maintain the same FST and to generate similar QST (as a measure

of phenotypic differentiation among population) for both com-

plexity levels we adjusted the intensity and the optimum of the

stabilizing selection in each domestication scenario. The herita-

bility of quantitative traits was set by fixing the environmental

variance to achieve a narrow-sense heritability of 0.8 in the first

generation of the simulation.

Finally, we added a breeding step, simulating crosses between

and within sub-populations, to mimic the effects of a breeding

program. Founding individuals were chosen from each of the three

sub-populations based on their phenotypic value for the trait

under selection. For within sub-populations crosses, we chose the

six individuals with the best phenotypic record compared to the

selection optimum. For between sub-populations crosses we used

Figure 1. Scheme of the demographical scenario based on our working hypothesis on grapevine evolution. This scheme, implemented
with quantiNemo, is composed of three steps: burn-in, domestication and breeding. Burn-in and domestication steps had the purpose to obtain
grapevine diversity groups corresponding to Western Europe wine group (WW), Eastern Europe and Balkan wine group (WE) and Eastern Europe and
Caucasus table group (TE) as described by [22]. Breeding step models crosses between selected individuals of these groups. At the right side of the
figure are represented generation numbers and historical events with dates. White area is representing wild grape, after domestication it is showed
grey. ‘‘Wine’’ and ‘‘Table’’ symbolize the two different definitions of selection applied on the trait under selection (selection optima and intensity).
Black arrows show the direction of migration and its intensity is indicated by boldface numbers, specifying the number of migrating individuals. The
stringency of each bottleneck is indicated by specifying the number of selected individuals (in regular font).
doi:10.1371/journal.pone.0110436.g001
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the two individuals closest to the phenotypic mean of each sub-

population of origin. In this way, we obtained four populations

with six individuals in each, producing four times 200 descendants

in the next generation via random mating. No selection and

migration were used in this final step. Simulated genotypic and

phenotypic data for one replicate of the three original populations

and the breeding populations are available in File S1 in

Information S1.

Core collection
MSTRAT software (v 4.1) developed by [49] used the M-

method proposed by [50] and allowed the construction of core

collections that maximize the number of observed alleles in the

SSR data set. We defined a core-collection from the meta-

population of 3,000 individuals using MStrat software and the 500

SSRs. This core-collection (Call) consisted in 1,000 individuals,

including the founders of all breeding populations; it was built to

represent the genetic diversity of the entire meta-population (all)

with minimal redundancy (which is the aim concept of core-

collection building). In each replicate of the domestication step,

five core collections of 1,000 individuals were designed and ranked

first by the number of SSR alleles captured; core-collections

exhibiting the same allelic richness (determined by the total

number of alleles represented) were then ranked using Shannon’s

index as second criterion. Finally, the core-collection presenting

the most significant allelic richness with the highest Shannon’s

index was selected for further analysis.

Estimation of diversity indices
Diversity indices, such as genetic variance estimates, the level of

differentiation in quantitative trait (QST) following [51], and F-

statistics following [52] for each pair of populations and for all

types of markers, were calculated with quantiNemo. To calculate

unbiased heterozygosity and compare it to published data [27] on

highly polymorphic SSR markers, we selected all SSR with more

than 10 alleles per locus at the end of the domestication step. Data

analysis was performed using the ‘‘Excel Microsatellite Toolkit’’

[53]. We also calculated allele frequency for each SNP and QTL

locus, in order to filter out rare SNPs with minor allele frequency

(MAF) below 5% that would have biased association tests.

Population structure and relatedness
Population structure was calculated on the 3,000 individuals

using 500 SSR with STRUCTURE software version 2.3.3 [54]

accessed through Bioportal [55]. We used an admixture model

varying the ancestral number of population (K) from two to five, in

order to identify the best K level of population subdivision. Within

STRUCTURE, we allowed an iterative process with a burn-in

phase of 15,000 iterations and a sampling phase of 15,000

replicates. Five replicates of each assumed K level subdivision were

compared to estimate group assignation stability. Outputs were

visualized and interpreted with Structure Harvester web v0.6.93

[56]. The optimal group number was chosen based on the

estimated ‘log probability of data’.

Realized relationship matrix (RRM; [57] was calculated using R

[58] using all filtered SNPs (MAF.5%)on 3,000 individuals.

Linkage disequilibrium
LD measures were performed with the R package LDcorSV

[59] which corrects for the bias due to population structure and

relatedness (r2
SV). LD was measured in two different positions: in

neutral genomic regions and around each QTL. In neutral

positions, mean and median values of r2 were calculated between

each pair of SNP within five arbitrarily chosen windows of 600 kb.

