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Abstract

�is thesis presents an in-depth exploration of three topics in non-life insurance: the
Greenwood statistic, optimal dividend-payment strategies, and optimal reinsurance contracts.

Chapter 1 introduces some basic concepts and core ideas, establishing a context for the
work explored in each of the subsequent chapters. Chapter 2 includes a study on general-
izations of the Greenwood statistic, focusing on its asymptotic behaviour under heavy-tailed
distributions. Our results generalize those found in, e.g., Albrecher and Teugels [8] and Lepage
et al. [85]. In Chapter 3 the thesis revisits the calculation of optimal dividend band strate-
gies for an insurance portfolio by employing two numerical optimization techniques tailored
to the problem, which allow to more e�ciently re-derive some previously known results as
well as new ones, including an optimal 4-band strategy. In a more stringent scenario, Chap-
ter 4 builds upon these techniques, focusing now on balancing the �nancial bene�ts of div-
idend payments with the long-term solvency of an insurance company measured through
the in�nite-time-horizon probability of ruin. �is is done by considering a particular kind of
strategy inspired by band strategies, and the problem is approached for a general spectrally-
negative Lévy process. One of our key �ndings is that these strategies perform outstandingly
well, giving sometimes a performance comparable to the one of the unconstrained problem,
while in addition respecting restrictive ruin probability constraints. Finally, in Chapter 5, we
take the perspective of optimal transport to reconsider the problem of optimal reinsurance.
�is approach allows to provide alternative proofs of classical optimal reinsurance problems,
as well as deriving new solutions that were not achievable before. �e chapter concludes
by identifying situations under which additional external randomness (like an independent
lo�ery) can increase the e�ciency of a reinsurance contract for all involved parties.
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CHAPTER 1

Introduction

Within the scope of �nancial security, non-life insurance stands as a necessary tool for
safeguarding individuals and enterprises against a spectrum of risks that could potentially
cause economic instability. �is thesis aims at expanding the mathematical toolbox of classi-
cal actuarial practice and widening the understanding of a selection of topics in non-life insur-
ance, namely, those related to the Greenwood statistic, optimal dividend-payment strategies,
and optimal reinsurance contracts.

�e Greenwood statistic, traditionally used in demography and epidemiology for assess-
ing the clustering of events, has found applications in the domain of �nance, via the Sharpe
ratio, and survival analysis, due to its relevance quantifying the variability of interval esti-
mates. Within insurance, this statistic is of particular relevance in the case when the claims
are heavy-tailed, and traditional statistical measures, such as the expectation and variance,
might fail to even be de�ned. Due to its natural connection to the estimation of the coe�-
cient of variation, the Greenwood statistic o�ers a di�erent perspective on risk assessment
and pricing strategies. Our research studies the asymptotic properties of several variants and
extensions of this statistic, in particular, of its moments, providing further insights into the
limiting distribution of such a measure and revealing some appealing mathematical structures.

Moving from the assessment of risk to strategies for surplus distribution, we approach
the area of optimal dividend payment strategies. �e study of optimal dividend strategies,
as a part of actuarial literature, �nds its roots in the seminal work of Bruno de Fine�i, who
introduced the idea as a way of addressing the de�ciencies of the simple models of the time.
�e typical assessment criterion of the probability of ruin had the unrealistic implication that
the capital of an insurance company could grow without bounds, assuming that it does not
get ruined �rst. De Fine�i suggested instead to assess the value of an insurance portfolio
economically by the present value of aggregate future dividends that the company could pay
to its investors, and the question that ensued was establishing which was the best way of
doing so. A�empts at answering this question have resulted in fructiferous developments
in insurance literature, and while theoretical results have been established, only few explicit
examples have been obtained for even some of the simplest models. In this thesis we analyze
the use of some numerical optimization techniques and obtain explicit results for the original
question, as well as the one in which we also take into account the long-term safety of the
insurance company as a side constraint in the optimization process.

Complementing the discussion of dividend policies, the study of optimal reinsurance con-
tracts constitutes another classical problem within the actuarial literature. As part of the in-
surance industry, reinsurance is a fundamental tool for risk management, capital optimization,
and it ensures the stability and sustainability of the insurance market. While the literature in
optimal reinsurance is vast, and diverse considerations have been made to address the prob-
lem, an intuitive practical constraint when looking for an optimal contract is its deterministic
nature, i.e., the requirement that the reinsured amount is fully identi�ed once the claim size of
the �rst line insurance company is known. Inspired by the area of optimal transport, in this
thesis we challenge this assumption by allowing exogeneous random mechanisms to have
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2 1. INTRODUCTION

an e�ect in the determinacy of optimal reinsurance contracts. We show how by making this
relaxation, a variety of well-established results within the area can be re-derived, we derive
several new optimality results and provide a methodology for the study of general constrained
reinsurance problems.

�e remainder of this chapter will be used to provide motivation and background relevant
to the research areas of this thesis, as well as summarizing some of the key �ndings of the
thesis. �e style of the exposition will be rather informal (in mathematical terms) and due to
the vast amount of work in these �elds, the overview will by no means be exhaustive and will
only touch upon several important aspects. Many further references will be given throughout
later chapters of the thesis.

1.1. Extreme value analysis

As mentioned before, when studying the Greenwood statistic, we will solely focus on the
case where the random variables involved in the analysis are heavy-tailed. A random variable
X is heavy-tailed if E[etX ] =∞ for every t > 0 (see e.g. [99]). While this is the most common
use of the term, our interpretation of this property will be slightly more restricted, namely
that the underlying distribution has a regularly varying tail (or equivalently, it is a Pareto-type
distribution). We say that a distribution function F has a regularly varying tail if there exists
a γ > 0 such that for any ω > 0, we have

lim
x→∞

1− F (ωx)

1− F (x)
= ω−1/γ.

�e motivation for restricting the analysis in the thesis to Pareto-type distributions comes
from extreme value theory (EVT), which stands as the primary theoretical and statistical tool
used for dealing with heavy-tailed random variables in risk management (see [93]). Following
EVT, this is the only kind of tail-behaviour that we need to consider when dealing with the
asymptotic behaviour of block maxima of heavy-tailed distributions. In this section we will
justify this statement and summarize some of the facts and propositions from the area that
will be implicitly used in the sequel. �e exposition here is mostly based on [27] (but see
also [32] and [59] for further references on regular variation and EVT within the context of
insurance and �nance).
�e main concern of EVT is the study and analysis of extreme values. Given an i.i.d. sample
of continuous random variables X1, . . . , Xn, the traditional way of studying extreme values
is by assessing the properties of the sample maximum

Xn,n = max(X1, . . . , Xn).

Arguing from a statistical point of view, one would like to handle this analysis without relying
on the common distribution of the Xi’s, which in applications is o�en unknown. A natural
alternative is to assume that the sample is large enough so that one can use asymptotic prop-
erties to make deductions. Similar to the situation in the central limit theorem, one is then
faced with the question of �nding sequences of real numbers (an)n≥0 and (bn)n≥0 with bn > 0
such that

P
[
Xn,n − an

bn
≤ x

]
→ G(x)

as n → ∞ for every x for which G is continuous. �e question now is to identify all the
possible (non-degenerate) distributionsGwhich are allowed to appear on the right-hand side
of the previous equation, as well as characterizing the distributions of theXi’s for which such
G’s can be achieved. �e answer to the �rst question is given by the Fisher-Tippe� theorem.



1.1. EXTREME VALUE ANALYSIS 3

Theorem 1.1.1 (cf. [59, �eorem 3.2.3]). LetX1, X2, . . . be a sequence of i.i.d. random variables.
If there exists some non-generate distribution function G and some constants an > 0, bn ∈ R
such that a−1

n (Xn,n − bn)
d−→ G, then there exists a γ ∈ R such that G has to be the form

Gγ(x) = exp(−(1 + γx)−1/γ) for 1 + γ x > 0.

We interpret the case γ = 0 as G0(x) = exp(e−x). �e quantity γ is called the extreme
value index (EVI) and gives an indication on the support of the distribution and the behaviour
of the tails of the distribution. In particular, for γ > 0, the support of the distribution contains
the positive half-line and is bounded below by −1/γ. As this is the main case of interest in
the context of heavy tails, we will assume from now on that γ > 0.
Having answered the �rst question, we now turn towards the classi�cation problem. Le�ing
F denote the common distribution function of the Xi’s, it turns out that the existence of
sequences (an)n≥0 and (bn)n≥0 with bn > 0 making the sequence

Xn,n − an
bn

convergent is intimately related to the existence of a positive function a such that the limit

(1) lim
x→∞

U(xu)− U(x)

a(x)

exists for every u > 0, where U is the tail quantile function of F ,

U(y) = inf{x | 1− F (x) ≤ y−1}.
Denoting the limit in (1) by h(u), we have

Proposition 1.1.2 (c.f. [27, Proposition 2.2]). When G is non-degenerate, the only possible
values for h are given by

hγ(u) =
uγ − 1

γ
,

where γ ∈ R is the EVI.

Recalling that γ > 0, it turns out that

lim
x→∞

U(xu)− U(x)

a(x)
=
uγ − 1

γ

if and only if U has the form U(x) = xγ`U(x) for some slowly varying function `U , i.e., a
function satisfying

lim
x→∞

`(xu)

`(x)
= 1, u > 0.

�is property is summarized by saying that U is a regularly varying function. In this case, we
can take a = γU .
Notice that all these properties are expressed in terms of U and while this function is de-
termined by F , one would like to rephrase the properties in terms of F . However, in this
scenario, there is a very simple relationship between the behaviour at in�nity of F and U :

1− F (x) = x−1/γ`F (x) if and only if U(x) = xγ`U(x),

where `F and `U are slowly varying functions (and `F is the so called de Bruijn conjugate of
`U ). In summary, we therefore see that the sequence of (normalized) maxima X1,1, X2,2, . . .
arising from a heavy-tailed distribution F converges (in distribution) to a non-degenerate
limit if and only if F is of Pareto-type. Hence, when focusing on the asymptotic behaviour of
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block maxima for heavy-tailed distributions, it is enough to only consider Pareto-type distri-
butions.
Using heavy-tailed distributions, Chapter 2 derives results for the asymptotic expectation
of the generalized Greenwood statistic. Given a sequence of random variables X1, X2, . . .,
ν, θ, η > 0 and integers 0 ≤ r < s, this statistic is de�ned as

(2) Tn,s,r(ν, θ, η) :=

(
Xν
n−r,n + · · ·+Xν

n−s,n
)θ

(Xn−r,n + · · ·+Xn−s,n)η
.

�e reason for this de�nition lies in the works of Albrecher and Teugels [8] and Lepage et al.
[85]. In [8], it was shown that, when the EVI is larger than 1, E[Tn,n−1,0(2, k, 2k)] converges to
a polynomial of degree k in α := 1/γ. �e simplicity of this structure motivates us to inquire
about the behaviour at in�nity of the expectation when we replace the 2 in the exponent by
an arbitrary positive number. Similarly, in [85] it was proved that for 0 < α < 1,

lim
n→∞

E
[
X1 + · · ·+Xn

max(X1, . . . , Xn)

]
=

γ

γ − 1
,

which motivates to study how many terms in the sum are relevant for the asymptotic be-
haviour. Notice that for these two results one requires 0 < α < 1, which corresponds to the
case of in�nite mean of the Xi’s, although in our study we allow α to take any positive value.
Notably, we �nd that, when ν > α, θ ∈ N and 0 < α < 1, limE[Tn,n−1,0(ν, θ, νθ)] has a
particularly nice structure which reduces to a polynomial when ν is an integer, generalizing
the results from [8]. For all the other possible combinations (ν < α, ν = α, α = 1, etc.) the
expectation converges to either zero or in�nity and we provide the asymptotic rate of this
limit behaviour. Concerning di�erent terms involved in the sum (i.e., r 6= 0 or s 6= n− 1), the
previous results show that the case 0 < α < 1 is the only one of relevance and we obtain an
explicit expression for limE[Tn,s,r(ν, θ, νθ)] in terms of incomplete gamma functions.

1.2. Risk models for the surplus of an insurance company

As mentioned before, the idea of introducing dividend-payment strategies by De Fine�i
[54] has its roots in the de�ciencies of the classical models used for modelling the surplus of
an insurance company. Hence, before addressing the theory behind optimal dividend strate-
gies, we present the basic models used in the area. In most of the models, the surplus process
of a company is considered to change continuously with time. �e traditional se�ing is based
on the early works of Filip Lundberg [92, 91] and Harald Cramér [52, 51] and is henceforth
o�en referred to as the Cramér-Lundberg model. �is model is composed of four elements:
the initial surplus u, a premium rate p, representing the amount of premium collected by the
insurer per unit of time, a sequence of i.i.d. non-negative random variables (Yk)k≥0 represent-
ing the size of the claims and a Poisson process (Nt)t≥0 of rate λ representing the arrival of
the claims. With these de�nitions, the surplus at time t is given by u+ Ct, where

Ct = pt−
Nt∑
k=1

Yk, t ≥ 0.

It is typically assumed that µ := E[Yk] <∞, as otherwise the risks are not insurable. Further,
it is expected that, by engaging in business, the insurer makes a pro�t. Since in this model
the only source of income for the insurer is through the premium p, it is o�en assumed that
p satis�es the safety loading condition, i.e., that it satis�es the inequality

p > µλ.
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�is simply means that, on average, the insurer will collect more premium than the claims
being paid to the policyholders.
While the Cramér-Lundberg model has been the fundamental block of classical risk theory,
several extensions have been introduced to encompass a wider set of processes and situations
(see [17, 99] for surveys in this regard). Observe that, from a mathematical point of view,
two of the fundamental properties of the Cramér-Lundberg model are the independence and
the stationarity of the increments. �e �rst property refers to the fact that for any two times
0 ≤ s ≤ t, Ct − Cs is independent of σ((Cr)r≤s), the σ-algebra generated by the process
up to time s. �e second property means that, for any s, t ≥ 0, Ct+s − Cs has the same
distribution as Ct. Considering the right-continuity of the paths, these properties naturally
lead to replace the Cramér-Lundberg model by the more general class of processes known as
Lévy processes. Brie�y speaking, a Lévy process is a process satisfying these three properties,
i.e., a càdlàg stochastic process starting at zero with stationary and independent increments.
�e advantage of considering this kind of processes is that it includes several other processes
commonly used in modelling, notably the case of the Brownian motion with dri� (a di�usion).
See e.g. [57, 58] or [96] for applications of these processes in risk theory or [83] and [17] for
surveys. Two of the fundamental properties of Lévy processes are given by the following:

Theorem 1.2.1 (cf. [83, �eorem 1.3]). A càdlàg stochastic process with independent increments
(Ct)t≥0 is a Lévy process if and only if there exist a, σ ∈ R and a measure Π concentrated on
R \ {0} satisfying ∫

R
(1 ∧ x2) Π(dx) <∞

and such that E[eiθCt ] = e−tΨ(θ), where

Ψ(θ) = iaθ +
σ2θ2

2
+

∫
R
(1− eiθx + iθx1{|x|<1}(x)) Π(dx), θ ∈ R.

Moreover, the triple (a, σ2,Π) is unique.

�e measure Π in the previous theorem is called the Lévy (characteristic) measure of the
process and the function Ψ its characteristic exponent.

Theorem 1.2.2 (Itô-Lévy decomposition, cf. [83, �eorem 2.1]). Given any a, σ ∈ R and a
measure Π concentrated on R \ {0} satisfying∫

R
(1 ∧ x2) Π(dx) <∞,

there exists a probability space and three independent Lévy processes C(1), C(2) and C(3) in that
space such that:

• �e process C = C(1) + C(2) + C(3) is a Lévy process with triple (a, σ2,Π),
• C(1) is a Brownian motion with dri�, C(1)

t = −at + σBt, t ≥ 0, where (Bt)t≥0 is a
standard Brownian motion,
• C(2) is a compound Poisson process C(2)

t =
∑Nt

k=1 Yk, , t ≥ 0, where (Nt)t≥0 is a Poisson
process with rate Π(R \ (−1, 1)) and (Yk)k≥0 is an i.i.d sequence of random variables
with distribution Π/Π(R \ (−1, 1)) and
• C(3) is a square integrable martingale with an almost surely countable number of jumps

on each �nite time interval, all of which are of magnitude less than 1, and with charac-
teristic exponent

E[eiθC
(3)
t ] =

∫
0<|x|<1

(1− eiθx + iθx) Π(dx).
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�us, a Lévy process can be seen as an independent superposition of a Brownian motion, a
compound Poisson process and a martingale which captures the information about the small
jumps of the process. Within the insurance context, one does not deal with the whole class
of Lévy processes, but instead with the smaller class of spectrally negative Lévy processes,
which are processes with non-monotone paths for which Π((0,∞)) = 0. As seen from the
Itô-Lévy decomposition, the last property simply means that the process does not have any
upward jumps, reinforcing the idea that the jumps can be interpreted as claims. Hence, the
use of this class of processes preserves the idea that the surplus of the insurance company
is the aggregate superposition of several independent claims, arriving sequentially through
time, o�set against a deterministic increasing process, corresponding to the accumulation of
premiums, even when there are an almost surely in�nite number of claims in any �xed time
interval.
In the context of spectrally negative processes, the safety loading condition can be expressed
as E[Ct] > 0 for one (and hence, all) t > 0. In terms of the triple (a, σ2,Π), the condition can
be wri�en as

−a+

∫
(−∞,−1)

x Π(dx) > 0.

�is inequality implies that both
∫

(−∞,−1)
x Π(dx) > −∞ and a < 0. �e �niteness of the

integral means that the overall (large) claims have �nite expectation and, understanding −a
as the premium per time unit, the condition E[C1] > 0 then means that the premium is larger
than the expected value of the large claims, in agreement with the Cramér-Lundberg scenario.
Having introduced the basic risk models used for the surplus of an insurance company, we
now move towards pointing out an important fact: observe that for every n ∈ N, we can write

Cn = C1 + (C2 − C1) + · · · (Cn − Cn−1)

and due to the independence and stationarity of the increments, the sum on the right can be
understood as a random walk, allowing the interpretation of Lévy processes as a continuous-
time generalization of random walks. Considering that for the la�er kind of processes, the
Law of Large Numbers holds, we would expect something similar to hold for Lévy processes.
�is is indeed the case:

Theorem 1.2.3 (cf. [83, �eorem 7.2]). If C is a Lévy process with 0 < E[C1] <∞, then

lim
t→∞

Ct
t

= E[C1] a.s.

In particular, lim
t→∞

Ct =∞ a.s.

Returning to the se�ing of the surplus model, the previous theorem has some undesired
implication: if we want to enforce the safety loading condition, which is natural in the con-
text of the insurance business, then, in case the insurance company does not get ruined, it
will eventually gather an arbitrarily large amount of surplus. �e fact that these two extreme
scenarios (either ruin or arbitrary richness) are the only two outcomes for the model, was
what motivated de Fine�i to modify the model by introducing the idea of assessing the value
of an insurance portfolio by the present value of aggregate future dividends that the company
could pay to its investors. In this new se�ing, the company pays dividends to shareholders
in continuous time, and the objective is to identify the strategy that maximizes the expected
sum of discounted dividend payments until the event of ruin. As pointed out in Chapter 3,
when there are no further considerations (e.g. the probability of ruin), the innovative contri-
butions of Gerber [63] and Azcue & Muler [22], as well as Avram et al. [21] showed that the
optimal strategy is given by a band strategy. While this resolves the theoretical aspect of the
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problem, the explicit identi�cation of these strategies has been proven challenging, even for
the simple case of the Cramér-Lundberg model (see, for instance, [106] or [24] for references
into this speci�c problem with algorithms developed speci�cally for the subject). �e purpose
of Chapter III is therefore to identify the bands in these strategies, and for that ma�er we use
two optimization techniques: an evolutionary strategy (see e.g. [31]) and a gradient-inspired
method tailored to the problem. �ese methods allow us to more e�ciently obtain some of
the previously identi�ed band strategies and to provide an example for which a four band
strategy is optimal, thus providing further insight into the overall solution (see also [28] for
further examples of explicit band strategies).
While these methods allow us to some extent to address the numerical complexities of the
original question, a new problem arises: by following this kind of strategies, one disregards
the long-term safety of the company, meaning that the in�nite-time ruin probability typically
becomes 1. Hence, by addressing one of the problems pointed out by de Fine�i, one exacer-
bates the other. Further, ruin probability considerations have been a relevant topic in the area
of stochastic control, as the problem exhibits the so-called time-inconsistency property, which
prohibits the use of classical tools in the area (see [10], [90], [86], and [67] for contributions
addressing directly or indirectly the ruin probability constraint). Chapter 4 examines a par-
ticular kind of strategy inspired by band strategies that addresses both dividends and a ruin
constraint simultaneously, all under the full generality of spectrally-negative Lévy processes.
Although this kind of strategies is given exogenously (and hence we cannot conclude any op-
timality property about it) one of our key �ndings is that the strategies perform outstandingly
well, giving sometimes a performance comparable to the one of the unconstrained problem,
while in addition respecting restrictive ruin probability constraints. �is is in sharp contrast
with some of the previously developed strategies in the literature, where the safety constraint
typically decreased the dividend performance considerably (e.g. [67], [109], [2], [111]).

1.3. Optimal reinsurance

�e topic of optimal reinsurance arises when an insurer has to make a choice among all the
possible reinsurance options. �is topic can be put into mathematical terms when we assume
that the choice is solely based on optimizing an objective function based on some particular
constraints. For example, the insurer might want to maximize expected utility a�er reinsur-
ance and/or achieve a regulatory demand, both subject to a limit in the budget used for the
premium. While there are several di�erent ways of phrasing the problem, each correspond-
ing to the particularities of the situation (see, e.g., [1] for a survey on the topic), in this thesis
we will deal with the following se�ing: we assume that the �rst line insurer is interested in
choosing the best reinsurance deal for its entire portfolio on a one-year basis contract. �e
portfolio is represented by a vector X = (X1, . . . , Xn) of risks, where each Xi represents,
for example, the aggregate amounts of di�erent lines of business for the insurer, though more
general interpretations can be made. We assume that there is no uncertainty in the distri-
bution of the portfolio and the insurer has full-knowledge of the distribution of X . In this
context, a classical reinsurance contract is given by a collection of functions fi : R+ → R+,
i = 1, . . . , n such that fi(x) ≤ x for every x ≥ 0 and i = 1, . . . , n. �ese functions can be
understood as rules that determine the split between the insurer and reinsurer by means of
the identity

Xi = fi(Xi) + (Xi − fi(Xi)).

�e requirement 0 ≤ fi(x) ≤ x is thus enforced to ensure that both fi(Xi) and (Xi− fi(Xi))
are non-negative, so fi(Xi) can then be understood as the amount retained by the insurer (or,
equivalently, the reinsured amount, observing that the de�nition is symmetric in this regard).
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Reinsurance contracts are compared by means of a risk measure, i.e., a function P : F → R,
where F is the Cartesian product of n function spaces (commonly the n-fold product of anLp
space for some p ≥ 1). In a very general manner, the optimal reinsurance problem then can be
phrased in the following way: given a subset S ⊂ F , �nd a reinsurance contract (f ∗1 , . . . , f

∗
n)

such that

(3) P(f ∗1 (X1), . . . , f ∗n(Xn)) = inf
(f1(X1),...,fn(Xn))∈S

P(f1(X1), . . . , fn(Xn)).

�e set S represents the constraints the insurer might have for the problem (e.g., the budget
requirement from before). Assuming the risk measure is bounded from below, so that the
in�mum is �nite, one immediately faces the following questions:

Do optimal reinsurance contracts exist?

And if they exist, can one identify them?

Are they unique?

One can easily see the di�culty of these questions by making a �rst approximation to the prob-
lem: in most optimization problems, one of the most basic assumptions is some sort of continu-
ity/compactness requirement in order to ensure that the in�mum in (3) is a�ained. In this sce-
nario, one could then require S to be compact and P to be continuous (lower-semicontinuous
is su�cient). While this does ensure the existence of a vector (Y1, . . . , Yn) ∈ S minimizing
P , observe that we require the vector (Y1, . . . , Yn) to be reached from (X1, . . . , Xn) by means
of a reinsurance contract, i.e., we require (Y1, . . . , Yn) to be in the set

(4) S ∩ {(f1(X1), . . . , fn(Xn)) ∈ F | 0 ≤ fi(x) ≤ x, i = 1, . . . , n}.

Now, while it is clear that the set on the right of the intersection in (4) is convex, it is not
necessarily closed, so even adding the compactness assumption to S does not seem to help
much.
�e problems arising from the questions of existence and uniqueness have been the subject
of several works in the literature and even for the case n = 1, one faces challenges. �e
usual way in which one deals with this is by either considering simple or no constraints
and families of risk measures with particular helpful properties (e.g., convex risk measures,
like in [25, 26] and [48]) thus ensuring existence and uniqueness at once, or by making the
constraints so particular that the problem is either reduced in dimensionality or making the
set in (4) compact (e.g., requiring that the only contracts under consideration are quota share
or stop-loss/excess-of-loss contracts or convex combinations of them, see also [110] and [42]).
By changing the perspective of the problem and trying to study this problem with a rather
general se�ing, the purpose of the last chapter of this thesis will be to study the existence and
identi�cation of optimal reinsurance contracts. While the question of uniqueness is relevant
in its own right, we will not directly address it, considering that the question of identi�cation
is challenging in itself.
�e change of perspective mentioned in the previous paragraph is the following: from the
point of view of the �rst line insurer, seeking the best optimal reinsurance contract can be
thought of as �nding the best way of “moving” some of its own risk to the reinsurer, where
there is a “cost” of moving (or not) each part of it. �e cost is indicated byP and while moving
the risk, one would like to maintain the constraints speci�ed by S . Further, observe that due to
the randomness in the outcome ofX , the risk carried byX (in the future) is actually measured
(in the present) in terms of its distribution rather than in the realization of X . Calling µ the
distribution of portfolio, one could informally state the reinsurance problem as: “�nd the
optimal way of moving the risk (mass) of µ to the reinsurer with cost P under constraints S”.
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�e idea of optimally moving (or transporting) mass with a prede�ned cost lies at the core of
the area of optimal transport (OT). See [104], [11] or [113] for some standard references in
the area. �e rest of this section will be used to explain how, by borrowing one of the key ideas
from OT, one can easily ensure the existence of optimal reinsurance contracts. �e challenge
becomes then to identify these contracts.

�e key idea from OT is the passage from the Monge formulation of the optimal transportation
problem to the Kantorovich formulation. �e original problem considered by Monge in [95] is
as follows: assume you have a certain amount of sand produced at some mines which needs to
be transported to factories where it will be processed for further use. �e overall production of
sand from the mines matches exactly the sand required by the factories and the transportation
is conducted according to a transportation plan, i.e., a plan specifying to which factory should
the sand from a speci�c mine be sent in such a way that the sand requirements are satis�ed
for all factories and we require the mines to supply exactly one factory. Assuming there are n
mines, m factories and a cost ci,j of sending sand from the mine in position xi to the factory
in position yj , the question is then to �nd an optimal transportation plan that minimizes the
cost. Figure 1a exempli�es the scenario of a transportation plan for the case where there are
7 mines and 3 factories.

(a) Monge formulation. (b) Kantorovich formulation.

Figure 1. Transportation plans under the Monge and Kantorovich formulation
of OT.

While the problem is relatively easy to formulate, one can just as easily see that, except
for a few exceptions, the problem might not even have a solution (consider the case of, say, 2
factories each producing 3 units of sand and 3 factories, each requiring 2 units). �e problem
arises due to the requirement of each mine supplying at most one factory. It is clear that, by
dropping this requirement, one obtains more �exibility and hopefully the existence of optimal
transportation plans. By relaxing this assumption one arrives at the Kantorovich formulation
of OT, in which a transportation plan speci�es instead the proportion of sand produced in xi
that should be sent to yj . One can then, using standard linear programming tools, prove that
optimal transportation plans exist. Figure 1b exempli�es a transportation map for the Kan-
torovich formulation for the same case as before, in which the darkness of the lines represents
the proportion of sand carried over on that route.
Having explained the Monge-Kantorovich formulation of OT, one might wonder how this
relates to the (re)insurance context. Notice that we can normalize the sand production and
requirements of the mines and factories, thus assuming that the total production and con-
sumption of sand equals 1 unit. By doing so, we are de�ning two probability measures ν1
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and ν2 on the sets {x1, . . . , xn} and {y1, . . . , ym} respectively. A transportation plan π there-
fore becomes a probability measure on {x1, . . . , xn} × {y1, . . . , ym} with marginals ν1 and
ν2 respectively (a “coupling” of ν1 and ν2), and one moves mass from ν1 to ν2 according to
π. Replacing “transportation plans” by “reinsurance contracts”, and recalling that, with cost
P , we want to move mass from µ to the reinsurer, we can �nally, in a slightly informal way,
reformulate the reinsurance problem as follows:

Find a reinsurance contract η ∈ S that minimizes P and that couples µ with some (unknown)
distribution ν.

In Chapter 5, we formalize this statement by means of random reinsurance contracts. Un-
like traditional contracts, these do not determine the reinsured amount solely based on the
value of the original claim size. Instead, they introduce an additional, extrinsic source of ran-
domness. Our investigations lead to new insights about optimal reinsurance. Notably, we
�nd that under certain conditions – speci�cally, when P is lower semi-continuous and S is
closed – optimal reinsurance contracts are guaranteed to exist, in sharp contrast to the classi-
cal formulation. One of our key discoveries is that, in many cases, the problem of �nding the
optimal reinsurance contract can be simpli�ed to a �nite-dimensional optimization problem
with constraints and we develop a method for solving the resulting types of problems. �e
scenarios we consider are relevant to both practitioners and academics, highlighting the broad
applicability of our method. In situations where reducing the problem to a �nite dimension
is not feasible, we demonstrate that it can o�en be framed as a constrained OT problem. �is
allows us to apply techniques from optimal transport to further understand and solve these
reinsurance problems. We manage to use this new framework to provide alternative proofs
of classical optimal reinsurance problems, provide extended and new solutions that were not
achievable before and also identify situations under which additional external randomness
(like an independent lo�ery) can increase the e�ciency of a reinsurance contract for all in-
volved parties.

With the established link between optimal transport and optimal reinsurance, we hope that
our �ndings not only open the doors for future research but also challenge the traditional
thinking in the �eld. �e realization that, in some scenarios, truly random contracts are op-
timal is an invitation to reconsider longstanding approaches to address optimal reinsurance
problems.



CHAPTER 2

Asymptotic analysis of generalized Greenwood statistics for very

heavy tails

�is chapter is based on the following article:

H. Albrecher, and B. Garcia Flores. Asymptotic analysis of generalized Greenwood statistics
for very heavy tails. Statistics & Probability Le�ers 185 (2022): 109429.

Abstract. We consider some variants of the classical Greenwood statistic
and analyze their asymptotic properties for regularly varying random vari-
ables with arbitrary index of variation. We also investigate the convergence
rate of these asymptotics and study how many terms are asymptotically rel-
evant for the resulting expressions. �is naturally generalizes and uni�es
some earlier results in the literature.

2.1. Introduction

Consider a sequence (Xi)i≥1 of independent and identically distributed non-negative ran-
dom variables with cumulative distribution function (cdf) F . �e Greenwood statistic Tn is
de�ned as

(5) Tn =
X2

1 + · · ·+X2
n

(X1 + · · ·+Xn)2 ,

cf. [68]. �is quantity appears naturally in various di�erent contexts. For instance, when
considering the spacingsDi = Xi∑n

i=1Xi
with

∑n
i=1 Di = 1, then Tn =

∑n
i=1D

2
i is a tool to test

for clustering or heterogeneity. Indeed, 1/n ≤ Tn ≤ 1, with the value of 1 occurring when all
but oneDi are zero (extreme clustering), and 1/n occurring if all spacingsD1 = . . . = Dn are
equal (homogeneity), see Arendarczyk et al. [12] for a recent contribution on the respective
statistical testing procedures. Another application area stems from the relation nTn = 1 +

(ĈoV(X))2, where ĈoV(X) is the sample coe�cient of variation of a dataset of n observations
(see e.g. Albrecher et al. [6], Castillo et al. [43]). Tn also appears in �nancial applications
via the Sharpe ratio [107], and in the self-normalized sum T

−1/2
n and the Student-t statistic√

(n− 1)/(nTn − 1), see e.g. Chistyakov and Götze [49]. Finally, Tn appears when testing
Taylor’s law in the biological sciences (also called �uctuation scaling in the physical sciences),
which is the empirical observation that o�en the sample variance is roughly proportional to
some power of the sample mean in a set of samples (see e.g. Brown et al. [40], Brown and
Cohen [39], De la Pena et al. [55] and Cohen, Davis and Samorodnitsky [50]).

Most of the above references deal with an underlying cdf F that is heavy-tailed, and that
case will also be the focus of the present paper. In fact, we will consider the case of a regularly
varying tail

(6) 1− F (x) ∼ `(x)x−α, x→∞,
11
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with α > 0 and `(x) denoting any slowly varying function (i.e. `(tx)/`(x) → 1 as x →
∞ for all t > 0). Note that the symbol ∼ refers to the ratio of both sides converging to
1 in the limit. In extreme value analysis, F is then also referred to have a Pareto-type tail
(see e.g. Beirlant et al. [27]). While in our study we allow α to take any positive value, our
particular interest is in the case 0 < α < 1. �is is the situation of very heavy tails, for
which not only the variance, but even the mean of the marginal random variables Xi does
not exist. In that case, beyond the relevance for applications, the study of Tn is interesting
in its own right from a mathematical point of view, as the �uctuations in the numerator and
the ones in the denominator of (5) tame each other in an intriguing way. In Albrecher and
Teugels [8] it was shown that E[T kn ] tends to a polynomial of degree k in α as n → ∞, the
coe�cients of which can be explicitly determined. Subsequently, it was shown in Albrecher
et al. [9] that these coe�cients can be read o� from the bivariate Taylor expansion of a simple
continued fraction, and the coe�cients turn out to be identical to the ones appearing in an
enumeration problem in topology when counting the possible number of rooted maps on
orientable surfaces, without regard to genus, with respect to edges and vertices.

Motivated by the simplicity of the above-mentioned polynomial, in this paper we will
study the asymptotic behavior of moments of several variants and extensions of the Green-
wood statistic (5), including arbitrary powers in (5) and its reciprocal values. Furthermore, it
is well-known from extreme value theory that in the presence of heavy tails, the largest terms
dominate the sum in a certain way. For instance, for 0 < α < 1 one has [85]

lim
n→∞

E
[
X1 + · · ·+Xn

max(X1, . . . , Xn)

]
=

1

1− α
.

It is hence of interest to see how many terms in the sums in (5) and its extensions are relevant
for the established asymptotic behavior, and it turns out that a rather explicit corresponding
result can be obtained.

�e rest of the paper is organized as follows. Section 2.2 de�nes the quantities under
consideration. In Section 2.3 asymptotic properties of the generalized Greenwood statistic
are derived, and a result on the convergence rate to the limit is established for the case of a
pure Pareto distribution. Section 2.4 �nally addresses the question how the obtained limits
change when only some largest order statistics are kept in the statistic. An explicit limit result
is obtained and illustrated for the case of the classical Greenwood statistic.

2.2. De�nitions and preliminaries

Let X1, X2, . . . be an independent and identically distributed (i.i.d.) sequence of non-
negative random variables with regularly varying tail (6) and index α > 0. For ν, θ, η > 0,
de�ne the generalized Greenwood statistic

(7) Tn(ν, θ, η) =
(Xν

1 + · · ·+Xν
n)θ

(X1 + · · ·+Xn)η

where it is understood that Tn = 0 whenever the the denominator is zero. First of all, the
special case

(8) Tn(m, 1,m) =
Xm

1 + · · ·+Xm
n

(X1 + · · ·+Xn)m
, m ∈ N

is of particular interest, as it directly extends the Greenwood statistic (5) and allows to see to
what extent properties of the case m = 2 carry over to higher powers. At the same time, the
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generality of (7) allows to also analyse the multiplicative inverse of Tn: If we de�ne Yn = Xν
n

(which entails 1− FY (x) ∼ `(x)x−α/ν), (7) reads

Tn(ν, θ, η) =
(Y1 + · · ·+ Yn)θ

((Y1)1/ν + · · ·+ (Yn)1/ν)
η .

For instance,

Tn(1/2, 2, 1) =
(Y1 + · · ·+ Yn)2

Y 2
1 + · · ·+ Y 2

n

then corresponds to the reciprocal value of (5), if we evaluate it for the new value α∗ = α/ν.

2.3. Asymptotic results for the extended Greenwood statistic

In this section we will derive an expression for lim
n→∞

E[Tn(ν, θ, η)] given in (7). In the same
spirit as in [7], the behavior changes according to the value of α, and we will distinguish the
respective cases. For x ≥ 0, let µx be the quantity given by

µx =

∫ ∞
0

tx dF (t),

so that µx coincides with the usual moment of order x when x is an integer. Observe that µx
is �nite whenever x < α. Moreover, let N0 = N ∪ {0} and de�ne for positive integers m and
p

S ′m(p) =

{
τ ∈ (N0)p |

p∑
i=1

τi = m

}
,

Sm(p) = {τ ∈ S ′m(p) | τi > 0, i = 1, . . . , p} .

