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Abstract

Motivation: With the ever-increasing number and diversity of sequenced species, the challenge to characterize
genes with functional information is even more important. In most species, this characterization almost entirely
relies on automated electronic methods. As such, it is critical to benchmark the various methods. The Critical
Assessment of protein Function Annotation algorithms (CAFA) series of community experiments provide the most
comprehensive benchmark, with a time-delayed analysis leveraging newly curated experimentally supported anno-
tations. However, the definition of a false positive in CAFA has not fully accounted for the open world assumption
(OWA), leading to a systematic underestimation of precision. The main reason for this limitation is the relative pau-
city of negative experimental annotations.

Results: This article introduces a new, OWA-compliant, benchmark based on a balanced test set of positive and
negative annotations. The negative annotations are derived from expert-curated annotations of protein families on
phylogenetic trees. This approach results in a large increase in the average information content of negative annota-
tions. The benchmark has been tested using the naive and BLAST baseline methods, as well as two orthology-based
methods. This new benchmark could complement existing ones in future CAFA experiments.

Contact: alex.warwickvesztrocy@unil.ch or christophe.dessimoz@unil.ch

Availability and Implementation: All data, as well as code used for analysis, is available from https://lab.dessimoz.
org/20_not.

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

According to the GOLD database, hundreds of thousands of
genomes have already been sequenced, including close to ten thou-

One major complication in assessing protein function predictions
is that proteins typically possess multiple ‘functions’ [sensu Gene
Ontology (GO) (Thomas, 2017)], and knowledge of these functions,

sand eukaryotes (Mukherjee et al., 2019). Within one decade, the
Earth BioGenome consortium aims to sequence 1.5 million eukary-
otic sequences (Lewin ef al., 2018). At a molecular level, however,
nearly all biological knowledge is concentrated in human and a
handful of model species. Strikingly, in UniProt-GOA (Huntley
etal., 2015), over 80% of all Gene Ontology annotations supported
by direct experimental evidence are concentrated in just seven spe-
cies. Thus, for the overwhelming majority of species, functional
characterization is almost entirely reliant on automated computa-
tional methods (Cozzetto and Jones, 2017).

As such, it is critical to benchmark the various computational
methods. The Critical Assessment of protein Function Annotation
algorithms (CAFA) series of community experiments have provided
the most comprehensive benchmark, with a time-delayed analysis
leveraging new experimentally supported annotations (Jiang et al.,
2016; Radivojac et al., 2013; Zhou et al., 2019).

©The Author(s) 2020. Published by Oxford University Press.

even for well-known genes in model species, is typically notably in-
complete (Huntley et al., 2014). This incomplete state of knowledge
is referred to as the open world assumption (OWA) (Skunca et al.,
2017; Thomas et al., 2012). This has previously been shown to af-
fect the performance measures of conventional benchmarks
(Huttenhower et al., 2009). Whilst CAFA benchmarks have been
shown to be relatively stable in the short term (Jiang ef al., 2014),
they do not fully account for the OWA. This leads to a systematic
underestimation of precision (Dessimoz et al., 2013). For example,
consider the human gene Serotonin  N-acetyltransferase
(SNAT_HUMAN) which controls the night/day rhythm of mela-
tonin production in the pineal gland. When this protein had no GO
annotations, a method may have predicted ‘circadian rbythm’
(G0:0007623), rhythmic process’ (G0:0048511) and ‘indolalkyl-
amine biosynthetic process’ (GO:0046219). Then, when ‘circadian
rhythm’ and ‘rhythmic process’ were experimentally associated with
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this gene, they would both be considered true positives and ‘indolal-
kylamine biosynthetic process’ as a false positive. Several years later,
however, this term was also associated with this protein—contra-
dicting the assertion that it was a false positive and demonstrating
the problem with assuming a ‘closed world’ of complete knowledge.

To be compliant with the OWA during benchmarking, explicit
negative annotations are desirable—those that state a particular gene
does not have a particular function—thus making it possible to classify
computational predictions of the contrary as a false positive
(Dessimoz et al., 2013). Yet currently, in UniProt-GOA, less than
2.5% of all experimentally annotated proteins have a Gene Ontology
annotation which is negatively qualified, indicated by the use of the
‘NOT’ tag in the qualifier field of a GAF file (Gaudet et al., 2017).

Furthermore, reasoning on ontologies when using negative anno-
tations requires different treatment than with positive annotations.
Thus, the information content (IC) associated with negative annota-
tions needs to be computed differently. As is elaborated below, this
has not been accounted for in benchmarks to date.

Previous work to identify negative annotations tends to focus on
their use as negative examples in machine learning methods. For ex-
ample, NoGO (Youngs et al., 2014) generated a database of nega-
tive annotations based on annotated and unannotated examples
using methods for relevance feedback from the field of information
retrieval—the Rocchio, 1-DNF and AGPS algorithms. These meth-
ods can suffer from predicting overly specific terms. This has the
same issues as only having positive annotations to very general
terms, in that overly specific negative annotations carry little infor-
mation. NegGOA (Fu et al., 2016) aimed to overcome this using the
ontology structure, random walks and co-occurrence of terms to
model the potentiality of missing annotations.

This article introduces an approach to derive a large number of
negatively qualified annotations from expertly curated gene phylog-
enies. Using these, a framework for OWA-compliant benchmarking
was developed, based on a balanced test set of positive and negative
annotations. This benchmark has been tested on the naive and
BLAST baseline methods, GOtcha and an orthology-based method.
This new benchmarking framework could complement existing ones
in future CAFA experiments.