Around QTLs, r2 was calculated between the QTL locus and all

SNP located within 300 kb. We used the Hill and Weir formula

[60] for describing the decay of r2
SV and we characterized LD by

the distance corresponding to a r2
SV value of 0.2.

Genome-wide association
GWAS were performed using the multi-locus mixed-model

(mlmm) approach [61], including the population structure as fixed

covariant in the mixed model. This R script implements a

forward-backward stepwise approach to include significant effects

in the mixed model, while re-estimating the variance components

of the model at each step. We ran mlmm on the meta-population

of 3,000 individuals and on the core-collection with a random

polygenic term, with a variance proportional to the estimated

RRM and a fixed population structure term (three groups)

consisting in ancestry fractions estimated by Structure software.

We also ran mlmm on each sub-population with a random

polygenic term only. Maximal number of forward steps was set to

25. For model selection we chose the multiple-Bonferroni (mBonf)

criterion, selecting the largest model in which all cofactors have a

P-value below a Bonferroni-corrected threshold (we used a

threshold of 0.05). Cofactor effects were re-estimated at the end

of the mlmm analysis and used to estimate the genetic value of

descendent obtained in the breeding step in the simulation.

Genomic prediction
We compared four prediction methods based on genome-wide

high density SNP data: the sum of effects of markers previously

detected in GWAS – using mlmm as described above –

corresponding to classical MAS (cof), Ridge Regression BLUP

(RR) [62], Bayesian LASSO (Least Absolute Shrinkage and

Selection Operator) Regression (BLR) [63] and a combination of

MAS and RR-BLUP (cofRR). We also observed the evolution of

prediction accuracy in different combinations of training and

candidate populations. Training population always comprised

1,000 individuals, while candidate populations were composed of

200 or 800 individuals. We compared two levels of genetic

architecture (10 or 100 underlying QTLs) and prediction accuracy

of structured and non-structured quantitative traits (design

summarized in Figure S1 in Information S1).

For cof method, effects of significant markers and populations

structure were first estimated with a mixed-model together with

variances for genetic (polygenic) and residual random effects. In

this model the groups of population structure and the significant

markers were declared as fixed effects. Then, in a second step the

estimates of the associated markers were used for prediction.

Ridge Regression performs an extent of shrinkage that is

homogenous across markers. For RR we defined the parameter

lambda as l~s2
e=s2

g, where environmental and genetic variances

(s2
e and s2

g) were estimated via REML in a mixed linear model

using emma library [64].

The Bayesian LASSO [65] method performs stronger shrinkage

toward zero for the estimates of small-effect markers, and less for

those with high effects. We performed BLR analysis with the R

package BLR 1.3 [63]. The lambda parameter was set as random,

sampled from a gamma distribution with rate = 0.0001 and

shape = 0.53 [65]. The initial value of l0 was calculated

using the heritability rules given in [20]: l0~2 � n{1�
Pn

i~1

Pm

j~1

X 2
ij �

1{h2ð Þ
h2 where h2 is the narrow-sense heritability, n is

the number of individuals, m is the number of SNPs and X is the

matrix of genotypes. s2
e were chosen from the prior x{2(ve,S2

e ),
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where ve~4 to ensure a finite a priori variance, and

S2
e ~ ve{2ð Þ � 1{h2

� �
� s2

p, where s2
p is the phenotypic variance.

s2
g were chosen from the prior s2

g*x2 v,S2
� �

where

v was 4 to ensure a finite a priori variance and S2~

v{2ð Þ � s2
p

n{1
Pn

i~1

Pm

j~1

X 2
ij

� h2. We allowed an iterative process with a

burn-in phase of 10,000 iterations and a sampling phase of 40,000

replicates.

In marker-assisted RR (cofRR) we combined RR-BLUP with

the effects of markers previously detected with mlmm. Effects of

significant markers and population structure were estimated as

described for cof method and remaining SNPs were used in a RR

model as described earlier. GEBVs were obtained summing the

effects of all markers. The R script is available in File S2 in

Information S1. Accuracy was calculated dividing the correlation

coefficient (r2) between GEBVs and true phenotypes, by the square

root of the narrow-sense heritability.

Test on pine data
The method cofRR was tested on a real data set of loblolly pine

described in [66] using a 10-fold cross-validation schema. Data

consisted of 926 individuals genotyped with 4,853 SNPs and

phenotyped for 17 traits. Information about population structure

was not available.