Clearly, we require p ≤ m for Sm(p) to be non-empty. For τ ∈ Sm(p), let Gτ , Eτ and Fτ be
the sets given by

Eτ = {i ∈ {1, . . . , p} | τiν > α}
Fτ = {i ∈ {1, . . . , p} | τiν ≤ α, µτiν <∞}

and Gτ = {1, . . . , p} \ (Eτ ∪ Fτ ). Observe that Gτ is non-empty only when µα = ∞. Let
eτ and fτ denote the number of elements of Eτ and Fτ respectively, and στ and ςτ the sum
of those τi’s for which i ∈ Eτ or i ∈ Fτ respectively. Finally, for an arbitrary real number β
and τ ∈ S ′m(p), we use the short-hand notation[

β

τ

]
=
β(β − 1) · · · (β −m+ 1)

τ1! · · · τp!
.

For the discussion that follows, assume 0 < α < 1 and α < ν. Let E1, E2, . . . be an i.i.d.
sequence of exponential random variables and let Γn =

∑n
i=1Ei. Using Lemma 1 of LePage

et al. [85] (see also [7, Rem.3]) and the Continuous Mapping �eorem, one sees that

Tn(ν, θ, η)
d→

(∑∞
k=1 Γ

−ν/α
k

)θ
(∑∞

k=1 Γ
−1/α
k

)η .
as n → ∞. Factoring the denominator in the above limit as (·)η−θν(·)θν , one sees, together
with Slutsky’s �eorem, that the only limit di�erent from 0 or ∞ is obtained for the case
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η = θν which is therefore the only case of interest. If furthermore ν ≥ 1, then the limit is
bounded by 1, and we obtain by dominated convergence that

(9) lim
n→∞

E[Tn(ν, θ, η)] = E


(∑∞

k=1 Γ
−ν/α
k

)θ
(∑∞

k=1 Γ
−1/α
k

)η
 .

While one might hope at this point that results along the lines of [6, �eorem 2.1] might lead
to a path towards evaluating the right-hand side of (9) more explicitly, this does not seem to
be practically feasible, so that we follow another approach in what follows (which also allows
to consider the case α < ν < 1).

For technical reasons, we restrict our analysis to the case of integer values for θ, which
allows us to expand the power in the numerator of (7) into a �nite sum of products of the
form Xτ1ν

1 · · ·Xτnν
n . In any case, this is also the most relevant situation in applications.

We begin with a lemma that will be useful in subsequent sections as well.

Lemma 2.3.1. For θ ∈ N and n > θ, we have
(10)

E[Tn(ν, θ, η)] =
1

Γ(η)

θ∑
p=1

∑
τ∈Sθ(p)

[
θ

τ

](
n

p

)∫ ∞
0

wη−1

(∫ ∞
0

e−wtdF (t)

)n−p p∏
i=1

∫ ∞
0

xτiνe−wxdF (x)dw.

Proof. In analogy to the proof for ν = 2 derived in [8], we start with the identity

(11)
1

βη
=

1

Γ(η)

∫ ∞
0

wη−1e−βwdw

valid for any β > 0. Le�ing A = {X1 + · · · + Xn > 0}, (11) and Tonellis’s theorem imply
that

(12) E[Tn(ν, θ, η)1A] =
1

Γ(η)

∫ ∞
0

wη−1E

( n∑
i=1

Xν
i

)θ

e−w
∑n

1 Xi1A

 dw.
where 1A is the indicator function of A. Now, due to positivity, A = {Xν

1 + · · ·+Xν
n > 0} =

{Tn > 0}, so equality in (12) trivially holds when replacing A by its complement (since both
sides are zero). Adding up we arrive at

(13) E[Tn(ν, θ, η)] =
1

Γ(η)

∫ ∞
0

wη−1E

( n∑
i=1

Xν
i

)θ

e−w
∑n

1 Xi

 dw.
Since according to the notation introduced above

(14)

(
n∑
i=1

Xν
i

)θ

=
∑

τ∈S′θ(n)

[
θ

τ

]
Xτ1ν

1 · · ·Xτnν
n ,

we deduce

(15) E[Tn(ν, θ, η)] =
1

Γ(η)

∫ ∞
0

wη−1
∑

τ∈S′θ(n)

[
θ

τ

] n∏
i=1

E
[
Xτiν
i e−wXi

]
dw.

When n > θ, some of the τi must be zero. Considering only ordered tuples with non-zero
elements, we see that for a �xed p ≤ m, there will be

(
n
p

)
n-tuples with p non-zero elements.
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Hence
(16)∑
τ∈S′θ(n)

[
θ

τ

] n∏
i=1

E
[
Xτiν
i e−wXi

]
=

θ∑
p=1

∑
τ∈Sθ(p)

[
θ

τ

](
n

p

)(∫ ∞
0

e−wtdF (t)

)n−p p∏
i=1

∫ ∞
0

xτiνe−wxdF (x).

Plugging (16) into (15) concludes the proof. �

Let U denote the tail quantile function of F , i.e.,

U(s) = F−1(1− s−1),

where F−1 is the (generalized) le�-continuous inverse function of F . Similarly, let Ũ be the
tail quantile function associated with the distribution F̃ given by

F̃ (x) = 1− αx−α
∫ x

0

tα−1(1− F (t))dt.

De�ne λ := α−1. �e following sequence of results generalizes �eorems 3.1-3.4 of [8].

Proposition 2.3.2. If η = θν with θ ∈ N, then, for 0 < α < 1, the asymptotic behavior of
E[Tn(ν, θ, η)] is given by
(17)

E[Tn(ν, θ, η)] ∼ 1

Γ(η)

θ∑
p=1

∑
τ∈Sθ(p)

[
θ

τ

]
αeτ−1Γ ((η − στν)λ+ gτ )

p!Γ(1− α)(η−στ ν)λ+gτ
π1(τ )π2(τ )

nfτ log(n)p−eτ−fτ

U(n)ςτ ν
,

where π1 and π2 are given by

π1(τ ) =
∏
i∈Eτ

Γ(τiν − α) and π2(τ ) =
∏
i∈Fτ

µτiν .

In particular, for ν > α,

(18) lim
n→∞

E[Tn(ν, θ, η)] =
1

Γ(η)

θ∑
p=1

∑
τ∈Sθ(p)

[
θ

τ

]
αp−1

pΓ(1− α)p

p∏
i=1

Γ(τiν − α).

For ν < α or ν = α and µα <∞ we have

(19) E[Tn(ν, θ, η)] ∼ µθνΓ (ηλ)

αΓ(η)Γ(1− α)ηλ
nθ

U(n)θν
,

and for ν = α and µα =∞ we have

(20) E[Tn(ν, θ, η)] ∼ Γ (θ)

αΓ(θα)Γ(1− α)θ
log(n)θ.

Proof. Consider the integrals appearing in (10). Integrals of this kind have been studied
extensively in [7], so here we only sketch the methodology for working with them: With the
change of variable w = v/U(n), we obtain a factor U(n)−η. But the la�er can be wri�en as

(21) U(n)−η = U(n)−ν(θ−m)U(n)−τ1ν · · ·U(n)−τpν
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and distributed accordingly between the factors in the inner integrals of (10). Using the
changes of variables t = U(n/s) and x = U(n/h), we have(∫ ∞

0

e−wtdF (t)

)n−p
=

(
1

n

∫ n

0

exp

(
−vU(n/s)

U(n)

)
ds

)n−p
∼
(

1

n

∫ n

0

exp
(
−vs−λ

)
ds

)n−p
=

(
exp

(
−vn−λ

)
− vαΓ(1− α, vn−λ)

n

)n−p
∼ exp (−vαΓ(1− α)) .

(22)

Here Γ(s, x) denotes the upper incomplete gamma function. Similarly, for i ∈ Gτ , we have
for the other integral in (10),

1

U(n)τiν

∫ ∞
0

xτiνe−wxdF (x) =
1

n

∫ n

0

U(n/h)τiν

U(n)τiν
exp

(
−vU(n/h)

U(n)

)
dh

∼ 1

n

∫ n

0

h−λτiν exp
(
−vh−λ

)
dh

=
αvα−τiν

n
Γ(τiν − α, vn−λ)

∼ αvα−τiν

n
Γ(τiν − α),

(23)

for i ∈ Fτ we have
1

U(n)τiν

∫ ∞
0

xτiνe−wxdF (x) =
1

U(n)τiν

∫ ∞
0

xτiνe−vx/U(n)dF (x)

∼ µτiν
U(n)τiν

,
(24)

and �nally for i ∈ Gτ

1

U(n)τiν

∫ ∞
0

xτiνe−wxdF (x) =
1

U(n)α

∫ ∞
0

xαe−vx/U(n)dF (x)

∼ v−α(1− F̃ (U(n)/v))

∼ 1− F̃ (U(n))

∼ log(n)

n
.

(25)

It hence follows from (10), (22), (23), (24) and (25), together with the change of variable
vz−λ = u that

E[Tn(ν, θ, η)] ∼
∫ ∞

0

θ∑
p=1

∑
τ∈Sθ(p)

[
θ

τ

]
αeτ vη+eτα−στ ν−1

p!
e−v

αΓ(1−α)π1(τ )π2(τ )
nfτ log(n)p−eτ−fτ

U(n)ςτ ν
dv.

However, we see that the integral over v reduces to∫ ∞
0

vη+eτα−στ ν−1e−v
αΓ(1−α)dv =

λΓ((η − στν)λ+ eτ )

Γ(1− α)(η−στ ν)λ+eτ

which proves (17).
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If α < ν, then, for every p ∈ {1, . . . , θ} and τ ∈ Sθ(p), we have Eτ = {1, . . . , θ}, eτ = p
and στ = θ. Hence, we see that E[Tn(ν, θ, η)] has constant asymptotic behavior, proving (18).

Similarly, in the case ν ≤ α, we observe that the sequence nfτU(n)−ςτ ν log(n)p−eτ−fτ is
regularly varying of order fτ − ςτνλ. Since fτ ≤ ςτ , we see that fτ − ςτνλ ≤ fτ (1− νλ), so
the order is maximized when there are as many ones as possible in τ . For ν < α or ν = α and
µα <∞, this happens precisely when p = θ (and τ is the only element of Sθ(θ)). Hence, the
dominating term in (17) is the last element in the sum over p, which proves (19). For ν = α
and µα = ∞, we observe that Fτ = ∅, so fτ = ςτ = 0. Hence, the asymptotic behavior of
(18) is determined by the terms log(n)p−eτ . As the largest exponent is achieved when p = θ,
the dominating term is once again the last one in the sum over p, so we obtain (20). �

Remark 2.3.3. Using the property Γ(x + 1) = xΓ(x) of the gamma function, it is evident
that when ν is an integer, the limit (18) is always a polynomial in α with rational coe�cients.
�

We consider now the case α = 1. Since for ν = 1, E[Tn(ν, θ, θν)] = 1 for every n and θ,
we exclude this case from the next proposition.

Proposition 2.3.4. If η = θν with θ ∈ N, α = 1, ν 6= 1, and µ1 = ∞, then the asymptotic
behavior of E[Tn(ν, θ, η)] is given by

(26) E[Tn(ν, θ, η)] ∼
θ∑
p=1

∑
τ∈Sθ(p)

[
θ

τ

]
Γ (η − στν + eτ )

p!Γ(η)
π1(τ )π2(τ )

nfτU(n)eτ

Ũ(n)ςτ ν+eτ
.

Hence, for ν > α,

(27) E[Tn(ν, θ, η)] ∼ 1

θν − 1

U(n)

Ũ(n)
,

and for ν < α

(28) E[Tn(ν, θ, η)] ∼ µθν
nθ

Ũ(n)θν
.

Proof. Starting again with the integrals in (10), we make the change of variable w =

v/Ũ(n) and distribute the factor Ũ(n)−η thus obtained as in (21). Now, since µ1 = ∞, we
have

1−
∫ ∞

0

et/xdF (t) ∼ 1− F̃ (x).

Correspondingly, for the integral in t in (10) we obtain(∫ ∞
0

e−wtdF (t)

)n−p
∼ e−v.(29)

For the integral in x, by making the changes of variable x = U(n/h) and h = vr−1U(n)/Ũ(n),
we have, for i ∈ Eτ ,

1

Ũ(n)τiν

∫ ∞
0

xτiνe−wxdF (x) ∼ v1−τiν

n

U(n)

Ũ(n)
Γ (τiν − 1) .(30)

Similarly to (24) and (25), we have for i ∈ Fτ ,
1

Ũ(n)τiν

∫ ∞
0

xτiνe−wxdF (x) ∼ µτiν

Ũ(n)τiν
,(31)
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and for i ∈ Gτ

1

Ũ(n)τiν

∫ ∞
0

xτiνe−wxdF (x) ∼ 1

n
.(32)

Plugging (29), (30), (31) and (32) into (10), we obtain

E[Tn(ν, θ, η)] ∼
θ∑
p=1

∑
τ∈Sθ(p)

[
θ

τ

]
Γ(η + eτ − στν)π1(τ )π2(τ )

p!Γ(η)

nfτU(n)eτ

Ũ(n)ςτ ν+eτ
,

which proves (26).
If α < ν, (26) reduces to

E[Tn(ν, θ, η)] ∼
θ∑
p=1

∑
τ∈Sθ(p)

[
θ

τ

]
1

pΓ(η)

U(n)p

Ũ(n)p

p∏
i=1

Γ(τiν − 1).

However, since U(n)/Ũ(n) → 0 as n → ∞, the asymptotic behavior of E[Tn(ν, θ, η)] is
determined by the (eventually) largest term of the sum, i.e., the one with p = 1, so we obtain

E[Tn(ν, θ, η)] ∼ Γ (θν − 1)

Γ(η)

U(n)

Ũ(n)
=

1

θν − 1

U(n)

Ũ(n)

as desired.
An argument similar to the one given for (19) then proves (28). �

Finally, we consider the case α ≥ 1:

Proposition 2.3.5. If η = θν with θ ∈ N, α > 1 or α = 1 and µ1 < ∞, then the asymptotic
behavior of E[Tn(ν, θ, η)] is given by
(33)

E[Tn(ν, θ, η)] ∼ 1

Γ(η)

θ∑
p=1

∑
τ∈Sθ(p)

[
θ

τ

]
αeτ Γ(η + αeτ − στν)

p!µη+αeτ−στ ν
1

π1(τ )π2(τ )
U(n)αeτ (1− F̃ (n))p−eτ−fτ

n(α+1)eτ+ςτ ν−p
.

�erefore, for ν > α or ν = α, µα =∞ and θ > 1,

(34) E[Tn(ν, θ, η)] ∼ Γ(α + 1)Γ (θν − α)

µα1 Γ(η)

(
U(n)

n

)α
.

For ν = α, µα =∞ and θ = 1 we have

(35) E[Tn(ν, θ, η)] ∼ 1

µη1

1− F̃ (n)

n
,

and for ν < α or ν = α and µα <∞,

(36) E[Tn(ν, θ, η)] ∼ µθν
µη1
nθ(1−ν).

Proof. Proceeding in the same fashion, we make the change of variable w = v/n and
distribute the factor n−η similarly to (21). Hence, for the integral in t we obtain

(37)
(∫ ∞

0

e−wtdF (t)

)n−p
∼ e−µv.
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For the integral in x, by making the changes of variable x = U(n/h) and h = vr−λU(n)/n,
we have, for i ∈ Eτ

1

nτiν

∫ ∞
0

xτiνe−wxdF (x) ∼ αvα−τiνU(n)α

nα+1
Γ (τiν − α) .(38)

�e behavior for i ∈ Fτ and i ∈ Gτ is still similar to (24) and (25), so for i ∈ Fτ , we obtain
1

nτiν

∫ ∞
0

xτiνe−wxdF (x) ∼ µτiν
nτiν

,(39)

and for i ∈ Gτ

1

nτiν

∫ ∞
0

xτiνe−wxdF (x) ∼ 1− F̃ (n).(40)

�erefore,

E[Tn(ν, θ, η)] ∼ 1

Γ(η)

θ∑
p=1

∑
τ∈Sθ(p)

[
θ

τ

]
αeτ Γ(η + αeτ − στν)

p!µη+αeτ−στ ν
1

π1(τ )π2(τ )
U(n)αeτ (1− F̃ (n))p−eτ−fτ

n(α+1)eτ+ςτ ν−p

as desired. Now, if ν > α, this expression reduces to

E[Tn(ν, θ, η)] ∼ 1

Γ(η)

θ∑
p=1

αpΓ(pα)

p!µpα

(
U(n)

n

)pα ∑
τ∈Sθ(p)

[
θ

τ

] p∏
i=1

Γ (τiν − α) .

Since U(n) is regularly varying with index 1/α < 1, we have U(n)/n→ 0 as n→∞, so the
asymptotic behavior is dominated by the term with p = 1, i.e.,

E[Tn(ν, θ, η)] ∼ Γ(α + 1)Γ (θν − α)

µαΓ(η)

(
U(n)

n

)α
which proves (34).

For ν ≤ α, we observe that the sequence

U(n)αeτ (1− F̃ (n))p−eτ−fτ

n(α+1)eτ+ςν−p

is regularly varying with index αfτ − ςτν − p(α− 1). Since fτ ≤ p and fτ ≤ ςτ , the order is
bounded by fτ (1−ν) and when ν < α or ν = α and µα <∞, this bound is reached for p = θ,
obtaining (36). If otherwise, ν = α and µν = ∞, then fτ = ςτ = 0, so the term involving n
in (34) is given by

U(n)αeτ (1− F̃ (n))p−eτ

n(α+1)eτ−p
.

�is term de�nes a regularly varying sequence of order p(1−α) and since in this case α > 1,
the dominating term happens when p = 1, obtaining (34) or (35) depending on the value of
θ. �

Remark 2.3.6. Observe that (36) provides a correction for the case θ + 1 > α considered in
�eorem 3.4 of [8]. �

We can now work out particular explicit cases of Formula (18) for 0 < α < 1. To begin
with, for θ = 1 (18) simpli�es to

lim
n→∞

E
[
Xν

1 + · · ·+Xν
n

(X1 + · · ·+Xn)ν

]
=

Γ(ν − α)

Γ(ν)Γ(1− α)
.(41)
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If furthermore ν = m ∈ N is an integer, one receives for any m the pleasant general formula

lim
n→∞

E
[
Xm

1 + · · ·+Xm
n

(X1 + · · ·+Xn)m

]
= lim

n→∞
E [Tn(m, 1,m)] =

1

(m− 1)!

m−1∏
i=1

(i− α)

= (1− α)
(

1− α

2

)
· · ·
(

1− α

m− 1

)
,(42)

extending the classical result lim
n→∞

E [Tn(2, 1, 2)] = 1 − α in a natural way. Figure 1 depicts
(42) as a function of α (0 < α < 1) for m = 2, 3, 4, 5 (solid lines). For m = 4, it is also of
interest to compare the resulting expression to

lim
n→∞

E
[

(X2
1 + · · ·+X2

n)2

(X1 + · · ·+Xn)4

]
= lim

n→∞
E [Tn(2, 2, 4)] = (1− α)(1− 2α/3),

which was already obtained in [8] and is depicted as the dashed line in Figure 1. Indeed,
the la�er contains all the additional mixed positive terms in the numerator, and we have
(1− α)(1− 2α/3) > (1− α)(1− α/2)(1− α/3) for all 0 < α < 1.

Figure 1. lim
n→∞

E [Tn(m, 1,m)] as found in (42) for m = 2, 3, 4, 5 (solid lines)
and lim

n→∞
E [Tn(2, 2, 4)] (dashed line).

For the limiting behavior of the second and third moment of (8) we for instance get the
explicit formulas

lim
n→∞

E
[
T 2
n(m, 1,m)

]
= lim

n→∞
E [Tn(m, 2, 2m)]

=
1

(2m− 1)!

m−1∏
i=1

(i− α)

(
m∏
i=1

(i+m− 1− α) + α

m−1∏
i=1

(i− α)

)
lim
n→∞

E
[
T 3
n(m, 1,m)

]
= lim

n→∞
E [Tn(m, 3, 3m)]

=
1

(3m− 1)!

m−1∏
i=1

(i− α)

(
2m∏
i=1

(i+m− 1− α)

+3α
2m−1∏
i=1

(i− α) + 2α2

m−1∏
i=1

(i− α)2

)
.

While we know from Remark 2.3.3 that the limit of the kth moment of Tn(m, 1,m) is a poly-
nomial in α, in analogy to �eorem 3.1 in [8] one might furthermore conjecture that its degree
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is k(m− 1) for each m ∈ N. Indeed,
m∏
i=1

(i+m− 1− α) = q1(α) + (−1)m−1

m∑
i=1

(i+m− 1)αm−1 + (−1)mαm

and

α

m−1∏
i=1

(i− α) = q2(α) + (−1)m−2

m−1∑
i=1

iαm−1 + (−1)m−1αm

where q1 and q2 are polynomials of degree m− 2. �erefore, we see that
∏m

i=1(i + m− 1−
α) +α

∏m−1
i=1 (i−α) is a polynomial of degree m− 1 with leading coe�cient (−1)m−1m2, so

we can conclude that limn→∞ E [Tn(m, 2, 2m)] is a polynomial of degree 2(m − 1). Similar
computations also establish that limn→∞ E [Tn(α,m, 3, 3m)] is polynomial of degree 3(m−1).
However, to prove that conjecture for arbitrary k seems to be di�cult.

Choosing α∗ = α/m, ν = 1/m, θ = k/m and η = k, we deduce from (18) for the
reciprocal moments
(43)

lim
n→∞

E

[
(X1 + · · ·+Xn)mk

(Xm
1 + · · ·+Xm

n )k

]
=

1

Γ(k)

mk∑
p=1

∑
τ∈Smk(p)

[
mk

τ

]
αp−1

mp−1pΓ(1− α/m)p

p∏
i=1

Γ

(
τi − α
m

)
.

For m = 2 and k = 1, this leads to

lim
n→∞

E

[
(X1 + · · ·+Xn)2

X2
1 + · · ·+X2

n

]
= 1 +

α

2

(
Γ(1

2
− α/2)

Γ(1− α/2)

)2

= 1 +
αB(1/2, (1− α)/2)2

2π
,

where B(x, y) = Γ(x)Γ(y)/Γ(x + y) denotes the Beta function. Since B(1/2, (1 − α)/2)2

is not expressible in terms of elementary functions, we can in general not expect (43) to be
expressible in a simpler way.

It is of interest to assess the speed of convergence in Proposition 2.3.2, in particular when
using Greenwood statistics for statistical estimation procedures (cf. Castillo et al. [43]). In
fact, for the pure Pareto case (i.e. with the slowly varying function `(x) ≡ 1), a quantitative
result can be obtained:

Proposition 2.3.7. If

(44) F (x) = 1− x−α, x > 1,

and 0 < α < 1 < ν, then∣∣∣∣E [Tn(ν, 1, ν)]− Γ(ν − α)

Γ(ν)Γ(1− α)

∣∣∣∣ ≤ C

n1−α +D
Γ(ν − 1, n)

nν−1

for all n and some constants C and D.

Proof. Observe that under (44) we have U(s) = sλ, which implies that equality holds in
the second line of equations (22), (23) and (25). Hence, a�er the change of variable v = nλu,
(15) becomes

(45) E[Tn(ν, θ, ν)] =
1

Γ(νθ)

θ∑
p=1

∑
τ∈Sθ(p)

[
θ

τ

](
n

p

)
αp·

·
∫ ∞

0

upα−1 (exp(−u)− uαΓ(1− α, u))n−p
p∏
i=1

Γ(τiν − α, u)du.



22 2. GREENWOOD STATISTICS FOR HEAVY TAILS

As θ = 1, this reduces to

E[Tn(ν, 1, ν)] =
nα

Γ(ν)

∫ ∞
0

uα−1 (exp(−u)− uαΓ(1− α, u))n−1 Γ(ν − α, u)du.

By observing that the derivative of the mapping u 7→ exp(−u) − uαΓ(1 − α, u) is given by
u 7→ −αuα−1Γ(1− α, u), we can integrate by parts to obtain

(46) E[Tn] =
Γ(ν − α)

Γ(ν)Γ(1− α)
+

1

Γ(ν)

∫ ∞
0

(exp(−u)− uαΓ(1− α, u))nH ′(u)du,

where H(u) = Γ(ν − α, u)/Γ(1 − α, u). In view of (41) we can therefore focus on the
approximation error

ξn :=
1

Γ(ν)

∫ ∞
0

(
exp(−u)− uαΓ(1− α, u)

)n
H ′(u)du

for any �nite n. While this expression cannot be evaluated exactly, we can obtain bounds for
the convergence rate of ξn to zero.

We need to derive some facts about H and its derivative. Observe that H ′ is given by

H ′(u) =
u−αe−uΓ(ν − α, u)− uν−α−1e−uΓ(1− α, u)

Γ(1− α, u)2
=

u−αe−u

Γ(1− α, u)

(
Γ(ν − α, u)

Γ(1− α, u)
− uν−1

)
.

By means of, for example, de l’Hôpital’s rule we can show that
(47)

lim
u→∞

u−αe−u

Γ(1− α, u)
= 1, lim

u→∞

Γ(ν − α, u)

uν−1Γ(1− α, u)
= 1 and lim

u→∞
u

(
Γ(ν − α, u)

uν−1Γ(1− α, u)
− 1

)
= ν−1.

�e �rst two limits, together with the fact that ν ≥ 1, imply that the behavior of H close
to zero is dominated by the factor u−α, whereas the behavior at in�nity is dominated by
H(u)− uν−1. Moreover, using once again the fact that ν ≥ 1, we notice that

uν−1

∫ ∞
u

t−αe−tdt ≤
∫ ∞
u

tν−α−1e−t dt,

which impliesH(u) ≥ uν−1 for every u ≥ 0. �us,H ′ is positive andH is increasing. Spli�ing
the integral de�ning ξn, we get

(48) | ξn |≤ C1

∫ 1

0

u−α exp(−nu)du+ C2

∫ ∞
1

exp(−nu)(H(u)− uν−1)du

where

C1 =
Γ(ν − α, 1)

Γ(ν)Γ(1− α, 1)2
and C2 =

e−1

Γ(ν)Γ(1− α, 1)
.

Now, the change of variable u = nv shows that∫ 1

0

u−α exp(−nu)du ≤ Γ(1− α)

n1−α .

Finally, the third limit in (47) shows that there exists a constant C3 such that H(u)− uν−1 ≤
C3u

ν−2 for every u ≥ 1. Hence,∫ ∞
1

exp(−nu)(H(u)− uν−1) du ≤ C3

∫ ∞
1

uν−2 exp(−nu) du =
C3Γ(ν − 1, n)

nν−1

which �nishes the proof by taking C = C1 and D = C2C3. �



2.4. HOW MANY TERMS ARE ASYMPTOTICALLY RELEVANT? 23

Remark 2.3.8. For arbitrary θ > 1, a similar procedure can lead to an explicit expression
for the approximation error ξn as well. In that case, however, one needs to integrate by parts
p times the integral in (45) in order to get rid of the factorial coming from

(
n
p

)
and in order

to make the factor Γ(1− α)p appear in the denominator. Considering the product inside the
integral, this procedure makes the overall integrand quite hard to handle. �

2.4. How many terms are asymptotically relevant?

In view of the subexponentiality of Pareto-type distributions, and in the spirit of [7], it is
natural to inquire to what extent the largest terms in the sums in the numerator and denomi-
nator in (7) dominate. Concretely, do we get to a similar limiting behavior already when only
taking some largest terms in both?

To address this question, consider the order statistics X1,n ≤ . . . ≤ Xn,n of the sample
X1, . . . , Xn and, for a non-decreasing function r : N→ N with r(n) ≤ n, de�ne

(49) Tn,n−r(n) =

(
Xν
n,n + · · ·+Xν

r(n),n

)θ
(Xn,n + · · ·+Xr(n),n)η

.

For the following, we will consider only the case 0 < α < 1 and ν > α, which is the only
case for which the asymptotic behavior of E[Tn(ν, θ, θν)] is not zero or in�nity.

For q > 0, let `q denote the space of q-summable sequences, regarded as a subspace of RN

with the product topology. De�ne

C = {(z1, z2, . . .) ∈RN | z1 > 0, z1 ≥ z2 ≥ · · · ≥ 0},

D = C ∩
⋃
q>α

`q.

We have the following.

Proposition 2.4.1. Let E1, E2, . . . be an i.i.d. sequence of exponential random variables and let
Γn =

∑n
i=1 Ei. If lim

n→∞
n− r(n) = s, with s ∈ N ∪ {∞}, then the sequence

Zn = (Xn,n, . . . , Xr(n),n, 0, 0, . . .)/U(n)

converges in distribution to

Z = (Γ−λ1 ,Γ−λ2 , . . . ,Γ−λs+1, 0, . . .)

regarded as random elements in D. Here λ = α−1 and there are no zeros at the end of the vector
de�ning Z if s is in�nite.

Proof. �is result is an easy extension of Lemma 1 in [85], also being based on the con-
vergence of the �nite-dimensional distributions. �e main di�erence apart from the change
in the number of terms de�ning the vectors is the de�nition of the state space of the Zn and
Z here. Observe �rst that since ⋃

q>α

`q =
⋃
q>α,
q∈Q

`q

and `q is Borel in the product topology for each q > 0, then D is also a Borel subset of RN.
As Zn ∈ D and Z ∈ D a.e., we can restrict the state space from C to D without a�ecting the
convergence in distribution �
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�e relevance of this proposition is the following: Extending the respective remarks of
Section 2.2, if η = θν, the function f : D → R given by

f(z1, z2, . . .) =
(
∑∞

k=1 z
ν
k)
θ

(
∑∞

k=1 zk)
η

is continuous, so by the Continuous Mapping �eorem we have

Tn = f(Zn)
d→ f(Z) =

(∑s+1
k=1 Γ−λνk

)θ(∑s+1
k=1 Γ−λk

)η .
Moreover, for ν ≥ 1, f is bounded by 1, so

lim
n→∞

E[Tn] = E

[(∑s+1
k=1 Γ−λνk

)θ(∑s+1
k=1 Γ−λk

)η
]
.

If α < ν < 1, we can de�ne a sequence of functions fm : D → R given by

fm(z1, z2, . . .) =
(
∑m

k=1 z
ν
k)
θ

(
∑m

k=1 zk)
η .

We notice that fm is bounded by mθ(1−ν) and fm → f pointwise in D. Since in this case
fm(Z) ≤ fm+1(Z), monotone convergence applies and at least we can conclude

lim
m→∞

lim
n→∞

E[fm(Zn)] = lim
m→∞

E


(∑min(m,s+1)

k=1 Γ−λνk

)θ
(∑min(m,s+1)

k=1 Γ−λk

)η
 = E

[(∑s+1
k=1 Γ−λνk

)θ(∑s+1
k=1 Γ−λk

)η
]
.

As in Section 2.2, we conclude that only the case η = θν is of interest, as otherwise Slutsky’s
�eorem together with the fact that U(n) → ∞ implies that Tn converges in distribution to
zero or in�nity. We also observe that only the case of �nite swill lead to di�erent results than
r(n) = 1 (i.e. when keeping all the terms). Aiming for a li�le bit more generality, we will
therefore focus on the quantity

Tn,s,r(ν, θ, η) :=

(
Xν
n−r,n + · · ·+Xν

n−s,n
)θ

(Xn−r,n + · · ·+Xn−s,n)η
.

with 0 ≤ r < s.

Proposition 2.4.2. �e limit of the expectations E[Tn,s,r] is given by

(50) lim
n→∞

E[Tn,s,r(ν, θ, η)] =
s!

Γ(η)r!(s− r − 1)!

θ∑
m=0

∫ ∞
0

uν(θ−m)−α−1e−uΘm,s,r(u)du,

where

Θm,s,r(u) = αs−ru(s+1)α

m∑
p=0

(
θ

p

) ∑
τ∈S′m−p(s−r−1)

[
θ − p
τ

] ∫ ∞
u

vpν−(r+1)α−1e−v
s−r−1∏
i=1

∫ v

u

zτiν−α−1e−zdzdv.
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Proof. We only need to adapt the proof of Proposition 2.3.2. Using the same identity as
in (13), we write the corresponding expectation as

E
[(
Xν
n−r,n + · · ·+Xν

n−s,n
)θ
e−w

∑n−r
n−sXi,n

]
=

θ∑
m=0

m∑
p=0

(
θ

p

) ∑
τ∈S′m−p(s−r−1)

[
θ − p
τ

]
E
[
X
ν(θ−m)
n−s,n Xpν

n−r,nX
τ1ν
n−s+1,n · · ·X

τs−r−1ν
n−r−1,ne

−w
∑n−r
n−sXi,n

]
,

(51)

Conditioning �rst on Xn−s,n and then on Xn−r,n, we can rewrite the innermost sum as

∑
τ∈S′m−p(s−r−1)

[
θ

τ

]
E
[
X
ν(θ−m)
n−s,n Xpν

n−r,nX
τ1ν
n−s+1,n · · ·X

τs−r−1ν
n−r−1,ne

−w
∑n−r
n−sXi,n

]
=

[
n

σ

] ∑
τ∈S′m−p(s−r−1)

[
θ

τ

] ∫ ∞
0

yν(θ−m)e−wyF n−s−1(y)I(y)dF (y),

(52)

where σ = (1, 1, n− s− 1, r, s− r − 1) and

I(y) =

∫ ∞
y

xpνe−wxF̄ r(x)
s−r−1∏
i=1

(∫ x

y

zτiνe−wzdF (z)

)
dF (x).

Substitutions similar to those used in equations (22) or (23) then lead to (50). �

Writing Tn,s instead of Tn,s,0, we can easily derive a formula for the case where only the
largest s+ 1 statistics are considered in the quotient.

Corollary 2.4.3. �e limit of the expectations E[Tn,s] is given by

(53) lim
n→∞

E[Tn,s(ν, θ, η)] =
1

Γ(η)

θ∑
m=0

∫ ∞
0

uν(θ−m)−α−1e−uΘm,s(u)du,

where

Θm,s(u) = αsu(s+1)α
∑

τ∈S′m(s)

[
θ

τ

] s∏
i=1

∫ ∞
u

vτiν−α−1e−vdv.

Proof. �is follows immediately from Proposition 2.4.2 a�er se�ing r = 0 and observing
that
m∑
p=0

(
θ

p

) ∑
τ∈S′m−p(s−1)

[
θ − p
τ

] ∫ ∞
u

vpν−α−1e−v
s−1∏
i=1

∫ v

u

zτiν−α−1e−zdzdv =

1

s

∑
τ∈S′m(s)

[
θ

τ

] s∏
i=1

∫ ∞
u

vτiν−α−1e−vdv.

�

In the de�nition of Θm,s,r and Θm,s we allow the τ ’s to vary over sets of the form S ′m(s).
Switching over to sums over Sm(p), we can write

Θ0,s,r(u) = αs−ru(s+1)α

∫ ∞
u

v−(r+1)α−1e−v
(∫ v

u

z−α−1e−zdz

)s−r−1

dv
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and for m ≥ 1,

Θm,s,r(u) = αsu(s+1)α

m∑
p=0

(
θ

p

)min(ρ,m−p)∑
q=1

(
ρ

q

)(∫ ∞
u

v−α−1e−vdv

)ρ−q ∑
τ∈Sq(m−p)

[
θ

τ

]
Γ(τiν−α, u, v).

with ρ = s− r − 1 and Γ(x, u, v) =
∫ v
u
tx−1e−tdt. Similarly,

Θ0,s(u) = αsu(s+1)α

(∫ ∞
u

v−α−1e−vdv

)s
and for m ≥ 1,

Θm,s(u) = αsu(s+1)α

min(s,m)∑
p=1

(
s

p

)(∫ ∞
u

v−α−1e−vdv

)s−p ∑
τ∈Sp(m)

[
θ

τ

]
Γ(τiν − α, u).

Remark 2.4.4. �e discussion following Proposition 2.4.1 also shows that indeed

lim
s→∞

lim
n→∞

E[Tn,s] = lim
n→∞

E[Tn]

monotonically. Given the form of the �rst double limit, one could wonder whether some sort
of limiting function Θm exists for the Θm,s that could work as sort of kernels for lim

n→∞
E[Tn].

However, observe that for every 0 ≤ p < s and u > 0 we have

αs−pu(s−p)α
(∫ ∞

u

v−α−1e−vdv

)s−p
=

(
e−u − uα

∫ ∞
u

v−αe−vdv

)s−p
.

Since the expression inside the parenthesis on the right hand side of the equality is clearly pos-
itive and smaller than 1, we deduce that lim

s→∞
Θs,m = 0 pointwise and Θs,m cannot converge

to Θm 6= 0 pointwise or in Lq for any q. �

Figure 2. lim
n→∞

E[Tn,s(2, 1, 2)] for s = 0, 1, 2, 3, n− 1.
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As an example, let us consider in more detail the speci�c case of squares:

lim
n→∞

E

[
X2
n,n + · · ·+X2

n−s,n

(Xn,n + · · ·+Xn−s,n)2

]
= lim

n→∞
E[Tn,s(2, 1, 2)]

= αs+1

∫ ∞
0

usα−1e−u

[
u2

(∫ ∞
u

v−α−1e−vdv

)s
+ s

(∫ ∞
u

v−αe−vdv

)(∫ ∞
u

v−α−1e−vdv

)s−1
]
du

= (s+ 1)αs+1

∫ ∞
0

u(s+1)α−1

(∫ ∞
u

v1−αe−vdv

)(∫ ∞
u

v−α−1e−vdv

)s
du

= (s+ 1)αs+1

∫ ∞
0

u(s+1)α−1Γ(2− α, u)
(
Γ(−α, u)

)s
du,

which quanti�es what extent of the limit 1 − α is already formed by keeping only the s +
1 largest terms in the sums of the numerator and denominator of the classical Greenwood
statistic. Figure 2 depicts this limit as a function of α for keeping the one, two, three, four
largest terms only, and compares it with the case of keeping all terms (s = n − 1). One
observes that for very small α these few largest terms already capture the overall behavior
quite accurately, which is well in line with the intuition that in that situation the largest terms
strongly dominate the sum. In contrast, for values of α closer to 1, signi�cantly more largest
order statistics are needed to closely approximate the asymptotic behavior of the Greenwood
statistic.