2 Materials and methods

This section begins by highlighting the differences in benchmarking
GO annotations with explicit negative annotations, over the current
practice. This requires a large number of negative annotations—a
method is then presented to derive many negative annotations based
on expertly curated gene phylogenies. These can then be used in an
OWA-compliant benchmarking framework, illustrated with a
method comparison.

2.1 Benchmarking gene ontology annotation with

explicit negative annotations

A large amount of explicit negative annotations would help to ad-
dress the OWA in benchmarking. Further, benchmarking using these
negative annotations requires different handling. It is customary to
assess automated function predictors in a protein-centric sense. This
means computing some measure of quality—for example precision—
recall—for each protein, with an average taken over the proteins
tested. A set of true annotations is required, that are not available to
the predictor, to properly assess the method. It is currently common-
place to identify the false-positive GO terms as those that have been
predicted, but not in the set of true annotations (Table 1a). When
there are sufficient negative annotations in the true annotation set
for a given protein, the false positives can then be identified as over-
lapping with these (Table 1b).

Furthermore, because different terms vary in their IC—for ex-
ample a positive association with a term such as ‘root hair elong-
ation’ (G0O:0048767) is more informative than the more general
term ‘growth’ (GO:0040007)—it is common to compute weighted
precision—recall curves, to correct for the bias towards general

Table 1. Definitions of true positive (TP), false positive (FP) and
false negative (FN) (for a single GO term on a single protein) used
in (a) CWA benchmarks (current benchmarks) and (b) OWA bench-
marks (in this article) for no-knowledge targets

(a) CWA Benchmark

True
v X ?
Pred. v TP FP
X FN TN
(b) OWA Benchmark
True
v X ?
Pred. v TP FP
X FN TN

Note: Current benchmarks use the lack of annotation to a particular GO
term in the true annotations (symbol €?°) to compute the set of false positive
GO terms. Correct (TP) shown in green, incorrect (FP, FN) shown in red.
True negative annotations (TN) are also shown, however are not required to
compute the precision-recall curves used in this study.

terms. For instance, Clark and Radivojac (2013) proposed to weight
by the information accretion—the increase in information that a
particular term gives, relative to all parent terms. This approach was
subsequently implemented in CAFA 2 (Jiang et al., 2016). To com-
pute the IC of GO terms, the probability is required. This can be
estimated using the empirical annotation frequency of each term.

However, it is important to acknowledge that the IC of a single
term is not the same if it is negatively or positively qualified. For ex-
ample it is easier to show that a gene should be annotated with the
general metabolic process term (GO:0008152) than a particular
metabolic process, for instance lactose biosynthetic process
(0:0005989). In contrast, it is exceptionally challenging to show
that a gene is not associated with any metabolic process, in compari-
son to showing that it is not involved in a very specific one. Thus,
more general terms in the GO have a lower IC than more specific
ones when a positive association is made. However, the inverse is
true for negative associations—general terms have a greater IC than
those that are more specific.

Hence, it is necessary to estimate the IC of negative annotations
separately—ensuring to propagate term counts to children instead
of the parents, unlike for positive annotations (Gaudet and
Dessimoz, 2017).

2.1.1 Information content computation

IC can be estimated by computing the frequency of a particular GO
term in a given database of annotations. The IC that an individual
term holds is then computed as

ic, (t) = —log, (P[t]),

where ¢ is a single GO term and P[¢] is the empirical probability of
observing said term. The logarithm is taken base 2 by convention,
with the units of information as Shannons or bits (Shannon, 1948).
Then, the IC of a set of terms T, can be computed as

ic..(17) = — log, (P7T)),

where P[77] is the empirical joint probability, calculated directly
from the annotation matrix (P), considering for co-occurrence of the
annotations. Note, proteins were considered annotated if they had
at least one annotation in at least one aspect of the GO, lower than
the root term, listed in the UniProt-GOA database (Barrell et al.,
2009).
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Possible Evolutionary Models of an
Individual GO Term

Node Types

A Collapsed Subtree
O Ancestral Gene

Annotation to GO term
@ Positive Association

. Negative Association
O No Association

Evidence
Qf Evidence of function
x Evidence of lack of function

Fig. 1. Possible locations in an example gene phylogeny where a curator can anno-
tate an individual GO term with a positive or negative association. Green and red
nodes indicate positive and negative associations to a particular GO term, respect-
ively. The propagated annotation on child nodes and the collapsed sub-trees are
shown in lighter colour. In (a), this shows a term for which there is evidence on all
sub-trees and, as such, the root node is positively annotated with the term. Then, (b)
shows that if there is instead lack of evidence or evidence of lack of function in one
of the sub-trees then the annotator will negatively associate the node leading to this
sub-tree, however, there are few such cases. If, instead, there is no information on
the left-hand side of the tree, as in (c), the curator would annotate a lower node
than the root and leaving the left-hand side (see question mark) unannotated

2.1.2  ‘Negative’ information content computation
As the IC of positive and negative annotations is not equal, it is ne-
cessary to compute these separately, to account for the OWA (differ-
ence shown in Supplementary Fig. S5). By analogy, the ‘negative’ IC
of a term (¢) and set of terms (T) can be calculated as

ic_(1) = —log, (P[-1]),
ic_(TT) = —log, (P[-7T]),

however, P[—~77], the joint probability of negative associations of
the set of terms in T, would be computed directly from the negative
annotation matrix (N). Similarly, proteins were considered anno-
tated if they had an annotation in UniProt-GOA, or the derived set
of negative annotations (described in Section 2.2).