For the analysis, markers with more than 20% of missing data

were removed in both training and validation sets. For the

remaining loci, missing genotypes were imputed with the mean. In

the training set, we applied a filtering of 5% on minor allele

frequency (MAF.0.05). Kinship matrix (RRM) was calculated as

described above. GWAS were performed using mlmm approach

setting the maximal number of forward steps to 10. To limit the

detection of false-associated cofactors, we choose the extended

Bayesian information criterion (EBIC [67]) for model selection,

which is more stringent than the multiple Bonferroni criterion

[61]. Predictions were performed using cof, RR and cofRR

methods as described previously.

For the 10-fold cross-validation, individuals were randomly

assigned to one of 10 equal folds. Each fold was dropped once

from the training set and predicted. Accuracies were calculated as

described above and using the Mendelian segregation as

heritability according to [66], and the mean value was reported

across all 10 folds.

Results

Simulation
We built the demographic scenario to simulate Vitis vinifera L.

history in order to create three genetic pools as observed by [22].

Parameters (migration rate and bottleneck) of the domestication

step were defined from bibliographic data. In order to validate the

chosen migration rate and bottleneck intensity, we also tested four

alternative scenarios i) without migration, ii) with a twice higher

migration rate, iii) without bottleneck and iv) with a twice more

stringent bottleneck. Ten replicates of each scenario were

simulated. Diversity indices (FST, QST, heterozygosity) were

calculated for all five scenarios and compared to published data.

The values obtained with the domestication step were closer to the

expected level than for the alternative scenarios (Table 1).

Heterozygosity was the only parameter with a value lower than

expected (0.64 vs. 0.73), being closer to the level observed in

natural populations of Vitis sylvestris [27]. Changing bottleneck

and migration ratio modified all diversity indices.
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Descriptive statistics on simulated data
Because of genetic drift and selection, the number of

polymorphic loci decreased over time. While, at the beginning

of the burn-in step (common to the 10 replicated simulations),

189,500 polymorphic SNP loci were defined, 111,004 polymor-

phic SNP loci only were observed at the end of this step (Table 2).

After 505 generations, at the end of the domestication step, we

observed on average 92,787 (sd = 309.5) polymorphic SNP loci for

the entire meta-population of 3,000 individuals. After filtering on

minor allele frequency (MAF.0.05) 81,555 SNPs (sd = 845.6)

were retained. For both simple and complex quantitative traits

(confounded or not with demographic structure) on average 85%

of the QTLs were polymorphic and 73% passed the MAF.0.05

filter.

We measured LD decay in both neutral genomic regions and

around QTLs. LD in neutral regions decreased rapidly (Figure S2

in Information S1). An r2
SV value of 0.2 was observed over a

distance of nine to 13 kb depending on the replicate. This value is

consistent with the LD observed over 10 kb segments in a set of

grape cultivars [30]. Around QTLs, we observed the same

tendency except for structured traits, where LD extended further

than 13 Kb in a few cases (Figure 2). Consequently, given the

extent of LD, the number of SNPs present at the end of the

domestication step allowed us to tag all the genome.

The FST statistics between simulated populations were mea-

sured with SSR markers. As expected from observed data [47] the

historically more distant populations (WW-TE) showed the highest

FST values of 0.07 while historically closer populations displayed

lower (approx. 0.04) FST values (Table 1, Figure S3 in Information

S1).

The Structure analysis (L(K) method) over the entire meta-

population (3,000 individuals) best supported clustering into three

ancestral populations in all replicates of the simulation (data not

shown) corresponding to the expected three simulated populations:

WW, WE and TE.

The narrow-sense heritabilities for the simulated traits at the

end of the domestication step were approx. 0.8 (0.72 to 0.78 for

simple trait and 0.76 to 0.77 for complex) conform to initial

settings. QST was measured as an index of phenotypic distances

between each pair of simulated sub-population. QST values were

always higher for selected traits than for neutral ones (Figure S3 in

Information S1). Overall QST values reflected FST values with the

TE population diverging more from the other two populations.

However, since no published data on QST are available yet, we

were unable to compare our data with actual observations.

In conclusion, the simulated populations matched observed data

reasonably well. We thus considered that the demographic

scenario was able to generate pertinent genotypic and phenotypic

data allowing further GWA studies and the building of GS models.