CHAPTER 3

Optimal dividend bands revisited: a gradient based method and

evolutionary algorithms

�is chapter is based on the following article:

H. Albrecher, and B. Garcia Flores. Optimal dividend bands revisited: a gradient-based method
and evolutionary algorithms. Scandinavian Actuarial Journal 2023.8 (2023): 788-810.

Abstract.We reconsider the study of optimal dividend strategies in the Cramér-
Lundberg risk model. It is well-known that the solution of the classical div-
idend problem is in general a band strategy. However, the numerical tech-
niques for the identi�cation of the optimal bands available in the literature
are very hard to implement and explicit numerical results are known for
very few cases only. In this paper we put a gradient-based method into place
which allows to determine optimal bands in more general situations. In ad-
dition, we adapt an evolutionary algorithm to this dividend problem, which
is not as fast, but applicable in considerable generality, and can serve for
providing a competitive benchmark. We illustrate the proposed methods in
concrete examples, reproducing earlier results in the literature as well as es-
tablishing new ones for claim size distributions that could not be studied
before.

3.1. Introduction

Consider the optimal dividend problem for an insurance company whose surplus process
evolves according to the Cramér-Lundberg model (see e.g. [17]). �e company pays dividends
to shareholders in continuous time according to some admissible strategy π, and the objective
is to identify the strategy that maximizes the expected sum of discounted dividend payments
until the event of ruin. If there are no constraints on the size of the payments, Gerber [63]
showed that such a strategy always exists and is given by a band strategy that partitions the
interval [0,∞) into three sets B0,Bc and B∞: whenever the current surplus level is in B0,
no dividends are paid, when the current surplus level is in Bc, all incoming premium is paid as
dividends so that the same surplus level is maintained until the next claim arrives, and when
the current surplus level is in B∞, a lump sum payment to the �rst surplus level outside
of B∞ is carried out. �is leads to a cascading strategy towards ruin (see e.g. the sample
path illustration in Figure 1 later). Since Gerber’s result, the optimal dividend problem and
variants have been studied under many di�erent and more general model assumptions and
under various constraints (see for instance Avanzi [18] and Albrecher & �onhauser [10] for
surveys).
For many claim size distributions of practical relevance, the above band strategy turns out to
collapse to a barrier strategy (i.e., |Bc| = 1), see e.g. Gerber & Shiu [66], and Avram et al.
[20] and Loe�en [89] for su�cient conditions on the Lévy measure under which a barrier
strategy is optimal in the general framework of spectrally negative Lévy processes. In such

29
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a case the determination of the respective optimal barrier is rather straight-forward, if the
scale function corresponding to the underlying surplus process is explicitly available (see e.g.
Hubalek & Kyprianou [77]). In contrast, already for the classical Cramér-Lundberg model it
turns out to be surprisingly challenging to (even numerically) identify the sets B0,Bc,B∞
for more involved claim size distributions.

�e value function of the optimal dividend problem has been identi�ed as a viscosity solu-
tion of the corresponding Hamilton-Jacobi-Bellman equation by Azcue & Muler [22], which
led to an iterative procedure for the numerical determination of the optimal bands (cf. [22, 23]
as well as Schmidli [106] and Berdel [28]). However, when following the respective algorithm,
one faces two main di�culties:

(i) �ere is no complete understanding of the internal mechanism which furnishes the sets
B0,Bc and B∞ given an arbitrary set of parameters of the Cramér-Lundberg model,
so that, as of now, concrete numerical solutions are known only for very few concrete
and simple claim distributions.

(ii) �e numerical approaches suggested in the literature require the solution of several
di�erential equations, which can be very expensive in terms of computation time.

While the numerical algorithms suggested so far were a by-product of the meticulous study
of the existence and uniqueness of the solution of the optimal dividend problem and its char-
acterization, in this paper we would like to take a di�erent route. Relying on the fact that a
band strategy is optimal and assuming that there are only �nitely many such bands, we are
interested to see if there are numerical alternatives to determine these optimal bands more
e�ciently and/or generally. In particular, we propose two respective numerical algorithms
that di�er from previous approaches.

�e �rst one exploits the ’cascading’ nature of band strategies and establishes a method
based on gradients, when the value function is considered as a function of all band levels
rather than the initial surplus level. �is will lead to a rather fast numerical routine that can
also be tailored to work for cases in which the scale function is not explicitly available, but
its Laplace transform is (which is the case in general, since that Laplace transform is de�ned
as the reciprocal of the (shi�ed) Laplace exponent of the underlying spectrally negative Lévy
process). For every �xed number of bands, one then obtains an iterative procedure and can
�nally compare whether increasing the number of bands still improves the solution.

�e second method also uses the explicit iterative formula for the expected discounted
dividend payments for given band levels and uses it as the objective function in a general
evolutionary algorithm. Evolutionary strategies (ES) have been applied in the past with some
success in reinsurance problems where the evaluation of the function to optimize is only pos-
sible through numerical procedures due to the non-existence of explicit algebraic expressions
(see, for example, Salcedo-Sanz et al. [103] and Roman et al. [100]). In our context, we propose
the use of an evolutionary self-adaptive strategy based on the algorithm originally proposed
in the survey paper by Beyer & Schwefel [31] which does not use the derivatives of involved
functions and which can be easily implemented in common programming languages. �is ge-
netic algorithm is rather �exible and works particularly well in high-dimensional problems.
We will hence adapt such an algorithm to the needs of our dividend problem, and indeed get
to the same solutions as the other methods do. While in reasonably low dimension (like the
dividend problem typically is, as there are only a few bands to consider) the computation time
using this algorithm is not favorable when compared to the gradient-based approach, it is ap-
plicable in very general setups and can nicely serve as a benchmark for numerical procedures.
Furthermore, it can also be useful in other application areas in risk theory, and since the idea
and implementation of evolutionary algorithms may not be so commonly familiar in the risk
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theory community, we present the underlying principle and implementation variants in some
detail in a separate section.

�e rest of the paper is organized as follows. Section 3.2 contains some de�nitions and
preliminaries on the model assumptions and the nature of the dividend band strategies. In
Section 3.3 we summarize the previously available numerical procedures for the determina-
tion of optimal dividend bands. Section 3.4 then provides the expressions for the expected
discounted payments that will be used in the numerical algorithms, in particular with respect
to the ’cascading’ view. Section 3.5 develops the gradient-based algorithm and discusses issues
of its implementation. In Section 3.6 we give a general account of the idea behind evolution-
ary algorithms, and the necessary adaptations to the optimal dividend problem are discussed
in Section 3.7. Finally, in Section 3.8 we provide numerical illustrations. We �rst re-derive
the known optimal bands for the well-known example of an Erlang(2) claim size distribution
derived in Azcue & Muler [22] as well as the mixture of Erlang claim size distribution estab-
lished in Berdel [28]. We then establish a new instance of a mixure of Erlang distributions for
which a 4-band strategy is optimal. Subsequently we use our algorithms to derive the optimal
barrier level in a risk model with Pareto claim sizes (where a barrier is known to be optimal
due to Loe�en [89]). We also implement an example with a mixture of Erlang and Pareto
claims, which could not be handled with previously existing techniques and for which also
two bands turn out to be optimal. Section 3.9 concludes.

3.2. De�nitions and preliminaries

Consider the surplus process of an insurance portfolio in a Cramér-Lundberg model

Ct = u+ pt−
Nt∑
k=1

Yk, t ≥ 0,

with (Nt)t≥0 a homogeneous Poisson process with rate λ representing the arrival of claims,
(Yk)k≥0 a sequence of absolutely continuous i.i.d. claim size random variables with density
fY and �nite mean µ, and the premium rate p satisfying the positive safety loading condition
p = (1 + η)λµ for some η > 0. Let (Ft)t≥0 be the usual augmentation of the �ltration
generated by (Ct)t≥0.

�e dividend strategy π is represented by the process (Ut)≥0, where Ut are the dividends
paid up to time t. A dividend strategy is called admissible if the associated process (Ut)t≥0 is
adapted to (Ft)t≥0, non-decreasing and càglàd. Denote by Π the set of all admissible strate-
gies.

For an admissible strategy π ∈ Π we denote by Xt = Ct − Ut the surplus a�er dividend
payments. Let

τD = inf{t ≥ 0 | Xt < 0}
be the time until ruin, then

Vπ(u) = E
[∫ τD

0

e−δtdUt|X0 = u

]
is the expected value of the aggregated discounted dividends paid until ruin, where δ > 0 is
the force of interest. �e objective is then to identify the strategy that maximizes V over all
admissible strategies, that is, to �nd a strategy π∗ such that

(54) Vπ∗ = sup
π∈Π

Vπ(x).
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As pointed out in the introduction, the class of band strategies is known to be optimal in
this case (cf. [63]). A band strategy is de�ned by a partition of the positive half-line R =
B0 ∪Bc ∪B∞ with the following properties:

• If x ∈ B0, there exists ε > 0 such that [x, x+ ε) ⊂ B0.
• Bc is compact.
• B∞ is open in [0,∞).
• If x 6∈ B∞ and there is a sequence (xn) ⊂ B∞ such that xn → x, then x ∈ Bc.
• (sup Bc,∞) ⊂ B∞.

B0 corresponds to all surplus levels for which dUt = 0 (no dividends are being paid), Bc is
the set of surplus levels for which dUt = p dt (all incoming premium is paid as dividends) and
B∞ is the set of surplus levels at which Ut+ − Ut = Xt − sup{b ∈ Bc | Xt > b} is applied
(the smallest possible lump sum is paid with which one leaves the set B∞). As the focus of
this paper is to provide alternatives to numerically identifying the optimal bands, we restrict
ourselves to �nitely many bands, i.e., for given levels a0 = 0 ≤ b0 < a1 < · · · < bm−1, the
band strategy is given by

B0 = [0, b0) ∪
m−1⋃
k=1

[ak, bk), Bc =
m−1⋃
k=1

{bk}, B∞ =
m−2⋃
k=0

(bk, ak+1) ∪ (bm−1,∞).

We refer to this strategy as an m-band strategy (see Figure 1 for an illustration of a sample
path with a 2-band strategy).

Figure 1. A sample path with a 2-band strategy

We conclude this section by making some remarks about notation: for a set A ⊂ Rn,
a function f : A → R, and a limit point x ∈ A, we denote by f(x1, . . . , xj−, . . . , xn)
the limit limy→x f(y) through points y for which yj < xj , given that this limit exists and
similarly for f(x1, . . . , xj+, . . . , xn). �e function f is then continuous at x if and only if
f(x1, . . . , xj−, . . . , xn) = f(x1, . . . , xj+, . . . , xn) for each j = 1, . . . , n, provided all right-
hand and le�-hand limits exist. Finally, in order to avoid cumbersome notation, we denote
the partial derivative in the i-th variable by Dif .

3.3. �e identi�cation of bands in previous literature

As mentioned in the introduction, the explicit identi�cation of optimal bands has proved
challenging even in the classical Cramér-Lundberg risk model. In the following we brie�y
summarize the available approaches in the literature. �e typical approach is to derive the
Hamilton-Jacobi-Bellman (HJB) equation
(55) max{1− V ′(x),L(V )(x)} = 0,
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related to the stochastic control problem (54), where

(56) L(f)(x) = pf ′(x)− (λ+ δ)f(x) + λ

∫ x

0

f(x− y)fY (y) dy, x > 0

is the in�nitesimal generator of the discounted surplus process (see e.g. Azcue and Muler
[22, 23]). Since V is typically not su�ciently regular to satisfy the needs of (55) as a classi-
cal solution, one needs to look for viscosity solutions, and it can be shown that V (x) is the
unique viscosity solution of (55) satisfying a growth condition and a particular initial con-
dition [22]. �e numerical approach to �nd this solution is then an iterative procedure. In
particular, Schmidli [106] proposed an algorithm for �nding the levels of the optimal bands.
�is algorithm was formalized by Berdel [28], who considered the problem for the general
case of phase-type claim distributions (cf. Algorithm 1). Here, Wδ is the scale function (see

Input : Scale function Wδ and in�nitesimal generator L.
Output: Levels B∗ = (b∗0, a

∗
1, . . . , b

∗
M−1) of the best band strategy.

1 begin

2 m := 0;

3 b0 := sup

{
x ≥ 0 | W ′

δ(x) = inf
y≥0

W ′
δ(y)

}
;

4 V0(x) :=

{
Wδ(x)/W ′

δ(b0) x ≤ b0

V0(b0) + x− b0 x > b0

;

5 while L(Vm)(x) > 0 for some x > bm do

6 Gm := {fam+1, a > bm | fam+1(x) = Vm(x), x ≤ a and
L(f)am+1(x) = 0, x > a};

7 am+1 := inf
{
a > bm | inf

x>a
fa′m+1(x) = 1

}
;

8 bm+1 := sup
{
x > am+1 | fam+1′

m+1 (x) = 1
}

;

9 Vm+1(x) :=

{
f
am+1

m+1 (x) x ≤ bm+1

f
am+1

m+1 (bm+1) + x− bm+1 x > bm+1

;

10 m := m+ 1
11 end

12 end

Algorithm 1: Schmidli’s algorithm

e.g. [17, Ch.XI]). When the optimal strategy is in fact a �nite band strategy, Algorithm 1 is
guaranteed to converge. However, depending on the particular distribution of the claims, the
procedure can be computationally complex, as can be seen from Lines 6 to 8. In each iteration
of the algorithm, a family of functions Gm parametrized by the interval (bm,∞) is de�ned
in such a way that for each a > bm, the function fam+1 solves (55) on x > a with boundary
condition fam+1(a) = Vm(a). Apart from some cases where this can be done explicitly, (55) has
in general to be solved numerically. While this might not represent a problem for a couple of
values of a > bm, the di�culty arises when we consider Lines 7 and 8, since they presuppose
a full knowledge of the solutions in the entire interval (bm,∞) in order to compute the nec-
essary extrema. As stated in [28], one can de�ne ām+1 = inf {x > bm | L(Vm)(x) > 0} and
restrict the family to the interval (bm, ām+1). However, this introduces another extremum to
be computed and one still has to consider the trade-o� that arises at each step of the procedure
when choosing a grid �ne enough to discretize this new interval.
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An alternative iterative algorithm for �nding the optimal bands is proposed in Avram
et al. [21], using stochastic sub- and super-solutions of (55) (their approach is formulated
for general spectrally negative Lévy processes and the inclusion of �xed transaction costs
with every dividend payment). Similarly to Algorithm 1, optimal levels are found in a sort
of “upwards” approach �nding higher band levels at each step of the procedure. However,
instead of solving integro-di�erential equations, each step consists of solving a stochastic
control problem expressed through Gerber-Shiu functions. �e advantage of this is that the
problem is then reduced to �nding the extrema of a low-dimensional function at each iteration,
and there is no need for a full set of solutions of (55) as seen in, for example, Lines 7 and 8 of
Algorithm 1. �e Algorithm 2 presented later in this paper sets out from a top-down approach,
and then also leads to a bo�om-up procedure that is formulated via discounted de�cit densities
explicitly (rather than general Gerber-Shiu functions), so that it eventually can be interpreted
as a particular customization and implementation of the algorithm by Avram et al., see the
details below.

3.4. Properties of the value function

In this section we recollect some properties of Vπ, which will form the basis for the imple-
mentation of the numerical algorithms presented later.

For a �xed set of levels a0 = 0 ≤ b0 < a1 < · · · < bm−1 of an m-band strategy π, we
observe the following: for any 0 ≤ k ≤ m− 1 and initial capital u in [ak, ak+1) (here a0 = 0
and am =∞), the amount of dividends paid in a realization of the process will be the same as
in a process with a barrier strategy with initial capital u − ak and barrier bk − ak, up until a
claim makes the original process go below ak. Denoting by Vb the value function of a barrier
strategy with barrier b, space-homogeneity and the Markov property imply that

(57) Vπ(u) = Vbk−ak(u− ak) + E [Vπ(ak −D(u− ak, bk − ak))] , ak ≤ u < ak+1,

where D(u − ak, bk − ak) denotes the de�cit at ruin of a process with initial capital u − ak,
for which a barrier strategy with barrier bk − ak is applied. In many cases, the density of
the de�cit at ruin can be computed by means of Gerber-Shiu functions (see [66, 83]) and the
dividends-penalty identity (see [87, 64]). Assume henceforth that D(u − ak, bk − ak) has a
density, which we denote by fD(·, u − ak, bk − ak). We observe that the variable inside the
expectation in (57) is non-zero only when the de�cit is at most ak. We can therefore rewrite
(57), for any k = 0, . . . ,m− 1, as

(58) Vπ(u) = Vbk−ak(u− ak) +

∫ ak

0

Vπ(ak − y)fD(y, u− ak, bk − ak)dy, ak ≤ u < ak+1.

�is set of equations provides the central formulas for computing the value of Vπ given a �xed
set of levels: For 0 ≤ u < a1, the value of Vπ(u) is equal to Vb0(u), which is given in terms of
the scale function of the process. We can then plug in these values in the integral in Equation
(58) to obtain the value of Vπ(u) for a1 ≤ u < a2 and repeat this procedure in an iterative way
to obtain the value of Vπ(u) for every u. �e problem of evaluating Vπ(u) is therefore reduced
to the computation of the scale function Wδ and the density fD. However, with knowledge of
the scale function, the la�er can be computed by means of the formula

fD(y, u, b) = λ

∫ ∞
0

(
Wδ(u)W ′

δ(b− z)

W ′
δ(b)

−Wδ(u− z)

)
fY (y + z) dz.(59)

see, e.g., [83, Ch.X]. �e se�ing in this last reference is that of general Lévy processes. A more
basic approach is to consider �rst the density fD0(y, u) of the de�cit at ruin with initial capital
u in the absence of a dividend strategy. Let f̂Y (s) denote the Laplace transform of the claim
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size density fY . Following e.g. [17, Ch.XII], we know that fD0(y, u) can be obtained as the
inverse Laplace transform of∫ ∞

0

e−sufD0(y, u) du =
λ(ŵ(y, ρ)− ŵ(y, s))

ps− δ − λ+ λf̂Y (s)
,(60)

where ŵ : [0,∞)2 → R is given by

(61) ŵ(y, s) =

∫ ∞
0

e−sufY (y + u) du.

From the dividends-penalty identity [64] we then have

(62) fD(y, u, b) = fD0(y, u)− Wδ(u)

W ′
δ(b)

D2fD0(y, b).

Note that we requireWδ to be di�erentiable in order to be able to use these formulas. Nonethe-
less, if for some α < 1 and C > 0, we have fY (x) ≤ Cx−1−α for x in some neighbourhood
of the origin, then Wδ ∈ Cq+2(0,∞) whenever fY ∈ Cq(0,∞) (see [82]), where Cq(0,∞)
refers to the set of q-times continuously di�erentiable functions on the real positive line. A
formula similar to (59) shows that the statement is also valid whenever we replaceWδ by fD0 .

Equation (58) also reveals further properties of Vπ when we shi� the focus from the initial
capital u to the band limits: for m ≥ 1, we can identify the set of m-band strategies with the
set

Bm = {x ∈ R2m−1 | 0 ≤ x1 ≤ · · · ≤ x2m−1},
and, for �xed u > 0, we can consider the function V m : Bm → [0,∞) given by x 7→ Vx(u).
We have the following:

Proposition 3.4.1. If fY ∈ Cq(0,∞), q ≥ 2, the function V m is continuously di�erentiable in
the interior of the set

Cm = Bm ∩ {x ∈ R2m−1 | x2j−2 6= u, j = 1, . . . ,m}.

When m = 1, we take {x ∈ R2m−1 | x2m−2 6= u} to be equal to R.

Proof. We proceed by induction onm. Form = 1, C1 = [0,∞) andD1 = [0, u)∪ (u,∞).
For 0 ≤ u < b, we have

V 1(b) =
Wδ(u)

W ′
δ(b)

, V 1′(b) = −Wδ(u)W ′′
δ (b)

W ′
δ(b)

2
,

while for 0 ≤ b < u,

V 1(b) = u− b+ Vb(b) = u− b+
Wδ(b)

W ′
δ(b)

, V 1′(b) = −Wδ(b)W
′′
δ (b)

W ′
δ(b)

2
.

SinceV 1(u−) = V 1(u+) = Wδ(u)/W ′
δ(u) andV 1′(u−) = V 1′(u+) = Wδ(u)W ′′

δ (u)/W ′
δ(u)2,

the claim follows. Now, assume the claim is true for some m ∈ N. We can write Cm+1 as
Cm+1 = A ∪B ∪ C , where

A = {x ∈ Cm+1 | u < x2m−2},
B = {x ∈ Cm+1 | x2m−2 < u ≤ x2m−1},
C = {x ∈ Cm+1 | x2m−1 < u}.

We observe the following: onA, V m+1 = V m◦π, where π : R2m+1 → R2m−1 is the projection
onto the �rst 2m − 1 coordinates. Since π maps the interior of A into the interior of Cm, by
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the induction hypothesis, it follows that V m+1 is continuously di�erentiable in that set. Now,
from (58) we have, for b = (b0, a1, . . . , bm) in B

V (b) =
Wδ(u− am)

W ′
δ(bm − am)

+

∫ am

0

V m
y (b)fD(am − y, bm − am, bm − am)dy,

while for b in C ,

V (b) = u− bm +
Wδ(bm − am)

W ′
δ(bm − am)

+

∫ am

0

V m
y (b)fD(am − y, bm − am, bm − am)dy.

From (60) and (62) we see that under the assumptions of the proposition, fD is twice contin-
uously di�erentiable. Hence, using the induction hypothesis once again, it follows that V is
continuously di�erentiable in the interiors of B and C . Moreover, since

V (b0, a1, . . . , u−) = V (b0, a1, . . . , u+),

D2mV (b0, a1, . . . , u−) = D2mV (b0, a1, . . . , u+),

and

D2m+1V (b0, a1, . . . , u−) = D2m+1V (b0, a1, . . . , u+),

we conclude that V is continuously di�erentiable in the interior of Cm+1, concluding the proof.
�

Remark 3.4.2. By considering instead the set

Dm = Bm ∩ {x ∈ R2m−1 | xj 6= u, j = 1, . . . , 2m− 1},

we can, in a similar manner, conclude that if fY ,Wδ, fD0 ∈ Cq(0,∞), q ≥ 2, then V m is q−1
times di�erentiable in the interior of Dm, since in this case one does not have to consider the
“pasting” at the points where bj = u.

3.5. A gradient-based method

From Proposition 3.4.1 and its proof, we can compute the gradient of the value function
when we �x the initial capital u and we look at it as a function of the levels. Assuming that
Wδ and fD0 are twice di�erentiable and se�ing

Em = Bm ∩ {x ∈ R2m−1 | x2m−2 < u},
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we have for b ∈ Em and u < bm−1,

D2m−1V
m(b) = −Wδ(u− am−1)W ′′

δ (bm−1 − am−1)

W ′
δ(bm−1 − am−1)2

+

∫ am−1

0

D3fD(am−1 − y, bm−1 − am−1, bm−1 − am−1)V m−1
y (b)dy,

(63)

D2m−2V
m(b) =

Wδ(u− am−1)W ′′
δ (bm−1 − am−1)−W ′

δ(u− am−1)W ′
δ(bm−1 − am−1)

W ′
δ(bm−1 − am−1)2

+

∫ am−1

0

D1fD(am−1 − y, bm−1 − am−1, bm−1 − am−1)V m−1
y (b)dy

−
3∑
i=2

∫ am−1

0

DifD(am−1 − y, bm−1 − am−1, bm−1 − am−1)V m−1
y (b)dy

+ fD(0, bm−1 − am−1, bm−1 − am−1)V m−1
y (am−1),

(64)

while for u > bm−1

D2m−1V
m(b) = −Wδ(bm−1 − am−1)W ′′

δ (bm−1 − am−1)

W ′
δ(bm−1 − am−1)2

+

∫ am−1

0

D3fD(am−1 − y, bm−1 − am−1, bm−1 − am−1)V m−1
y (b)dy,

(65)

D2m−2V
m(b) =

Wδ(bm−1 − am−1)W ′′
δ (bm−1 − am−1)

W ′
δ(bm−1 − am−1)2

− 1

+

∫ am−1

0

D1fD(am−1 − y, bm−1 − am−1, bm−1 − am−1)V m−1
y (b)dy

−
3∑
i=2

∫ am−1

0

DifD(am−1 − y, bm−1 − am−1, bm−1 − am−1)V m−1
y (b)dy

+ fD(0, bm−1 − am−1, bm−1 − am−1)V m−1
y (am−1),

(66)

and, in both cases, for 1 ≤ i < 2m− 2,

(67) DiV
m(b) =

∫ am−1

0

fD(am−1 − y, bm−1 − am−1, bm−1 − am−1)DiV
m−1
y (b)dy.

We can solve these equations in an iterative manner to �nd candidate levels for the optimal
band strategy whenever it is �nite: call b∗0 < a∗1 < . . . < b∗M−1 the levels of the optimal
strategy and assume for the moment that b∗0 > 0. Since the �rst level has to occur at the
largest global minimum of W ′

δ , we have b∗0 = sup{x ≥ 0 | W ′
δ(x) = infy≥0W

′
δ(y)}. We

observe that W ′′
δ (b∗0) = 0, so D1V

1(b∗0) = 0, independently of u.
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If the barrier strategy at b∗0 is not optimal and u is such that b∗1 < u < a∗2, b∗0, a∗1 and b∗1
solve (65) to (67) when m = 2, since the global maximum is a�ained at the 2-band strategy
with levels b∗0, a∗1 and b∗1. Hence, since (67) is zero regardless of a1 and b1 when b0 = b∗0, we
see that a∗1 and b∗1 are within the solutions to (65) and (66). Moreover, these equations can
be solved without regards to u, and, if we optimally choose the solution (so that we end up
obtaining a∗1 and b∗1) we will see that b∗0, a∗1 and b∗1 solve (63) to (67) regardless of the value of
u > a∗1.

Continuing in this fashion, if a two-band strategy is not optimal, for m = 3 and i = 2, 3,
we have,

DiV (b) =

∫ a2

0

fD(a2 − y, b2 − a2, b2 − a2)DiV
2
y (b)dy

=

∫ a∗1

0

fD(a2 − y, b2 − a2, b2 − a2)DiV
2
y (b)dy

+

∫ a2

a∗1

fD(a2 − y, b2 − a2, b2 − a2)DiV
2
y (b)dy.

On the interval (0, a∗1), V 2(b) = V 1(b) as functions of the initial capital, so DiV
2(b) = 0.

By the remarks of the previous paragraph, we also have V 2
y (b) = 0 for all y > a∗1, so we see

that (67) is always zero regardless of the value of a2 and b2. Hence, we can proceed again by
solving (65) and (66), choosing an optimal solution and test whether we proceed further with
another band. At the m + 1-th step, the equations that we need to solve can be wri�en in a
simpler form as

0 =
Wδ(bm − am)W ′′

δ (bm − am)

W ′
δ(bm − am)2

−
∫ am

0

D3fD(am − y, bm − am, bm − am)V m
y (b∗)dy,

(68)

1 = fD(0, bm − am, bm − am)V m
am(b) +

∫ am

0

D1fD(am − y, bm − am, bm − am)V m
y (b∗)dy

(69)

where b∗ = (b∗0, a
∗
1, . . . , b

∗
m−1).

If b∗0 = 0, we can discard the equation for D1V
m and work instead on the interior of the

set
E ′m = {x ∈ R2m−2 | b∗0 ≤ x1 ≤ · · · ≤ x2m−3 ≤ min(u, x2m−2)}

by realizing that (63) to (67) for 2 ≤ i < 2m − 2 carry over verbatim to this situation. �e
same argument then shows that we can use the same procedure for obtaining the optimal
levels. �e procedure is described in Algorithm 2.

Algorithm 2 starts by obtaining the �rst level b∗0 of the optimal band strategy. If the barrier
strategy at b∗0 is optimal, the algorithm �nishes. Otherwise, the algorithm enters into its main
loop. A�er updating the number of bands, the loop proceeds to an application of an abstract
solve function in Line 7, which is used to solve simultaneously Equations (65) and (66) (or
equivalently, (68) and (69)) when the �rst 2m−1 variables ofD2mV andD2m+1V are �xed. In
Line 8, the best levels a∗m−1 and b∗m−1 are chosen by selecting the couple that produces the best
value for the value function when the initial capital is set to b∗m−1. Line 9 uses the function
defineV for creating the value function of the strategy with the levels (b∗0, a

∗
1, . . . , b

∗
m−1)

found so far, �nalizing the loop.
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Input : Scale function Wδ and density of de�cit fD.
Output: Levels B∗ = (b∗0, a

∗
1, . . . , b

∗
M−1) of the best band strategy.

1 begin

2 m := 0;

3 b0 := sup

{
x ≥ 0 | W ′

δ(x) = inf
y≥0

W ′
δ(y)

}
;

4 V 0(x) :=

{
Wδ(x)/W ′

δ(b0) x ≤ b0

V 0(b0) + x− b0 x > b0

;

5 while L(V m)x > 0 for some x > bm do

6 m := m+ 1;
7 B∗ =solve(D2mV (b∗0, a

∗
1, . . . , b

∗
m−1, am, bm) = 0,

D2m+1V (b∗0, a
∗
1, . . . , b

∗
m−1, am, bm) = 0);

8 a∗m, b
∗
m := select(B∗);

9 V m :=defineV(b∗0, a∗1, . . . , b∗m);
10 end

11 end

Algorithm 2: Gradient-based algorithm for optimal dividends

As explained before, Algorithm 2 can be considered as a particular implementation of
the algorithm proposed by Avram et al. [21] but obtained a�er trying to solve the gradient
equations in a sort of ”backward” way. It is similar to Algorithm 1 and Algorithm 4 in the
sense that it is not possible to determine beforehand whether a �nite band strategy is optimal
or not. �e advantage is, however, that one avoids having to fully specify the solutions to the
HJB equation as in Algorithm 1 while also avoiding the randomness involved in Algorithm 4.

Remark 3.5.1. Note that, in principle, one could derive explicit expressions that the optimal
band levels should satisfy by means of equations (68) and (69). However, even in the simple
case of the claims following an Erlang(2) distribution, one already arrives at rather compli-
cated expressions which involve combinations and products of exponentials and polynomials,
and the resulting levels cannot be given in terms of elementary functions. However, these
equations can still be solved through numerical methods, which is the basis of the gradient-
based technique that is going to be introduced in the sequel.

3.6. Evolutionary strategies

Evolutionary strategies belong to a class of nature-inspired optimization algorithms which
intend to mimic biological evolution by means of procedures roughly categorized as mutation,
recombination and selection procedures which incorporate tasks that resemble the way evo-
lution is carried out in nature. Starting with a set of candidate solutions (called the parental
population), one produces a new set of candidate solutions by means of recombination and,
through mutation, randomly alters it to form a second set of candidate solutions (called the o�-
spring population). One then uses selection to �lter out the best candidate solutions from these
two populations and iterates the process, replacing the previous parental population with the
new population thus obtained. In general, recombination, mutation and selection tasks are
problem-dependent and adjusted according to a diverse set of criteria. ES are classically re-
ferred by the way the o�spring population is generated, and the notation for expressing it is
the (µES/ρES+, λES)-notation (the subscripts ES are used here to di�erentiate these symbols
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from the previously de�ned µ and λ in earlier sections). In this notation, µES refers to the
size of the parental population at the beginning and end of each iteration, ρES refers to the
amount of parents involved in the creation of one single o�spring, randomly chosen with-
out replacement, and λES refers to the number of o�springs created in each iteration. �e
symbols “+” and “,” refer to the way selection is carried out: the �rst one indicates that the
µES members of the new parental population are going to be extracted from a set obtained by
merging the parental population together with the o�spring population, while the symbol “,”
indicates that the parental population is discarded a�er the creation of the λES o�springs (so
that in a (µES/ρES, λES) strategy we necessarily require λES ≥ µES).

�e pseudo-code for the algorithm from Beyer [31] is presented below in Algorithm 3,
formulated in terms of a maximization problem. As suggested before, the basic objects handled
by ES are populations, which in this strategy are modeled by tuples of the form (x, s, f(x)).
In this representation, x is simply a candidate solution belonging to the search space X . �e
element s is used as a set of parameters aiding in the mutation procedure of the members of
the population and leading the self-adaptive properties of the strategy. �e last element is the
value of the function to optimize at x, which needs to be stored in order to select elements in
each iteration.

Input : Function f to maximize in unconstrained object space E.
Output: Solution to problem x∗ = argmax

x∈E
f(x)

1 begin

2 g := 0;
3 initialize(P(0) := {(x0,k, s0,k, f(x0,k)) | k = 1, . . . , µES});
4 repeat

5 for l := 1 to λES do

6 Sl :=sample(P(g), ρES);
7 s̃l :=s recombination(Sl);
8 x̃l :=x recombination(Sl);
9 s̃′l :=s mutation(s̃l);

10 x̃′l :=x mutation(x̃l,s̃′l);
11 F̃l := F (x̃′l);
12 end

13 O(g) := {(x̃′l, s̃′l, F̃l) | l = 1, . . . , λES};
14 P(g+1) :=Selection(P(g),O(g),µES);
15 g := g + 1
16 until terminal condition;
17 end

Algorithm 3: �e basic ES-algorithm

A�er initialization of the algorithm, which is usually carried out randomly, the algorithm
enters into the main loop of the strategy for generating subsequent populations. �is loop can
roughly be described as an alternation of creating o�springs out of the parental population
and selecting the replacing parental population out of these o�springs.

�e process for creating o�springs is carried out from Line 5 to 13. Lines 6 to 8 carry out
the recombination procedure by �rst extracting a subsample from P(g) of size ρES without
replacement. In real-valued spaces, a common recombination operator is the arithmetic mean,
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so, for example, s recombination(Sl) = ρ−1
ES

∑
S s
l
sgk where S s

l is the set of sgk that
belong to some tuple in Sl. �e mutation operator is then applied in lines 9 to 10 by �rst
mutating the strategy parameters and then the candidate solutions a�erwards. While there
is no established methodology for choosing the mutation operator, in [30], Beyer suggests
that any operator should satisfy three requirements for a successful implementation of ES:
scalability (the ability to tune the strength of the mutation), reachability (the ability to reach
any other state (x, s) within a �nite number of steps) and unbiasedness. Scalability is achieved
by allowing the mutation of the object states, x, to be dependent on s. For N -dimensional
real-valued search spaces, the parameter s is generally used for controlling the variance of
the mutation and in this regard, theoretical and practical considerations lead to a common
mutation operator given by

(70) s mutation(sl)
j = sjl exp (τNj) , j = 1, . . . , N,

where τ is the learning-rate parameter and Nj is a standard normally distributed random
variable. Given the current parental state, the unbiasedness requirement simply means that
the mutation procedure should not introduce any bias, and following the so-called maximum
entropy principle, this requirement immediately leads to mutation operators given by

(71) x mutation(xl, s̃l)
j = xjl + s̃jlZj, j = 1, . . . , N

with Zj a standard normal random variable independent from the variables used to mutate
s. However, Yao et al. suggest in [116] and [84] that, more generally, allowing Zj to have
other kinds of stable distributions improves convergence speed and deals be�er with prob-
lems where several local extrema exist, dealing at once as well with a be�er handling of the
reachability requirement.

�e creation of the o�spring is �nalized in Line 11 by evaluating the objective function in
the mutated objects x and the o�spring population is gathered in Line 13. �e last step of the
main loop is achieved in Line 14, where the desired selection (plus or comma) takes place and
the new parental population is created.

Figure 2 illustrates one iteration of a (10/5+5) evolutionary strategy in a two-dimensional
real space for the function f(x, y) =

√
max{10− (x− 10)2/2− (y − 10)2/2, 0}. Mutations

for the parameters occur as in equations (70) and (71) with Nj independent standard normal
variables. Figure 2a represents the state of the population at the beginning of the iteration,
where, in the notation of Algorithm 3, the xgk are shown as the center of the ellipses, the sgk
as their axes and, using a blue-black-red scale, each point and ellipse is colored according
to the value of f at xgk. Figure 2b shows the �rst step in the creation of a single o�spring:
a�er randomly selecting 5 individuals from the original population (marked by the 5 darkest
ellipses), the olive-colored ellipse is created a�er applying the recombination operator. In this
case, recombination is given by the arithmetic mean, so that the olive point and the axes of the
olive ellipse are the arithmetic means of the other 5 points and the ellipses’ axes respectively.
A�er recombination, mutation takes places, which is represented in Figure 2c. Here, the
axes of the olive ellipse are mutated according to equation (70), generating the green ellipse.
Sampling from the normal distribution centered in the olive point and variance given by the
green ellipse, the green dot is created. Conclusion of the o�spring individual’s creation is
depicted in Figure 2d, where the olive point and ellipse are deleted and the green ellipse
is “associated” with the green point. A�er all o�spring individuals have been created and
their values according to f have been computed, the parent and o�spring population are
merged, which is shown in Figure 2e. Finally, the plus selection operator is used to discard
the individuals with the lowest values of f , which �nishes the iteration.
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(a) Initial Population (b) Recombination

(c) Mutation 1 (d) Mutation 2

(e) Evaluation (f) Selection

Figure 2. Illustration of a (10/5 + 5) ES.