2.2 Deriving negative annotations from curated gene
phylogenies
Expert curators have annotated ancestral states in gene phylogenies
with GO terms (Ashburner et al., 2000; The Gene Ontology
Consortium, 2017, 2018), using the Phylogenetic Annotation and
INference Tool (PAINT) (Gaudet et al., 2011) on PANTHER fami-
lies (Muruganujan et al., 2012). Both positive and negative (that is,
‘NOT’-qualified) annotations are recorded in ancestral states. These
ancestral annotations are then propagated down the phylogeny to
the extant genes.

This follows the principle of parsimony—in the absence of evi-
dence to the contrary, the function of a gene is maintained through

evolution. Thus, annotations are typically propagated down the
phylogeny once an ancestral node has been associated with some
function. However, in some instances—for example if there is a loss
of an active site, or some evidence that there is a loss of function in a
particular clade—the curator may choose not to propagate the func-
tion through the phylogeny (Fig. 1b, red sub-tree).

Considering an individual GO term, if a curator finds evidence
that this term applies to all members of the gene family then the root
node shall be annotated (Fig. 1a). However, if there is evidence that
this function is not present in a particular sub-tree then a negative
annotation would be assigned to an internal node (coloured red
here; Fig. 1b). This implies that the gene in question has lost a par-
ticular function on the branch leading to this node.

A curator might annotate an internal node with the term of inter-
est, without propagating it all the way to the root (Fig. 1c). This
could be motivated, for example, by a lack of experimental informa-
tion outside of the sub-tree, or taxon-based constraints (Deegan
et al., 2010; Tang et al., 2018). Irrespective of the reason, an expert
curator has deemed that there is currently a lack of evidence to an-
notate the root node with this term. As such, it can be argued that
an automated predictor should incur a penalty for predicting such
terms.

By scanning the PAINT annotations for such instances, it is pos-
sible to derive many pairs, (p, #), where p is a protein which is mem-
ber of a family where an ancestral node, not in its direct lineage, has
been annotated to a GO term ¢ That is, p is not covered by a
PAINT annotation (positive or negative) for a GO term ¢, but other
members of its family are. Negative annotations are only derived for
terms ¢ for which icy (#) > 5. This aims to reduce the number of in-
correct derivations from cautious curation (as elaborated upon in
the discussion below).

2.3 Balanced benchmarking
In general, approaches to benchmarking GO annotations acknow-
ledge that some aspects of function are easier to predict than others.
Thus, they typically consider the IC of each annotation.
Furthermore, since the IC for the same term varies whether it is asso-
ciated positively or negatively with a given target (see above), this
difference should also be considered. One such way to account for
differences in IC amongst annotations is by weighting predictions by
their IC. However, this only works up to a point: if there are no, or
very few, annotations with high IC, the results will have a very large
variance and thus not be particularly informative. To avoid this, it is
possible to design a benchmark to test GO terms for which there are
informative positive and negative examples. Henceforth, this design
shall be referred to as a ‘weighted and balanced’ benchmark.

To investigate the two approaches (weighted-only, as well as
weighted and balanced), two test sets were generated that represent
each case.

2.3.1 Weighted-only

For the weighted-only case, the test set includes one pair of proteins
per family, for which it is possible to choose a protein with positive
annotations (p,) and one with negative annotations(p_). This
resulted in 2,292 protein-pairs used for this benchmark. True-
positive and false-negative terms are identified with the positive pro-
tein, p,, and false positives with p_.

Denote the sets of terms classified as true positive, false negative
and false positive as TP,FN,FP, respectively. In the OWA-
compliant benchmarking framework, the weighted metric represent-
ing each of these is computed by calculating the IC of the terms in
each set. For true-positive and false-negative terms, that is TP, =
ic; (TP) and FN,, = icy (FN). For false positives, this is instead cal-
culated as FPy, = ic_(FP).

As the protein pairs in the test set are chosen without stipulation
on the depth or amount of information that each gene has per aspect
or overall. Weighting is then required to correct the bias due to the
differences in [C—both within and between the positive and nega-
tive annotation sets. To balance within, the IC of the terms inside
the particular gene set (e.g. true positives) was used. Then, to
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Fig. 2. IC of individual terms when associated positively versus negatively. There is a clear difference in the IC between the two, which motivates the weighting and balancing

scheme used in this study

balance between the positive and negative sets a normalized measure
is computed for each of the gene sets (e.g. normalized true positive),
normalizing by the total IC of the positive or negative example
genes. That is, the weighted-normalized measures for computing
precision and recall are

T ZP» 1C+(TP;+) Ny ZP< 1C+(FN}§+)

TP, = Pl PN =2 P
Y, i (Ay) . icr (A7)
FP; )
and FP M,
2oy ic(Ay)

where TP}, ,FNJ are the sets of true-positive and false-negative GO
terms for p, and FP}, the false positive for p_, both with confidence
cut-off . Af is the truth set of positive annotations for p, and A,

is the truth set of negative annotations for p_.

2.3.2 Weighted and balanced
For the ‘weighted and balanced’ case, proteins were chosen for every
GO term that have positive and negative examples within a protein
family, resulting in 12,613 protein pairs (with associated GO term).
In this case, it is still necessary to weight, to account for variation of
information among GO terms for positive or negative annotations
(Fig. 2 and Section 2.1.2).

These are computed over all families (f € F), for all terms ¢ for
which there are positive and negative examples in the family, pﬁf'f )
and p7), or more formally the terms for each family are defined as

Tr={t:3p") stre Al A3 P stte ),

where, as previously, A/ is the truth set of positive annotations for
p+»>and A, is the truth set of negative annotations for p_.