Descendent populations
To simulate a breeding program, we crossed selected individuals

from the three original gene pools (Figure 1). Three crosses were

realized within populations leading to dWW, dWE, dTE, and one

between populations leading to Mixed. In the original gene pools,

traits distributions for non-structured traits were identical between

sub-populations while they were different for the structured traits

(Figure 3). Variance for simple traits was also smaller than for

complex traits.

Table 2. Descriptive statistics on the simulated meta-population.

simple trait complex trait Real

LD 11 kb 10a

SNP number Total 111,004 -

polymorphic 92,787.1 (309.5) -

MAF.0.05 81,555.0 (845.6) -

QTL number Total 2610 26100 -

polymorphic 8.6 (1.03) 83.7 (3.94) -

MAF.0.05 7.2 (1.51) 72.2 (4.72) -

heritability structured trait 0.71 (0.080) 0.76 (0.037) -

Non-structured trait 0.78 (0.034) 0.77 (0.025) -

a[30].
doi:10.1371/journal.pone.0110436.t002

Figure 2. Estimation of LD around QTLs. Mean estimation of LD (in
Kb) around the QTLs, calculated at r2SV = 0.2 between all loci in the
600 Kb neighborhood of each QTL locus on 3,000 individuals, for simple
traits (A) and complex traits (B) on the 10 replicates of the simulation.
The two figures on the left side represent LD around structured trait’s
QTLs and the other two figures around non-structured traits QTLs. QTL
loci were ranked as a function of theirs effects from negative to positive
values. Error bars were calculated with 95% confidence intervals on the
estimates of the means.
doi:10.1371/journal.pone.0110436.g002
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The differences between mean phenotypic values of the

breeding crosses and their respective original gene pools were

smaller for simple traits than for complex ones (Figure 4). It was

slightly higher between WW and dWW for non-structured traits

compared to the other populations, but the highest difference was

obtained between TE and dTE for structured traits.

Differences in phenotypic means were also measured between

the breeding crosses and i) those original gene pools without direct

parental link ii) the core-collection. We observed greater differ-

ences for structured traits than for non-structured ones and for

simple traits than for complex ones (Figure 4). dTE is always more

distant from the other sub-populations, while Call behaves

similarly to WE, and the Mixed population is closer to TE than

to the other populations.

Genome-wide association study (GWAS)
The best mlmm model of each replicate realized on the whole

meta-population explained 68 to 83% of the total variance. As

expected, the composition of the variance differed between

simulated traits (Figure S4 in Information S1). Through the 10

replicates of the simulation of the four training sets (WW, WE, TE,

Call, i.e. 1,000 individuals), significant associations were detected

for 32 to 59% (on average) of the simulated QTLs in simple traits

and 2 to 5% in the complex traits (Table 3). For simple traits, one

to four QTL only were never detected through replicates, while for

complex traits this number ranged from 77 to 88. The proportion

of fixed QTLs was similar for all traits, on average 14 to 18% per

replicate. Some QTLs were always fixed across the 10 replicates:

one in the simple structured trait and five in complex traits. In the

case of non-structured traits, one QTL was repeatedly detected

across replicates for the simple trait and another QTL was

detected in two subpopulations for the complex trait. As expected,

more QTL could be identified for non-structured traits than in

structured ones, especially with the simple trait (55 to 57%, while

in non-structured trait only 32 to 37%). In the full meta-

population of 3,000 individuals (all), more QTL were detected

than in the training sets of 1,000 individuals, especially for

complex traits. In the core-collection fewer QTL were identified

than in sub-populations. Manhattan plots of the results in one

replicate are shown as supplementary data (Figure S5 in

Information S1). In this example, SNPs linked to QTLs were

detected for all types of traits with very high P-values (Table S1 in

Information S1).

LD measures between QTLs and the cofactors of mlmm

showed that significant markers always presented higher LD with

the closest QTL, than with other QTLs. However, some cofactors

presented quite weak linkage (r2,0.05) with the QTL, but strong

linkage (r2.0.2) with another cofactor, itself tightly linked to the

QTL.

Prediction of phenotypes from genotypes
We used four methods (cof, RR, BLR, cofRR) to predict

descendent populations phenotypes from their genotypes based on

prediction models defined on the training populations (Figure S6

in Information S1). We tested different combinations of training

versus candidate populations in order to compare their prediction

power in different situations of relationship and for different trait

complexities and structures (Figure 5–6).