�e presentation of the evolutionary strategy given so far raises two questions. First, in
the case of real search spaces with the mutations de�ned in (71), Algorithm 3 does not con-
sider possible constraints imposed on the search space. A solution to this is the incorporation
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of restriction-handling techniques, like the inclusion of penalty functions, reparation of o�-
spring, multiobjective optimization, etc., and the algorithm has to be adapted accordingly to
the technique used (see [81] for an overview of several constraint-handling techniques in the
context of ES).

�e second question concerns the convergence of the algorithm. While theoretical results
exist ensuring the almost sure convergence of the iterations (see, e.g., [102]), the assumptions
used in the statements of such results are usually quite restrictive or require a deep knowledge
of the explicit form of the objective function, which leads to di�culties at the moment of
the implementation. Despite this, evolutionary algorithms have been tested in a wide set of
scenarios, proving to be e�ective tools for solving optimization problems.

3.7. ES for the optimal dividend bands problem

It is now of interest to see how competitive evolutionary strategies for the numerical de-
termination of optimal band levels are in the present context. Following the considerations
from the previous section, in Section 3.8 we will use a (µES/ρES + λES) evolutionary algo-
rithm to �nd the optimal band strategy for three distinct claim distributions: mixtures of Er-
lang distributions, a shi�ed-Pareto and a mixture of shi�ed-Pareto and Erlang distributions.
As discussed earlier, only very few instances of explicit non-barrier optimal band strategies
have been identi�ed. In what has become a classical example by now, Azcue and Muler [22]
identi�ed a 2-band strategy for a case with Erlang(2,1) claims. Adding to this, in [28] Berdel
managed to expand this work by developing an algorithm for identifying non-barrier band
strategies in the case of a mixture of Erlang distributions and some more general phase-type
distributions. Our selection of mixtures of Erlang distributions for testing the ES was there-
fore made to compare its e�cacy against an established baseline. Further, as can be seen from
Section 3.8.1, the lack of explicit formulas for the scale function in the case of Pareto claims
imposes the need of numerical approximations to the evaluation of Vπ. As shown in Loe�en
[89], for any choice of parameters, a barrier strategy is the optimal one for a Cramér-Lundberg
model with shi�ed-Pareto claims. �e second choice of claim distribution for the present work
was then made to test the ES in a numerically-driven situation and test its respective e�cacy.
Finally, the mixture of Erlang and shi�ed-Pareto claim distribution was used as a means of
testing the algorithm in uncharted territory.

Algorithm 4 displays the ES-algorithm adapted for the dividend-bands optimization, where
� stands for the element-wise multiplication operator, and 1̄k and 0̄k are the k-dimensional
vectors of ones and zeros, respectively.

Algorithm 4 is a (µES/µES + λES)-ES based on the basic strategy described in [31] for a
search in a real unconstrained object space. We chose to use µES = ρES since this facilitates
implementation and, as seen in [31] a�er the study of optimization problems in real spaces,
this provides the best performance.

Initialization is carried out in Lines 4 to 6, where the function initialize stands for
random initialization of the candidate levels. Recombination of the parental population is
done in Lines 8 and 9 using the arithmetic mean. In Lines 10, 12 and 13 the call of the function
random normal(k) represents the creation of an independent vector of dimension k of
standard normal random variables. Lines 14 to 17 show the implementation of the mutation
operator, where each parent individual produces one o�spring individual using log-normal
multiplicative mutations for the exogenous parameters and normal mutations for the object
parameters. �e coe�cients 1/

√
4m− 2 andR · 1̄2m−1/

√
2
√

4m− 2 are learning rates which
depend on the dimension of the search space and are based on both theoretical and empirical
investigations. A�er the o�spring has been created, repairing is carried out to ensure that
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Input : Initial capital u0, upper bound on number of bands M , number of
generations G and variance bound ε and value function V·.

Output: Levels B∗ = (b∗0, a
∗
1, . . . , b

∗
M−1) of the best M -band strategy.

1 begin

2 for m := 1 to M do

3 g := 0;
4 initialize({B0,k | k = 1, . . . , µES});
5 s0,k := 1.0, k = 1, . . . , µES;
6 P(0) := {(B0,k, s0,k, VB0,k

(u0)) | k = 1, . . . , µES};
7 repeat

8 s = 1
µES

∑µES

i=1 sg,i;
9 B = 1

µES

∑µES

i=1 Bg,i;
10 R := random normal(1);
11 for l := 1 to λES do

12 sR := random normal(2m− 1);
13 BR := random normal(2m− 1);
14 s̃′l := s� exp

(
sR/
√

4m− 2 +R · 1̄2m−1/
√

2
√

4m− 2
)

;

15 B̃′l := max(s̃′l �BR +B, 02m−1);
16 s̃′′l :=sort(s̃′l,order(B̃

′
l));

17 B̃′′l :=sort(B̃′l);
18 Ṽl := VB̃′′l

(u0);
19 end

20 O(g) := {(B̃′′l , s̃′′l , Ṽl) | l = 1, . . . , λES};
21 P(g+1) :=selection(P(g),O(g),µES);
22 g := g + 1
23 until g = G or max(sg,0) < ε;
24 end

25 end

Algorithm 4: ES-algorithm for optimal dividends

the levels satisfy the condition 0 ≤ b0 < a1 < · · · < bm−1. Line 16 sorts the s parameters
according to the increasing order of B, while Line 17 sorts the object parameters in increas-
ing order. Finally, the function in Line 21 performs plus selection and outputs the population
P(g+1) := {(Bg+1,k, sg+1,k, VBg+1,k

(u0)) | k = 1, . . . , µES} ordered in decreasing order ac-
cording to the value of V , so when the terminal condition in Line 23 is evaluated, sg,0 holds
the variances of the levels with the best �t.

Notice that the algorithm requires a value for the initial capital. While in principle this is
a technical condition for the evaluation of Vπ, caution should be taken: in case the optimal
band strategy π∗ is �nite with levels b∗0 < a∗1 < · · · < b∗m−1, for b∗i ≤ u ≤ ai+1, any other
band strategy π with �rst i+ 1 bands given by b∗0 ≤ a∗1 < · · · < b∗i and u0 < ai+1 will satisfy
Vπ∗(u0) = Vπ(u0). �erefore, unless we can ensure b∗m−1 ≤ u0, any such π will be the output
of any optimization algorithm for which the initial capital is �xed. Following Lemma 3.3.1 in
[105], the inequality b∗m−1 ≤ u0 can be guaranteed by taking u0 = pλ/(δ(λ + δ)), which is
the value that we use for all the iterations of the algorithm.
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At this point, it is worthwhile to mention a key di�erence between the search method em-
ployed by this algorithm and the iterative algorithm discussed in, for example, [22] or [23]:
given that the dimension of the search space has to be kept constant during the procedure,
one has to �x in advance the number of bands for which the ES will try to identify the optimal
levels. By observing that one can “collapse” levels in a band strategy, the n-bands strategies
can be thought of as m-band strategies for n ≤ m and hence the algorithm would identify at
once the best levels for all n-band strategies for n ≤ m. If the optimal strategy is �nite, one
could then set m large enough and use the ES to �nd the optimal levels. However, this ap-
proach requires the evaluation of Vπ for several bands and as explained in Section 3.8.1 below,
this is not e�cient. Hence, a more e�cient approach is instead to consecutively compute the
the best 1-band, 2-band, 3-band, etc. strategies until collapsing of the levels is observed and
then verify, by means of the HJB equation, that the proposed solution is in fact the optimal
band strategy. Finally, e�ciency is improved by skipping the search for the optimal 1-band
strategy and set b0 := sup {x ≥ 0 | W ′

δ(x) = infy≥0W
′
δ(y)} in all searches.

3.8. Numerical results

We evaluate the performance of the procedures shown in the two previous sections by
�nding optimal band strategies for three study cases: claims distributed as a mixture of Erlang
distributions, the case for a pure (shi�ed) Pareto distribution and a mixture between Erlang
and Pareto distributions. �e mixture of Erlang distributions is chosen because there are
already explicit results available (see [22, 28]) so that we can benchmark our algorithms.
Given that no explicit expressions exist for the scale function when the claims follow a Pareto
distribution, the second case was chosen to test the algorithms in a purely numerical situation
(and in the case of a Pareto distribution, it is known that the optimal strategy is a barrier
strategy, see [89]). Finally, the mixture of Erlang and Pareto distributions was carried out to
study the problem in a new context.

3.8.1. Objective function evaluation. In the case where fY comes from a mixture of
Erlang distributions, the Laplace transform Ŵδ of the scale function is given in terms of a
rational function, so explicit expressions in terms of the roots of the Lundberg equation can
be found for Wδ and fD. �ese expressions are then used for computing the value of Vπ.

In the other two cases, numerical inversion of Ŵδ and (60) have to be carried out to �nd
the values of fD. Since the evaluation of this function is needed at several points, we opted
for using a piece-wise linear approximation for Wδ , W ′

δ , fD0 and its partial derivatives. �e
approximation was carried out in the following way: from the remarks of Section 3.7, it can
easily be seen that in the case where the optimal band strategy is �nite, it is enough to restrict
the domain of fD and Wδ to [0, pλ/(δ(λ + δ))]3 and [0, pλ/(δ(λ + δ))] respectively in order
to �nd the optimal band levels. Hence, the approximation was done by evaluating 10,000
equidistant points in the interval [0, pλ/(δ(λ + δ))] (including boundaries) and linear inter-
polation in between. �e functions fD0 and fD were then computed using Equations (60) and
(62).

�e integrals appearing in (58), (65), (66) and (67) were mainly evaluated through numer-
ical methods by using the numpy, scipy and mpmath libraries for Python 3. Exceptions
to this were the Erlang distributions appearing in example (a) in Case I, where the equations
were simple enough to be computed explicitly, and examples (b) and (c) of the same case for
the evaluation of the ES. �e reason for doing this only for the ES instead of for both methods
was in part due to the poor convergence rate of the ES when evaluating the integrals numer-
ically, and the computational e�ort that was necessary to obtain explicit forms for equations
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(65), (66) and (67), necessary for solving the gradient (see Section 3.8.2 for further explanation
into this issue).

Equations (68) and (69) were solved by means of the MINPACK’s hybrd and hybrj algo-
rithms implemented in the scipy library through the fsolve function. Although there
are no explicit results supporting the fact, the examples found in the literature indicate that
the values for the di�erent band values b1, b2, . . . are close to local minima of W ′

δ found a�er
the optimal b0. �is fact helped providing starting points for both algorithms.

Finally, we would like to comment on our selection of µES and λES. While the choice of
these parameters was mainly heuristic, the following two points served as a rule of thumb for
our choices:

• In our experiments, a small or a very large value of µES provided slower convergence,
since in the �rst case the mutation step was based on very few cases, entailing li�le
diversity in the o�spring; while in the second case the outcome of the recombination
step was negatively a�ected by the worst outcomes. For most of our trials, we as-
signed small multiples of 10 to µES and just kept the �rst one that produced suitable
results.
• Most of the steps in the algorithm can be implemented in a vectorized way, which

justi�es our selection of the numpy and scipy libraries for developing the tasks.
However, since the band levels needed to be individually ordered in the o�spring to
be able to evaluate the value function, one cannot avoid an implicit for-loop in Lines
16 and 17 of Algorithm 4, which impedes vectorization of this step and signi�cantly
increases the complexity. Since, on the other hand, a large value of λES improves
diversity in each generation and decreases the possibility of reaching local extrema,
one faces a trade-o� in terms of performance when choosing its value. In our exper-
iments, we took λES to be of an order similar to µES, which produced satisfactory
results.

We now apply both numerical procedures introduced in this paper to the concrete examples.
Below, the reporting times mean the clock time used to produce the results and do not include
the time used for veri�cation of the solution in an interval through the HJB equation, which
is the same for both procedures.

3.8.2. Case I: Erlang mixture claims. �e following three examples are considered (for
which we know the explicit result already from [22] and [28] for the �rst two):

(a) An Erlang(2, 1) distribution with parameters λ = 10, δ = 0.1 and η = 0.07.
(b) A mixture of the distributions Erlang(2, 10), Erlang(3, 1) and Erlang(4, 0.1) with

weights 0.025, 0.225 and 0.75 respectively, and parameters λ = 1, δ = 0.1 and η =
0.405.

(c) A mixture of the distributions Erlang(2, 10), Erlang(3, 1.06775), Erlang(4, 0.2325)
and Erlang(5, 0.05) with weights 0.005, 0.045, 0.225 and 0.725 respectively, and pa-
rameters λ = 1, δ = 0.1 and η = 0.4.

For the �rst two distributions, a (30/30 + 60)-ES was used in both cases, with bound on the
variance equal to 0.01. For reasons that will be explained later, a combination of two ES’s (a
(30/30 + 60)-ES and a (1/1 + 1)-ES) was used for the third distribution, with same bound in
the variance. �e number of iterations vary from distribution to distribution.

For the Erlang(2,1) distribution, Table 1 shows that we indeed �nd the optimal two-band
strategy established in [22].

One can observe that the gradient-based approach is very fast, while the ES algorithm
takes considerably longer time, but also arrives at the correct solution.
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Table 2 shows the results for the �rst mixture of distributions, where a 3-band strategy is
optimal.

Time Iterations b0 a1 b1

Evolutionary Strategy ∼ 1000s 1000 0 1.8064 10.2158
Gradient-Based < 1s – 0 1.8030 10.2161

Table 1. Results for the Erlang(2, 1) distribution.

Time Iterations b0 a1 b1 a2 b2

Evolutionary Strategy ∼ 1h 5000 0.2617 0.4668 3.5249 25.7390 34.7857
Gradient ∼ 1h – 0.2615 1.5230 3.5246 25.5763 34.7696

Table 2. Results for the �rst mixture of Erlang distributions.

Several remarks for this example are in order. First, there is a clear discrepancy between
the a1-values obtained by the two methods. Comparing the value functions of both strategies
shows that the strategy found by the ES provides higher values. However, the di�erence
between the value functions is of the order of 10−4 while the norm of the gradient at that
point is of the order 10−5 and the iterations do not reduce this value signi�cantly, which
shows why the gradient method has an early stop. Note that for this example, Berdel [28]
already studied the optimal dividend strategy, and her results are very similar to the ones in
Table 2, with only the values of a1 and a2 di�ering. �e ES parameters above provide a larger
value function, but again the di�erence is only of order 10−4. �e explanation is that the step
size in [28] for solving the inf and sup in Lines 7 and 8 in Algorithm 1 was set to be 10−4,
whereas a smaller step size would have been needed to arrive at the above result.

As stated before, for the evolutionary strategy, the integrals in equations (58), (65), (66)
and (67) were not evaluated numerically but instead were computed exactly, by means of
symbolical calculus in Mathematica1. Now, for k = 2, and u ≥ b2, (58) can be more explicitly

1�e reason for using Mathematica for this situation was the easiness with which symbolic expressions can
be handled in the Wolfram Language. While existing libraries in Python such as SymPy can perform similar
tasks, the performance of Mathematica in e�ecting this particular set of calculations outweighed the potential
advantage of using the same programming language throughout.
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wri�en as

Vπ(u) = u− b2 +
Wδ(h2)

W ′
δ(h2)

+

∫ b0

0

fD(a2 − y, h2, h2)
Wδ(y)

W ′
δ(b0)

dy

+

∫ a1

b0

fD(a2 − y, h2, h2)

(
y − b0 +

Wδ(b0)

W ′
δ(b0)

)
dy

+

∫ b1

a1

fD(a2 − y, h2, h2)
Wδ(y − a1)

W ′
δ(h1)

dy

+

∫ b1

a1

fD(a2 − y, h2, h2)

∫ b0

0

fD(a1 − z, y − a1, h1)
Wδ(z)

W ′
δ(b0)

dz dy

+

∫ b1

a1

fD(a2 − y, h2, h2)

∫ b0

0

fD(a1 − z, y − a1, h1)

(
y − b0 +

Wδ(b0)

W ′
δ(b0)

)
dz dy

+

∫ a2

b1

fD(a2 − y, h2, h2) (y − b1 + Vπ1(b1)) dy

where hi = bi−ai and Vπ1 is the 2-band strategy obtained a�er deleting the last band from Vπ.
For mixtures of Erlang distributions, the scale function can be wri�en as a linear combination
of complex exponential functions with as many terms as roots of the Lundberg equation,
assuming all of them are di�erent. For the present case, there are 10 di�erent roots. By means
of formula (59), it follows that fD(y, u, b) can be wri�en as a sum of approximately 90 di�erent
terms involving y with coe�cients dependent on u and b. Following this line of thought, the
single integrals from the paragraph above have, in rough terms, 900 terms, while the �rst
double integral has around 810,000 (in theory, further reductions that decrease these numbers
considerably could in principle be possible, but the amount of terms implies that the human or
computational e�ort for carrying out such operations is beyond reason). �e computational
e�ort for explicitly computing the integrals above was of around 1 hour, which implies that
the total time for the ES was of around 2 hours, which doubled the computational time of the
gradient method, but provided a slightly more accurate result. Although this procedure could
also be carried out to test the computational time of the gradient method (which by virtue of
the other cases would be expected to be smaller), we observe that the computational time in
for obtaining explicit expressions for (65) and (66) would be at least doubled, matching the
current time of the ES.

Finally, using the intuition that the number of bands in the optimal strategy is related to
the number of modes of the claim distribution, we were interested to establish a case where
a 4-band strategy is optimal, and the second mixture of Erlang distributions indeed leads to
such an optimal 4-band strategy. �e resulting optimal bands are given in Table 3.

Time Iterations b0 a1 b1 a2 b2 a3 b3

∼ 3h 6000 0.2562, 1.0543 3.1988 10.6647 19.5499 127.9288 171.6044

Table 3. Results for the second mixture of Erlang distributions.

�ese values were computed using only the ES technique. As before, the procedure was
carried out in two steps, �rst using a (30/30 + 60)-ES for computing the values of the �rst
three bands and consecutively using these values to reduce the problem to a two-dimensional
optimization exercise, where a (1/1 + 1)-ES was used for computing the �nal two values.
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�e reported time is for the combination of both procedures. �e reason for proceeding in a
two-step fashion was due to the observation that, as shown by these examples, the optimal
values of of the bi’s are usually located in the vicinity of the local minima of W ′

δ . �e three
smallest local minima are found in the interval (0, 20), which does not present any numeri-
cal complication. However, the last one is found at 172.7545, which due to the nature of the
scale function, produces exponentials with very large exponents at the moment of evaluating
the value function, creating considerable numerical instabilities. To solve this issue, the value
function and evolutionary strategy were re-implemented using arbitrary-precision �oating-
point-arithmetic, which decreased the speed at the moment of evaluating the value function.
Since the (1/1 + 1)-ES is the strategy that requires the least evaluations of the objective func-
tion, it was chosen for obtaining the �nal values of a3 and b3. Figure 3 illustrates that this
4-band strategy is indeed the optimal strategy. Concretely, Figures 3a,3b and 3c show that
none of the �rst three strategies (with 1, 2 or 3 bands) is optimal, as the HJB equation a�ains
positive values. Figure 3d shows that this does not happen for the 4-band strategy and, more-
over, Figure 3e reveals that whenever the derivative exists, it is at least 1, so the solution is
optimal.

3.8.3. Case II: Pure Pareto claims. Following [89], the optimal strategy will be a barrier
strategy when claims have a shi�ed Pareto distribution with density function

fY (y) = αx−1
0 (1 + x−1

0 y)−α−1, y > 0,

and Laplace transform

f̂Y (s) = αxα0 s
αesx0Γ(−α, sx0), s > 0,

with Γ the upper incomplete Gamma function and α, x0 > 0. For the case at hand, we con-
sidered x0 = 1 and α = 1.5, so that the claims have �nite expectation and in�nite variance.
Moreover, the parameters of the Cramér-Lundberg process were taken to be λ = 10, δ = 0.1
and η = 0.1. �e derivatives of the scale function were computed through their Laplace
transforms and all of these were inverted using the de Hoog, Knight and Stones algorithm
implemented in the library mpmath. �e results are given in Table 4.

Time Iterations b0

Evolutionary Strategy ∼ 1000s 100 2.71036
Gradient-Based < 1s - 2.71036

Table 4. Results for the Pareto distribution.

Indeed, one arrives at an optimal barrier strategy, where for the evolutionary algorithm
we only used 100 iterations to arrive at a running time that is comparable to the ones of the
Erlang case, and the result is already well-aligned with the one of the gradient-based method.

3.8.4. Case III: Erlang and Pareto mixture claims. Finally, let us consider a mixture of
an Erlang(2, 1) distribution and a shi�ed Pareto distribution (α = 1.5, x0 = 1) with weights
0.8 and 0.2 respectively. �e parameters of the Pareto distribution were chosen to match the
mean of the Erlang component, while the weights were chosen to avoid a monotonicity of
W ′
δ . �e other parameters are again λ = 1, δ = 0.1 and η = 0.1. A (150/150 + 100)-ES was

used and a 2-band strategy was found to be optimal. �e results are shown in Table 5.
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(a) HJB equation for the 1-band strategy (b) HJB equation for the 2-band strategy

(c) HJB equation for the 3-band strategy (d) HJB equation for the 4-band strategy

(e) Derivative of the value function

Figure 3. Plots of the l.h.s. of the HJB equation for the strategy with 1, 2, 3,
and 4 bands based on the ai’s and bi’s from Table 3 as well as the derivative of
the value function in the points where it exists.

Time Iterations b0 a1 b1

Evolutionary Strategy ∼ 8h 1000 0 0.1524 3.5115
Gradient-Based ∼ 1h - 0 0.0053 3.8877

Table 5. Results for a mixture of an Erlang and a Pareto distribution.
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In this case, the discrepancy between the results is more signi�cant than in the other
cases, with the gradient method providing a be�er solution. Due to the time it took for each
evaluation, the ES was stopped a�er 1000 iterations, which meant that convergence was not
fully achieved. �e results from the gradient method also help to explain the poor performance
of the ES: observe that the value of a1 is rather close to zero, with an order of magnitude of
10−3. At the initialization of the algorithm, there is no knowledge of what the �nal order of
magnitude will be, and during this experiment the initial values for the exogenous parameters
were set to be 1, so, due to the projection into the zero for negative values, it takes many
evaluations before the desired order of magnitude is achieved. While experiments with the
other cases showed that the performance of the ES in this case could have probably been
improved by, for example, reducing the values of µES and λES, we preferred to not investigate
further into this, since the evaluation time was high and the gradient method had already
provided satisfactory results.

3.9. Conclusions

In this paper we added two numerical alternatives to identify optimal dividend bands in
the classical optimal dividend problem of risk theory. We illustrate that both of them are
e�cient, and their scope and applicability goes beyond the one of the previously discussed
methods in the literature. �e gradient-based method can be particularly e�cient. �e second
algorithm based on evolutionary strategies is satisfactory as well, and whereas in terms of
computation times it can not compete with the gradient-based method for the complexity of
this concrete problem, its range of applicability is even wider. In fact, ES algorithms can be
an interesting competitor whenever an objective function can be e�ciently evaluated, and it
is known to work particularly well for higher-dimensional optimization problems, in which
case the gradient alternative can be hard to explicitly compute or implement. We rederived
optimal bands for some known cases, established new ones and also derived results for cases
that were beyond the scope of previously available methods.

�e focus of this paper was on optimal dividend strategies in the Cramér-Lundberg model.
However, since the equations used to derive the necessary functions for these two algorithms
were obtained by means of Gerber-Shiu functions, one can in principle easily extend the range
of applications to the case where a di�usion is added to the surplus process or even to the
case where the surplus process is modelled by a generally spectrally-negative Lévy process
satisfying the safety loading condition. Since evolutionary algorithms can be applied in rather
general se�ings, it will also be interesting to see in future research other applications of this
method in risk theory, particularly also in optimization problems with constraints, which may
be handled with an introduction of a penalty term in the objective function (see e.g. [81]).





CHAPTER 4

Dividend corridors and a ruin constraint

�is chapter is based on the following article:

H. Albrecher, B. Garcia Flores and C. Hipp. Dividend corridors and a ruin constraint. Preprint
submi�ed for publication.

Abstract. We propose a new class of dividend payment strategies for which
one can easily control an in�nite-time-horizon ruin probability constraint
for an insurance company. When the risk process evolves as a spectrally
negative Lévy process, we investigate analytical properties of these strate-
gies and propose two numerical methods for �nding explicit expressions for
the optimal parameters. Numerical experiments show that the performance
of these strategies is outstanding and, in some cases, even comparable to
the overall-unconstrained optimal dividend strategy to maximize expected
aggregate discounted dividend payments, despite the ruin constraint.

4.1. Introduction

Consider an insurance company whose surplus process evolves according to a spectrally-
negative Lévy process. We assume that this process satis�es the safety loading condition,
re�ecting the idea that, in expectation, the company charges more premiums than the amount
of claims to be paid. Under this assumption, however, the process also possesses the unrealistic
property that, with probability one, it will diverge to in�nity. One way to avoid this issue is to
consider dividend payments to shareholders. Since the introduction of this idea in the seminal
work of [54], there have been a lot of research activities on establishing optimal strategies for
distributing dividends under various objective functions and constraints. For instance, it was
established that for the maximization of the expected sum of discounted dividend payments
until ruin a band strategy is o�en optimal (see e.g., [63], [89], [22] and [21] as well as [18]
and [10] for surveys).

While band strategies maximize expected aggregate dividend payments for a rather gen-
eral set of assumptions, they also lead to the undesirable property that, with probability one,
the surplus process will eventually become negative, i.e., the company will get ruined. Hence,
while the introduction of dividend payments makes the model more realistic, the optimal so-
lution is typically unacceptable in practice. In response to this, a growing body of literature
examined the trade-o� between pro�tability and safety (avoiding or delaying ruin). [111]
and [90] examined the dividend problem with a penalty for early ruin, see also [86]. For a
discrete-time model, [73] was the �rst to approach the optimal dividend problem under a ruin
constraint, which turns out challenging in view of the resulting time-inconsistency of the sto-
chastic control problem. [67] studied the problem of optimizing dividend payments in �nite
time with a constraint on the probability of ruin for the case of the di�usion, providing a solu-
tion in terms of a complicated set of di�erential equations. Similarly, [72] provided a solution
to the case where the constraint is a bound on the Laplace transform of the time of ruin, under

53
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the assumption that the density of the Lévy measure is completely monotone. Recently, [109]
used a game-theoretic approach to reformulate the idea of optimality and provided a solution
to the case of the di�usion.

Rather than directly addressing the control problem of maximizing expected discounted
dividend payments under a ruin constraint whose general solution seems out of reach, [74, 76]
started to study particular candidate strategies with an intuitive structure that allow a balanc-
ing of pro�tability and safety with a bo�om-up approach, see also [75]. �e contribution of
the present paper is a considerable extension and deepening of the la�er approach. We de�ne
a sort of corridor dividend strategies for which, using scale functions and �uctuation theory,
the ruin probability can be easily controlled and at the same time the expected dividend pay-
ments can be maximized locally. While we do not prove optimality of such strategies for the
general dividend problem under a ruin constraint, the numerical illustrations at the end of the
manuscript show that this kind of strategies perform exceptionally well, sometimes even lead-
ing to comparable e�ciency to the best overall un-constrained (band) strategy, but respecting
the pre-given ruin constraint. In order to make the numerical optimization of the involved
parameters work, we implement and adapt two numerical schemes to the present problem: a
recursive approach inspired by Newtonian optimization techniques and an evolutionary al-
gorithm. �e resulting optimized strategies can serve as new benchmarks for both intuition
and numerics for the general problem of maximizing dividends under a ruin constraint. For
instance, when we apply corridor strategies to the di�usion case and �nite time horizon prob-
lem studied in [67] and pay the remaining surplus as a �nal dividend lump sum at the end of
the time horizon as done in that paper, the optimal corridor strategy in fact outperforms the
numerical solution given in [67] for the same problem, cf. Section 4.6.

�e rest of the paper is organized as follows: in Section 4.2 we establish the basic assump-
tions for the surplus model and introduce some notation. Section 4.3 introduces the corridor
payment strategies and derives formulas to compute the value associated with them. Section
4.4 examines analytical properties of the value function associated with the strategies. Since
the value function eventually needs to be evaluated and optimal parameters need to be deter-
mined, Section 4.5 introduces several numerical techniques that can be used for this purpose.
Section 4.6 presents the numerical results for a selected number of surplus processes com-
monly studied in the literature. Finally, Section 4.7 concludes and provides some directions
for future research.

4.2. �e model

Consider a spectrally negative Lévy risk process (Ct)t≥0 for the surplus process of an
insurance portfolio with initial surplus level C0 = u. In the following we will formulate the
results �rst for the general case and then go into more detail for two special cases of interest,
namely the case of a di�usion approximation

(72) Ct = u+ µt+ σBt, t ≥ 0,

where µ > 0 is a constant dri�, σ > 0 and (Bt)t≥0 denotes a standard Brownian motion, and
the Cramér-Lundberg process

(73) Ct = u+ c t−
Nt∑
i=1

Xi, t ≥ 0,

where (Nt)t≥0 is a homogeneous Poisson process with rate λ > 0, Xi are the individual claim
sizes modelled by i.i.d. random variables with cumulative distribution function FX and �nite
mean, and c > λE(Xi) is the premium collected per time unit. Denote by τ := inf{t ≥ 0 :
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Ct < 0} the time of the ruin, by ψ(u) := P(τ < ∞) the ruin probability of this risk process
and by

φ(u) = 1− ψ(u)

the corresponding survival probability. Let κ(θ) := logEeθ(C1−C0) denote the Laplace expo-
nent of the Lévy process, which has the form

κ(θ) = −aθ +
1

2
σ2θ2 +

∫
(−∞,0)

(eθx − 1− θx1{x>−1})Π(dx)

with Π the Lévy measure and Φδ = ψ−1(δ) > 0 (see for instance [83]). �e various results
obtained throughout the manuscript will be expressed in terms of the scale function of C ,
which for x ≥ 0 and any δ ≥ 0 is de�ned as the function Wδ(x) satisfying the identity∫ ∞

0

e−θxWδ(x) dx =
1

κ(θ)− δ
, θ > Φδ.

We also de�ne Wδ(x) = 0 whenever x < 0. Assuming that κ′(0) is �nite, it is then well-
known that

φ(u) = κ′(0)W0(u)

(see e.g. [83] or [17, Ch.IX]). For the sake of convenience, we will assume that Π accepts a
continuous density, so that Π(dx) = fΠ(x)dx and that this density is su�ciently smooth to
ensure that Wδ ∈ C2(0,∞).

Dividends are now paid out according to a strategyD = (Dt)t≥0, whereDt represents the
aggregate dividends up to time t. �e surplus process a�er dividends is given by

CD
t = Ct −Dt

and the expected value of the aggregate discounted dividend payments until ruin are given
by

V D(u) = E

(∫ τD

0

e−δtdDt

)
where

τD := inf{t > 0 : CD
t < 0}

is the time of the ruin of the resulting surplus process with dividends.
Consider now the following dividend payment strategy: For a �xed n ∈ N, there is a

sequence of surplus levels a1, a2, a3, . . . , an. Assume for the moment that u < a1. When the
risk process reaches ai (i = 1, . . . , n) for the �rst time (which we denote by τi), there is a lump
sum dividend payment of ai−bi down to a barrier level bi. �en continuous dividend payments
start according to a horizontal barrier strategy with barrier bi until the surplus process goes
below the lower limit li ≤ bi for the �rst time (denoted by τ di ≥ τi), at which point the barrier
in bi is dissolved. Dividend payments only continue later in case the surplus process reaches
the level ai+1 > li before ruin, which happens at time τi+1, given that τi+1 < τD. In that
case the next lump sum ai+1 − bi+1 is paid, followed by dividends according to a horizontal
barrier strategy at bi+1 until the process goes below li+1 etc. Once the last dividend barrier bn is
dissolved, the surplus process survives according to the classical survival probability (without
dividends) with initial surplus level CD

τdn
. Note that this formulation of the strategy includes

the case of a pure lump sum payment (in case bi = li and in�nite variation) as well as the
case of a pure ‘horizontal dividend corridor’ without a lump sum payment at the beginning
(ai = bi), and we will be looking for the optimal values of 0 ≤ li ≤ bi ≤ ai, i = 1, . . . , n.
Figure 1 depicts a sample path of such a strategy for a Cramér-Lundberg process, in which
ruin occurs before a3 is reached.
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Figure 1. A sample path for a Cramér-Lundberg process with a dividend strat-
egy as described above

For a �xed set of levels, we may allow u > a1 by making a lump-sum payment down to
b1 and proceed as described above.

4.3. Some results

Denote by φD(u) := P(τD =∞) the survival probability of the resulting risk process, and
recall that φ(u) is the classical survival probability of the risk process without any dividend
payments.

Theorem 4.3.1. For u ≤ a1, we have

φD(u) = κ′(0)W0(u)
n∏
k=1

A(ak, bk, lk)(74)

with

A(ak, bk, lk) :=
E(W0(CD

τdk
))

W0(ak)
.

Note thatCD
τdk

is the surplus value at the time of the �rst undershoot of level lk a�er paying
dividends at barrier bk, which occurs at the stopping time τ dk . We naturally have φ(x) = 0
for x < 0, i.e. if the undershoot at the time of dissolving the k-th corridor leads to a negative
surplus value, the company is ruined.

Proof. A simple iterative application of the strong Markov property of C gives

φD(u) =
φ(u)

φ(a1)

(
n−1∏
k=1

P(τk+1 < τD|τk < τD)

)
E(φ(CD

τdn
)),
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which, using the strong Markov property again, can also be expressed as

φD(u) =
φ(u)

φ(a1)

(
n−1∏
k=1

E(φ(CD
τdk

))

φ(ak+1)

)
E(φ(CD

τdn
))

= φ(u)
n∏
k=1

E(φ(CD
τdk

))

φ(ak)
.

Note that φ(u)/φ(a1) = W0(u)/W0(a1) is the probability that the surplus process Ct reaches
surplus level a1 before ruin, when starting at a lower surplus level u < a1. We can hence
rewrite the above expression with scale functions as

φD(u) = κ′(0)W0(u)
n∏
k=1

E(W0(CD
τdk

))

W0(ak)
,

establishing the result. �

While simple, Equation (74) expresses the probability of ruin implicitly in terms of expec-
tations. We would like to obtain more formulas expressions for A, for which we make use of
the concept of Gerber-Shiu measures (c.f. [83, Ch.X]). Recall the Gerber-Shiu measure of the
process, Kδ , which for any ω : R2 → [0,∞) such that ω(0, ·) = 0, allows us to write

(75) E(e−δτω(−Cτ , Cτ−)) =

∫
(0,∞)2

ω(y, z)Kδ(dy, dz)

withCτ being the severity of ruin andCτ− the surplus just before ruin. An explicit expression
for Kδ can be given in terms of the Lévy measure and the scale function of the process, i.e.,

(76) Kδ(dy, dz) = (e−ΦδzWδ(u)−Wδ(u− z))fΠ(−y − z)dydz.

Similarly, the discounted probability of ruin by creeping can be computed through the formula

(77) E(e−δτ1{Cτ=Cτ−=0}) =
σ2

2
(W ′

δ(u)− ΦδWδ(u)) ,

where the right-hand side is understood as zero whenever σ = 0. Expectations of discounted
penalties of the formψ(u) := E(e−δτg(Cτ )) can therefore be evaluated through equations (76)
and (77) for any function g. �is is almost what we need, however, to obtain an explicit form
forA, we need to compute this expectation assuming dividends have been paid according to a
barrier strategy. Denoting by Cb

τ the severity of ruin a�er dividends have been paid according
to a barrier strategy at level b, this means that we require to compute expectations of the form
ψ(u; b) := E(e−δτg(Cb

τ )). Luckily, this can be easily computed through the dividends-penalty
identity (cf. [64]),

(78) ψ(u; b) = ψ(u)− Wδ(u)

W ′
δ(b)

ψ′(b).

Using all these equations, we can reach an explicit expression for the function A(a, b, l).

Proposition 4.3.2. �e function A(a, b, l) can be wri�en as

A(a, b,l) =
σ2

2

W0(l)

W0(a)

(
W ′

0(b− l)− W0(b− l)W ′′
0 (b− l)

W ′
0(b− l)

)
+

∫ l

0

∫ ∞
0

W0(l − y)

W0(a)

(
W0(b− l)W ′

0(b− l − z)

W ′
0(b− l)

−W0(b− l − z)

)
fΠ(−y − z)dzdy.
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Proof. Observe thatCD
τdk
− lk is equal in distribution to the severity of ruin a�er dividends

have been paid according to a barrier strategy at level bk − lk of a process with initial capital
bk − lk, so Equations (76), (77) and (78) fully characterize its distribution. Hence, by se�ing
g = W0 in the de�nition of ψ and combining (76), (77) and (78) one obtains

A(a, b,l) =
σ2

2

W0(l)

W0(a)

(
W ′

0(b− l)− W0(b− l)W ′′
0 (b− l)

W ′
0(b− l)

)
+

∫ l

0

∫ ∞
0

W0(l − y)

W0(a)

(
W0(b− l)W ′

0(b− l − z)

W ′
0(b− l)

−W0(b− l − z)

)
fΠ(−y − z)dzdy,

where we have omi�ed the dependence on the index k for simplicity of exposition. �

Let us now turn to the expected value of the sum of the discounted dividend payments.
Recall from classical risk theory that the expected discounted dividend payments according
to a horizontal dividend barrier strategy at b when starting at an initial surplus level u < b
is simply given by Wδ(u)/W ′

δ(b). �is quantity will be a building block of our more complex
dividend payment strategy in this paper.