The weighted and normalized measures for true positive, false
negative and false positive are then

"[,‘\131 _ Zf€f ZZET, 11p(8,f) - icy (2)
v Zfe}' Eze”{, icy(t) ’
— o e der, (b 1) ici (1)
e dfer ZteTf icy(t)
Zfef Z:eTf 15p(t,f) -ic_(2)
ZfEf ZteTf ic_(z)

and FP

where

1 if teTP* (zf)
Lip(t.f) = olhgTPm
and similarly,
] 1 ifre ENC) 1 ifre FP oy
i f) = 0 iftg FNH,, and 1 (t,f) = 0 ifr¢ FP;W

2.3.3 Comparison benchmark

The benchmark set of proteins P was chosen subject to routines
described above (Sections 2.3.1 and 2.3.2). All existing knowledge
was removed from the annotation data provided to the methods.
Each predictor outputs in the form (p, ¢, %), where p € P is a protein
identifier,  a GO term and « € (0, 1] the method’s confidence in its
prediction. Precision-recall curves were computed for both bench-
marks, by varying the confidence cut-off (« > 7,7 € (0, 1]) that each
method reports in its predictions in 100 equal steps of (of 0.01), as
in CAFA.

For comparison to benchmarks under the CWA, the positive ex-
ample genes from the weighted-only benchmark were used to iden-
tify false positives and weighting by information accretion. The
CWA benchmark presented then corresponds to the weighted preci-
sion-recall benchmark in CAFA (Jiang et al., 2016; Radivojac et al.,
2013; Zhou et al., 2019).

Predictors for which it was possible to provide custom training
data were used: the two baseline methods included in CAFA (naive
and BLAST), GOtcha (Martin et al., 2004) and HOGPROP
(DessimozLab in the third CAFA).

2.3.3.1 Naive predictor. The naive predictor assigns the same (¢, o)
for all p € P. The confidence score is the frequency of the term in
the database (that is, the proportion of annotations with this term).
This is computed using only experimentally verified annotations on
proteins in UniProtKB/Swiss-Prot (The UniProt Consortium, 2017,
2018).

2.3.3.2 BLAST predictor. For each term, the confidence is defined as
the maximum percentage identity [identified using BLAST-+
(Camacho et al., 2009)] to a sequence that has been annotated with
this term. Again, only experimentally verified annotations to pro-
teins in UniProtKB/Swiss-Prot (The UniProt Consortium, 2017,
2018) were used.
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2.3.3.3 GOtcha. GOtcha (Martin et al., 2004) is a more sophisti-
cated predictor, making use of not only sequence homology but also
the structure of the GO whilst combining BLAST hits. Consider a
target protein p, GO term ¢ and a set of sequences associated with
said term ;. Then, first an r-score is computed as 7 =
— s, log (e(p;s)) where e(p, s) represents the E-value of the
alignment between the target sequence p and sequence s. i-scores are
then calculated by dividing the r-scores by the score for the root
term of the relevant aspect—that is i = 7;/7roor. GOtcha was
included in the assessment of Clark and Radivojac (2013) as an ex-
ample of a good predictor, performing better than the baseline
methods.

Note, as will become relevant in the results, due to the combin-
ation of BLAST scores the confidence assigned by GOtcha (the i-
score) tends to only predict general terms. As all annotated hits will
be associated with at least one aspect’s root term, for most terms (z)
Troot > 11 and so i; — 0 for all but the most frequent terms. As the
lowest cut-off (7) is 0.01, any predictions with a score less than this
will not be considered.

2.3.3.4 HOGPROP. This was submitted to the third CAFA as
DessimozLab and uses the hierarchical orthologous groups (HOGs)
from the OMA project (Altenhoff ez al., 2018), with the same algo-
rithm previously applied to predicting potential causal genes in QTL
experiments (Warwick Vesztrocy et al., 2018). Two variants are
included in this article—HOGPROP1 uses experimentally derived
annotations, as well as a sub-set of the electronic annotations
deemed to be ‘trusted’ [see (Warwick Vesztrocy et al., 2018) for
details]; HOGPROP2 uses all annotations, except for electronic
ones which are filtered to only include the ‘trusted’ ones.

A subset of GO annotations {including some electronic annota-
tions [based on Skunca et al. (2012)]} are given a score dependent
on their evidence code. These terms, with scores, are then associated
with the leaves of the hierarchical structure (genes), before being
pushed up and pulled down the hierarchy. The score decays across
each edge (fixed rate of 20%), with a penalty when propagating
over paralogous relationships of a double decay. Scores are com-
bined at each node (using summation) during the up-propagation,
whilst the maximum score is taken during down-propagation.

3 Results

This section first gives an outline of the additional negative annota-
tions, derived from expertly curated gene phylogenies. After which,
to illustrate the differences in a balanced OWA-compliant bench-
mark, the results of the method comparison are given.

3.1 Derived negative annotations

A large number of negative annotations were required to proceed
with the balanced benchmarking. One such source is described in
Section 2.2. Here, PANTHER families were scanned for instances of
proteins where an ancestral node, not in its direct lineage, had been
annotated to a particular GO term (as in Fig. 1c). That is many pairs
can be derived from the PAINT annotations (p, t), where p is a pro-
tein which is member of a family where an ancestral node, not in its
direct lineage, has been annotated to a GO term ¢.

Negative annotations were curated using the ancestral annota-
tions from PAINT on PANTHER 13.1 families, provided in person-
al correspondence on August 21, 2018. At this time, 5,664
PANTHER families contained annotations, for which it was pos-
sible to derive at least one extra negative annotation on 2,894. In
order not to make too general negative assertions, only GO terms
for which the ‘positive’ IC was greater than 5 bits were used.