Model selection. Auto-prediction (candidate set = training

population) with high accuracy proved the relevance of all the

models used (Figure S7 in Information S1). Globally, the

prediction models showed low (0.2) to high (0.9) accuracy

depending on the methods, traits and combination of training

and candidate populations. Simple traits were always better

predicted than complex ones (accuracy of up to 0.9 versus

accuracy of up to 0.5). Models built with cof and cofRR methods

always performed better than models built with the other methods

for simple traits (mean accuracy on the 10 replicates of 0.2 to 0.85

versus 0.1 to 0.5; Figure S6 in Information S1). For complex traits,

cof method was always as efficient as RR and BLR.

Relationship between training and candidate

populations. As expected, accuracies obtained from within

sub-population predictions were always better than between sub-

population predictions (+0.3% to 400%; Figure 5A and 5B).

Among within sub-populations predictions, accuracies for simple

traits were better with WW and WE as training set than with TE,

while no significant difference was observed for complex traits.

Using the core-collection as training population, accuracies

obtained on dWW, dWE and dTE were as good as for within

sub-population prediction (Figure 5C). Accuracy was slightly

better for the Mixed sub-population than for the others. The best

accuracies were obtained predicting the totality of the descendant

meta-population (800 individuals, dall). In this case cof method

results showed a 15% better accuracy than other methods for

simple traits, while it was 56% less accurate for complex traits.

The effect of trait structure. Structured and non-structured

traits were predicted within and between sub-population using cof

and cofRR methods (Figure 6) and also with the core-collection as

training set (Figure 7). We observed slightly higher values for non-

structured traits than for structured traits, except in the case of WE

for simple traits. All markers using models built on the core-

collection predicted the structured traits better than the non-

structured ones on dWE and on the entire meta-population. In

these cases they highly out-performed cof method for complex

traits (200 to 300%).

Pine data
After filtering on missing data and allele frequency, around

3047 (+/25) SNPs were considered for the GWAS. There was

only one trait out of 17 (fusiform rust susceptibility by presence or

absence of rust: Rust_bin) where cofactors could always be

Figure 3. Distribution of phenotypes in training (WW, WE, TE)
populations. Distributions are presented on one replicate of the
simulation for the structured and non-structured simple (A) and
complex (B) traits. The colored vertical lines show the phenotypes of
the founder individuals of descendent populations. Call corresponds to
the core-collection.
doi:10.1371/journal.pone.0110436.g003
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identified through the 10 training sets of the cross-validation

schema. In this case, higher accuracies were obtained with cofRR

method than with RR or cof. For the traits where no cofactors

could be identified with mlmm, cof method accuracy was equal to

zero, while RR and cofRR methods displayed the same

accuracies. The supplementary Figure S8 in Information S1

presents the accuracy of these three methods on two traits having

similar Mendelian segregation values (0.26 and 0.21 respectively).

The first one is the average branch diameter of six years old trees

(BD) considered as a complex architecture trait. No cofactor could

be detected for this trait, so RR and cofRR yielded the same

accuracy (0.50). The second trait is Rust_bin, an oligogenic trait,

where one or two cofactors were detected depending on the

training set. Cof method showed poor prediction accuracy (0.24),

while cofRR resulted in an accuracy of 0.77, thus outperforming

RR method (0.67).

Discussion

Simulated data
Because high density SNP markers (over 20 K) are still

unavailable in grape, we have used simulations in order to test

both GWAS and GS. Three populations of 1,000 individuals were

simulated in order to reflect real data [22]: three genetic pools of

high heterozygosity (He = 0.74) but with relatively low differen-

tiation (FST values of up to 0.07).

The simulation of genomes and causative mechanisms (genetic

architecture) in different species is complex. There are many

different forms of genomic variability, a wide variety of plausible

demographic and evolutionary histories, as well as considerable

uncertainty about how mutation and recombination rates vary and

about the mode and distribution of gene action [68]. We chose a

forward-simulation strategy and developed a complex demograph-

ic scenario based on historical information, which was imple-

mented using quantiNemo software [46]. We simulated natural

(Hardy-Weinberg) populations with additional human selection

and migration following historical data about grapevine’s domes-

tication. Despite its early domestication, human breeding in grape

seems rather recent and was not very intensive compared to other

crops (maize, rice). Instead of creating advanced lines from

complex breeding schemes, a large genetic diversity was main-

tained and is still cultivated today [33]. For unknown or hard to

estimate parameters (bottleneck, migration rate, selection intensity,

variation of parameters in the time, number of generations), we

followed guidelines from grapevine’s evolution history and defined

alternative scenario to test the sensitivity of these parameters. The

number of generations since grapevine’s domestication was also

difficult to estimate because of the combination of vegetative and

generative propagation methods over time and across different

geographical regions. Several sources suggested a very limited

number of generative cycles. For wine cultivars Arroyo-Garcı́a et

al. (2006) estimated 80 generations [24], while Fournier-Level et

al. (2010) expected 100 [69]. The values we used in our scenarios

(505 generations for TE, 100 for WE and 50 for WW) were

supported by these historical informations, with a constraint to

achieve desired population structure (FST and structure) and to

create linkage disequilibrium (LD) between QTLs and surround-

ing neutral markers.