Theorem 4.3.3. For u ≤ a1, the value function V D(u) of the expected discounted dividend
payments can be wri�en as

V D(u) = Wδ(u)
n∑
k=1

B(ak, bk, lk)
k−1∏
i=1

G(ai, bi, li)(79)

with

B(a, b, l) =
a− b+Wδ(b− l)/W ′

δ(b− l)
Wδ(a)

and

G(a, b,l) =
σ2

2

Wδ(l)

Wδ(a)

(
W ′
δ(b− l)−

Wδ(b− l)W ′′
δ (b− l)

W ′
δ(b− l)

)
+

∫ l

0

∫ ∞
0

Wδ(l − y)

Wδ(a)

(
Wδ(b− l)W ′

δ(b− l − z)

W ′
δ(b− l)

−Wδ(b− l − z)

)
fΠ(−y − z)dzdy.

Proof. Consider the scenario in which the (k − 1)-th corridor has just been dissolved.
Once we reach ak, there will be a lump sum payment ak − bk and then dividend payments
will start according to a horizontal barrier strategy at barrier bk until the k-th corridor is
dissolved. Denote by Dk the expected present value of all dividend payments at the k-th
corridor. By construction of the dividend payment strategy, Dk can also be viewed as the
expected discounted dividends according to a barrier strategy collected until ruin in a risk
model with initial surplus level bk− lk and also barrier level bk− lk, since the event of ruin in
that model will exactly correspond toCD undershooting lk for the �rst time. Correspondingly,
Dk = Wδ(bk − lk)/W ′

δ(bk − lk). Using the strong Markov property, we can write

(80) V D(u) =
Wδ(u)

Wδ(a1)

[
(a1 − b1) +D1 + E(e−δ(τ2−τ1)1{τ2<τD})

[
(a2 − b2) +D2

+ E(e−δ(τ3−τ2)1{τ3<τD})
[
(a3 − b3) +D3 + · · ·

]]]
,

so that we obtain

V D(u) =
Wδ(u)

Wδ(a1)

n∑
k=1

(
ak − bk +

Wδ(bk − lk)
W ′
δ(bk − lk)

) k∏
i=2

E(e−δ(τi−τi−1)1{τi<τD}),(81)
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with the usual convention
∏1

i=2 · = 1. By the strong Markov property, τ di−1−τi−1 can be seen
as the time to ruin of a process with initial surplus bi − li which pays dividends according
to a barrier strategy at level bi − li. Moreover, on 1{τi<τD} and given CD

τdi−1
, τ di−1 − τi−1 is

independent of τi − τ di−1, and due to

E
(
e−δ(τi−τ

d
i−1)1{τi<τD} | C

D
τdi−1

)
=
Wδ

(
CD
τdi−1

)
Wδ(ai)

,

we obtain

E(e−δ(τi−τi−1)1{τi<τD}) = E

e−δ(τdi−1−τi−1)
Wδ

(
CD
τdi−1

)
Wδ(ai)

1{τi<τD}

 .

Hence, (81) can be rewri�en as

V D(u) = Wδ(u)
n∑
k=1

B(ak, bk, lk)
k−1∏
i=1

G(ai, bi, li)

with

B(a, b, l) =
a− b+Wδ(b− l)/W ′

δ(b− l)
Wδ(a)

and

G(ai, bi, li) =
1

Wδ(ai)
E
(
e−δ(τ

d
i −τi)Wδ

(
CD
τdi

)
1{τi+1<τD}

)
.

As in the computation of the explicit formula for A, we can use the Gerber-Shiu measure and
the dividends-penalty identity to give an explicit form for G, thus obtaining

G(a, b,l) =
σ2

2

Wδ(l)

Wδ(a)

(
W ′
δ(b− l)−

Wδ(b− l)W ′′
δ (b− l)

W ′
δ(b− l)

)
+

∫ l

0

∫ ∞
0

Wδ(l − y)

Wδ(a)

(
Wδ(b− l)W ′

δ(b− l − z)

W ′
δ(b− l)

−Wδ(b− l − z)

)
fΠ(−y − z)dzdy.

as desired. �

A few comments are in order: Equation (79) shows that we can express V D in a recursive
way as follows: de�ne the sequence cD1 , . . . , cDn by

cDn = B(an, bn, ln)

and, for 1 ≤ j ≤ n− 1,

cDj = B(aj, bj, lj) + cDj+1G(aj, bj, lj).

With these de�nitions, we have, for any 1 ≤ j ≤ n− 1,

(82) V D(u) = Wδ(u)

j−1∑
k=1

B(ak, bk, lk)
k−1∏
i=1

G(ai, bi, li) +Wδ(u)cDj

j−1∏
i=1

G(ai, bi, li).

In particular, V D(u) = Wδ(u)cD1 . �e advantage of de�ning the cDj+1’s in this way is that, once
cDj+1 is known, cDj depends only on aj, bj and lj , a fact that can be exploited in a constrained
optimization se�ing (cf. Section 4.6).
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Now, while the expressions for A and G are explicit, they are rather complicated. One
reason for this is found by examining the proof of the previous theorem. Observe that, while
computing G, one encounters the expectation E(e−δ(τi−τi−1)1{τi<τD}). Rewriting this as

E(e−δ(τi−τi−1)1{τi<τD}) = E(e−δ(τ
d
i−1−τi−1) · e−δ(τi−τdi−1)1{τi<τD}),(83)

we see that a reason for the involved expressions is that, in general, the two product terms in
(83) are not independent. Exceptions are the di�usion case and the Cramér-Lundberg model
with exponential claims, where a decomposition into a product of two expectations is feasi-
ble, which signi�cantly simpli�es the analysis. To that end, note that for general spectrally
negative Lévy processes, a formula for the joint Laplace transform of τ dk − τk and CD

τdk
for any

k = 1, . . . , n is available:

E(e
−δ(τdk−τk)−θ(lk−CD

τd
k

)
) = Zδ(bk − lk, θ) +Wδ(bk − lk)

Wδ(bk − lk) (κ(θ)− δ)− θZδ(bk − lk, θ)
W ′
δ(bk − lk)

,

(84)

where Zδ(x, θ) denotes the second scale function de�ned by

Zδ(x, θ) = e−θx
(

1− (κ(θ)− δ)
∫ x

0

e−θyWδ(y)dy

)
, x ≥ 0

(see [78]). For θ = 0, one obtains the familiar simpler version

Zδ(x, 0) = 1 + δ

∫ x

0

Wδ(y)dy, x ≥ 0,

which was for instance used in [83, Ch.8.2]. Formula (84) originally goes back to [19]. For the
concrete form used here, see [5, Eq.25]. In particular,

E(e−δ(τ
d
k−τk)) = Zδ(bk − lk, 0)− δ (Wδ(bk − lk))2

W ′
δ(bk − lk)

= 1 + δ

∫ bk−lk

0

Wδ(y)dy − δ (Wδ(bk − lk))2

W ′
δ(bk − lk)

,(85)

which can now help to simplify the form of G, see below.
�e formulas presented so far assume u ≤ a1. However, by the description of the strategy

given at the end of Section 4.2, in the case u > a1, one can simply replace a1 by u in (74) and
(79) to obtain the formulas for φD and V D.

4.3.1. �e di�usion case. Let us now look at the special case of a di�usion approxima-
tion

Ct = u+ µt+ σBt, t ≥ 0

in more detail, where µ > 0 is a constant dri�, σ > 0 is the volatility and (Bt)t≥0 denotes a
standard Brownian motion. In this case CD

τdk
= lk (deterministically), so that (74) simpli�es to

φD(u) = κ′(0)W0(u)
n∏
k=1

W0(lk)

W0(ak)
.(86)

It is well-known that the Laplace exponent for this di�usion case is simply given by

κ(θ) = θµ+
1

2
θ2σ2,



4.3. SOME RESULTS 61

and correspondingly the (�rst) scale function is

(87) Wδ(x) =
1√

µ2 + 2δσ2
(eθ1x − eθ2x), x ≥ 0,

where θ1 ≥ 0 and θ2 < 0 are the two roots of the quadratic equation

(88)
1

2
σ2z2 + µz − δ = 0.

See e.g. [83] for details. With the resulting

W0(u) = (1− e−(2µ/σ2)u)/µ

and κ′(0) = µ we hence obtain the survival probability

φD(u) = (1− e−(2µ/σ2)u)
n∏
k=1

1− e−(2µ/σ2)lk

1− e−(2µ/σ2)ak
.(89)

For numerical purposes later on, we note that in view of (74), in the di�usion case

A(a, l) =
1− e−(2µ/σ2)l

1− e−(2µ/σ2)a

(note that A(a, b, l) does not depend on b here, so that we suppress it in the notation).
For the expected discounted dividends, we note that we are in one of the exceptions where

we can factor (84) as

E(e−δ(τi−τi−1)1{τi<τD}) = E(e−δ(τ
d
i−1−τi−1)) · E(e−δ(τi−τ

d
i−1)1{τi<τD}),

which helps seeing that G and B are given by

G(a, b, l) =
σ2

2

Wδ(l)

Wδ(a)

(
W ′
δ(b− l)−

Wδ(b− l)W ′′
δ (b− l)

W ′
δ(b− l)

)
,

B(a, b, l) =
a− b+Wδ(b− l)/W ′

δ(b− l)
Wδ(a)

.

Equivalently, combining (85) and (87) we obtain a�er algebraic manipulations,

G(a, b, l) =
(θ1 − θ2)(eθ1l − eθ2l)e(θ1+θ2)b

(eθ1a − eθ2a)(θ1eθ1b+θ2l − θ2eθ2b+θ1l)
,

and

B(a, b, l) =
√
µ2 + 2δσ2

a− b+ (eθ1(b−l) − eθ2(b−l))/(θ1e
θ1(b−l) − θ2e

θ2(b−l))

eθ1a − eθ2a
.

4.3.2. �e Cramér-Lundberg model with exponential claims. Consider now the Cramér-
Lundberg model (73) with a homogeneous Poisson process of intensity λ > 0 and exponential
claims with parameter α > 0. In that case, we have

κ(θ) = cθ − λθ

θ + α

and (under the positive sa�ely loading condition c > λ/α) the scale function is given by

(90) Wδ(x) =
(α + Φδ)e

Φδx − (α−Rδ)e
−Rδx

c(Φδ +Rδ)
, x ≥ 0,

where Φδ ≥ 0 and −Rδ < 0 are the two roots of the quadratic equation

(91) cρ2 + (cα− λ− δ)ρ− αδ = 0,
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see e.g. [5]. As an immediate consequence we have

W0(u) =
α− (α−R0)e−R0u

cR0

=
α− λ

c
e−(α−λ/c)u

cα− λ
, u ≥ 0,

and with κ′(0) = c− λ/α the classical formula

φ(u) = 1− λ

αc
e−(α−λ/c)u.

For our dividend model, observe that

E(W0(CD
τdk

)) =

∫ lk

0

(
α− λ

c
e−(α−λ/c)(lk−y)

cα− λ

)
α e−αy dy

=
α− αe(λ/c−α)lk

cα− λ
,

(92)

which leads to the survival probability

φD(u) =

(
1− λ

αc
e−(α−λ/c)u

) n∏
k=1

1− e−(α−λ/c)lk

1− λ
αc
e−(α−λ/c)ak

.(93)

For numerical purposes later on, we note that in view of (74) in this case

A(a, l) =
1− e−(α−λ/c)l

1− λ
αc
e−(α−λ/c)a

.

Due to the lack-of-memory property of the exponential distribution, we can again decompose
(84) as a product

E(e−δ(τi−τi−1)1{τi<τD}) = E(e−δ(τ
d
i−1−τi−1)) · E(e−δ(τi−τ

d
i−1)1{τi<τD}),

and, a�er some algebra, obtain

G(a, b, l) =
αλ(Φδ −Rδ)

(
el(α+Φδ) − el(α+Rδ)

)
eb(Φδ+Rδ)−l(α+Φδ+Rδ)

c (eaΦδ(α + Φδ)− eaRδ(α +Rδ)) (Φδ(α + Φδ)eΦδ(b−l) −Rδ(α +Rδ)eRδ(b−l))
.

In addition,

B(a, b, l) =
c(Φδ +Rδ)((α + Φδ)(1 + Φδ(a− b))eΦδ(b−l) − (α +Rδ)(1 +Rδ(a− b))eRδ(b−l))

(Φδ(α + Φδ)eΦδ(b−l) +Rδ(α−Rδ)e−Rδ(b−l))((α + Φδ)eΦδa − (α−Rδ)e−Rδa)
.

4.4. Properties of the strategy with optimal parameters

Let Dn denote the family of dividend strategies with n corridors as de�ned in Section 4.2.
Observe that Dn can naturally be identi�ed with the set

{(ā, b̄, l̄) ∈ Rn
+ × Rn

+ × Rn
+ | lk ≤ bk ≤ ak, and lk < ak+1, k = 1, . . . , n},

where, for convenience, we set an+1 =∞.
For a given initial surplus u ≥ 0 and survival constraint 0 ≤ ϕ < 1, let

(94) V ∗n,ϕ(u) = sup
{
V D(u) | D ∈ Dn, φ

D(u) ≥ ϕ
}
,

where we de�ne V ∗n,ϕ(u) = 0 whenever the set is empty, e.g., whenever ϕ > φ(u). If clear
from the context, we will drop the dependence of V ∗n,ϕ on ϕ and simply write V ∗n in (94).

In the following, for a strategy D ∈ Dn we will denote by aDi , bDi , lDi , i = 1, . . . , n the
levels of D.

We immediately observe that, by continuity of the functions involved, V ∗n,ϕ is locally
bounded and on the set ϕ < φ(u), V ∗n,ϕ(u) is le�-continuous as a function of ϕ for �xed
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u. Hence, for each u > 0, there exists a strategy D ∈ Dn such that V ∗n (u) = V D(u) and
φD(u) = ϕ, so the inequality on the right-hand side of (94) could be replaced by an equality.
However, in terms of continuity, a stronger result holds.

Proposition 4.4.1. �e mapping (u, ϕ) 7→ V ∗n,ϕ(u) is continuous on the set

S = {(u, ϕ) ∈ R2 | u > 0, 0 ≤ ϕ < φ(u)}.

Proof. De�ne f : R+×Dn → [0, 1) andF : R+×Dn → R+×R3n by f(u, ā, b̄, l̄) = φD(u)
and

F (u, ā, b̄, l̄) = (u, a1, . . . , an−1, b̄, l̄, f(u, ā, b̄, l̄)).

�e D in the de�nition of f is the strategy associated with (ā, b̄, l̄). Now, recall that W0 is a
continuous bijection, so by Equation (74), it follows that F is a one-to-one continuous open
function. Let T ⊂ R+ × R3n−1 × [0, 1) be the image of F and de�ne Ṽ : T 7→ R+ as
Ṽ (u, z, ϕ) = V D(u), where (u,D) = F−1(u, z, ϕ). From Equation (79), we see that Ṽ is
continuous and, moreover, for (u, ϕ) ∈ S, we have

(95) V ∗n,ϕ(u) = sup
{
Ṽ (u, z, ϕ) | (u, z, ϕ) ∈ T

}
.

�e set on the right hand side of (95) is not empty as φD(u) → φ(u) whenever the levels of
the strategy go to in�nity. It is then clear from this last equation and the continuity of Ṽ , that
V ∗n,· is jointly continuous in (u, ϕ). �

Next, we see that in terms of the number of bands, it is be�er to allow as many bands as
possible.

Proposition 4.4.2. For every n ∈ N and φ(u) > ϕ, we have V ∗n (u) ≤ V ∗n+1(u).

Remark 4.4.3. �is proposition is necessary since, in general, Dn 6⊂ Dn+1. Indeed, in order to
see an n-corridor strategyD ∈ Dn as an (n+1)-corridor strategy, one is required to introduce
a new corridor somewhere (equivalent to including the three remaining parameters to go from
R3n

+ to R3(n+1)
+ ) and by doing this, one could end up changing the probability of ruin. Note,

however, that for Lévy processes with unbounded variation, one can still identify Dn with a
subset Dn+1 by introducing the “empty corridor” at the end (that is, the corridor for which
an+1 = bn+1 = ln+1), so Proposition 4.4.2 is immediate in this case. In the case of bounded
variation, one cannot just add more corridors without care, as adding a new corridor to a
previously de�ned strategy, whether empty or not, strictly decreases the survival probability.
So in order to increase the probability to the minimal level, the previous corridors have to be
shrunk or “moved vertically up” – thus potentially decreasing the amount of dividends being
paid.

Proof. Given n ∈ N, let D ∈ Dn be such that V ∗n (u) = VD(u). By continuity of the
scale functions and its derivatives, for a given ε > 0, there exists an ε > 0 such that V ∗n (u) ≤
V D(u) + ε, where D is strategy with surplus levels aDk = aDnk , bDk = bDnk , lDk = lDnk , k =
1, . . . , n − 1 and remaining surplus levels equal to a∗n + ε, b∗n + ε and l∗n + ε. Now, since
φD(u) > φDn(u) ≥ φmin and A(l + 1, l + 1, l) → 1 as l → ∞, we can �nd l̃ > aDn + ε such
that A(l̃ + 1, l̃ + 1, l̃) > φDn(u)/φD(u) and l̃ > lDn . Le�ing D′ ∈ Dn+1 denote the dividend
strategy with the same �rst n corridors equal to those of D and extra corridor composed by
the levels an+1 = bn+1 = l̃ + 1 and ln+1 = l̃, we clearly have V D(u) ≤ V D′(u). Hence,
V ∗n (u) ≤ Vn+1(u) + ε ≤ V ∗n+1(u) + ε and, in particular, V ∗n (u) ≤ V ∗n+1(u) + ε. Since the value
of V ∗n+1(u) is independent of ε > 0, we can let ε ↓ 0 in the previous inequality, proving the
proposition. �
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Remark 4.4.4. �e cases considered in Section 4.6 seem to indicate that the inequality in
Proposition 4.4.2 is in fact strict, so one is in principle always obliged to add more bands to
improve the amount of dividends being paid.

Proposition 4.4.5. �ere exists ϑ∗ ≥ 0 and D ∈ Dn such that aD1 = ϑ∗ and V ∗n (u) = V D(u)
for all u ≥ a∗n. In particular, V ∗′n (u) = 1 for u ≥ a∗n.

In other terms, the meaning of this proposition is that the strategies maximizing the value
function can eventually be taken to be “constant”, in the sense that for high values of the
initial capital, all but their �rst levels can be taken to be the same.

Proof. Notice that (see, e.g., Equation (3.15) in [20])

lim
x→∞

Wδ(x)

W ′
δ(x)

=
1

Φ(δ)
,

so there exists x∗ > 0 and c > 0 such that Wδ(x) ≤ cW ′
δ(x) for all x ≥ x∗.

Let b∗1, l∗1 and a∗k, b∗k, l∗k, k = 2, . . . , n be a set of points that maximize the value of the
function T given by

T (l1, b1, l2, b2, . . . , an) = −b1 +
Wδ(b1 − l1)

W ′
δ(b1 − l1)

+
n∑
k=2

B(ak, bk, lk)
k−1∏
j=1

G(aj, bj, lj)

subject to the constraints l1 ≤ b1, lk ≤ bk ≤ ak, lk ≤ ak+1 and

H(b1, l1)
n∏
k=2

A(ak, bk, lk) ≥ ϕ,

where H is given by H(b, l) = W0(1)A(1, b, l). Let M be this maximal value. We claim that
we can take ϑ∗ = max(b∗1, x

∗, c−M) and D be given by aD1 = ϑ∗ and remaining levels given
by the a∗k, b∗k, l∗k in the same ordering. Indeed, clearlyD ∈ Dn and by de�nition aD1 = ϑ∗. Now,
let u ≥ ϑ∗ and D′ ∈ Dn be such that φD′(u) ≥ ϕ. We need to show that V D′(u) ≤ V D(u).
We can assume at the outset that u ≤ aD

′
1 , since otherwise we can replace aD′1 by u, obtaining

the same value for the strategy. Now, notice that

V D′(u) =
Wδ(u)

Wδ(aD
′

1 )
(aD

′

1 + C)

and
V D(u) = u+M,

where C = T (lD
′

1 , bD
′

1 , lD
′

2 , bD
′

2 , . . . , aD
′

n ). Consider the mapping x 7→ (x + M)/Wδ(x). �is
function has derivative given by

Wδ(x)−W ′
δ(x)(x+M)

Wδ(x)2
.

Hence, for x ≥ ϑ∗, we have

Wδ(x)−W ′
δ(x)(x+M) ≤ W ′

δ(x)(c−M − x) ≤ 0,

implying that the mapping is decreasing on [ϑ∗,∞). Since ϑ∗ ≤ u ≤ aD
′

1 , we obtain

V D′(u) =
Wδ(u)

Wδ(aD
′

1 )
(aD

′

1 + C) ≤ Wδ(u)

Wδ(aD
′

1 )
(aD

′

1 +M) ≤ Wδ(u)

Wδ(u)
(u+M) = V D(u),

�nishing the proof. �
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We observed before that for each u > 0 such that φ(u) > ϕ, there exists a strategy D
such that V ∗n (u) = V D(u). However, as stated in the proof of the previous proposition, if
in this case we have aD1 ≤ u, then any other strategy D′ which has bD1 ≤ aD

′
1 ≤ u and the

remaining levels the same as D will also satisfy V ∗n (u) = V D′(u) and so for large values of
initial surplus, there will not be a unique strategy. Moreover, this might even be the case for
aD1 > u. �erefore, in the following, we will rely on the following assumption.

Assumption. For each u > 0, there is a unique strategy D ∈ Dn satisfying aD1 ≥ u, φD(u) =
ϕ and V ∗n (u) = V D(u). �is strategy will be denoted byD∗n(u) and its levels by a∗n,k, b∗n,k, l∗n,k.

With this notation, we have the following:

Proposition 4.4.6. Assume V ∗n < V ∗n+1 for every n ∈ N. �en, the function D∗n is continuous
on (φ−1(ϕ),∞).

Proof. Given u > φ−1(ϕ), let (um)m≥0 be a sequence in (φ−1(ϕ),∞) converging to u.
Without loss of generality, we may assume that there exists an α > 0 such that φ(u−α) > ϕ,
and the entire sequence is contained in an interval [u−α, u+α]. In the notation of the proof
of Proposition 4.4.1, let

E = ([u− α, u+ α]× R3n) ∩ F−1(R+ × R3n−1 × {ϕ}).

Observe that E is simply the set of pairs (v,D), where v ∈ [u− α, u+ α] and D is a strategy
such that φD(v) = ϕ. �e description given in the previous equation simply shows that E
is closed and, by construction, the pairs (um, D

∗
n(um)) belong to E. We claim that, further

than that, there exists an M > 0 such that the ball BM in R3n+1 of radius M centred in the
origin contains the pairs (um, D

∗
n(um)), m ≥ 0, thus showing that these pairs are contained

in the compact set K = E ∩ BM . Arguing by contradiction, suppose this is not the case.
Since the um’s are clearly bounded, there has to exist at least one coordinate of D∗n(um) that
is not bounded. By the description of Dn, it follows that there has to exist at least one k such
(a∗n,k(um))m≥0 is unbounded. Let

JU = {k ∈ {1, . . . , n} | (a∗n,k(um))m≥0 is unbounded}

be the set of indices producing unbounded sequences of the a’s and JB = {1, . . . , n} \ JU .
Observe that if k ∈ JB , then also (b∗n,k(um))m≥0 and (l∗n,k(um))m≥0 are bounded. By passing
to a subsequence if necessary, we can assume that

• If k ∈ JU , then a∗n,k(um)→∞ as m→∞.
• If k ∈ JB , then there exist ak, bk and lk such that a∗n,k(um)→ ak, b∗n,k(um)→ bk and
l∗n,k(um)→ lk.

Now, since

B(a∗n,k(um), b∗n,k(um), l∗n,k(um)) ≤
a∗n,k(um)

Wδ(a∗n,k(um))
+

Wδ(b
∗
n,k(um)− l∗n,k(um))

Wδ(a∗n,k(um))W ′
δ(b
∗
n,k(um)− l∗n,k(um))

,

and

lim
m→∞

a∗n,k(um)

Wδ(a∗n,k(um))
= 0 and lim

m→∞

Wδ(b
∗
n,k(um)− l∗n,k(um))

Wδ(a∗n,k(um))W ′
δ(b
∗
n,k(um)− l∗n,k(um))

= 0,

then B(a∗n,k(um), b∗n,k(um), l∗n,k(um))→ 0 as m→∞. �e �rst limit is zero because

lim
m→∞

e−Φ(δ)xWδ(x) = 1.
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For the second we have two cases: the sequence ((b∗n,k(um) − l∗n,k(um)) is bounded or un-
bounded. If it is bounded, the quotient

Wδ(b
∗
n,k(um)− l∗n,k(um))/W ′

δ(b
∗
n,k(um)− l∗n,k(um))

is bounded by continuity and strict positivity of W ′
δ , which implies that the limit is zero. If it

is unbounded, we simply notice that Wδ(a
∗
n,k(um))/Wδ(b

∗
n,k(um) − l∗n,k(um)) ≤ 1 and since

W ′
δ diverges to in�nity, the limit is again zero. Since G is bounded by 1, we see that, on the

one hand
lim
m→∞

V ∗n (um) = V ∗n (u),

while on the other,

lim
m→∞

V ∗n (um) = lim
m→∞

Wδ(u)
n∑
k=1

B(a∗n,k(um), b∗n,k(um), l∗n,k(um))
k−1∏
i=1

G(a∗n,i(um), b∗n,i(um), l∗n,i(um))

≤ Wδ(u)
n∑

k∈JB

B(ak, bk, lk)
k−1∏
i=1
i∈JB

G(ai, bi, li).

It is not hard to see that, if p is the cardinality of JB , then p ≤ n − 1 and the ak’s, bk’s and
lk’s form a strategy D ∈ Dp with φD(u) ≥ ϕ. �erefore, V ∗n (u) ≤ V ∗p (u), which is clearly
a contradiction to the hypothesis of the proposition. �us, there exists an M > 0 such that
| D∗n(um) |≤M and D∗n(um) ∈ K for every m ≥ 0.

Continuity of D∗n is readily proven: if the D∗n were not continuous at u, we would be able
to �nd an ε > 0 and a subsequence, which we can assume to be the original sequence, such
that | D∗n(um)−D∗n(u) |> ε. By compactness ofK , there would exist a subsequence (umr)r≥0

such that ((umr , D
∗
n(umr)))r≥0 converged to a point inK , say (v,D). Since umr → u, we have

v = u and, moreover,

V ∗n (u) = lim
r→∞

V ∗n (umr) = lim
r→∞

V D∗n(umr )(umr) = V D(u).

Since φD(u) = ϕ, uniqueness of the strategies would imply thatD = D∗n(u), which would not
be possible for large enough r according to the choice of (um)m≥0. Hence, D is continuous.

�

�e argument to show boundedness of D∗n in the previous proof is simply a formalization
of the intuitive idea that the best strategy cannot have arbitrarily high levels/corridors, as this
would imply longer waiting times between dividend payments.

Remark 4.4.7. We close this section with an (informal) discussion on the potential overall-
optimality of the strategy. In the stochastic control literature, optimality results are usually
derived by formulating a dynamic programming principle associated with the problem. While
in general, due to time-inconsistency, these principles cannot be formulated for control prob-
lems with ruin probability considerations, in the current se�ing there is some evidence point-
ing to a weaker version of this to indeed hold: in the case of the di�usion, from Equations (74)
and (79), we obtain

(96) a∗n,i+1(u, ϕ) = a∗n−1,i(u1, ϕ1), i = 1, . . . , n− 1,

and similarly for the b∗n,i+1’s and l∗n,i+1’s, where u1 = l∗n,1(u, ϕ), ϕ1 = ϕW0(a∗n,1(u, ϕ))/W0(u)
and the second argument now refers to the survival probability under consideration. �e
meaning of (96) is that, with the knowledge of a∗n,1(u), b∗n,1(u) and l∗n,1(u), one could deter-
mine the remaining levels of the best n-corridor strategy with survival probability ϕ by now
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considering instead the best (n− 1)-corridor strategy with initial surplus u1 and ϕ1. Further-
more, iterating (96), we obtain

(97) a∗n,i+1(u, ϕ) = a∗n−i,1(ui, ϕi), i = 1, . . . , n− 1,

where, recursively, we have ui = l∗n−i+1,1(ui−1) and ϕi = ϕi−1W0(a∗n−i+1,1(ui−1))/W0(ui−1),
i = 2, . . . , n. �e recursive nature of these equations hints towards the existence of a type of
dynamic programming principle leading to the value of V ∗n,ϕ. Indeed, observe that Equation
(96) is, in a way, equivalent to the equation

(98) V ∗n,ϕ(u) = max
D∈Dn

Eu

[∫ τD∧τd1

0

e−δt dDt + e−δ(τ
D∧τd1 )V ∗n−1

(
CD
τD∧τd1

,
W0(aD1 )

W0(u)
ϕ

)]
,

and Equation (97) could then be phrased as

V ∗n,ϕ(u) = max
D∈Dn

Eu

[∫ τD∧τdi

0

e−δt dDt + e−δ(τ
D∧τdi )V ∗n−i

(
CD
τD∧τdi

,
W0(aD1 ) · · ·W0(aDi )

W0(u) · · ·W0(lDi−1)
ϕ

)]
.

(99)

In both cases one needs to be able to keep track of the survival probability to account for “how
much probability has been consumed” and one cannot just plug in arbitrary stopping times,
allowing for a classical a dynamic programming principle. For example, we have

V ∗n,ϕ(u) = max
D∈Dn

Eu

[∫ τD∧τ1

0

e−δt dDt + e−δ(τ
D∧τ1)V ∗n−1

(
CD
τD∧τ1−,

W0(aD1 )

W0(u)
ϕ

)]

= max
D∈Dn

Eu
[
e−δ(τ

D∧τ1)V ∗n−1

(
CD
τD∧τ1−,

W0(aD1 )

W0(u)
ϕ

)]
,

where the di�erence is that one now has to account for the value of the process just before
the lump-sum payment at a1, i.e., CD

τD∧τ1−.
�ese equations, however, suggest the idea of a dynamic programming principle being

satis�ed locally as follows: for any stopping time τ with τ di−1 ≤ τ ≤ τi for i ∈ {1, . . . , n} (and
τ d0 = 0), we have

V ∗n,ϕ(u) = max
D∈Dn

Eu

[∫ τD∧τ

0

e−δt dDt + e−δ(τ
D∧τ)V ∗n−i

(
CD
τD∧τ−,

W0(aD1 ) · · ·W0(CD
τD∧τ−)

W0(u) · · ·W0(lDi−1)
ϕ

)]
,

while for τi < τ ≤ τ di ,

V ∗n,ϕ(u) = max
D∈Dn

Eu

[∫ τD∧τ

0

e−δt dDt + e−δ(τ
D∧τ)V ∗n−i

(
CD
τD∧τ ,

W0(aD1 ) · · ·W0(aDi )

W0(u) · · ·W0(lDi−1)
ϕ

)]
.

Although intuitive, we do not a�empt to formalize this approach here, as it is beyond the
scope of the present paper.

4.5. Optimization of barrier levels

From the previous considerations, we know that for each n ∈ N there exists a strategy
D∗ ∈ Dn such that V ∗n (u) = V D∗(u). We are now interested in identifying this strategy,
which is equivalent to �nding surplus values ak, bk, lk, k = 1, . . . , n, which maximize V D(u)



68 4. DIVIDENDS AND A RUIN CONSTRAINT

subject to the constraint φD(u) ≥ ϕ. Recall that the objective function and the constraint are
of the form

V D(u) = Wδ(u)
n∑
k=1

B(ak, bk, lk)
k−1∏
i=1

G(ai, bi, li)

and

φD(u) = κ′(0)W0(u)
n∏
k=1

A(ak, bk, lk),

respectively. We will pursue two di�erent approaches in the sequel.

4.5.1. A gradient-inspired method. Despite the possibly high-dimensional nature of
this optimization problem, the particular structure of the above equations makes a classical
Lagrange method look feasible. In what follows, we �x n ∈ N.

It is clear that the constraint is “adversarial” to the objective function, meaning that the
surplus values that maximize V will at the same time minimize φD. Given that the constraint
is imposed in terms of an inequality, it follows that the optimal strategyD∗ will as well satisfy
φD
∗
(u) = φmin. Using this observation, we consider hence the function

L(a1, . . . , an, b1, . . . , bn, l1, . . . , ln,Λ) = V (u)− Λ(φD(u)− φmin).

�e normal equations then turn out to be1

Wδ(u)DiB(am, bm, lm)
m−1∏
j=1

G(aj, bj, lj)

+Wδ(u)
n∑

k=m+1

B(ak, bk, lk)DiG(am, bm, lm)
k−1∏
j=1
j 6=m

G(aj, bj, lj)

− Λκ′(0)W0(u)DiA(am, bm, lm)
n∏
k=1
k 6=m

A(ak, bk, lk) = 0, m = 1, . . . , n, i = 1, 2, 3

κ′(0)W0(u)
n∏
k=1

A(ak, bk, lk)− φmin = 0.

(100)

Despite the relatively easy form of these equations, even for the simplest cases no exact solu-
tion can be provided in terms of elementary functions. �e following example illustrates this
point:

Example 4.5.1. Let us consider n = 1, i.e. there is only one level a, at which a lump sum is
paid down to a barrier b ≤ a, and a�er that dividend payments at this barrier take place until
the barrier is dissolved when the surplus value undershoots l. Recalling the formulas for W
and A in the di�usion case, the equations

W ′′
δ (b− l) = 0, κ′(0)W0(u)A(a, l) = φmin

1HereDiA designs the partial derivative ofAwith respect to its i-th argument and similarlyDiB andDiG.
We interchangeably use the notation Aa, Ab and Al to denote the partial derivatives of A.
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allow us to write a and b in terms of l, obtaining

b = l − log(θ2
1)− log(θ2

2)

θ1 − θ2

,

a = −σ
2

2µ

(
log

(
φmin

κ′(0)W0(u)
+ e−(2µ/σ2)l − 1

)
− log

(
φmin

κ′(0)W0(u)

))
.

Equations (100) reduce into

Aa(a, l)

Al(a, l)
=
Ba(a, b, l)

Bl(a, b, l)
,

so, by le�ing c = 2µ/σ2 and d = φminκ
′(0)−1W0(u)−1, we obtain

(101) (d− 1)ecl
(
1− ρ

(
d− 1 + e−cl

)α)
+

(
γ − l − 1

c
log
(
d− 1 + e−cl

)) (
θ1 − θ2ρ

(
d− 1 + e−cl

)α)
= 0

with

α = (θ1 − θ2)/c, ρ = d−α, ξ =
log(θ2

2)− log(θ2
1)

θ1 − θ2

, γ =
1

c
log(d) +

Wδ(ξ)

W ′
δ(ξ)

+ ξ.

By making the change of variable y = e−cl, a�er some algebraic manipulations, (101) becomes

(d− 1) (1− ρ (d− 1 + y)α)+y

(
γ +

1

c
log

(
y

d− 1 + y

))
(θ1 − θ2ρ (d− 1 + y)α) = 0.

While easily solved by a numerical optimizer, the solution cannot be expressed in terms of
elementary functions. �

�e last equation in the previous example accepts two possible solutions for y, although
only one making l ≤ b ≤ a. Situations like this arise similarly for a higher number of cor-
ridors. While for small n this might be something easy to deal with, for large n this issue
might introduce a complexity problem in the numerical solution of the equations resulting
from (100). �ese considerations motivate pursuing di�erent alternatives for obtaining the
optimal corridor levels, one of which we explain now.

In what follows we will focus only in the case of the di�usion. Hence, A does not depend
on its second argument and we actually have A(a, l) = W0(l)/W0(a). Motivated by the
constraint φD(u) = ϕ, for �xed ak, we introduce the change of variable sk = A(ak, lk) =
W0(lk)/W0(ak), so that lk = W−1

0 (skW0(ak)), k = 1, . . . , n. �e constraint can now be
phrased in terms of the sk’s, where we have κ′(0)W0(u)

∏
k sk = ϕ. Assume for the moment

that the optimal sk’s are known, which we denote by s∗n,1, . . . , s∗n,n in accordance with the
notation of Section 4.4. Since an, bn and ln appear only as arguments of B in the the last
term of the sum in (79), the optimal levels of the last corridor, a∗n,n, b∗n,n and l∗n,n, should also
maximize the mapping

(a, b, l) 7→ B(a, b, l)

subject to the constraint s∗n,n = W0(l)/W0(a). Since the inverse of W0 can be explicitly
computed from the formula given in Section 4.3.1, this is a two-dimensional optimization
problem, which can be easily solved by standard optimization techniques. Assume we have
found the optimal levels for the last corridor and, motivated by (82), let cn = B(a∗n,n, b

∗
n,n, l

∗
n,n).

We can move backwards one step and repeat a similar procedure by observing that an−1, bn−1
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and ln−1 appear only in the last two terms of the sum in (79) so, a�er dividing by a common
factor, we notice that a∗n,n−1, b

∗
n,n−1 and l∗n,n−1 should maximize the mapping

(a, b, l) 7→ B(a, b, l) + cnG(a, b, l)

subject to the constraint s∗n,n−1 = W0(l)/W0(a). We can then set

cn−1 = B(a∗n,n−1, b
∗
n,n−1, l

∗
n,n−1) + cnG(a∗n,n−1, b

∗
n,n−1, l

∗
n,n−1)

and repeat. SinceV ∗n (u) = Wδ(u)c1, we observe that by proceeding in this fashion, the optimal
strategy can be obtained as a result of n consecutive 2-dimensional problems.