The number of such pairs is shown in Figure 3 for each aspect of
the Gene Ontology—biological process (BP), cellular component
(CC) and Molecular Function (MF). In the database, only 11,633
proteins were covered by a negative annotation in UniProt-GOA—
consisting of 4,911 with BP annotations, 4,619 with CC and 5,068
with MF. After including the derived negative annotations, this
increased to 330,635—98,848 with BP, 268,831 with CC and

Genes in Families Covered by PAINT

with at least 1 Annotation
300000

250000

200000

150000

Count

100000

50000

BP CcC MF BP CcC

Negative Positive

Annotation Type
I Current [ Derived negatives

Fig. 3. Resulting number of annotations when including the derived negative anno-
tations. This shows the number of genes in PANTHER families covered by PAINT,
with at least one non-IEA annotation. Relatively few (4,911 [BP], 4,619 [CC],
5,068 [MF]) were covered by a negative annotation in the database, increasing to
198,848 (BP), 268,831 (CC) and 192,307 (MF), with the derived negative annota-
tions. For CC, this is more than the number of proteins with at least one positive
(non-IEA) annotation (266,658)

192,307 with MF. This is more than the number of proteins with at
least one positive (non-IEA) annotation (323,438) as well as more
than those with only at least one CC positive (non-IEA) annotation
(266,658). Further, the IC of the derived negative annotations is
similar to those already in UniProt-GOA (Supplementary Fig. S1).

3.2 Balanced benchmarking

The results are shown across the three different aspects separately
(columns) with the different assessment methods in each row
(Fig. 4). The width of the curves represents the average IC of the pre-
dictions which are used to calculate the precision measures. The
maximum F; scores (Fp.y) for each method, on each aspect, are
available in Supplementary Table S1 and also displayed as points on
the curves. For comparison, unweighted precision—recall curves are
available in Supplementary Figure S3. Further, benchmark results
obtained using semantic-distance (Clark and Radivojac, 2013),
which compare misinformation versus remaining uncertainty, are
provided in Supplementary Figure S6.

The closed world assumption (CWA) benchmark recapitulates
some key observations from the CAFA experiments (Jiang et al.,
2016; Radivojac et al., 2013): naive, which only relies on back-
ground term frequencies, performs especially well in CC terms—
where most annotations are relatively general (Fig. 4 top row,
Supplementary Fig. S6). BLAST, also considered as a baseline ap-
proach, performs worse than the non-baseline methods, even at
stringent score cut-offs. Predictions for MF and CC terms are gener-
ally more accurate than for BP.

However, besides the questionable CWA reviewed in the intro-
duction, the narrow lines in the plots indicate that most terms con-
sidered in the CWA benchmark have low IC. This is particularly the
case for the naive method, which inherently focuses on high-
frequency (and thus low IC) terms.

If explicit negative annotations are used instead, the picture
changes markedly. However, the first variant, which uses the
weighted-only scheme, carries little information (Supplementary
Fig. S2 bottom row). Indeed, the naive predictor performs with
100% precision at low recall, even better than in the CWA (Fig. 4
top versus bottom row). This can however be explained by the com-
plete lack of negative annotations involving general terms, reflected
in the very low average IC of annotations (thin curve).

The weighted and balanced OWA benchmark provides more in-
sight (Fig. 4 bottom row). In the second OWA benchmark, the test
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Precision-Recall of Comparison Methods
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Fig. 4. Precision-recall curves, for each aspect of the GO separately (columns) with the line-width and colour altering based on the average IC of the assessed predictions.
(Top) benchmarking under the CWA—identifying false positives using unknown knowledge; (Bottom) weighted and balanced OWA-compliant benchmark, using positive and
negative examples for each GO term, for which they exist. The thickness of the curves represents the average IC of the predictions which are used to calculate the precision at
that point. The maximum F; score (Fpax) is shown as a point on each curve—values are available in Supplementary Table S1

set consists of pairs of proteins, a positive and negative example, for
each gene family containing both types. This tests a predictor’s abil-
ity to discriminate between homologous proteins.

With a balanced test set, the naive predictor performs much
worse than in conventional CWA tests. This is because very general
predictions, which are very easy to prove but nearly impossible to
disprove, are by design not considered here. In other words, when
naive is evaluated on testable predictions, it makes many mistakes,
which is reflected in the OWA benchmark. The recall too is marked-
ly lower, which is to be expected with a method inherently limited
to predicting the most frequent terms only.

Likewise, results obtained for the BLAST predictor are more rea-
sonable than in conventional CWA benchmarks: precision is very
high where recall is low, but degrades steeply when recall increases.
This makes sense, as the confidence score is based on the percentage
sequence identity, high-precision-low-recall results are obtained
when sequence identity is close to 100%, and where one would ex-
pect functions to be highly conserved. Increasing recall requires
more permissive thresholds, which also results in more false
positives.

One last finding of note is that GOtcha, a method which com-
bines BLAST results, performs particularly well under the CWA
benchmark. For instance, on the MF aspect, GOtcha achieves an
Fnax of 0.65 compared to the next best method of 0.58
(HOGPROP2). However, in the weighted and balanced OWA

benchmark, it performs worse than BLAST (Fy.x of 0.52 versus
0.55 in MF). This large discrepancy appears to be due to two main
factors. First, the internal scoring scheme of GOtcha strongly
favours general terms (see Section 2.3.3). As seen with the naive pre-
dictor, predictions of general GO terms tend to be rewarded in con-
ventional benchmarks [corroborated by Clark and Radivojac (2013)
and Jiang et al. (2016)]. However, being practically impossible to
disprove, they are by design not considered in the balanced bench-
mark. Second, given a target protein to be annotated, although
GOtcha uses the E-values of BLAST matches to the target to assess
the relative plausibility of the GO annotations associated with each
match, it then normalizes the scores obtained for each target by the
maximum score of that target. As a result, predictions for a target
for which the best functionally annotated BLAST match is, say,
100% identical could receive the same confidence as a prediction for
a target for which the best is only 40% identical. Indeed, by remov-
ing this normalization, a substantial improvement for GOtcha was
observed in the weighted and balanced OWA benchmark
(Supplementary Fig. $4).