Figure 4. Heat map presenting the difference between the phenotypic mean of training and candidate sets. Mean values were
calculated on the 10 replicates of the simulation.
doi:10.1371/journal.pone.0110436.g004

Genomic Selection in Grape: Interest and Limitations

PLOS ONE | www.plosone.org 8 November 2014 | Volume 9 | Issue 11 | e110436



The simulation of the meta-population based on grape

evolution’s history led a large set of individuals forming highly

polymorphic heterozygous structured populations close to the

cultivated compartment of Vitis vinifera L. Heterozygosity level

was however a little lower than observed, closer to the natural

populations of V. sylvestris, the wild compartment of grape, which

underwent little to no human selection. In this simulated data LD

level around the QTLs was slightly higher than in neutral regions

of the genome (nine to 16 kb and nine to 13 kb respectively).

However, more extended LD can be observed in the region of

QTLs controlling binary traits, such as berry color [70] and

muscat flavor [71]. Indeed, [34], using only 5,110 polymorphic

SNPs on 289 individuals, were able to identify by GWAS several

associations for berry color, which is a highly selected binary trait,

indicating an extensive LD between loci located within a 43-kb

region [70]. Nevertheless our study focused on quantitative traits,

which are nowadays challenging breeding programs, and where

genome-wide selection methods are needed.

In the simulations, a large number of parameters were declared

(more than 50). These values were defined following the

evolutionary history of grape and comparing multiple alternative

scenarios. Finally we chose the model which best fitted real data

based on four criteria: FST, LD, heterozygosity and population

structure. The scenario we developed is just one possibility to

create the target material. This model could be optimized using

the Approximate Bayesian Computation (ABC) approach [72],

but its implementation is very time-consuming and exceeds the

scope of this study.

Feasibility of GWAS in grape
One aim of this study was to test GWAS ability to detect

simulated QTLs in highly heterozygous genomes in a structured

meta-population with high level of genetic diversity, similar to

grapevine. Genomes were covered by more than 80,000 well-

distributed SNP markers and analyses realized with the mlmm

method [61]. We simulated four sets of 1,000 individuals (WW,

WE, TE, Call) to investigate the genetic properties of four

quantitative traits characterized by two levels of complexity (10 or

100 QTLs), linked or not to population structure.

GWAS was more efficient to detect a few QTLs with a large

effect (characteristic of simple traits) than to identify multiple loci

of too small additive effects, as showed in previous studies [1]. In

structured and complex traits, a number of underlying QTLs

could never be perceived because of fixation. Due to the

confounding effect of population structure in structured traits –

using a model controlling for population structure – we detected

slightly fewer associations explaining a smaller part of the total

variance than in non-structured traits, as already mentioned [6–

8,35]. In this work, we fixed the number of SNPs to 111,000 (of

which 92,787 remained polymorphic after running the simulation)

so that at least one to two SNPs were present in every LD block of

10 kb. The cases where QTLs could not be detected were due to

the small effect (percentage of the variance explained) of these loci

(Figure S9 in Information S1). Increasing the sample size of the

studied panel can be a solution to detect these QTLs. Indeed,

using 1,000 individuals instead of 3,000, only half of the QTLs

could be identified in our data (Table S1 in Information S1).

Similarly, fewer QTL were identified, especially for the complex

traits using the core-collection, meaning that as diversity increases,

QTL detection power decreases.