Having described an approach to �nding the a∗n,k’s, b∗n,k’s and l∗n,k’s given the s∗n,k’s, we are
only le� with the question of �nding the appropriate s∗n,k’s. Since the sequential optimization
part is relatively fast for a given set of the sk’s, optimal or not, we can use a greedy method
to solve this last issue. �e overall procedure is summarized in Algorithm 5.

�e idea of the algorithm is to start with an arbitrary set of levels s1, . . . , sn satisfying
the constraint κ′(0)Wδ(u)

∏
k sk = ϕ and the value of the ck’s associated with them (Lines 2

and 3). Once these initial values are set, the algorithm iterates through all couples (m1,m2)
of indices m1 and m2 in the set {1, . . . , n}. �e idea is to alter the values of sm1 and sm2 in
a multiplicative way so that the constraint is still satis�ed, obtaining a new set of s-levels,
which we denote by s̃1, . . . , s̃n (Lines 8 to 10). If a�er computing the optimal corridor levels
associated with the s̃k’s (Lines 11 to 18) we observe that the alteration leads to an improvement
in V D(u), we discard the current s-levels and replace them by their tilded versions, moving to
the next iteration. Observe that form = min(m1,m2) one can already notice an improvement
if c̃m > cm, so it is not necessary to check every value. Once the overall procedure has been
repeated L times, we compute the corridor levels associated with the latest version of the sk’s,
which are an approximation to the optimal levels a∗n,k, b∗n,k and l∗n,k, k = 1, . . . , n.

�e optimization function P appearing in Lines 11, 15, 26 and 29 is to be understood as
any procedure that maximizes the function given in the �rst argument subject to A being
equal to the second argument of P . As explicit formulas are available for the inverse of W0,
we can replace the third arguments ofB andG, and let P be any unconstrained maximization
algorithm.

A few comments are in order: while the algorithm can be used for any value of n, the
complexity of its main iterating procedure scales quadratically with the number of corridors.
Combined with the optimization procedure, this will typically lead to an excessive computa-
tion time. To address this issue, one can restrict the set of couples (m1,m2) that are considered
for improvement. �is, however, requires a good set of initial values for the sk’s. A rule of
thumb used during the implementation was to compute the optimal s∗n,k’s for a small n and
for computing the optimal levels for, say, N > n corridors, initialize the sk’s as sk = s∗n,k,
k = 1, . . . , n and sk = 1, k = n + 1, . . . , N . For these initial values, one would restrict m1

to the set {1, . . . , n} and m2 to the set {n + 1, . . . , N}. Conversely, one could initialize the
sk’s as sN−n+k = s∗n,k, k = 1, . . . , n and sk = 1, k = 1, . . . , N − n, and restrict m1 to the
set {1, . . . , N − n} and m2 to {N − n + 1, . . . , N}. While both approaches yielded similar
results, the la�er performed slightly be�er, with exceptionally good results obtained by tak-
ing N = n + 1 and repeating the procedure several times (see also Section 4.6.1 for further
insights into the initialization procedure).

Remark 4.5.2. Recall from (96) and (97) that
a∗n,i+1(u, ϕ) = a∗n−i,1(ui, ϕi), i = 1, . . . , n− 1

where ui = l∗n−i+1,1(ui−1) and ϕi = ϕi−1W0(a∗n−i+1,1(ui−1))/W0(ui−1), i = 2, . . . , n. �e
meaning of these equations is that, to solve the overall optimization problem, we “only” need
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Input : Loops L, increment r, optimization function P .
Output: Approximation to optimal levels a∗n,k, b∗n,k and l∗n,k, k = 1, . . . , n.

1 begin

2 initialize({(sk) | k = 1, . . . , n});
3 (c1, . . . , cn) :=computeC(s1, . . . , sn);
4 l := 1;
5 while l < L do

6 for (m1,m2) in {1, . . . , n}2
do

7 m := min(m1,m2);
8 s̃k := sk, k 6= m1,m2;
9 s̃m1 := rsm1 ;

10 s̃m2 := sm2/r;
11 ãn, b̃n := P (B, s̃n);
12 l̃n := W−1

0 (s̃nW0(ãn));
13 c̃n := B(ãn, b̃n, l̃n);
14 for j := n− 1 to m do

15 ãj, b̃j := P (B + c̃j+1G, s̃j);
16 l̃j := W−1

0 (s̃jW0(ãj));
17 c̃j := B(ãj, b̃j, l̃j) + c̃j+1G(ãj, b̃j, l̃j);
18 end

19 if c̃m > cm then

20 sk = s̃k, k = 1, . . . , n;
21 (c1, . . . , cn) :=computeC(s1, . . . , sn);
22 end

23 end

24 l = l + 1;
25 end

26 a∗n,n, b
∗
n,n := P (B, sn);

27 l∗n,n := W−1
0 (snW0(a∗n,n));

28 for j := n− 1 to 1 do

29 a∗n,j, b
∗
n,j := P (B + cj+1G, sj);

30 l∗n,j := W−1
0 (sjW0(a∗n,j));

31 end

32 V = c1;
33 end

Algorithm 5: Corridor level optimization algorithm

to learn to determine the optimal �rst corridor of any strategy. While it might seem that this
leads to a more e�cient optimization algorithm, the use of (96) and (97) makes implicit use
of full knowledge of the functions a∗i,1, b∗i,1 and l∗i,1 for each i = 1, . . . , n − 1 at all values u
and ϕ, which seems infeasible to numerically achieve for a large amount of corridors2. One
could still use this idea by optimizing over the values of ϕ1, . . . , ϕn−1, un−1, and determining

2Recall that there are no explicit solutions for these functions, so this needs to be done numerically.



72 4. DIVIDENDS AND A RUIN CONSTRAINT

the remaining quantities by using the optimality properties of a∗n,i, b∗n,i and l∗n,i. However, this
leads precisely to the implementation described in Algorithm 5.

�e considerations described so far work equally well for the case of the Cramér-Lundberg
model with exponential claims, as evidenced by the results in Section 4.3.2. For more general
processes, we lose the ability of expressing l purely in terms of a, as A usually depends on its
second argument. If we want to keep the advantage of transforming the constrained optimiza-
tion problem into a sequence of n unconstrained ones, we can shi� the focus by observing
that A can be wri�en in the form A(a, b, l) = I(b, l)/W0(a) for some function I . Hence, for
0 < s < 1 we can write a = W−1

0 (I(b, l)/s) and then replace the �rst argument inB andG by
this function. �e limitation here is that the inverse of W0 is in general not readily available
even if explicit formulas forW0 exist, so that further methods need to be used in this case. We
explain another one in the next section.

4.5.2. An evolutionary strategy. Evolutionary strategies (ES) have been applied with
some success in reinsurance problems where the evaluation of the function to optimize is only
possible through numerical procedures due to the non-existence of explicit algebraic expres-
sions, see e.g. [103] and [100]. Within the context of optimization of dividend strategies, ES
were recently systematically used in [4] for tackling the classical (un-constrained) version of
the current problem, and we refer to there for a broader discussion of the corresponding algo-
rithms and background. In this work, we explore a suitably adapted strategy for our purposes
as well as a penalized version of the algorithm.

As outlined in [4], basic ES’s are designed for unconstrained search spaces, so in order
to enforce the survival probability condition, some adaptations are needed to the way V D(u)
and φD(u) are evaluated. We begin by identifying the current set of strategies of the form (79)
as a subset of Rn×Rn×Rn in the natural way. A point (a, b, l) ∈ Rn×Rn×Rn satis�es the
constraints on our dividend problem if and only if:

(i) For every k = 1, . . . , n, 0 ≤ lk ≤ bk ≤ ak,
(ii) For every k = 1, . . . , n− 1, ak ≤ ak+1 and

(iii) φD(u) = κ′(0)W0(u)
∏n

k=1A(ak, bk, lk) = ϕ.
Here a = (a1, . . . , an), b = (b1, . . . , bn) and l = (l1, . . . , ln). Now, mutations occur coordinate
by coordinate by adding a normally distributed error to recombinations of the parental pop-
ulation. If we want to maintain this procedure, then, whenever ak − lk is small, constraint
(i) will be violated with high probability a�er this addition, which restricts the way in which
mutations can be carried out. As for problems with high values for n and ϕ, ak − lk will be
small, and additive mutations of this way are infeasible.

We begin by assuming that A does not depend on b, which as explained in the previous
section, happens in the case of the di�usion and the Cramér-Lundberg model with exponential
jumps. �us, by strict monotonicity ofW0, for every a > 0, the mapping l 7→ A(a, l) is strictly
increasing. With this in mind, we can use constraint (iii) to come around the limitation from
the previous paragraph. Indeed, by de�ning the changes of variable in the l-space

q1 = A(a1, l1)

and for k = 1, . . . , n− 1
qk+1 = qkA(ak+1, lk+1),

the previous set of constraints is converted to
(i’) For every k = 1, . . . , n− 1, qk+1 ≤ qk and q1 < 1,

(ii’) For every k = 1, . . . , n− 1, ak ≤ ak+1 and
(iii’) qn = κ′(0)−1W0(u)−1ϕ.



4.6. NUMERICAL RESULTS 73

Denoting the product κ′(0)−1W0(u)−1ϕ by d, we see that these changes of variable allow us
to convert condition (iii) into a univariate condition, making clear the reduction to a search
in a 3n− 1 dimensional space. Constraint (i’) can be summarized by the chain of inequalities
d = qn < qn−1 < · · · < q1 < 1. For high values of ϕ, the value of d will be close to 1, so, once
again, with high probability, any addition of a normally distributed error to the parameters qk
will make them not satisfy constraint (i’). Hence, we apply the �nal transformation

yk = Φ−1

(
qk − d
1− d

)
with Φ the c.d.f. of the normal distribution. With the la�er, we see that the only constraints
in yk and ak are

(i”) For every k = 1, . . . , n− 2, yk+1 ≤ yk,
(ii”) For every k = 1, . . . , n− 1, ak ≤ ak+1.

�e new set of constraints (i”) and (ii”) can easily be handled by sorting the values within the
vector and is handled by the ES, similarly to [4].

One should keep in mind that this approach is only viable when A does not depend on
its second argument. While one can still use strict monotonicity of W0 to theoretically argue
that the map a 7→ A(a, b, l) is invertible for each �xed b and l, and proceed in a similar
manner, in this situation one o�en runs into the problem that the inverse of W0 cannot be
explicitly identi�ed, thus limiting the applicability of the approach. In these cases, we suggest
a more straightforward procedure applying a penalty function to the value function. More
speci�cally, an adaptive penalty function is used in the algorithm, as e.g. described in [94].
�en, (79) is replaced by the function

(102) Ṽ (u) = V (u)− ξt1{φD(u)<ϕ},

where 1{φD(u)<ϕ} denotes the indicator function of the set {φD(u) < ϕ} and ξt is a parameter
that depends on the generation t. �is parameter is initially chosen larger than the over-
all optimal strategy, so that levels ak, bk, lk for which φD(u) < ϕ produce a negative value.
Moreover, it is updated for every generation according to the rule

ξt+1 =


c1ξt if best candidate satis�es φD(u) > ϕ for k generations,
c2ξt if best candidate satis�es φD(u) < ϕ for k generations,
ξt otherwise,

where c1 < 1, c2 > 1 and k are predetermined parameters. We require c1c2 6= 1 to avoid
circularity.

While the optimal set of levels satis�es φD(u) = ϕ, we cannot replace the indicator func-
tion in (102) by 1{φD(u)=ϕ}, since, by the nature of the algorithm, with probability zero the new
candidates will be in the set {φD(u) = ϕ}, so that using this indicator function would instead
produce the overall best strategy of the form (79) without regard to survival probability.

4.6. Numerical Results

We examine the performance of the strategy for four Lévy processes: the di�usion, the
Cramér-Lundberg model with exponential and Erlang claims, as well as the perturbed Cramér-
Lundberg model with exponential claims. More speci�cally, for the di�usion model

Ct = u+ µt+ σBt, t ≥ 0,
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we consider µ = 1, σ = 1, ϕ = 0.95 and δ = 0.03 as well as µ = 0.04, σ =
√

0.02, ϕ = 0.95
and δ = 0.02. For the case of the Cramér-Lundberg process

Ct = u+ c t−
Nt∑
i=1

Xi, t ≥ 0,

we chooseXi ∼ Exp(1000), a Poisson intensity λ = 5×105, c = 501, δ = 0.03 and ϕ = 0.95;
as well as Xi ∼ Erlang(2, 1), a Poisson intensity λ = 10, c = 21.4, δ = 0.03 and ϕ = 0.1.
Finally, for the perturbed Cramér-Lundberg process,

Ct = u+ µt+ σBt −
Nt∑
i=1

Xi, , t ≥ 0,

we consider µ = 1, σ = 1, ϕ = 0.7, Xi ∼ Exp(2), a Poisson intensity λ = 1 and δ = 0.03.
While the concrete choice of parameters for the perturbed Cramér-Lundberg process and

the �rst set of parameters for the di�usion is somewhat arbitrary, the second set for the dif-
fusion was chosen in accordance with the parameters used in [67]. �e Cramér-Lundberg
process with exponential claims is chosen with a high Poisson intensity λ and a small ex-
pectation in such a way that it approximates the di�usion case with µ = 1 and σ = 1. �e
parameter choice for the Cramér-Lundberg process with Erlang claims is taken from [22],
for which the overall (unconstrained) optimal dividend strategy is known to be a two-band
strategy (as opposed to a barrier strategy like in the other three cases). �e relevant quan-
tities for the di�usion and Cramér-Lundberg process with exponential claims are evaluated
through the formulas obtained in Section 4.3.1 and 4.3.2, while the formulas for the Cramér-
Lundberg process with Erlang claims and perturbed Cramér-Lundberg process are obtained
through the more general formulas from earlier in Section 4.3. �e results are shown in Fig-
ures 2–7. In all these cases, and for each relevant u, there was only one optimal strategy D
making V ∗n (u) = V D(u), which allows us to present the information in terms of the functions
a∗n,k, b

∗
n,k and l∗n,k as in Figures 5, 6 and 7. �e results in Figure 5 are shown only in the case of

the di�usion, since the resulting plots for the other processes are similar and we decided to
omit them for the sake of brevity.

We start by observing that the performance of the strategy seems to depend rather strongly
on the type of process and the concrete parameters. �e values for di�erent n converge rather
fast and uniformly to a limiting function limn→∞ V

∗
n , which is why we only display the results

for small n. In Figure 2b, we see that even for values of u close to φ−1(0.95) ≈ 1.497866, the
process achieves about 90% of the value of the unconstrained optimal strategy (which for the
di�usion is a barrier strategy). �is is quite remarkable, given that the optimal barrier strategy
has a survival probability of zero. Figure 3 shows the corresponding plots for the second set
of parameters in the di�usion case. Here the convergence to the solution for large n is slower,
and only about 80% of the unconstrained optimal value is achieved, which is nevertheless still
noteworthy. Recall that this �gure shows the results obtained for the parameters that were
also used in the numerical experiments of [67] who considered the optimal dividend problem
up to a �nite time horizon T with a ruin probability constraint and a potential lump sum pay-
out of the remaining surplus at T . Within the current framework one can not directly compare
the results from Figure 3 to those obtained in that paper, but a small adaptation adding a lump
sum dividend payment at T makes the comparison possible: using D∗n, we can compute

(103) Vn(u, T ) = E
(∫ τ∧T

0

e−δtdD∗t + e−δ(τ∧T )CD∗

τ∧T

)
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where τ = inf{t > 0 : CD∗ < 0} and D∗ is the stochastic process associated with using the
strategy represented by D∗n(u). For n = 10, T = 10 and u = 1, we computed the expectation
in (103) through MC simulation using a sample of 100,000 simulations and approximating
the di�usion through a random walk with dri� and a step size of 10−5 time units. �ese
simulations provide an approximating value of 1.158832, which is in fact considerably higher
than the value 0.20879 reported in [67].

Figure 4 shows that for the Cramér-Lundberg process with Erlang claims, the performance
is similar. Recall from Proposition 4.4.5 that for any n ≥ 1, limu→∞ V

∗
n (u)/V̄ (u) = 1, where

V̄ denotes the unconstrained optimal value function. Figures 5, 6 and 7 show the evolution

(a) V ∗n as a function of initial surplus. (b) V ∗n relative to the best strategy.

Figure 2. V ∗n (u) for n = 1, 2, 3, 4 and 5 in absolute terms (le�), and relative to
the unconstrained optimal dividend strategy (that is also given on the le�) for
the di�usion with parameters µ = 1, σ = 1, ϕ = 0.95 and δ = 0.03 (right).

(a) V ∗n as a function of initial surplus. (b) V ∗n relative to the best strategy.

Figure 3. V ∗n (u) for n = 1, 2, 3, 4 and 5 in absolute terms (le�) and relative to
the unconstrained optimal dividend strategy (that is also given on the le�) for
the di�usion with parameters µ = 0.04, σ =

√
0.02, ϕ = 0.95 and δ = 0.02

(right).

of the optimal strategies D∗n as a function of u and n for the di�usion and Cramér-Lundberg
process with exponential claims, respectively. Due to the imposition aD1 ≥ u made before
Proposition 4.4.6 to ensure uniqueness of the strategies, for values of u large enough we will
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(a) V ∗n as a function of initial surplus. (b) V ∗n relative to the best strategy.

Figure 4. V ∗n (u) for n = 1, 2, 3, 4 and 5 in absolute terms (le�), and relative to
the unconstrained optimal dividend strategy (that is also given on the le�) for
the Cramér-Lundberg process with Erlang claims (right).

have a∗n,1(u) = u, which is re�ected in all the plots of Figure 5. Moreover, the conclusion of
Proposition 4.4.5 can be traced in Figures 5b and 5c, where, again, for large enough u, all levels
but a∗n,1 become constant. Finally, it seems that we have the general trends a∗n+1,k ≤ a∗n,k and
b∗n+1,k ≤ b∗n,k for k ≤ n, as well as a∗n,k ≤ a∗n,k+1, b∗n,k ≤ b∗n,k+1 and l∗n,k ≤ l∗n,k+1, which
simply means that a∗n,k and b∗n,k are decreasing in n, but increasing in k, while l∗n,k is only
increasing in k as shown in Figures 6 and 7. While this can not be proven explicitly with
the current means, it is somewhat intuitive, at least for the last observation: a�er a corridor
a∗n,k, b

∗
n,k and l∗n,k, it seems optimal to wait for a level higher than a∗n,k to start the new corridor

a∗n+1,k, for if a∗n+1,k ≤ a∗n,k we could have exchanged the order of the corridors, which would
imply paying dividends earlier and hence on average increasing the amount of dividends paid
without changing the overall survival probability.

Finally, we would like to comment two further details about the implementation: �rst, all
processes except the di�usion exhibited local maxima around the points where bk = lk for
some index k. Hence, for these particular cases, the algorithms described in Section 4.5 were
not applied exactly as described there but with the extra condition that lk < rbk for some
0 < r < 1, generally r ≈ 0.95, which seemed to produce more adequate results.

Second, while the gradient equations derived at the beginning of Section 4.5 are hard to
deal with, they produce an interesting equation:

Wδ(bn − ln) = 0.

Combined with the form ofB, one can then deduce that the optimal distance between b∗n,n and
l∗n,n equals the barrier level of the optimal barrier strategy with initial capital a∗n,n−l∗n,n (which
in most cases equals the overall unconstrained dividend strategy). �is observation was used,
for example, to solve the �rst step in Algorithm 5 or as another check for convergence of the
ES.

4.6.1. Asymptotic behaviour of barrier levels. We will restrict ourselves now to the
case of the di�usion and �x the parameters to µ = 0.04, σ =

√
0.02, ϕ = 0.95, δ = 0.02 and

initial surplus u = 2. Figure 8 displays the optimal barrier levels for large values of n (80, 100,
and 150) computed by means of Algorithm 5. Together with Figures 6 and 7, the results show
a sort of common behavior both at the “middle” levels as well as in the last barriers. Figure 9
displays the distances between a∗n,k, b∗n,k and l∗n,k for n = 30 and n = 80 for the last 30 bands,
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(a) a∗n,1 as function of initial surplus. (b) a∗5,k as function of initial surplus.

(c) Comparison of levels for n = 1, 2.

Figure 5. Plot of the change of the optimal levels a∗n,k, b∗n,k, l∗n,k for di�erent
n’s and k’s as a function of initial surplus for di�usion with parameters µ = 1,
σ = 1, ϕ = 0.95 and δ = 0.03.

as well as the distances between a∗n,n and a∗n,k, with a shi� in the indices of n = 80 to match
the last bands. We notice that except for small values of k, the distances are extremely close
(one even does not see the di�erence visually).

�ese observations suggest that the distances between the barrier levels converge in the
�nal barriers. Explicitly, the results suggest that the limits

lim
n→∞

a∗n,n−M+1 − l∗n,n−M+1,

lim
n→∞

b∗n,n−M+1 − l∗n,n−M+1,

lim
n→∞

a∗n,n − a∗n,n−M+1,

(104)

exist for M ∈ N (and that in turn several other limits pertaining to the distances among the
levels also exist, e.g., the existence of lim

n→∞
a∗n,n−M+2−a∗n,n−M+1). In the following, we assume

that the limits in (104) indeed exist and denote them by ζM , ηM and νM respectively.
In fact, from the Lagrange equations it was observed already earlier that b∗n,n− l∗n,n should

always equal the (surplus-independent) optimal barrier level for the di�usion, giving the exact
value for η1. Motivated by this, we use the Lagrange equations to deduce further properties
of ζM , ηM and νM .
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Figure 6. Plot of the change of the optimal levels a∗n,k, b∗n,k, l∗n,k for di�erent n’s
and k’s as a function of k for the Cramér-Lundberg process with exponential
claims and initial surplus u = 2.

Recall the normal equations (100), as well as the de�nitions ofA,B andG, here specialized
for the di�usion:

A(a, l) = W0(l)/W0(a),

B(a, b, l) =
a− b+Wδ(b− l)/W ′

δ(b− l)
Wδ(a)

,

G(a, b, l) =
σ2

2

Wδ(l)

Wδ(a)

(
W ′
δ(b− l)−

Wδ(b− l)W ′′
δ (b− l)

W ′
δ(b− l)

)
.

For m = n we obtain, from (100) (with i = 1 and i = 3),

D1B(a∗n,n, b
∗
n,n, l

∗
n,n)

D3B(a∗n,n, b
∗
n,n, l

∗
n,n)
−
D1A(a∗n,n, , l

∗
n,n)

D2A(a∗n,n, l
∗
n,n)

= 0

Using the explicit forms of A and B we obtain

−Wδ(a
∗
n,n) +W ′

δ(a
∗
n,n)

(
a∗n,n − b∗n,n + Wδ(η1)

Wδ′(η1)

)
Wδ(a∗n,n)

+
W0(l∗n,n)W ′

0(a∗n,n)

W ′
0(l∗n,n)W0(a∗n,n)

= 0.

If we assume that a∗n,n →∞ as n→∞, we obtain

(105) − 1 + θ1

(
ζ1 − η1 +

Wδ(η1)

W ′
δ(η1)

)
+ e−2µζ1/σ2

= 0.
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Figure 7. Plot of the change of the optimal levels a∗n,k, b∗n,k, l∗n,k for di�erent
n’s and k’s as a function of k for the perturbed CL process with initial surplus
u = 2.

�is is an implicit equation for ζ1 which can be easily (numerically) solved given the value
of η1. While the derivation of this equation relied on the (somewhat mild) assumptions made
along the way, the value obtained from solving (105) is indeed pleasantly close to the value ob-
tained a�er computing a∗80,80− l∗80,80 with the previous numerical means (1.137077040 against
1.137077050).

Following this line of thought, one could try to obtain simpler equations for ζM , ηM
and νM for M ≥ 1. Indeed, assuming that (100) is always satis�ed, we obtain for (r, s) ∈
{(1, 1), (3, 2)} and for m = n−M + 1,
(106)

Λκ′(0)W0(u)ϕ =

Wδ(u)DrBn−M+1

∏n−M
j=1 Gj +Wδ(u)DrGn−M+1

∑n
k=n−M+2Bk

∏k−1
j=1

j 6=n−M+1

Gj

DsAn−M+1An−M+1

with

Bk = B(a∗n,k, b
∗
n,k, l

∗
n,k),

DrBk = DrB(a∗n,k, b
∗
n,k, l

∗
n,k)



80 4. DIVIDENDS AND A RUIN CONSTRAINT

Figure 8. Plot of the change of the optimal levels a∗n,k, b∗n,k, l∗n,k for large n’s and
k’s as a function of k for the di�usion with parameters µ = 0.04, σ =

√
0.02,

ϕ = 0.95, δ = 0.02 and initial surplus u = 2.

and similarly for A and G. Plugging (106) in (100) with m = n−M , we obtain, a�er cancel-
lation of common factors,

DrBn−M +DrGn−M

n∑
k=n−M+1

Bk

k−1∏
j=n−M+1

Gj−

DsAn−MAn−M+1

DsAn−M+1An−M

(
DrBn−M+1Gn−M +DrGn−M+1Gn−M

n∑
k=n−M+2

Bk

k−1∏
j=n−M+2

Gj

)
= 0.

(107)

Now, observe that the le� hand side of (107) converges to zero as n → ∞. However, a�er
multiplication by Wδ(a

∗
n,n), we can take the limit, obtaining a new set of equations:

B̃1(ζM+1, ηM+1, νM+1) + G̃1(ζM+1, ηM+1)
M∑
k=1

B̃(ζk, ηk, νk)
M∏

j=k+1

G̃(ζj, ηj)

− e−2µ(νM+1−νM )/σ2

B̃1(ζM , ηM , νM)G̃1(ζM+1, ηM+1)

− e−2µ(νM+1−νM )/σ2

G̃1(ζM , ηM)G̃(ζM+1, ηM+1)
M−1∑
k=1

B̃(ζk, ηk, νk)
M−1∏
j=k+1

G̃(ζj, ηj) = 0,

(108)
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(a) Di�erences a∗n,k − l∗n,k and b∗n,k − l∗n,k for n = 30 and n = 80.

(b) Di�erences a∗n,n − a∗n,k for n = 30 and n = 80.

Figure 9. Plot of the di�erences between the optimal levels of the last bands.
For n = 80, there is a shi� by of 50 to match the indices with those of n = 30.

B̃2(ηM+1, νM+1) + G̃2(ζM+1, ηM+1)
M∑
k=1

B̃(ζk, ηk, νk)
M∏

j=k+1

G̃(ζj, ηj) = 0(109)
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B̃3(ηM+1, νM+1) + G̃3(ζM+1, ηM+1)
M∑
k=1

B̃(ζk, ηk, νk)
M∏

j=k+1

G̃(ζj, ηj)

− e−2µ(ζM+1+νM+1−ζM−νM )/σ2

B̃3(ηM , νM)G̃1(ζM+1, ηM+1)

− e−2µ(ζM+1+νM+1−ζM−νM )/σ2

G̃3(ζM , ηM)G̃(ζM+1, ηM+1)
M−1∑
k=1

B̃(ζk, ηk, νk)
M−1∏
j=k+1

G̃(ζj, ηj) = 0

(110)

with

B̃(ζ, η, ν) = eθ1ν
(
ζ − η +

Wδ(η)

W ′
δ(η)

)
,

B̃1(ζ, η, ν) = eθ1ν − θ1B̃(ζ, η, ν),

B̃2(η, ν) = −eθ1νWδ(η)W ′′
δ (η)

W ′
δ(η)2

,

B̃3(η, ν) = −B̃2(η, ν)− eθ1ν

and

G̃(ζ, η) =
σ2

2
e−θ1ζ

(
W ′
δ(η)− Wδ(η)W ′′

δ (η)

W ′
δ(η)

)
,

G̃1(ζ, η, ) = −θ1G̃(η, ν),

G̃2(ζ, η) =
σ2

2
e−θ1ζ

(
Wδ(η)W ′′

δ (η)2

W ′
δ(η)2

− Wδ(η)W ′′′
δ (η)

W ′
δ(η)

)
,

G̃3(ζ, η) = θ1G̃(η, ν)− G̃2(η, ν).

�ese functions can be obtained from Wδ , B, G and their derivatives. Hence, we have

B̃(ζ, η, ν) = lim
x→∞

Wδ(x+ ν)B(x, x+ η − ζ, x− ζ)

and similarly for B̃1, B̃2 and B̃3 using D1B, D2B and D3B respectively. Likewise, we have

G̃(ζ, η) = lim
x→∞

G(x+ ζ, x+ η, x)

and similarly for G̃1, G̃2 and G̃3.
Observe that Equations (108) to (110) represent an improvement over the Lagrange equations
as by taking the limit we reduce the dimensionality of the problem by eliminating the La-
grange multiplier. Moreover, these equations allow for a truly recursive algorithm since they
show that the values of ζM+1, ηM+1 and νM+1 depend only on the previous values, and ζ1 and
η1 can be obtained independently from the equations displayed before.

Derivation of (108), (109) and (110) relied on the fact that the gradient equations (100) are
always satis�ed, which will happen if and only if the optimal strategy is in the interior of Dn.
However, as seen by the numerical examples considered before, this is in general not the case
as, for example, with the current parameters, one has a∗n,1 = b∗n,1 for n large enough. �is
will be re�ected in a way that there will exist a minimal M1 such (108) to (110) will not have
a “sensitive” solution (e.g., they will only have a solution with negative values). Numerical
experiments for the di�usion show, however, that for M ≥M1 one can simply assume ηM =
ζM and replace (108) and (109) by the equation obtained a�er adding their le� hand sides
(which can be derived from a Lagrange equation a�er assuming a∗n,n−M+1 = b∗n,n−M+1), thus
obtaining a system of two equations with two unknowns. Curiously enough, the case of the
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di�usion also shows that there might exist a (minimal) M2 ≥ M1 such that ηM = ζM = ηM2

for allM ≥M2. In this case, one is only le� with Equation (110) to obtain the successive values
of νM , which produces the “linear” behavior observed for the “middle” barriers in Figure 9.
Figure 10 shows the results of comparing the results from this procedure with the di�erences
between barrier levels for n = 80, where one observes that for these parameters one has
M1 = 10 and M2 = 19.

(a) Comparison between a∗80,81−M − l∗80,81−M and
ζM for M = 1, . . . , 30.

(b) Comparison between b∗80,81−M − l∗80,81−M and
ηM for M = 1, . . . , 30.

(c) Comparison between a∗80,80−a∗80,81−M and νM
for M = 1, . . . , 30.

Figure 10. Comparison between the limits in (104) and the distances between
barrier levels for n = 80.

Now, while the divergence of a∗n,n to in�nity implies that a limit strategy does not exist,
it might still be useful to compute the values of ζk, ηk and νk for k = 1, . . . ,M for a large M :
as explained before (cf. Section 4.5), for large n, the algorithms have di�culties �nding the
optimal levels unless an appropriate set of values is provided for initialization. Since the previ-
ous �gures indicate that convergence of the limits happens relatively fast, one might want to
use the following pseudo-algorithm (Algorithm 6) to approximate the values of a∗n,k, b∗n,k, l∗n,k,
k = 1, . . . , n for large n. �e idea is to suppose that k is large enough so that convergence
of the limits in (104) is already achieved (or close enough to be achieved) and hence one only
needs to optimize over 3k+1 variables instead of 3n. Moreover, the constraint on the survival
probability might be used to �nd a suitable value for an and hence the initialize and
improve functions on Lines 4 and 12 can be thought as determined by this condition. �is
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Input : Large n and M < n such that the problem with k := M − n barriers can
easily be solved (for example, k = 30).

Output: Approximation to optimal levels a∗n,k, b∗n,k and l∗n,k, k = 1, . . . , n.
1 begin

2 (ζ1, η1, ν1, . . . , ζM , ηM , νM) :=computeLimits(M);
3 initialize({(ak, bk, lk) | k = 1, . . . , n−M});
4 initialize(an);
5 for j := n−M + 1 to n do

6 aj := an − νn−j+1;
7 bj := aj − ζn−j+1 + ηn−j+1;
8 lj := aj − ζn−j+1;
9 end

10 while not convergence do

11 improve({(ak, bk, lk) | k = 1, . . . , n−M});
12 improve(an);
13 for j := n−M + 1 to n do

14 aj := an − νn−j+1;
15 bj := aj − ζn−j+1 + ηn−j+1;
16 lj := aj − ζn−j+1;
17 end

18 end

19 end

Algorithm 6: Corridor level optimization pseudo-algorithm

pseudo-algorithm is not restricted to work only with the barrier levels but can be adapted to
the step-wise survival probabilities instead (the s∗n,k’s described in Section 4.5).

4.7. Conclusions and further remarks

In this paper we proposed a new kind of dividend strategies which naturally generalize
classical barrier strategies, but have the advantage of being adjusted to control for survival
probability. While the performance of these strategies turns out to be process- and parameter-
dependent, their nature has an easy interpretation and – as observed in the illustrations –
typically only a few parameters are needed to reach a remarkable resulting survival proba-
bility while not losing much e�ciency. It is rather surprising that the performance of these
strategies turns out to be typically outstanding, giving comparable overall expected dividends
payments obtained in the unconstrained problem while respecting restrictive ruin probability
constraints. Correspondingly, these strategies can serve as benchmarks for further studies of
the constrained optimization problem.

Much like in the passage from barrier to band strategies, one can think of a further gener-
alization of the strategies proposed here: given sequences of surplus levels a1, a2, a3, . . . , an
and l1, l2, l3, . . . , ln with ln ≤ min(an, an+1) and stopping times τk as de�ned in Section 4.2,
at time τk, one can proceed to pay dividends according to an r-band strategy up until the time
when the process controlled in this way reaches the lower limit lk. It is easy to see that in this
case the formula for V is similar to (80), butDk is replaced by the relevant value. We could go
yet one step further and allow the number of bands at each corridor to vary, however, since
locally in the time interval [τk, τ

d
k ] the process behaves exactly like a controlled process for a
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normal band strategy, it seems a priori be�er to keep the number of bands constant and equal
to the number of bands of the band strategy that produces the overall best dividend-payment
strategy. Since the dimensionality and complexity of the formulas for this generalization in-
creases greatly with the number of bands considered, we preferred in the present paper to
adhere to the simpler case of barrier strategies in each corridor. A further di�culty arises
when trying to generalize the results of Section 4.4, as it is well known that for general band
strategies, the value function is not necessarily continuous.

It will also be interesting in future research to investigate further theoretical properties for
the proposed strategies. For example, it is not clear whether the weaker form of the dynamic
programming principle as discussed in Remark 4.4.7 guides the value of V ∗n or limn→∞ V

∗
n ,

which could help to prove optimality properties of this kind of strategies.





CHAPTER 5

Optimal reinsurance from an optimal transport perspective

�is chapter is based on the following article:

B. Acciaio, H. Albrecher and B. Garcia Flores. Optimal reinsurance from an optimal transport
perspective. Preprint.

Abstract. We regard the optimal reinsurance problem as an iterated optimal
transport problem between a (known) initial and an (unknown) resulting risk
exposure of the insurer. We also provide conditions that allow to character-
ize the support of optimal treaties, and show how this can be used to deduce
the shape of the optimal contract, reducing the task to a �nite-dimensional
optimization problem, for which standard techniques can be applied. �e
proposed approach provides a general framework that encompasses many
reinsurance problems, which we illustrate in several concrete examples, pro-
viding alternative proofs of classical optimal reinsurance results as well as
establishing new optimality results, some of which contain optimal treaties
that involve external randomness.

5.1. Introduction

�e identi�cation of optimal reinsurance forms is a classical problem of actuarial risk the-
ory. Starting with pioneering work of de Fine�i [53], Borch [37, 38] and Arrow [13], with
varying objective functions, constraints and choice of involved contract parties, the topic has
been a rich source of interesting mathematical problems and is still a very active �eld of re-
search, see for instance [44, 1] for an overview. Among the many conceptual and in�uential
contributions to the topic over the last years, we mention here Kaluszka [79], Cai & Tan [42],
Balbas et al. [25, 26] as well as Cheung et al. [45, 48, 47]. For game-theoretic approaches to
equilibria and e�cient solutions, see e.g. [16, 33, 117, 35]. For a situation with several rein-
surers, see Boonen & Ghossoub [34]. An interesting link of optimal reinsurance problems
to the Neyman-Pearson lemma of statistical hypothesis testing was established by Lo [88],
encompassing earlier contributions such as [118]; see [46] for a recent considerable general-
ization of this approach. For a backward-forward optimization procedure in a rather general
se�ing, we refer to Boonen & Jiang [36].