4 Discussion and conclusion

Current benchmarks make an assumption that proteins are fully
annotated, by identifying false positives as all the predicted terms


https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaa466#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaa466#supplementary-data

i216

A.W.Vesztrocy and C.Dessimoz

transmembrane transport

(60:0055085) folic acid transmembrane

transporter activity
(GO:0008517)

thiamine transmembrane:

:
Euteleostomi 4.‘4 transporter activity,
: (G0:0015234)

eopterygii

Branchiostoma floridae
(Florida lancelet)
C3721IU7

0.35

Fig. 5. Sub-family of PANTHER family PTHR10686—the root term is annotated to
transmembrane transport, whilst particular sub-families have been annotated to
folic acid transmembrane transporter activity and thiamine transmembrane trans-
porter activity. This implies that for example proteins outside of that annotated
with folic acid transmembrane transporter activity (green) should not be annotated
with this term

that are not confirmed by experimentally backed annotations. This
assumes that the proteins used for benchmarking are exhaustively
annotated (‘Closed World Assumption’, CWA). By contrast, this
work does not assume exhaustive annotations (OWA), and instead
relies on explicit negative annotations to assess the accuracy of pre-
dicted annotations.

This work makes two main contributions. First, it provides a
methodological framework to benchmark using negative annota-
tions. Second, it provides a way to obtain substantially more nega-
tive annotations for benchmarking. The latter is needed because—
even after applying the ‘true-path rule’ (that is, propagating annota-
tions according to the GO hierarchy) (Valentini, 2009)—there are
currently only few curated negative annotations in databases.

To overcome the relative paucity of negative annotations
(Fig. 3), this study identified a substantial source of negative annota-
tions derived from the expertly curated annotation of gene phyloge-
nies in the PAINT project. After performing this procedure, when
considering all genes which are members of PANTHER families that
have been annotated in PAINT, there is roughly the same number of
genes that have at least one positive annotation to that with at least
one negative annotation.

Although PAINT has been used as the main source of negative
annotations, the methodology is general. Other sources, such as
from NoGO (Youngs et al., 2014) or NegGOA (Fu et al., 2016),
could be used instead.

As the negative annotations used in this study are derived from
expertly curated gene phylogenies, they are of higher quality than
negative electronic assertions. However, they are less so than direct
negative annotations performed manually by an expert.
Phylogenetic reconstruction can be difficult, particularly around
short internal branches and in the deeper parts of tree. Functional
annotation of ancestral nodes requires careful judgement by the cur-
ator. The curator has to decide on the most appropriate level of spe-
cificity of the term used in ancestral annotations. If a curator, in an
abundance of caution, assigns an overly general term to a subset of
the gene family, the lack of this annotation will be interpreted by the
procedure presented here as high-information negative annotations.
Another challenge is that the procedure assumes that any annotation
placed lower than at the root of the gene tree is a deliberate decision
by a curator; yet there are scenarios where such situation might arise
more haphazardly, such as when the underlying gene phylogeny is
updated (for example, between PANTHER releases) or if new spe-
cies are added without thorough review of each family. These poten-
tial pitfalls could be addressed by: (i) being cautious when choosing
which terms to derive negatives for; (ii) using date stamps for when
a family’s annotation set was last approved by a curator. The former

has been implemented by only deriving negatives for GO terms with
a positive IC greater than, or equal, to five—limiting the negative
annotations to more specific terms. The latter is more complex and
is left for future work.

There are, however, many cases where the derived negative
annotations make sense. One such case is in the PANTHER family
PTHR10686 (Fig. 5). The root node of this family has been anno-
tated to transmembrane transport (GO:0055085). Then, further
down at the level of the Chordata, there is a duplication. One sub-
family (green) has been annotated to have the MF folic acid trans-
membrane transporter activity (GO:0008517), whilst two other
sub-families after the duplication have been annotated to have the
MF thiamine transmembrane transporter activity (GO:0015234). It
appears that after this duplication, the function has specialized to
transport either folic acid or thiamine. In the weighted and balanced
OWA benchmark, there were a number of tests performed on GO
terms for which there are positive and negative examples in this fam-
ily. For example, the thiamine transmembrane transporter activity
(GO:0015234) was tested on the proteins with UniProtKB IDs
F6SXG7 (sub-family C) and FIN2M7 (sub-family A) as positive and
negative examples, respectively. Likewise, folic acid transmembrane
transproter activity (GO:0008517) was tested on positive and nega-
tive examples F1IPFN8 (sub-family A) and F6SXG7 (sub-family C),
respectively. At the Fy,x point, both these paired tests show that
none of the methods can correctly discriminate between these two
GO terms on these sequences from the same gene family (see
Table 2). Finally, another test was performed on folate transmem-
brane transport (GO:0098838), with positive and negative examples
of F7ZEDMO (sub-family A) and C3ZIU7 (not in labelled sub-
families), respectively. At the Fp,x point, both BLAST and
HOGPROP2 correctly discriminate these closely related proteins,
whereas GOtcha and HOGPROP1 do not.