In some cases we observed low LD (r2,0.01) between a QTL

and the significant associations indicated by the best model of

mlmm. Some of these markers were found at the same time close

to the target QTL and tightly linked to another more significant
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Figure 5. Mean prediction accuracy as a function of the training – candidate combination. Results are showed on simple and complex
traits through the 10 replicates of the simulation. Figure A presents the prediction within sub-population (candidate set derived from the training
set). Figure B shows the mean accuracy of prediction between sub-population (candidate sub-populations derived from a different training set).
Training sets are indicated on the x axis, the four colors representing the four methods used (cof, RR, BLR, cofRR). Training and candidate sets
comprised all individuals of the indicated sub-population (1,000 and 200 individuals respectively). In figure C the prediction models were built on the
core-collection (Call) and applied to the four breeding sub-populations separately (dWW, dWE, dTE and Mixed, each composed of 200 individuals)
and to the whole meta-population (dall, 800 individuals).
doi:10.1371/journal.pone.0110436.g005

Figure 6. Mean accuracy of prediction in structured (A) and non-structured (B) trait. We also compared here two combinations of training
– candidate sets (i.e. the two figures on the left present within sub-population predictions and the two figures on the right present between sub-
population predictions) and simple and complex traits through 10 replicates of the simulation. Training sets are indicated on the x axis, the two colors
representing the methods used (cof, cofRR). Training and candidate sets comprised all individuals of the sub-population (1,000 and 200 individuals
respectively), except for the model constructed on Call, which was tested on the entire breeding population (800 individuals).
doi:10.1371/journal.pone.0110436.g006
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association. This phenomenon could result from an extremely

large QTL effect; as, in addition, the causal loci were not included

in the analysis, its variation was thus captured by multiple

‘‘complementary’’ SNPs not completely linked to the QTL. The

other part of weakly linked associations was further from the QTL

and can be the result of remaining kinship and population

structure.

Prediction of phenotypes from genotypes by GEBV
We will discuss here our GS results focusing on three points: i)

the comparison of prediction methods ii) the definition of training

and candidate sets in a structured population iii) the influence of

trait structure on prediction accuracy.

Several studies identified parameters affecting prediction

accuracy. The significance of marker density, size of the training

population and trait heritability have already been well assessed

[10,73,74]. Therefore, we defined our parameters according to

these previous findings, adjusting them to grapevine genome in

order to reach optimal prediction accuracy: number of polymor-

phic SNPs (MAF.0.05 filtered) around 81,000 (one SNP in each

5.8 kb), training population size at 1,000, and heritability between

0.7 and 0.8.

Prediction methods. We realized genomic predictions on

simulated grapevine data using four methods, viz. a classical MAS

approach with the cofactors identified in mlmm analysis (cof) and

three ‘‘all genome’’ methods: Ridge-Regression BLUP (RR),

Bayesian LASSO regression (BLR) and marker assisted Ridge-

Regression (cofRR). For the cof and cofRR prediction models, we

retained all significant cofactors identified by mlmm, and re-

estimated their effects in a mixed model. Our results show that, by

considering these effects, higher prediction accuracies can be

obtained than by estimating all effects with RR or BLR methods

(except for non-structured simple trait predicted with the core-

collection on the totality of descendants, where RR, BLR and

cofRR were on the same level and cof method outperformed

them). The only cofactor-using method (cof) was also as or more

efficient than RR and BLR methods in all cases, except for the

prediction of the complex trait with the core-collection. A number

of authors have shown that there are two major factors affecting

prediction accuracy: LD between marker and QTL, and

information on the genetic relationship captured by markers

[75–78].

The cofRR method uses two types of genomic information: i)

the associated cofactors identified by GWA approach (mlmm) that

capture the accuracy due to LD between marker and QTL, and ii)

the remaining markers of the polygenic term that capture the

genetic background effect (such as population structure) of the

training set. By contrast, cof method is using the first type of

information only, while RR and BLR are principally capturing the

genetic background effect [75]. The accuracy due to LD between

marker and QTL supersedes the accuracy due to genetic

relationship if SNP effect and/or LD are high [76,77,79]. Our

results on simple and complex traits are in agreement with this, i.e.

prediction accuracy of cof method was higher in simple traits than

in complex traits, where much fewer QTL could be detected by

GWAS (in average 32–59% per replicate for simple traits and 2 to

5% for complex traits). On the other hand, cof method was as

efficient as RR and BLR even in complex traits that can likely be

explained by the proportion of causal loci compared to neutral

SNPs. The 100 QTLs of the complex traits represent 0.09% of the

simulated loci, which is still far from the hypothesis of RR and

BLR methods, that all or most of the markers have an effect

different from zero. Moreover, [80] showed that, for a Bayesian

prediction model, redundant and uninformative markers diminish

prediction accuracy. Finally we can recommend the use of the

cofRR method, which was able to predict a large part of the

polygenic term, i.e. the variance not captured by the cofactors,

even in complex traits.