An intuitive practical constraint when looking for an optimal reinsurance contract is its
deterministic nature, i.e., the reinsured amount is identi�ed deterministically once the claim
size of the �rst line insurance company is known. At the same time, one may imagine scenar-
ios where a randomized contract (a contract where beside the original claim size, an additional
exogeneous random mechanism is used to determine the eventual reinsured amount) leads in
fact to a be�er solution of the original optimization problem. �at is, once the realizations of
the original claim sizes are available, that de�ned additional random mechanism is then used
to determine the eventual reinsured and retained amount. For instance, the proportionality
factor in a proportional reinsurance contract, or the retention in an Excess-of-Loss contract,

87
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may be determined by the outcome of a random experiment with a de�ned distribution, which
might practically be realized with the help of a lo�ery, or a random number simulator that
all involved parties agree upon and that could be applied in the presence of a notary. While
it is not straightforward to overcome the psychological barriers of such a contract formula-
tion, if the objective and constraints of the optimization problem match the true goals of the
involved parties, such a randomized solution should be preferable in case it dominates all the
deterministic solutions (see [3] for an extensive discussion). Gajek & Zagrodny [60] were
the �rst to point out such a randomized solution in a particular setup with a discrete loss
distribution, where the goal was to minimize the ruin probability of the insurer for a given
budget constraint. In [3], [15] and [114] it was then shown how random reinsurance treaties
can be optimal in more general situations, with problem formulations that are closer to ac-
tuarial practice. In fact, even if an insurer prefers to restrict the risk management to purely
deterministic reinsurance contracts, there o�en is an additional random element present in
any case, such as the reinsurance counterparty default risk, see e.g. [14, 41]. From a purely
mathematical perspective, Guerra & Centeno [69] looked for optimal reinsurance contracts in
a speci�c situation, found solutions of a potentially randomized form for their particular one-
dimensional model setup, and showed that there always exists an optimal nonrandom treaty,
so that their randomization feature could be interpreted merely as a mathematical tool. In a
certain way, parts of the present work can also be seen as a generalization of their approach
to arbitrary risk measures in a multi-dimensional se�ing, where we allow for constraints on
the solutions.

When it comes to interpreting the existence of a reinsurance contract for a portfolio of in-
surance contracts, one can view its e�ect as a reshaping of the loss distribution of the �rst-line
insurer (into a “safer” one) for a particular cost, namely the reinsurance premium. From this
perspective, one may then ask the question what the cheapest way to “couple” the original
risk distribution µ and the reinsured risk distribution ν is. Allocating costs to this coupling
corresponds to a transport problem between the marginals µ, ν. Optimal transport (OT) the-
ory is an extremely active �eld of research, that has played a key role in many areas of applied
mathematics ranging from PDEs, image processing, inverse problems, sampling, optimization,
�nance and economics to machine learning. We refer to the monographs by Villani [112], San-
tambrogio [104] and Ambrosio et al. [11] for an overview of the theory, as well as to [98] for
the computational development, and to [61, 71] for applications in economics and �nance. In
our framework, when restricting our a�ention to deterministic reinsurance contracts, we are
facing an OT problem in the so-called “Monge formulation” [95], where the joint distribution
of µ, ν is supported on the graph of a function. �is means that the �nal risk exposure of the
insurer is simply a (deterministic) function of the initial exposure (a Monge map, in transport
terms). On the other hand, allowing for randomized reinsurance treaties corresponds to the
so-called “Kantorovich formulation” of the OT problem [80]. In that case we look for a cou-
pling of µ and ν that minimizes the transportation cost without imposing it to be supported
on the graph of a function, so that the original risk alone does not necessarily already deter-
mine the reinsured amount. It is therefore natural to try to connect optimal reinsurance to
the optimal transport problem more closely, which is the goal of this paper.

�e main characteristic of classical OT is that the cost functional is linear in the measure.
When establishing a link to optimal reinsurance problems, a �rst obstacle is that even for
simple risk measures, such as the variance, linearity does not hold. Consequently, in order to
apply OT techniques, we need to linearize the reinsurance problem. �e easiest way to that
end is taking derivatives, but already at this point one runs into challenges since there are
several notions of di�erentiability in in�nite dimensions (e.g. the Fréchet or Gateaux type;
and even for the la�er one might need to impose linearity, continuity, etc.). We cannot ask
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for a very strong notion of di�erentiability since this implies continuity on opens sets (in the
space of signed measures), which is hardly satis�ed for situations of practical interest (e.g.,
even not for the expectation operator). For our purposes, it will turn out to be su�cient
(and lead to interesting results already) that the directional derivatives exist and that they are
convex linear (i.e., they satisfy the de�nition of a convex function with an equality instead
of an inequality). If we suppose that these derivatives are integral operators, then, for simple
constraints, it turns out that we can o�en characterize the support of optimal treaties up to
a �nite set of parameters; see Section 5.3. In the case of more general constraints, it will
be possible to recast the problem as an iterated OT problem, which will allow some further
insight and deductions; see Section 5.4 for details.
Organization of the paper. �e rest of the paper is organized as follows. In Section 5.2 we
de�ne the general optimal reinsurance problem considered in this paper and introduce some
notation. Section 5.3 then considers in more detail the situation with �nitely many constraints.
Here we show how this situation can be cast into a setup analogous to Lagrange optimization
of a multivariate function under constraints. In Section 5.4 we cast the optimal reinsurance
problem into the framework of an (iterated) optimal transport problem, which involves a
local linearization of the optimization problem. �e established link of the two �elds then
allows a characterization of reinsurance problems with purely deterministic optimal treaties.
In Section 5.5 we then apply the results to a number of examples, some of which rederive
classical optimality results by alternative means, while others lead to new results, and we
compare these to existing literature. Some technical derivations in these examples are deferred
to the appendix. Finally, Section 5.6 concludes.

5.2. Random Reinsurance Treaties

�is section is devoted to introducing the se�ing and notations, and to de�ning the rein-
surance problem studied in this paper.

5.2.1. De�nitions and preliminaries. For a measurable set A ⊆ Rd, we denote by
P(A) the set of probability measures on the Borel sets of A. �e push-forward measure of
η ∈ P(Rd) through a measurable map f : Rd → Rd, denoted by f#η, is the probability
measure such that f#η(A) = η(f−1(A)), for any Borel set A. For µ ∈P(Rn), we denote by
Fµ its cummulative distribution function. If ν is another probability measure on ∈ P(Rn),
denoting by πi : Rn × Rn → Rn the projection into the i-th coordinate, i = 1, 2, we can
introduce the set of couplings (or transport plans) between two given marginal distributions
µ and ν as
(111) Π(µ, ν) = {η ∈P(Rn × Rn) | π1#η = µ, π2#η = ν}.
We will also use the notation Π(µ, .) = ∪ν∈P(Rn)Π(µ, ν) for couplings where only the �rst
marginal is �xed. A key role in de�ning our problem will be played by the subset

Π≤(µ, .) = {η ∈ Π(µ, ·) | η(AR) = 1},
where AR = {(x, y) ∈ Rn × Rn | 0 ≤ yi ≤ xi, i = 1, . . . , n}. We denote by Rn

+ the subset of
Rn where all the coordinates are non-negative. Finally, for µ, ν ∈ P(R), we write ν ≺1 µ if
ν([x,∞)]) ≤ µ([x,∞)]) for every x ∈ R.

5.2.2. Problem setting. From now on, we consider a �xed probability space (Ω,F ,P),
and a non-negative random vector X = (X1, . . . , Xn) de�ned on it, representing a portfolio
of n risks from one or more insurers which are sought to be partially reinsured. We denote
the distribution of each Xi by µi, the joint distribution of X by µ, and we assume that each
Xi has a �nite �rst moment, that is, µi ∈P1(R+) and µ ∈P1(Rn

+).
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In the classical formulation of optimal reinsurance problems, the random vector X is de-
�ned in some function space L (normally an Lp-space) and the objective is to �nd the best
contract according to a pre-speci�ed risk measure, i.e., a functional P : L → R representing
the risk carried by the treaty. In this se�ing, a reinsurance contract is given by a sequence of
functions fi : Rn

+ → R+ such that
(112) 0 ≤ fi(x1, . . . , xn) ≤ xi for (x1, . . . , xn) ∈ Rn

+ and i = 1, . . . , n.

�ese functions help determine the split between the insurer and the reinsurer for the i-
th contract in the portfolio in such a way that the reinsured amount is given by fi(X) and
the retained amount is Xi − fi(X). Condition (112) ensures that these quantities are non-
negative1. �e optimal reinsurance problem is usually accompanied by a set of constraints
(beliefs, conditions or requirements) that either of the involved parties might require. For
example, if the reinsurance premiums are calculated according to an expectation principle,
the �rst-line insurer might ask for E[fi(X)] ≤ ci for some ci > 0, ensuring that reinsurance
is not too expensive. All such constraints can be represented by a set S ⊂ L , in the sense
that a contract (f1, . . . , fn) is allowed if and only if (f1(X), . . . , fn(X)) ∈ S. In this example,
S could then simply be

S = {(f1(X), . . . , fn(X)) ∈ L | E[fi(X)] ≤ ci, i = 1, . . . , n}.
�e problem formulation would then be: �nd a sequence of functions f ∗1 , . . . , f ∗n such that

P(f ∗1 (X), . . . , f ∗n(X)) = min
0≤fi(x)≤xi

(f1(X),...,fn(X))∈S

P(f1(X), . . . , fn(X)).

It is clear that with such generality, this problem is hard to solve and, moreover, the existence
of solutions is not necessarily guaranteed. Instead of restricting ourselves to a speci�c kind
of risk measures (convex risk measures are the usual choice in the literature), we reformu-
late the se�ing, echoing the passage from the Monge formulation of OT to the Kantorovich
formulation: inspired by [69], we de�ne a reinsurance treaty as the joint distribution of the
initial risk(s) of the insurer(s) and the respective reinsured amounts.

De�nition 5.2.1. A (random) reinsurance treaty for the portfolio X is a probability measure
η ∈P(Rn

+ × Rn
+) such that:

(i) the �rst marginal of η equals µ, i.e. π1#η = µ;
(ii) 0 ≤ yi ≤ xi η-a.s. for all i = 1, . . . , n, i.e. η(AR) = 1.

We denote the space of reinsurance treaties as M and endow it with the weak topology. In
transport terms, M = Π≤(µ, ·).

�e weak topology appearing in the de�nition corresponds to the smallest topology mak-
ing the functionals η 7→

∫
fdη continuous, where f is any bounded and continuous function

on Rn × Rn. �is de�nition can be seen as the multi-dimensional generalization of the one
in [69], but di�erent from the one found in [70]. Compared to the la�er, we allow for de-
pendencies between the reinsured amounts and all the risks in the portfolio, which makes M
a compact space, instead of relatively compact. Also, we endow the space with a seemingly
larger topology; however, these two topologies agree on M .

Remark 5.2.2. Random treaties as in the de�nition above can be understood as reinsurance
contracts in which the risk carried by the cedent and the reinsurer possibly has a degree of
randomness external to the risks represented in X . Indeed, for any reinsurance treaty for the

1Note that in this general formulation, the reinsured amount in contract i is allowed to depend on the claim
sizes of the other contracts as well, which in classical contracts is usually not the case, but we are interested here
to explore whether that can lead to improved solutions.



5.3. OPTIMAL REINSURANCE WITH FINITE-DIMENSIONAL CONSTRAINTS 91

portfolio X ∈ Rn
+, there exists a random vector R ∈ Rn

+ representing the part of the risks
carried by the reinsurer, whileX−R ∈ Rn

+ is the retained amount (deductible) that stays with
the �rst-line insurer(s). �en the η in De�nition 5.2.1 is the distribution of the random vector
(X,R). Observe that much as with the functions f1, . . . , fn from before, reinsurance treaties
also specify how contracts are se�led: given a realization of the claims X = x, one uses η
to determine the conditional distribution of R given X = x. One then uses this conditional
distribution to sample a value for R, say r, thus obtaining the retained amount r and the
deductible x− r. �e fact that η is supported inAR thus guarantees that both r and x− r are
non-negative.

�e risk measure from before is now a functional P : M → R and the constraints S are
then a subset of M . �e optimal reinsurance problem is then to �nd η∗ ∈ S such that
(113) P(η∗) = min

η∈S
P(η).

Any η∗ satisfying (113) is called an optimal reinsurance contract.
We notice the following:

Proposition 5.2.3. If P is lower semi-continuous and S is closed, then an optimal treaty η∗

always exists.

Proof. �e proof carries over from the proof of from Proposition 1 in [69] showing that
M is compact (observe that the proof of that proposition shows only that M is sequentially
compact; however, since M is metrizable, the two notions agree). Since S is closed, it is
compact as well, ensuring that P a�ains a minimum. �

It follows that under rather mild assumptions on the functionalP and the set of constraints
S , the existence of optimal treaties is guaranteed. However, in this broad framework, very
li�le information can be obtained about the structure of these treaties. To address that, in
this work we explore the idea of (locally) linearizing the problem, a technique o�en employed
within the context of �nite-dimensional optimization. In the subsequent sections, we will
follow this idea and delve into a speci�c set of assumptions about P or S that allow us to
reach more concrete conclusions about optimal contracts, while trying to preserve a level of
generality suitable for a wide range of applications.

5.3. Optimal reinsurance with �nite-dimensional constraints

As mentioned above, we want to use the idea of linearization to deduce further properties
about optimal reinsurance treaties. In order to do this, it is natural to then impose smoothness
properties on P . In this section we study the e�ects of doing this when S has some particular
form.

We �rst introduce some notation. For a function f : Ωc → V from any convex subset Ωc

of a vector space U into a normed space V , we let df(u;h) denote the directional derivative
of f at u ∈ Ωc in the direction of h ∈ U . �is derivative is given by the limit

df(u;h) = lim
t→0+

f(u+ th)− f(u)

t
,

whenever the terms on the right are de�ned and the limit exists. Notice that this derivative is
de�ned as the right limit at zero, and by stating that df(u;h) exists we make no assumption
about the existence or value of the le� limit (thus distinguishing df from the Gateaux deriv-
ative). If V = RN and v ∈ V , we understand the inequalities f(u) ≤ v, f(u) < v, etc. as
holding component-wise.2 In the following, whenever we apply these concepts to elements

2Notice that with this convention, a 6≤ b does not imply b < a unless n = 1.
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in M , we do so by regarding M as a subset of S , the space of �nite signed measures on
Rn × Rn endowed with the total-variation norm. With this convention, we have implicitly
de�ned two topologies on M : the weak topology as de�ned in Section 5.2 and the topology
inherited from S . While we will always consider on M the weak topology, in what follows
we will be mainly interested in the geometric properties of M , in particular its convexity, and
the only fact that we will require is that an optimal reinsurance contract exists. In this sense,
we will assume from now on that P is lower semi-continuous and, throughout this section,
that the set S is given as
(114) S = {η ∈M | G(η) ≤ 0}
for a lower semi-continuous function G = (g1, . . . , gm) : M → Rm. �at is, we allow for m
constraints expressed as inequalities gi(µ) ≤ 0, i = 1, . . . ,m.

Remark 5.3.1. Observe that when speaking of the directional derivatives of P , it is mean-
ingless to try to obtain expressions of the form dP(η;ϑ) for η, ϑ ∈ M since for any t > 0,
η + tϑ will not be a probability measure, so the expression P(η + tϑ) in the de�nition of
dP(η;ϑ) would not make sense. However, by exploiting the convexity of M , we observe
that for 0 < t < 1, η + t(ϑ − η) = (1 − t)η + tϑ ∈ M and it is meaningful to inquire
about the existence and properties of dP(η;ϑ − η), which we will do in the sequel. �ese
directional derivatives have the simple and natural interpretation of the instant change in P
when, standing in η, we move in the direction of ϑ. In this context, the use of directional
derivatives resembles the notion of Gateaux-di�erentiability employed by Deprez and Gerber
in [56] for solving problems within optimal reinsurance and optimal cooperation. In their
context, there is a risk functional P̂ acting on random variables (instead of their distributions)
and one obtains the derivatives by limits of the form (P̂(Y + t(Z − Y ))− P̂(Y ))/t. �is is,
however, di�erent from our approach, because when Y and Z are distributed according to η
and ϑ respectively, (1− t)Y + tZ will in general not be distributed according to (1− t)η+ tϑ.

Before proceeding, we would like to emphasize that the following approach in particular
applies to constraints involving the Value-at-Risk (which, compared to other common risk
measures, exhibits poor mathematical properties), for which other approaches o�en fail.

Proposition 5.3.2. Let S be given by S = {η ∈M | G(η) ≤ 0} for a function G : M → Rm,
and η∗ be an optimal reinsurance contract, i.e. satisfying (113). Let D ⊂M be given by

D = {η ∈M | dP(η∗; η − η∗) and dG(η∗; η − η∗) exist}.
Suppose there exists a subset C of D satisfying: η∗ ∈ C, C is convex, and if η1, η2 ∈ C then

(115) dP(η∗; (1−t)η1+tη2−η∗) = (1−t)dP(η∗; η1−η∗)+tdP(η∗; η2−η∗) for 0 ≤ t ≤ 1,

and similarly for dG. �en, there exist r∗ ∈ R+ and λ∗ ∈ Rm
+ such that λ∗ · G(η∗) = 0 and

(116) r∗dP(η∗; η − η∗) + λ∗ · dG(η∗; η − η∗) ≥ 0 for every η ∈ C.
If G is constant on C or there exists η ∈ C such that G(η∗) + dG(η∗; η− η∗) < 0, then r∗ in (116)
is positive.

Remark 5.3.3. Before showing a proof for the proposition, we would like to provide an intu-
itive explanation of its meaning. Recall the standard optimization procedure for di�erentiable
functions on RN with smooth constraints, where one forms the Lagrangian and solves for its
gradient while �nding the multipliers that make the solutions satisfy the constraints. Propo-
sition 5.3.2 generalizes this procedure and shows that, in the current scenario, one can still do
something similar (observe that the le�-hand side of Equation (116) would correspond to the
derivative of the Lagrangian of the associated functionals). However, due to the looseness of
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our assumptions, the conclusion is much weaker. Indeed, (116) is only an inequality instead
of an equality. �is is due to the fact that P and G are, in principle, de�ned on M only rather
than on the much larger space S of �nite signed measures. Next, observe that we have to
resort to the use of directional derivatives, as opposed to a stronger concept of di�erentiabil-
ity. Using directional derivatives we cannot ensure linearity in the second argument of dP or
dG, so that we are then forced to operate on a smaller subset of M . It is here that the set C
plays a relevant role. One can think of this set as a “large enough set in which both P and G
are smooth” (see also Remark 5.5.4 on how “large enough” could be understood). Since, for
arbitrary functionals, C will be a strict subset of M , the information provided by (116) will
not hold for all possible reinsurance contracts. Finally, notice that as opposed to the usual
Lagrangian in �nite dimensions, there is a factor r∗ multiplying P . �e appearance of this
factor is related to the regularity constraint G(η∗) + dG(η∗;µ − η∗) < 0, which essentially
eliminates the possibility of a wedge at boundary points. In particular, this also prevents us
from imposing hard equality constraints by rede�ning G to include negative among its com-
ponents. Despite these shortcomings, we will see that Proposition 5.3.2 is still strong enough
to derive important properties of η∗.

Proof. De�ne the sets
A = {(r, λ) ∈ R× Rm | r ≥ dP(η∗; η − η∗), λ ≥ G(η∗) + dG(η∗; η − η∗) for some η ∈ C},
B = {(r, λ) ∈ R× Rm | r < 0, λ < 0}.

Observe that A is non-empty, since C is non-empty, and convex thanks to (115). On the other
hand, B is clearly convex, non-empty and open. We claim that A and B are disjoint. Arguing
by contradiction, suppose there is some r < 0, λ < 0 and η ∈ C such that

dP(η∗; η − η∗) ≤ r and G(η∗) + dG(η∗; η − η∗) ≤ λ.

Notice that the �rst inequality implies η 6= η∗. Since
lim
t→0+
P(η∗ + t(η − η∗))− P(η∗)− tdP(η∗; η − η∗) = 0

and
lim
t→0+
G(η∗ + t(η − η∗))− G(η∗)− tdG(η∗; η − η∗) = 0,

it follows that there exists 0 < s < 1 such that
G(η∗ + s(η − η∗)) < 0 and P(η∗ + s(η − η∗))− P(η∗) < 0,

so that η∗+ s(η−η∗) ∈ S and P(η∗+ s(η−η∗)) < P(η∗), contradicting the optimality of η∗.
�erefore, A ∩ B = ∅. From the separation theorem for convex sets (see e.g. �eorem 3.4 in
[101]), there exists a (non-zero) continuous linear functional Λ∗ on R× Rm and γ ∈ R such
that

Λ∗(r1, λ1) < γ ≤ Λ∗(r2, λ2), (r1, λ1) ∈ B, (r2, λ2) ∈ A
and Λ∗(r, λ) = r∗r + λ∗ · λ for some r∗ ∈ R and λ∗ ∈ Rm. Since (0, 0) ∈ A ∩B, γ = 0. �us
r∗r + λ∗ · λ < 0 for every r < 0 and λ < 0, which can hold if and only if r∗ ≥ 0 and λ∗ ≥ 0.

Now, for every η ∈ C, (dP(η∗; η − η∗),G(η∗) + dG(η∗; η − η∗)) ∈ A, and therefore
(117) r∗dP(η∗; η − η∗) + λ∗ · (G(η∗) + dG(η∗; η − η∗)) ≥ 0, η ∈ C.
In particular, by choosing η = η∗, we obtain λ∗ · G(η∗) ≥ 0. However, the inequalities
G(η∗) ≤ 0 and λ∗ ≥ 0 together imply λ∗ ·G(η∗) ≤ 0, so that necessarily λ∗ ·G(η∗) = 0. Hence,
(117) becomes equation (116). If there exists η ∈ C such that G(η∗) + dG(η∗; η − η∗) < 0, we
cannot have r∗ = 0, for otherwise we would have λ∗ 6= 0 and λ∗ · dG(η∗; η − η∗) < 0,
contradicting (116). In this situation we can therefore replace Λ∗ by Λ∗/r∗, and proceed in
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the same manner. Finally, we observe that this argument does not hold if G is constant on C.
However, in this scenario, dG(η∗; η − η∗) = 0 for every η ∈ C and

dP(η∗; η − η∗) = lim
t→0+

P((1− t)η∗ + tη)− P(η∗)

t
≥ 0

for every η ∈ C by convexity of C. �us, (116) holds in any case for any λ∗ ≥ 0. �

In several situations, P and G are regular enough so that one can naturally extend them to
a larger subspace of S , making the results stronger. For example, the functionals of Examples
5.5.10 and 5.5.11 below can be naturally extended to the subspace U ⊂ S given by

U =

{
η ∈ S |

∫
R2+

x2|η|(dx) <∞
}
,

where |η| denotes the total variation of η. In this set, the Gateaux derivatives of P and G
are de�ned everywhere and are linear. Since Proposition 5.3.2 is formulated in terms of the
directional derivatives, it is not necessary to extend P and G to a larger space, but we can
focus instead on an extension of their derivatives. �is is relevant when, e.g., P is related to
the Value-at-Risk, since in this case we do not have to specify an extension of P to signed
measures, but instead we can focus on extensions of dP . �is idea is used in the following
result.

Proposition 5.3.4. In the setup of Proposition 5.3.2, assume further that there exists a subspace
U ⊂ S and linear mappings P̂ : U → R and Ĝ : U → Rm such that:

(i) U contains the point masses of points in AR and M ⊂ U ,
(ii) dP(η∗; ·) and dG(η∗; ·) are the restrictions to C − η∗ of P̂ and Ĝ, respectively, and

(iii) P̂ and Ĝ are integral operators with continuous kernels, i.e., there exist continuous func-
tions pη∗ : Rn

+ × Rn
+ → R and gη∗ : Rn

+ × Rn
+ → Rm such that

P̂(η) =

∫
Rn+×Rn+

pη∗(x, y)η(dx, dy) and Ĝ(η) =

∫
Rn+×Rn+

gη∗(x, y)η(dx, dy).

�en, for every (x, y) ∈ Supp(η∗), there exists a closed set I ⊂ [0, x] with y ∈ I and

(118) r∗pη∗(x, y) + λ∗ · gη∗(x, y) = min
t∈I

r∗pη∗(x, t) + λ∗ · gη∗(x, t).

Here, for x, y ∈ Rn, [x, y] represents the closed box [x1, y1] × · · · × [xn, yn]. Similarly,
we denote by ]x, y[ the product of the open intervals ]x1, y1[× · · ·×]xn, yn[. Observe that the
above assumptions implicitly require that the integrals are �nite for all η ∈ U , in particular
for all η ∈M .

Proposition 5.3.4 converts the information about measures conveyed by (116) to informa-
tion about points in Rn × Rn, by describing the support of optimal contracts in terms of the
functions pη∗ and gη∗ . Essentially, one would like to use (116) evaluated at point masses 1(x,y)

to accomplish this. However, since for any η, M will not contain all the point masses, one
needs to be more creative.

Proof. Let (x, y) be an arbitrary point in AR. For t ∈ Rn, de�ne the measures ηx,y,t,ε by
ηx,y,t,ε(A) = η∗(A)− η∗(A ∩Bε(x, y)) + η∗((A− (0, t)) ∩Bε(x, y)), for A ∈ Rn

+ × Rn
+,

where A− (0, t) denotes the translation of A by−(0, t) ∈ Rn
+×Rn

+, and Bε(x, y) is the open
ball around (x, y) of radius ε > 0. �e proof will be divided into four steps:

Step 1. Let (x, y) ∈ AR be such that 0 < y < x. De�ne δ by

δ = min {d((x, y), ∂AR), d((x, y), ∂AR − (0, t))} .
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�en δ > 0 and ηx,y,t,ε ∈M for every −y < t < x− y and 0 ≤ ε < δ.

Here, d((x, y), B) denotes the distance of (x, y) from the set B. �e idea of this choice is that
δ is the largest number for which the last two terms in the de�nition of ηx,y,t,ε(AR) cancel out,
thus producing an element of M . Now, strict positivity of δ follows from the choice of y and
t: since 0 < y < x, (x, y) 6∈ ∂AR, and since (x, y) ∈ AR− (0, t) if and only if (x, y+ t) ∈ AR,
it follows that, for −y < t < x − y, (x, y + t) 6∈ ∂AR, so (x, y) 6∈ ∂AR − (0, t). As both
∂AR and ∂AR − (0, t) are closed, we obtain δ > 0. Next, we need to check that ηx,y,t,ε ∈M .
Since ηx,y,t,ε is a (positive) measure in Rn

+ × Rn
+, we just need to show that it is a probability

measure giving full measure to AR with π1#ηx,y,t,ε = µ. We have:
• ηx,y,t,ε(AR) = 1 and ηx,y,t,ε(AcR) = 0, since Bε(x, y) ⊂ AR ∩ (AR − (0, t)) for

0 ≤ ε < δ;
• For measurable A ⊂ Rn

+, A× Rn − (0, t) = A× Rn, so

ηx,y,t,ε(A× Rn) = η∗(A× Rn) = µ(A).

We conclude that ηx,y,t,ε ∈M .

Step 2. If (x, y) ∈ Supp(η∗) is such that 0 < y < x, then, for every −y < t < x − y and
continuous function f : Rn

+ × Rn
+ → Rn, we have

(119) lim
ε→0

∫
fdηε = f(x, y + t)− f(x, y),

where

ηε =
ηx,y,t,ε − η∗

η∗(Bε(x, y))
.

Let ϑε, πε ∈P(Rn
+ × Rn

+) be given by

ϑε(A) =
η∗(A ∩Bε(x, y))

η∗(Bε(x, y))

and

πε(A) =
η∗((A− (0, t)) ∩Bε(x, y))

η∗(Bε(x, y))
,

so that ηε = πε − ϑε. To prove (119) it is then enough to show that
∫
fdϑε → f(x, y) and∫

fdπε → f(x, y + t). For this, note that∣∣∣∣∫ fdϑε − f(x, y)

∣∣∣∣ =

∣∣∣∣ 1

η∗(Bε(x, y))

∫
Bε(x,y)

fdη∗ − f(x0, y0)

∣∣∣∣→ 0 as ε→ 0

by the Lebesgue di�erentiation theorem. �e other convergence is proved similarly.

Step 3. For (x, y) ∈ Supp(η∗) with 0 < y < x, the statement of the proposition holds by taking

I = {t ∈]0, x[ | 0 is a limit point of {ε ∈ [0, δ) | ηx,y,t,ε ∈ C}}.

De�ne
E(t) = {ε ∈ [0, δ) | ηx,y,t,ε ∈ C}

and
J = {t ∈]0, x[ | 0 is a limit point of E(t− y)}.
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By assumption, we know that η∗ ∈ C, so E(0) = [0, δ), implying y ∈ J . From (116) and
linearity, we obtain

r∗P̂
(
ηx,y,t−y,ε − η∗

η∗(Bε(x, y))

)
+ λ∗ · Ĝ

(
ηx,y,t−y,ε − η∗

η∗(Bε(x, y))

)
≥ 0

for t ∈ J and ε ∈ E(t− y). Le�ing ε→ 0 in the previous inequality, by Step 2 we obtain

r∗(pη∗(x, t)− pη∗(x, y)) + λ∗ · (gη∗(x, t)− gη∗(x, y)) ≥ 0, t ∈ J(x, y).

Using continuity once again, we see that this inequality is valid for every t in the closure of
J , so we can take I = J , obtaining (118).

Step 4. �e statement of the proposition holds for arbitrary (x, y) ∈ Supp(η∗).

Observe that it only remains to show that the statement is true for (x, y) ∈ ∂AR. Step 1 still
holds by se�ing δ = d((x0, y0), ∂AR − (0, t)) for −y < t < x − y. Notice that now we only
have Bε(x, y)∩ ⊂ AR ∩ (AR − (0, t)), however, this is enough to show that ηx,y,t,ε(AR) = 1
and ηx,y,t,ε(AcR) = 0 by noticing that

η∗(A) = η∗(A ∩ AR)

for every measurable A ⊂ Rn
+, so that we anyway have ηx,y,t,ε ∈M . Steps 2 and 3 carry over

verbatim to this case. �

Remark 5.3.5. �e measures ηx,y,t,ε in the previous proof were already used in [69] and again
in [70] with the same objective of identifying the support of optimal reinsurance contracts.
However, since the functionals in these papers were more speci�c, one was able to directly
obtain a description of the sets I there in a more direct manner.

Remark 5.3.6. Note that the conclusion of Proposition 5.3.4 is somewhat redundant for our
purposes: Equation (118) assumes knowledge of points in the support of η∗, which is the
contract that we wish to determine. Nonetheless, the procedure can be reversed: if by some
mechanism we can identify the sets I , then we will know that points in the support of η∗ will
be the minima of r∗pη∗(x, ·) + λ∗ · gη∗(x, ·). In most situations, pη∗ and gη∗ depend on η∗ only
through a �nite set of parameters, so we can compute these minima without full speci�cation
of η∗, and in common applications, there will be only �nitely many minima. Hence, the task
of �nding optimal contracts is then reduced to identifying the minima that do belong to the
support of η∗ together with the correct parameters specifying η∗, a task that is in general
easier than computing a full measure3. Examples 5.5.1 and 5.5.3 below illustrate the procedure
of identifying the minima, reducing the problem to a two-dimensional and one-dimensional
optimization task, respectively.

Finally, when the extension can be done across the entire set M , more can be said.

Proposition 5.3.7. In the se�ing of Proposition 5.3.4, assume we can take C = D = M . More-
over, assume that the partial minimization function

m(x) = inf
y∈[0,x]

r∗pη∗(x, y) + λ∗ · gη∗(x, y)

is measurable. �en

(120) η∗
(
{(x, y) ∈ AR | y ∈ argmint∈[0,x] r

∗pη∗(x, t) + λ∗ · gη∗(x, t)}
)

= 1.

3�is can again be compared with the common optimization technique in RN : when looking for extremes
of a smooth function, one �rst �nds the zeros of the gradient and then chooses the zeros that produce the desired
extrema.
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Proof. Let h : Rn
+ × Rn

+ → R be given by h(x, y) = r∗pη∗(x, y) + λ∗ · gη∗(x, y) and let
M be the set appearing in (120). Observe �rst that

M = {(x, y) ∈ AR | h(x, y)−m(x) = 0},

so measurability of m implies that M is measurable, and (120) makes sense. �e statement
then follows once we show the inequality

(121)
∫
Rn+×Rn+

h(x, y) η∗(dx, dy) ≤
∫
Rn+
m(x) µ(dx).

Indeed, since
∫
Rn+×Rn+

m(x) η∗(dx, dy) =
∫
Rn+
m(x) µ(dx) and h(x, y) ≥ m(x) for every

(x, y) ∈ AR, from the inequality in (121) it follows that even equality holds, thus h(x, y) =
m(x) η∗-a.e., which is equivalent to (120).

To prove (121), we make use of �eorem 5.5.3 in [108], which states that every analytic
subsetA of the product of two Polish spaces admits a section s that is universally measurable,
i.e., s is measurable with respect to the completion of the Borel σ-algebra w.r.t. any probability
measure. With A = M , it follows that there exists a function s : Rn → Rn × Rn such that
s(x) ∈M and π1 ◦ s(x) = x for every x ∈ Rn (a section of M ), and such that s is universally
measurable. In particular, s is measurable with respect to the µ-completion of Rn. Let η be
the probability measure on Rn×Rn given by η = s#µ. Notice that by the µ-measurability of
s, η is well de�ned and, moreover, it is a reinsurance contract. Hence, (116) implies

r∗dP(η∗; η − η∗) + λ∗ · dG(η∗; η − η∗) = r∗
∫
Rn+×Rn+

pη∗(x, y)(η − η∗)(dx, dy)

+ λ∗
∫
Rn+×Rn+

gη∗(x, y)(η − η∗)(dx, dy)

=

∫
Rn+×Rn+

h(x, y)(η − η∗)(dx, dy) ≥ 0,

so ∫
Rn+×Rn+

h(x, y) η∗(dx, dy) ≤
∫
Rn+×Rn+

h(x, y) η(dx, dy)

=

∫
Rn+
h ◦ s(x) µ(dx) =

∫
Rn+
m(x) µ(dx),

as desired. �

Corollary 5.3.8. In the se�ing of Proposition 5.3.7, let P be given by

P(η) =

∫
Rn+×Rn+

p(x, y)η(dx, dy),

for a continuous function p : Rn
+ × Rn

+ → R, and de�ne the set M by

M = {(x, y) ∈ AR | y ∈ argmint∈[0,x] p(x, t)}.

�en, η ∈M is an optimal reinsurance contract if and only if η(M) = 1.

Proof. Let η ∈M . If η is optimal, Proposition 5.3.7 implies η(M) = 1, since h = pη = p
and gη = 0 (i.e., the function pη is the same for all optimal contracts), so we only need to prove
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the reverse implication. However, this is immediate from (the proof of) Proposition 5.3.7, since
if η(M) = 1, then p(x, y) = m(x) η-a.e., where m is the partial minimization function, so

P(η) =

∫
Rn+×Rn+

p(x, y) η(dx, dy) =

∫
Rn+×Rn+

m(x) µ(dx)

=

∫
Rn+×Rn+

p(x, y) η∗(dx, dy) = P(η∗),

where η∗ is any optimal reinsurance contract. Hence η is optimal. �

Remark 5.3.9. In Proposition 5.3.7, it is necessary to require the partial minimization func-
tion to be measurable. While this might seem like an assumption that should usually be satis-
�ed, in general the partial minimization operation yields only a lower semi-analytic function
and one cannot ensure the set M to be analytic (see Proposition 7.47 of [29] for further de-
tails). �is observation also explains why tools from descriptive set theory need to be used in
a place which is seemingly unrelated. Note, however, that these tools are mostly required to
ensure the existence of the section s. In some applications, the functions p and g are smooth
enough so that one can show the existence of s by more conventional methods (e.g., the im-
plicit function theorem).

Remark 5.3.10. If for every x ∈ Rn the function r∗pη∗(x, ·)+λ∗·gη∗(x, ·) has exactly one min-
imizer, the section s from the proof of Proposition 5.3.7 is unique µ-a.e and η∗ = (Id, τ)#(µ)
for some function τ , where Id is the identity function. However, it does not necessarily follow
that a deterministic reinsurance contract is optimal, since τ might fail to be Borel-measurable.
�is might happen when, for instance, τ does not “move measurably” from one x to the other,
describing a measurable set of measure zero in Rn×Rn without a measurable projection into
Rn. For example, for n = 1, let E be a non-Lebesgue-measurable subset of ]0,∞[ and de�ne

E ′ = {(x, y) ∈ R2
+ | y = x if x ∈ E and y = 0 otherwise} ⊂ D ∪ (R+ × {0}),

where D = {(x, x) ∈ R2
+ | x ≥ 0} is the diagonal of R2

+. As D ∪ (R+ × {0}) has Lebesgue-
measure zero, E ′ is Lebesgue measurable. Le�ing p : R+ × R+ → R+ be the distance to E ′,
P(η) =

∫
p dη and G = 0, we see that p is continuous and the assumptions from Proposition

5.3.7 are satis�ed with partial minimization function identically zero. Moreover, r∗pη∗(x, ·) +
λ∗ · gη∗(x, ·) = p(x, ·) has exactly one minimum, namely, at 0 or x, so that τ(x) = x1E(x),
where 1E is the indicator function of E. Hence, τ is not measurable, so by uniqueness, no
deterministic reinsurance contract exists. Observe, however, that any contract supported in
E ′ will be optimal, so one can easily identify optimal contracts. It is clear that this kind of
pathology is not likely to appear in examples commonly happening in practice, however the
fact that this kind of risk measure is considered within our assumptions points towards the
generality of our se�ing.

Remark 5.3.11. Corollary 5.3.8 is, in a way, the best we can do in terms of fully identifying
optimal reinsurance contracts. Coming back to the hypotheses and notation of Proposition
5.3.7, the same argument given in the proof of Corollary 5.3.8 shows that∫

Rn+×Rn+
h(x, y) η∗(dx, dy) =

∫
Rn+×Rn+

h(x, y) η̂(dx, dy)

for any η̂ ∈M such that η̂(M) = 1. �is implies that an equation analogous to (116) is valid
when we replace η∗ by η̂ on the second argument of dP and dG, i.e.,

r∗dP(η∗; η − η̂) + λ∗ · dG(η∗; η − η̂) ≥ 0, η ∈M .