A final point regarding the derived negative annotations is in
order. While the applicability of the CWA in general is questionable,
the procedure to derive negative annotations admittedly adopts the
CWA in that it assumes that the absence of an annotation of a func-
tion in an ancestral node or sister clade is indicative of the absence
of that function. Note, however, that the assumption is made within
the specific context of phylogenies which have been annotated and
reviewed as a whole by expert curators. Furthermore, there is re-
straint in the procedure from deriving negative annotations of gen-
eral terms (icy < 5, see Section 3.1), because curators occasionally
use general terms to convey uncertainty in their annotations. While
such behaviour is prudent in terms of the positive annotations,
applying this derivation procedure would result in imprudent nega-
tive annotations.

Despite the plethora of methods developed and submitted to the
CAFA challenge, only a few of them are available as standalone soft-
ware. This makes it difficult to test them on newly developed bench-
marks, such as the one introduced here. Note that web-based
services, while convenient for end-users, are difficult to include in
such a benchmark due to the lack of control over the input—it is im-
portant that the ontology definition and existing protein annotations
are carefully controlled during training, to avoid circular evaluation.

Time-lapsed studies, such as CAFA, are by design less prone to
circular evaluation. However, they require a steady supply of new
annotations. For the derived negative annotations introduced here,
time-lapsed studies would require steady supply of gene families
newly annotated by PAINT or a similar curated approach. This may
seem more constraining than merely annotating individual gene tar-
gets using the literature. However, family-wise annotation is also
more consistent and scalable than the inconsistent process of anno-
tating individual targets; their value in benchmarking based on nega-
tive examples is an additional incentive for this curation effort.

Directly curated, experimentally backed negative annotations—
made by expert curators—would be even more valuable than the
derived negatives introduced here. Indeed, there is great interest
within automated functional annotation methods for a high-quality
source of negative annotations, for both method-development and
benchmarking. In particular, recent developments in, so-called,
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Table 2. Results for subset of tests performed on PANTHER family PTHR10686 in the weighted and balanced OWA benchmark, at the Fax
point

Method predictions

GO term Example proteins Naive BLAST GOtcha HOGPROP1 HOGPROP2
ID Name Aspect Positive Negative + - 4+ - 4+ - + - + -
GO: 0015234 Thiamine transmem- MF F6SXG7 F1N2M7

brane transporter (Sub-Fam. C) (Sub-Fam. A)

activity
GO: 0008517 Folic acid transmem- ~ MF F1PFN8 F6SXG7

brane transporter (Sub-Fam. A) (Sub-Fam. C)

activity
GO: 0098838 Folate transmembrane ~ BP F7EDMO C3zIU7

transport (Sub-Fam. A) (Sub-Fam. -)

Note: For each method, predictions are listed—tick indicates the method predicted, cross that it did not. Green/red colouring indicates correct/incorrect classifi-

cation, respectively. Those for both thiamine and folic acid transmembrane transporter activity show that all methods fail to discriminate between these two

terms. Whereas, on the term for folate transmembrane transport both BLAST and HOGPROP2 correctly classify the two proteins. These terms all have too low a

frequency in UniProtKB/Swiss-Prot for the naive predictor to make predictions. Protein are referred to with UniProt identifiers, and subfamilies refer to Figure 5.

‘deep learning’ machine-learning methods show promising results,
but rely heavily on training sets consisting of both positive and nega-
tive examples.

More specifically, this study also provides guidance to curation,
by quantifying which individual Gene Ontology terms—positive or
negative—are most valuable for benchmarking. Whilst positive asso-
ciations become more informative the further they are away from
the root-terms, negative annotations are more informative the closer
they are to the root-terms. Negating particularly general terms may
prove prohibitively difficult to experimentally validate. This also
explains why only using general terms in a benchmark is not merely
uninformative (Clark and Radivojac, 2013; Gaudet et al., 2017;
Pesquita, 2017; Skunca et al., 2017), but misleading.

When weighting by IC it is possible to correct for differences
within and between protein annotation sets. It does not, however,
provide a balanced test—especially if only general terms are used.
The balanced OWA-compliant benchmark provides a balanced test
set such that methods are only rewarded for predicting terms that
can be disproved. This, alongside the relatively low IC of annota-
tions considered in the benchmark under the closed world assump-
tion, explains why the naive predictor performs so well in CAFA.

Finally, this work highlights the importance of the methodo-
logical details underpinning benchmarking. The absolute and rela-
tive performance of methods is enormously affected by seemingly
technical decisions. Overcoming the limitations of the current
benchmarks should be an overriding priority for the function predic-
tion community.

Acknowledgements

The authors thank Pascale Gaudet, Huaiyu Mi and Paul D. Thomas for pro-
viding the relevant data from PAINT, and for their helpful feedback on the
work. The authors also thank Monique Zahn for her suggestions on the
manuscript.

Funding

The authors acknowledge funding by the Swiss National Science Foundation
(grants 150654 and 183723) and UK BBSRC grant BB/M015009/1.

Conflict of Interest: none declared.

References

Altenhoff,A.M. et al. (2018) The OMA orthology database in 2018: retrieving
evolutionary relationships among all domains of life through richer web and
programmatic interfaces. Nucleic Acids Res., 46, D477-D485.

Ashburner,M. et al. (2000) Gene Ontology: tool for the unification of biology.
Nat. Genet.,25,25-29.

Barrell,D. et al. (2009) The GOA database in 2009—an integrated Gene
Ontology Annotation resource. Nucleic Acids Res., 37, D396-D403.

Camacho,C. et al. (2009) BLAST+: architecture and applications. BMC
Bioinformatics, 10, 421.

Clark,W.T. and Radivojac,P. (2013) Information-theoretic evaluation of pre-
dicted ontological annotations. Bioinformatics, 29, 153-i61.