Tests on pine data confirmed that cofRR outperforms RR when

cofactors could be identified in the training panel. However this

advantage strongly relies on the quality and efficiency of GWA

analysis with mlmm which provides the cofactors. Present results

emphasize the importance of marker density – which is a limiting

criterion in real data – and information about population structure

in the training material.

Combination of training and candidate sets. We per-

formed genomic predictions using four training sets and four

candidate sets issued from crosses between selected training

individuals, comparing four methods on four traits (simple/

complex and structured/non-structured). Three of the four

training sets (WW, WE, TE) comprised all individuals in each

sub-population. The fourth training set (Call) was the core-

collection defined from the entire meta-population, in order to

maximize diversity using 1,000 individuals, including the founders

of the four candidate populations. Predictions were developed

either using models trained on the population from which the

founders were chosen (within sub-population) or from the other

populations (between sub-populations), or on a core-collection

representing the diversity of the entire meta-population.

According to [48], lower accuracies were obtained when the

training set was not related to the candidate populations (between

sub-populations) due to the lower genetic relationship between

training and candidate sets. In fact, in our scenario, the three sub-

populations diverged from each other due to genetic drift through

500 generations. Differentiation was accelerated by selection and

Figure 7. Prediction accuracy in structured (A) and non-
structured (B) traits using the core-collection as training
population. Mean prediction accuracy was calculated on all 10
replicates of the simulation using four methods (cof, RR, BLR, cofRR).
Models were built on the core-collection (Call) and applied to the four
breeding sub-populations separately (dWW, dWE, dTE and Mixed, each
composed of 200 individuals) and on the whole breeding meta-
population (dall, 800 individuals). The two figures on the left side
represent accuracies observed on structured traits and the other two
figures accuracies on non-structured traits.
doi:10.1371/journal.pone.0110436.g007
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slowed down by migration between sub-populations. However,

Figure S9 in Information S1 shows that the effect of QTLs did not

vary much between sub-populations, maintaining the accuracy

due to LD between marker and QTL. The highest accuracies (up

to 0.9) were obtained either in within sub-population predictions

or when using the core-collection as training population.

Consistent with [81] and [48], the combination of the individuals

of all sub-population in the core-collection yielded as good an

accuracy as in within sub-population situations. We have to specify

here that the high marker density used in this study allowed

capturing the effect of multiple polymorphic QTLs and a great

part of the genetic relationship even if sub-populations diverged.
Influence of trait structure. Our results show that popula-

tion structure affects prediction accuracy in both simple and

complex traits. Globally we observe that non-structured traits were

predicted with higher accuracy (Figure 6). However, we observe

higher accuracy for structured traits than for non-structured ones

when predicting the entire breeding meta-population with all-

genome using models (RR, BLR, cofRR) built on the core-

collection (accuracy of 0.6 and 0.98 respectively; Figure 7).

Therefore, if there is a significant population structure in the

training population and in the candidate set, a trait following this

structure is better predicted than a non-structured trait. A

plausible explication for these results is that, in contrast to cof

method, RR and BLR methods could capture the population

structure in the core-collection. This becomes advantageous when

the candidate set displays that same population structure (with all

groups of structure), and leads to supplementary knowledge in the

case of traits which co-segregate with this structure.

In conclusion, we can recommend the use of the cofRR method,

which makes simultaneous use of information about QTLs

(through cofactors obtained from GWAS), genetic relationship

and population structure. Contrary to GWAS, GS using either

RR, BLR and cofRR methods is able to take advantage of the

population structure when predicting structured traits, if both

training and candidate populations are following the same pattern.

This work is the first attempt to test both GWAS and GS in

grape through simulations. On a large population of 3,000

individuals, up to 81,555 SNP markers with frequency above 5%

and four traits (simple and complex, structured and non-

structured) were simulated. Through GWAS, an average of 5.9

to 30% of the QTLs could be identified, the best results being

obtained for simple non-structured traits. Genomic estimated

breeding values (GEBV) were calculated using the same data set.

Predictions for simple traits within population were always more

accurate, with a very high accuracy of 0.9, while accuracy dropped

to 0.2 for complex trait and betweenpopulation predictions.

Accuracy also depended on the pairs of populations in relation

with the mean phenotypic differences between the training and

candidate populations. The highest prediction accuracy (up to 0.9)

was obtained using the combined GWAS-GS model (cofRR).

Finally, for grapevine breeding or for other important economic

crops with the same characteristics, we recommend using the

combined prediction model with a core-collection as training

population.
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