Cozzetto,D. and Jones,D.T. (2017) Computational methods for annotation
transfers from sequence. In: Dessimoz,C. and Skunca,N. (eds.) The Gene
Ontology Handbook. Springer, New York, pp. 55-67.

Deegan,].I. et al. (2010) Formalization of taxon-based constraints to detect
inconsistencies in annotation and ontology development. BMC
Bioinformatics, 11, 530.

Dessimoz,C. et al. (2013) CAFA and the Open World of protein function pre-
dictions. Trends Genet. TIG, 29, 609-610.

Fu,G. et al. (2016) NegGOA: negative GO annotations selection using ontol-
ogy structure. Bioinformatics, 32,2996-3004.

Gaudet,P. and Dessimoz,C. (2017) Gene ontology: pitfalls, biases, and rem-
edies. In:Dessimoz, C. and Skunca,N. (eds.) The Gene Ontology
Handbook. Springer, New York, pp. 189-205.

Gaudet,P. et al. (2011) Phylogenetic-based propagation of functional
annotations within the Gene Ontology Consortium. Brief. Bioinf., 12,
449-462.

Gaudet,P. et al. (2017) Primer on the gene ontology. In: Dessimoz, C. and
Skunca,N. (eds.) The Gene Ontology Handbook. Springer, New York, pp.
25-37.

Huntley,R.P. et al. (2014) Understanding how and why the Gene Ontology
and its annotations evolve: the GO within UniProt. GigaScience, 3,
2047-2217.

Huntley,R.P. et al. (2015) The GOA database: gene ontology annotation
updates for 2015. Nucleic Acids Res., 43,D1057-D1063.

Huttenhower,C. et al. (2009) The impact of incomplete knowledge on evalu-
ation: an experimental benchmark for protein function prediction.
Bioinformatics, 25, 2404-2410.

Jiang,Y. et al. (2014) The impact of incomplete knowledge on the evaluation
of protein function prediction: a structured-output learning perspective.
Bioinformatics, 30,1609-i616.

Jiang,Y. et al. (2016) An expanded evaluation of protein function prediction
methods shows an improvement in accuracy. Genome Biol., 17, 184.

Lewin,H.A. et al. (2018) Earth BioGenome Project: sequencing life for the fu-
ture of life. Proc. Natl. Acad. Sci. USA, 115,4325-4333.

Martin,D.M. et al. (2004) Gotcha: a new method for prediction of protein
function assessed by the annotation of seven genomes. BMC
Bioinformatics, 5,178.

Mukherjee,S. et al. (2019) Genomes OnLine database (GOLD) v.7: updates
and new features. Nucleic Acids Res., 47, D649-D659.

Muruganujan,A. et al. (2012) PANTHER in 2013: modeling the evolution of
gene function, and other gene attributes, in the context of phylogenetic trees.
Nucleic Acids Res., 41,D377-D386.



i218

A.W.Vesztrocy and C.Dessimoz

Pesquita,C. (2017). Semantic similarity in the gene ontology. In: Dessimoz, C.
and Skunca,N. (eds.) The Gene Ontology Handbook. Springer, New York,
pp. 161-173.

Radivojac,P. et al. (2013) A large-scale evaluation of computational protein
function prediction. Nat. Methods, 10,221-227.

Shannon,C.E. (1948) A mathematical theory of communication. Bell Syst.
Tech. J., 27, 379-423.

Skunca,N. et al. (2012) Quality of computationally inferred gene ontology
annotations. PLoS Comput. Biol., 8,e1002533.

Skunca,N. et al. (2017) Evaluating computational gene ontology annotations.
In: Dessimoz, C. and Skunca,N. (eds.) The Gene Ontology Handbook.
Springer, New York, pp. 97-109.

Tang,H. et al. (2018) Gotaxon: representing the evolution of biological func-
tions in the gene ontology. arXiv preprint arXiv:1802.06004.

The Gene Ontology Consortium. (2017) Expansion of the Gene
Ontology knowledgebase and resources. Nucleic Acids Res., 45,
D331-D338.

The Gene Ontology Consortium. (2018) The gene ontology resource: 20 years
and still going strong. Nucleic Acids Res., 47, D330-D338.

The UniProt Consortium. (2017) UniProt: the universal protein knowledge-
base. Nucleic Acids Res., 45,D158-D169.

UniProt Consortium. (2018) Uniprot: a worldwide hub of protein knowledge.
Nucleic Acids Res., 47, D506-D515.

Thomas,P.D. (2017). The gene ontology and the meaning of biological func-
tion. In: Dessimoz, C. and Skunca,N. (eds.) The Gene Ontology Handbook.
Springer, New York, pages 15-24.

Thomas,P.D. et al. (2012) On the use of gene ontology annotations to assess
functional similarity among orthologs and paralogs: a short report. PLoS
Comput. Biol., 8,e1002386.

Valentini,G. (2009) True path rule hierarchical ensembles. In: Benediktsson
J.A., Kittler J., Roli F. (eds) Multiple Classifier Systems. MCS 2009. Lecture
Notes in Computer Science, vol 5519. Springer, Berlin, Heidelberg.

Warwick Vesztrocy,A. et al. (2018) Prioritising candidate genes causing QTL
using hierarchical orthologous groups. Bioinformatics, 34,1612-i1619.

Youngs,N. et al. (2014) Negative example selection for protein function pre-
diction: the NoGO database. PLoS Comput. Biol., 10, e1003644.

Zhou,N. et al. (2019) The CAFA challenge reports improved protein function
prediction and new functional annotations for hundreds of genes through
experimental screens. Genome Biol., 20, 1-23.



	l
	tblfn1
	l
	l
	tblfn2