However, this condition is not su�cient for optimality when G is not constant.
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5.4. Optimal transport

�e optimal transport theory is concerned with the problem of moving mass from a de-
�ned distribution to another one while minimizing the cost of transportation. Speci�cally,
given two Polish spaces X and Y , two distributions µ and ν on them, respectively, and a cost
function c : X × Y → R ∪ {+∞}, the OT problem can be formulated as

(122) inf
η∈Π(µ,ν)

∫
c(x, y)η(dx, dy),

where Π(µ, ν) is the set of probability measures on X ×Y with marginals µ, ν; see [112, 11].
An optimizer η∗ of (122) is called optimal coupling. If it is concentrated on the support of a
map, that is η∗ = (Id, τ)#µ, then it is called an optimal Monge coupling, and τ is an optimal
Monge map.

In this section we will reformulate the optimization problem (113) as a transport problem.
We consider X = Y = Rn, so that Π(µ, ν) is the set of couplings de�ned in (111). Moreover,
the �rst marginal µ is �xed to be the distribution of the portfolio X to be reinsured, while
ν is the distribution of the risk carried by the reinsurer, to be determined in an optimal way.
�is will correspond to the second marginal of the optimal treaty η∗ in (113). �is analysis
will require: (i) de�ning the set of feasible distributions for the risk carried by the reinsurer,
i.e. the possible second marginals ν to consider in (122); (ii) identifying the appropriate cost
function in (122); (iii) ensuring the joint distribution η of µ and ν to satisfy the requirements
in De�nition 5.2.1, so that η ∈M = Π≤(µ, ·).

In the previous section it was necessary that the set S was described by a �nite set of
inequalities (�nitely many constraints). �roughout this section we would like to drop this
assumption and investigate what conclusions can be drawn when the constraints are more
general (that is, involving equalities or in�nitely many constraints).4 As indicated before, this
is a rather hard task if we allow P to be an arbitrary (lower semi-continuous) functional.
We make then some concessions and, still inspired by the idea of local linearization from the
previous section, we assume the following:
(A1) If η∗ ∈ S is an optimal reinsurance contract, then for every η ∈ S and 0 ≤ t ≤ 1, we

have
P(η∗) ≤ P((1− t)η∗ + tη);

(A2) For every η ∈ S , dP(η; ·) exists for every direction in S − η and is given as an integral
operator, i.e., there exists a measurable function pη : Rn ×Rn → R such that, for every
ϑ ∈ S ,

dP(η;ϑ− η) =

∫
pη(x, y)(ϑ− η)(dx, dy).

Observe that this implicitly yields that the integral is �nite.
Given the considerations made in the previous sections, assumption (A2) seems natural in
order to linearize the problem. In contrast, assumption (A1) might seem odd, as it may appear
more natural to require S to be convex. In our examples, this will most o�en be the case, but
we prefer to phrase it this way to cover a larger amount of scenarios (for example, when S is
arbitrary and P is concave, as is the case for Value-at-Risk in Example 5.5.11).

Assumptions (A1) and (A2) jointly imply that

(123)
∫
pη∗(x, y) η∗(dx, dy) = min

η∈S

∫
pη∗(x, y) η(dx, dy).

4Recall from Remark 5.3.3 that introducing equalities through g ≤ 0 and −g ≤ 0 was not necessarily
possible for positive r∗.
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Le�ing qη∗ denote the function on Rn ×Rn such that qη∗(x, y) = pη∗(x, y) on AR and other-
wise being equal to +∞, (123) can be stated as

(124)
∫
qη∗(x, y) η∗(dx, dy) = min

ν∈π2(S)
C(µ, ν),

where π2(S) = {π2#η : η ∈ S} and

(125) C(µ, ν) = min
η∈Π(µ,ν)∩S

∫
qη∗(x, y) η(dx, dy).

Equations (124)-(125) mean that the optimal contract satis�es a double minimization property,
where the inner minimum (125) is a constrained optimal transport problem (the couplings
need to satisfy the constraint of belonging to S). Note that we still face the issue from the
previous section that the function pη∗ depends on η∗ and so does the cost function in (125).
�is means that we are facing transport problems depending on the optimal treaty that we
are looking for. �e idea behind (125) is, however, similar to the one developed before in the
sense that for a large set of functionals, the function qη∗ will depend on η∗ solely through a
�nite set of parameters which can be thought of as �xed at the beginning. �e hope is that,
by means of optimal transport techniques, one can provide information about the general
structure of optimal couplings η∗, for example about the geometric characterizations of their
supports, and by leveraging this one can �nd the parameters which achieve the minimum in
(124).5 For example, if for every ν ∈ π2(S), there exists an optimal Monge coupling for the OT
problem (125), then η∗ is also given by a deterministic reinsurance contract. �is is evident
by observing that for an optimal reinsurance treaty η∗, we have∫

qη∗(x, y) η∗(dx, dy) = C(µ, ν∗),

where ν∗ = π2#η
∗. Now, while existence of an optimal Monge coupling is a rather scarce

property in OT problems, this observation is relevant enough to cover some interesting cases
in the context of optimal reinsurance. �is is illustrated in the following proposition, and then
applied in Examples 5.5.10 and 5.5.11 below.

Proposition 5.4.1. Assume P is given by

(126) P(η) = P1(T#η) + P2(π2#η),

where T is the linear operator T : Rn×Rn → Rn given by T (x, y) = x−y, and the functionals
η 7→ P1(T#η), η 7→ P2(π2#η) from M to R satisfy condition (A2) above with functions hη, kη :
Rn → R, respectively. �en, if P satis�es (A1), it also satis�es (A2) with pη given by

(127) pη(x, y) = hη(x− y) + kη(y).

Moreover, if n = 1 and
(i) for every ν ∈ π2(S), we have Π(µ, ν) ∩M ⊂ S ,

(ii) hη∗ is strictly convex for every optimal treaty η∗, and
(iii) the distribution of X is continuous,

then an optimal Monge map exists for (125) for every ν ∈ π2(S).

Observe that, under the assumption Π(µ, ν) ∩M ⊂ S for every ν ∈ π2(S), (125) turns
into

C(µ, ν) = min
η∈Π(µ,ν)

∫
qη∗(x, y) η(dx, dy).

5Note, however, that this is not a requirement for optimality but rather a consequence. A�er having used
the information to characterize optimal treaties, one still needs to �nd the one that minimizes P .
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If we dropped the requirement of the reinsurance contracts being supported inAR, this prob-
lem would become

(128) Ĉ(µ, ν) = min
η∈Π(µ,ν)

∫
pη∗(x, y) η(dx, dy),

with pη∗ given as in (127). With hypotheses (ii) and (iii) as in Proposition 5.4.1, we would be
in the Gangbo-McCann se�ing (cf. [62]) and the minimum in (128) would be achieved by an
unique optimal coupling π∗ ∈ Π(µ, ν) of Monge type of the form

(129) π∗ = (Id, τ ∗)#µ = (Id, Id− (∇pη∗)−1 ◦ ∇ϕ)#µ,

for some pη∗-concave function ϕ, irrespective of n. Furthermore, any map τ ∗ of this form
would be optimal between µ and τ ∗#µ. Since this would be valid for any ν ∈ π2(S), the optimal
contract would be deterministic. In the reinsurance se�ing, we could use this observation to
then optimize over contracts of the form (129) such that

0 ≤ (∇pη∗)−1 ◦ ∇ϕ ≤ Id,

thus ensuring π∗ ∈ M . However, we do not know a priori whether any such function ϕ
exists or whether all ν ∈ π2(S) can be coupled with µ with these functions. �e conclusion
of Proposition 5.4.1 is that we can still guarantee this at least for the case n = 1.

Proof. It is easy to see that P satis�es (A2) and pη is given as in (127), so we only need
to show the second part of the statement. For this, �x ν ∈ π2(S) and observe that by (A2),
C(µ, ν) is �nite. �e �rst condition means that the constraints depend only on the second
marginal of any reinsurance treaty, so that for any optimal contract η∗,

min
η∈Π(µ,ν)∩S

∫
pη∗(x, y) η(dx, dy) = min

η∈Π(µ,ν)

∫
pη∗(x, y) η(dx, dy)

= c(ν) + min
η∈Π(µ,ν)

∫
hη∗(x− y) η(dx, dy),

(130)

where c(ν) =
∫∞

0
kη∗(y) ν(dy). �e second and third condition from the statement of the

proposition are technical conditions that ensure the existence of a unique Monge optimizer
for the last minimum at the end of (130), given by

R = Fµ ◦ F−1
ν .

Since ν ≺1 µ, we have R(x) ≤ x for every x ≥ 0, so R is also an optimizer for C(µ, ν). Since
ν was arbitrary, the proposition follows. �

In what follows we use the notation πi,j for the composition Rn × Rn → Rn → R of the
projection onto the ith-coordinate, i = 1, 2, and then onto the j-th coordinate, j = 1, . . . , n.

Proposition 5.4.2. Assume that P can be wri�en as a composition P = F ◦ R, where R :
M →P(R)n is given by

R(η) = (π2,1#η, . . . , π2,n#η)

and F : P(R)n → R is a lower semi-continuous functional. Assume moreover that there exists
a topological space O such that S is given as S = U−1(E) for some closed E ⊂ O, where
U = V ◦ R and V : P(R)n → O is continuous on the image of R. Let C be a copula for the
distribution µ of X . �en, if η∗ is an optimal reinsurance treaty and ν∗i = π2,i#η

∗, i = 1, . . . , n,
the treaty π whose distribution function is given by

Fπ(x1, . . . , xn, y1, . . . , yn) = C(min(Fµ1(x1), Fν∗1 (y1)), . . . ,min(Fµn(xn), Fν∗1 (yn)))
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is also optimal. In particular, if each Fµi is continuous, an optimal deterministic reinsurance
contract exists, where the components are given by the functions

Ri(x) = Fµi(F
−1
ν∗i

(x)), i = 1, . . . , n.

Proof. �is is straightforward a�er noticing thatR(η∗) = R(π). Observe that the distri-
butions min(Fµi , Fν∗i ) represent the c.d.f’s of the monotonic rearrangements of the individual
claims with the ν∗i ’s, so by the argument given at the end of the proof of Proposition 5.4.1, π
is concentrated on AR. �

Proposition 5.4.2 simply states that if the risk measure and the constraints depend solely
on the reinsured distribution, there is no need for randomization. Observe moreover that the
statement does not make use of the particular form of P other than its factorization, so the
statement is valid if we change the point of view and assume that π2#η represents the dis-
tribution of the deductible instead of the reinsured amount. Proposition 5.4.1 di�ers from
Proposition 5.4.2, in the sense that Proposition 5.4.1 allows for a “mixing” between the de-
ductible and the reinsured amount, while Proposition 5.4.2 assumes P is only determined by
the reinsured amounts.

5.5. Examples

We explore the techniques developed in the previous sections to illustrate some examples
in optimal reinsurance that can be approached with this framework; see [1, Ch. VIII] for a
systematic survey on optimal reinsurance problems. As in Proposition 5.4.1, in the sequel the
linear operator T : Rn × Rn → Rn represents the vector of retained risks T (x, y) = x − y.
For any ν ∈P(R), we denote by ν the mean of ν, that is, ν =

∫
yν(dy).

�e following three examples exemplify how the results of Section 5.3 can be used. For
ease of reading, several details of the rigorous derivation are deferred to the appendix.

Example 5.5.1. In this example we deal with a problem originally considered by de Fine�i
in [53] (see also Section 8.2.6.1 in [1]). Here, a �rst-line insurer has n sub-portfolios with
insurance risks X1, . . . , Xn and is looking for a reinsurance contract R = (R1, . . . , Rn) that
minimizes the aggregate expected loss a�er reinsurance, under a constraint on the retained
aggregate variance. Assume that the premium for the i-th contract is computed according to
an expected value principle with safety loading βi, so that the total loss experienced by the
�rst line insurer is given by

n∑
i=1

(Xi −Ri + (1 + βi)E[Ri]).

Assume that all the βi’s are di�erent (e.g. because they represent di�erent business lines) and
w.l.o.g. ordered increasingly, i.e., 0 < β1 < · · · < βn. Taking expectations in the previous
equation, we see that the risk measure can be chosen as

(131) P(η) =

∫ n∑
i=1

βiyi η(dx, dy).

Assume further a bound on the retained variance, i.e., that for a constant c s.t. 0 < c <
Var(

∑n
i=1Xi), the contract is required to satisfy Var(

∑n
i=1(Xi−Ri)) ≤ c. In our notation, G

can then be wri�en as

G(η) =

∫ ( n∑
i=1

(xi − yi)

)2

−

(
n∑
i=1

∫
(xi − yi) η(dx, dy)

)2

η(dx, dy)− c.
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Le�ing η∗ be any optimal contract, we observe that the functionals P and G satisfy the con-
ditions of Propositions 5.3.4 and 5.3.7 with functions pη∗ , gη∗ : Rn

+ × Rn
+ → R given by

pη∗(x, y) =
n∑
i=1

βiyi,

gη∗(x, y) =

(
n∑
i=1

(xi − yi)

)2

− 2σ
n∑
i=1

(xi − yi),

with σ =
∑n

i=1 (πi ◦ T )#η∗. Observe further that if η is the contract that speci�es full rein-
surance, then

G(η∗) + dG(η∗; η − η∗) = −2c < 0,

so it follows that there exists λ∗ ≥ 0 such that the support of η∗ is contained in the minima
of h(x, ·) = pη∗(x, ·) + λ∗gη∗(x, ·). Note, however, that we cannot have λ∗ = 0, since the
minimum of p(x, ·) occurs at y = 0 and this would imply that η∗ is the contract for which
no reinsurance takes place, violating the condition G(η∗) < 0. By obtaining the point-wise
minima, it can be seen that the optimal reinsurance contract is deterministic and component-
wise given by

(132) Ri(x) = min

( n∑
j=i

xj −
βi

2λ∗
− σ

)
+

, xi

 ,

see Appendix 5.A for details.

Remark 5.5.2. In the original problem considered by de Fine�i, claims are independent and
only quota-share contracts are considered for each subportfolio, i.e. with Ri(x) = aixi. �e
optimal proportions are then determined as

ai =

(
1− βiE[Xi]

2λFinVar(Xi)

)
+

with λFin = 1
4c

∑n
i=1

(βiE[Xi])
2

Var(Xi)
, cf. [53]. Observe that for some values of the βi’s, the optimal

proportions are then zero, which implies no reinsurance for that subportfolio. In contrast, the
overall optimal solution (132) of this problem (beyond the restriction to proportional treaties)
leads to reinsurance for all subportfolios regardless of the size of risk loading (if the random
variables are not almost surely bounded). See also Remark 5.5.9 for an interpretation of the op-
timal solution (132). As a numerical illustration, consider the case whereX1 has a Γ(1/2, 1/2)
distribution and X2 a (shi�ed) Pareto distribution with p.d.f. given by

fX2(x) = 324 (x+ 3)−5 , x ≥ 0,

so that E[X1] = E[X2] = 1 and Var(X1) = Var(X2) = 2. Let β1 = 0.1 and β2 = 0.25
(re�ecting that relative risk loadings are typically higher for heavy-tailed risks). Assume that
the �rst-line insurer would like to halve the retained total variance, so that the bound on the
retained variance is given by c = 2. �e optimal parameters for (132) are σ = 1.8026351 and
λ∗ = 0.0443408, while the optimal proportions from de Fine�i’s solution are a1 = 0.6286093
and a2 = 0.0715233. Le�ing ηFin denote the joint distribution implied by de Fine�i’s solution,
we therefore obtain P(ηFin) = 0.0807417, while P(η∗) = 0.0232948 for the overall optimal
contract (132). Observe that while this represents an improvement of 71.14% of the objective
function (131), the overall expected loss for the cedent under ηFin is 2.0807417, while under
η∗ it is 2.0232948, so the improvement is still visible, but considerably smaller.
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Example 5.5.3. Consider a variant of Example 5.5.1, where instead of �xing the variance, the
cedent has a constraint on the Value-at-Risk (at some level α) of the total retained amount.
Assume that X has a density. �e functionals are then given by

P(η) =

∫ n∑
i=1

βiyi η(dx, dy),

G(η) = V̂aRα(TS#η)− c,

where 0 < β1 < · · · < βn, c ≥ 0 and TS : Rn × Rn → R is the linear operator de�ned
by TS(x, y) =

∑n
i=1(xi − yi). Observe that we can restrict ourselves to the case 0 < c <

VaR (
∑n

i=1Xi) to avoid the optimal contract being the one given by full or no reinsurance. In
this case Proposition 5.3.7 is not applicable and one has to resort to the (weaker) Proposition
5.3.4. Let η∗ be an optimal reinsurance contract and v∗ = V̂aRα(TS#η). Set

(133) C = {η ∈M | V̂aRα(TS#η) = v∗}.

Observe that η∗ ∈ C, C is convex and for every η ∈ C,

dP(η∗; η − η∗) =

∫ n∑
i=1

βiyi (η − η∗)(dx, dy) and dG(η∗; η − η∗) = 0.

Le�ing U ⊂ S be the space of measures with �nite marginal expectations, the conditions of
Proposition 5.3.4 are satis�ed with p(x, y) =

∑n
i=1 βiyi (independent of η∗). Se�ing

D1 =

{
(x, y) ∈ AR |

n∑
i=1

(xi − yi) < v∗

}
,

D2 =

{
(x, y) ∈ AR |

n∑
i=1

(xi − yi) > v∗

}
,

D3 =

{
(x, y) ∈ AR |

n∑
i=1

(xi − yi) = v∗

}
,

(134)

then, for every (x, y) ∈ Supp(η∗), we have

I(x, y) = {z ∈ [0, x] | (x, z) ∈ D1}

if (x, y) ∈ D1, while 0 ∈ I(x, y) if (x, y) ∈ D2, where I(x, y) is the set over which minimiza-
tion occurs in (118). For (x, y) ∈ D2, the minimum of p(x, ·) is achieved at y = 0, regardless
of x. Similarly, if (x, y) ∈ D1, then we must have

∑n
i=1 xi < v∗ and y = 0, so that

Supp(η∗) ⊂ D3 ∪ {(x, 0) | x ∈ Rn
+}.

Since TS(D3) = {v∗}, it follows that η∗ has a point mass at v∗. Hence, since X is absolutely
continuous and v∗ is the (1− α)-th quantile of TS#η, we obtain TS#η([0, v∗]) = 1− α. �us

η∗(D3) = 1− α− µ

({
x ∈ Rn

+ |
n∑
i=1

xi < v∗

})
:= m.

�e quantity on the right-hand side of the last equation is �xed (with the knowledge of v∗),
and we are therefore le� with the task of assigning mass m to D3. Now, the assumption
0 < β1 < · · · < βn implies that p(x, ·) has an unique minimum on [0, x]. Denoting this
minimum by y∗(x), it can be seen that the optimal way of assigning this mass is to do it
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through points of the form (x, y∗(x)) ∈ D3 for the x’s that produce the smallest values of
q(x) := p(x, y∗(x)). Since

y∗(x) = (min (Q1(x), x1) , . . . ,min (Qn−1(x), xn−1) , Qn(x)) ,

with

Qi(x) =

(
n∑
j=i

xj − v∗
)

+

, i = 1, . . . , n,

and y∗(x) is unique, it follows that η∗ is deterministic and is given by the function

(135) R(x) =

{
y∗(x), if x ∈ E
0, otherwise.

Here E = {x ∈ Rn
+ | q(x) ≤ d} where d is chosen so that µ(E) = 1− α. More explicitly, we

get

(136) R(x) =

(
x1, . . . , xi−1,

n∑
j=i

xj − v∗, 0, . . . , 0

)
if
∑i−1

j=1 βjxj + βi
∑n

j=i xj − βiv
∗ ≤ d,

∑n
j=i+1 xj ≤ v∗ and

∑n
j=i xj > v∗, and R(x) = 0

otherwise. See Appendix 5.B for details.

A couple of remarks are in order.

Remark 5.5.4. �e choice of C as in the previous example is motivated from the similar result
found in [69] and is convenient because it allows us to get rid of the terms coming from G.
Observe, however, that other sensible choices could have been

C ′ = {η ∈ D | V̂aRα(TS#η) ≤ v∗}
or

C ′′ = {η ∈ D | V̂aRα(TS#η) ≥ v∗},
whereD is the set appearing in the statement of Proposition 5.3.2. While using these sets one
might obtain deeper information from the measures ηx,y,t,ε, one is also le� with the task of
fully describing C ′ and C ′′ and, in particular, proving that they are convex and satisfy (115).
Hence, when choosing C, one needs to consider the trade-o� between le�ing it be too big and
the simplicity by which one can describe it (as otherwise one could simply take the largest
convex set containing η∗ and satisfying (115)).

Remark 5.5.5. Observe that for n = 1, the result in Example 5.5.3 agrees with the result in
Corollary 1 of [69] and the current framework might help to explain the resemblance of these
results to the one in [115]: Equation (116) implies that Value-at-Risk constraints might be
recast as an optimization of a Lagrangian, so both approaches lead to the same sort of optimal
contracts.

Remark 5.5.6. One can easily generalize the approach from Example 5.5.3 to consider slightly
more complex constraints involving two or more levels for the VaR, for example, G : M →
Rm with i-th component given by

gi(η) = V̂aRαi(TS#η)− ci,
with 1 > α1 > · · · > αm > 0 and 0 ≤ c1 ≤ · · · ≤ cm. In this case, one could choose the set C
as

C = {η ∈ D | V̂aRαi(TS#η) = v∗i , i = 1, . . . ,m},



106 5. OPTIMAL REINSURANCE FROM AN OT PERSPECTIVE

where v∗i = V̂aRαi(TS#η) for an optimal reinsurance contract η∗. Alternatively, this set can
also be used to minimize weighted combinations of values-at-risk at di�erent levels, i.e., risk
measures of the form

∑m
i=1 βiV̂aRαi(TS#η) under, say, a budget constraint in the premium.

Such an approach is implicitly used in reinsurance practice when trying to �x quantiles of the
target distribution of the cedents in the context of regulatory ruin (where di�erent measures
apply to di�erent “degrees” of insolvency, cf. [1, Ch.8]).

For n = 1, one can consider another direction of generalization of Example 5.5.3: let ρ and
ω denote non-decreasing functions with ρ(0) = ω(0) = 0 and ρ(1) = 1. For δ > 0 one can
consider the risk measure given by

P(η) =

∫
(1− δ)(x− y) η(dx, dy) +

∫ ∞
0

ω
(
π2#η(t,∞)

)
dt+ δ

∫ ∞
0

ρ
(
π2#η(t,∞)

)
dt.

�is risk functional corresponds to minimizing the risk-adjusted liability of the cedent, a sce-
nario considered by [47]. �e risk incurred by the �rst-line insurer is measured through a
distortion risk measure, which is then represented by the last integral in the de�nition of P .
We do not study this case here, but note that the techniques seem to extend to this case by
le�ing C capture the discontinuities/points of non-di�erentiability of the functions ω and ρ.

Remark 5.5.7. Notice that in both examples above, the solution is not fully speci�ed, but
instead is given in terms of some unknown parameters (λ∗ and σ in Example 5.5.3, and v∗ in
Example 5.5.1). As mentioned earlier, this is an unavoidable feature of our procedure, which
arises from the dependence of pη∗ and gη∗ on η∗. However, through (132) or (136) we can
obtain an expression for P(η∗) where the only unknowns are these parameters. Hence, we
may instead treat them as variables and optimize over them (ensuring that the constraints are
still satis�ed), thus obtaining a full description of the optimal contracts.

Remark 5.5.8. At this point, one can see that Propositions 5.3.4 and 5.3.7 can be applied
to several situations and are particularly well-suited whenever the risk measure or the con-
straints can be wri�en by means of (functions of) integrals. As a further example, we mention
that the methodology can be applied to deal with more complex situations such as the ones
considered in [79]. �ere, one would like to minimize risk measures of the form

P(η) = f

(∫
Rn+
p1(x− y) η(dx, dy), . . . ,

∫
Rn+
p`(x− y) η(dx, dy)

)
subject to the constraints G = (g1, . . . , gm) given by

gi(η) = hi

(∫
Rn+
qi,1(y) η(dx, dy), . . . ,

∫
Rn+
pi,`i(y) η(dx, dy)

)
,

where all the pi’s and qi,j’s are (multivariate) rational functions and f and the hi’s are dif-
ferentiable.6 For some particular choices of functions, one can even immediately see that the
solutions are deterministic by means of the techniques developed in Section 5.4 (for example,
for the case when P is given as the variance and the constraints depend only on the second
marginal, which corresponds to the situation in �eorem 1 in [79]).

Loosely speaking, our results also give an intuitive explanation to the ubiquity of stop-loss
contracts in optimal reinsurance problems: o�en, the function pη∗ +λ∗ · gη∗ can be wri�en in

6�e se�ing in [79] allows for equalities in the constraints, and for f and the hi’s to not be di�erentiable at
the expense of being increasing in one variable. Equalities can be handled in the same way as in Examples 5.5.1
and 5.5.3, and while we cannot get rid of the di�erentiability requirement, all of the examples in [79] seem to
satisfy this as well.
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the form
pη∗(x, y) + λ∗ · gη∗(x, y) = p̂η∗(x− y) + λ∗ · ĝη∗(x− y)

for some functions p̂η∗ and ĝη∗ such that p̂η∗ + λ∗ · ĝη∗ has one minimum. According to
Propositions 5.3.4 and 5.3.7, the optimal contract then needs to satisfy x − y = c for some
constant c, which together with the condition (x, y) ∈ AR, implies that y = (x− c)+, which
is the form of a stop loss contract.

Remark 5.5.9. While the contracts in (132) and (136) are deterministic — in the sense that
knowledge of X implies knowledge of R(X), — the contracts for the individual subportfo-
lios are still random, since Xi stand-alone is not enough to fully specify Ri(X). �is is in
contrast to [70], where it is enforced that, conditional on Xi, Ri(X) is independent of the
remaining contracts in the portfolio. While going into separate contracts with potentially
di�erent reinsurers with such marginally random contracts may be challenging in current
reinsurance practice, reinsuring all these subportfolios with the same reinsurer (but possibly
di�erent safety loadings βi, e.g. due to di�erent business lines) may be quite feasible. Com-
pared to alternatives, such a contract just leads to a slightly more involved (but deterministic)
formula for se�ling the overall reinsured amount once all claim data for the considered time
period are available. In some sense, a part of the risk diversi�cation is done in house this way,
which is quite common for certain types of aggregate reinsurance covers in practical use, see
e.g. [1].

�e following examples (re)examine some of the classical problems in optimal reinsurance
through the lens of optimal transport. We use the results we developed in Section 5.4.

Example 5.5.10. Let n = 1 and assume that X has �nite variance. Let P be given by

P(η) = V̂ar(T#η) :=

∫
x2 T#η(dx)−

(∫
xT#η(dx)

)2

and S = {η ∈M |
∫
y π2#η(dy) = c} for some c ≥ 0. �is is the classical example (see e.g.

[97]) where the objective is to minimize the retained variance of the insurer subject to a �xed
reinsurance premium which is computed through the expected value principle. In this case,
the optimal reinsurance contract is known to have the deterministic form

(137) η∗ = (Id, RSL,a∗)#(µ) for some a∗ ≥ 0,

where, for a ≥ 0, RSL,a is the function on R given by RSL,a(x) = (x − a)+, i.e., a stop-loss
contract is optimal. Note that �niteness of the variance of X implies that the set S is closed.
In order to apply the results from Section 5.4, observe that

inf
η∈S
P(η) = inf

η∈M ,π2#η=c

∫
R×R

(x− y)2η(dx, dy)−
(∫

R×R
(x− y)η(dx, dy)

)2

= inf
η∈M ,π2#η=c

∫
R×R

(x− y)2η(dx, dy)− (µ− c)2 .

Since the second term is constant, this corresponds to the problem

(138) inf
η∈M ,π2#η=c

∫
R×R

(x− y)2η(dx, dy) = inf
ν∈P(R),
ν=c,ν≺1µ

inf
η∈Π(µ,ν),
η(y≤x)=1

∫
R×R

(x− y)2η(dx, dy).

From (138), we observe that the conditions of Proposition 5.4.1 are satis�ed. Hence, it
follows that, with

x 7→ gν(x) := F−1
ν ◦ Fµ(x),
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the coupling πν := (Id, gν)#µ is optimal for the inner problem in the right-hand side of (138),
so we get

(139) inf
η∈M ,π2#η=c

∫
R×R

(x− y)2η(dx, dy) = inf
ν∈P(R),
ν=c,ν≺1µ

∫
R
(x− gν(x))2µ(dx).

From this we can see how the optimizer is given by the contract η∗ given in (137), with
RSL,a∗ = gν∗ , for ν∗ minimizer in (139). Indeed, we want to minimize the integral w.r.t.
µ of (x − gν(x))2, over functions gν which are non-increasing, below Id, and such that
the area below them (i.e. the integral w.r.t. µ) is �xed (equal to c). �en clearly the opti-
mal gν∗ is parallel to Id, thus of the form (x − a∗)+, with a∗ determined by the constraint
E[(X − a∗)+] =

∫
y (gν∗#µ)(dy) =

∫
y ν∗(dy) = c. Hence, the OT approach provides an

alternative proof of this classical result.

Example 5.5.11. If we modify the previous example by se�ing instead

S = {η ∈M | V̂ar(π2#η) = c}
for some c ≥ 0, we obtain the situation where the objective is still to minimize the retained
variance, but now subject to a �xed reinsurance premium loading that is proportional to the
variance (cf. [97]). In this case, the optimal reinsurance contract is known to be deterministic
and of the form η∗ = (Id, RQS,a∗)#(µ) for some 0 ≤ a∗ ≤ 1, where RQS,a(x) = ax, i.e., a
so-called quota-share contract is optimal. Let P denote the same functional as in the previous
case, and observe that it still satis�es Assumptions (A1) and (A2) above with function pη given
by

pη(x, y) = (x− y)2 − 2T#η(x− y).

�is function and S satisfy the conditions from Proposition 5.4.1, so it follows that, for ν ∈
π2(S), the minimum of (124) is achieved through couplings πν of the form πν := (Id, gν)#µ
with

x 7→ gν(x) := F−1
ν ◦ Fµ(x).

Plugging this coupling into the de�nition of P , we obtain

P(πν) =

∫ ∞
0

(x− gν(x))2 µ(dx)−
(∫ ∞

0

(x− gν(x)) µ(dx)

)2

=

∫ 1

0

(
F−1
µ (x)− F−1

ν (x)
)2

dx−
(∫ 1

0

F−1
µ (x)− F−1

ν (x) dx

)2

and the problem is reduced to �nding the optimal distribution function Fν . We can phrase
this problem in terms of functions: consider the operator F : L2([0, 1])→ R given by

F(f) =

∫ 1

0

(
F−1
µ (x)− f(x)

)2
dx−

(∫ 1

0

F−1
µ (x)− f(x) dx

)2

.

We want to minimize this functional subject to the constraints 0 ≤ f ≤ F−1
µ , f non-

decreasing and

(140)
∫ 1

0

f(x)2 dx−
(∫ 1

0

f(x) dx

)2

= c.

We can �rst look at the problem that considers only the last constraint and examine the asso-
ciated Lagrange operator, L : L2([0, 1])× R→ R given by

L(f, λ) = F(f) + λ

∫ 1

0

f(x)2 dx− λ
(∫ 1

0

f(x) dx

)2

− λc.
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For each f ∈ L2([0, 1]) and λ ∈ R, the functional derivative of this operator with respect to
h is the functional L′(f, λ; ·) : L2([0, 1])→ R given by

L′(f, λ;h) = 2

∫ 1

0

(F−1
µ (x)− f(x))h(x) dx− 2

∫ 1

0

(F−1
µ (x)− f(x)) dx

∫ 1

0

h(x) dx

+ 2λ

∫ 1

0

f(x)h(x) dx− 2λ

∫ 1

0

f(x) dx

∫ 1

0

h(x) dx

= 2

∫ 1

0

(
F−1
µ (x) + (λ− 1)f(x)−

∫ 1

0

(F−1
µ (y) + (λ− 1)f(y)) dy

)
h(x) dx.

If f is to be an extreme point ofL, thenL′(f, λ;h) is to be zero for every h ∈ L2([0, 1]), which
can happen if and only if

F−1
µ (x) + (λ− 1)f(x)−

∫ 1

0

(F−1
µ (y) + (λ− 1)f(y)) dy = 0, x ∈ [0, 1].

Hence, the function is constant and F−1
µ = (1− λ)f + a for some a ∈ R. Regardless of a, the

function will satisfy (140) as long as we choose λ such that (1 − λ)2 = Var(X)/c. Observe
then that all the other constraints will be satis�ed by choosing λ = 1−

√
Var(X)/c and any

0 ≤ a ≤ F−1
µ (0). �e distribution function thus obtained corresponds to the reinsurance

contract given by

R(X) =
X − a
(1− λ)

,

which for a = 0 is the quota-share contract known to be optimal [97] (and any other choice of
a would just lead to a deterministic (’side’) payment from the reinsurer to the insurer (see e.g.
[65]), which would be priced in the reinsurance premium in an additive way, as its variance
is zero, and so would only lead to a deterministic additional exchange and serve no purpose).
Again, the OT approach in this way provides an alternative proof of this classical result.

Observe that in this situation one cannot directly apply Proposition 5.4.2: given an ar-
bitrary reinsurance treaty η, the monotonic rearrangement between µ and ν = T (η) leads
to a function R such that R(X) is distributed according to ν. However, it is in general
not the case that X − R(X) is distributed according to π2(η), so we cannot guarantee that
Var(X −R(X)) = c.

For the next example, we take the viewpoint of the reinsurer in the optimization problem.
It will lead to a situation where introducing external randomness is indeed optimal.

Example 5.5.12. For simplicity of exposition, here the second marginal of a reinsurance
treaty will refer to the deductible rather than the reinsured amount. For each k = 1, . . . , n,
let νk ∈P(R+) denote a prede�ned distribution. For any lower semi-continuous P , we can
set

S = {η ∈M : π2,k#η = νk, k = 1, . . . , n}.
One can interpret this situation as follows: n insurers ask each for a target distribution νk,
k = 1, . . . , n, a�er reinsurance, and the reinsurer tries to minimize P respecting these target
distributions (potentially involving the introduction of randomized treaties). Phrased in op-
timal transport terms, this example corresponds to a problem in the area of multi-marginal
optimal transport, a generalization from the classical transport problem in which there might
be more than one target measure. While we do not a�empt to solve the problem in general,
we point out some of the insights obtained from seeing the problem from this perspective and
solve it for one particular case. Consider the case n = 2, µ absolutely continuous with �nite
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second moments and P given as the variance of the sum of the reinsured amounts. For any
η ∈ S, we then have

P(η) =

∫
R4
+

(x1 − y1 + x2 − y2)2 η(dx1, dx2, dy1, dy2)− (µ1 − ν1 + µ2 − ν2)2 .

�e second term on the right-hand side is �xed. Hence, the problem is equivalent to minimiz-
ing the functional

Q(η) =

∫
R4
+

(x1 − y1 + x2 − y2)2 η(dx1, dx2, dy1, dy2)

on Π(µ, ν1, ν2) ∩M , the set of couplings between µ, ν1 and ν2 supported on AR. Since X1

and X2 have �nite variance, this minimization problem is �nite. Now, for any coupling η
(supported on AR), we can disintegrate η with respect to µ, obtaining a family of probability
measures (ϑx1,x2)(x1,x2)∈R2

+
, and we can write

Q(η) =

∫
R2
+

∫
[0,x1]×[0,x2]

(x1 − y1 + x2 − y2)2 ϑx1,x2(dy1, dy2)µ(dx1, dx2).

Observe that the only dependency on the coupling is given by the inner integral, so if η is
optimal, then µ-a.e., ϑx1,x2 is optimal for the transport problem with cost (y1, y2) 7→ (y1 +
y2 − x1 − x2)2 when we �x (x1, x2). �is (sub-)transport problem has as solution the anti-
monotonic rearrangement of its marginals, and the problem is therefore transformed into
�nding the optimal marginals. Considering that probability measures are determined by their
distribution functions, the problem can be rephrased as follows: �nd functions f, g : [0, 1] ×
R2

+ → R such that if U is a uniformly distributed random variable independent ofX1 andX2,
then f(U,X1, X2) and g(1− U,X1, X2) have distribution ν1 and ν2 respectively,

0 ≤ f(u, x1, x2) ≤ x1, and 0 ≤ g(u, x1, x2) ≤ x2, (u, x1, x2) ∈ [0, 1]× R2
+,

and f and g minimize the integral∫
R2
+

∫ 1

0

f(u, x1, x2)g(1− u, x1, x2) du µ(dx1, dx2),

among all possible pairs of functions satisfying these constraints. �e optimal coupling will
then be given as the distribution of

(X1, X2, f(U,X1, X2), g(1− U,X1, X2)).

As can be seen from quick inspection, this task is challenging and for arbitrary µ, there is
no guarantee that there even exist solutions that can be expressed in terms of elementary
functions7, so that numerical solutions have to be considered. Nevertheless, we provide an
illustration of how this can lead to explicit results in speci�c cases.

Assume X1 and X2 are independent, X1 has a lognormal distribution with p.d.f. given by

fX1(x) =
1

x
√

2π log(3)
exp

(
−(log(

√
3x))2

2 log(3)

)
, x > 0,

and X2 a (shi�ed) Pareto distribution with p.d.f given by

fX2(x) = 324 (x+ 3)−5 , x ≥ 0.

Here the parameters are chosen such that E[X1] = E[X2] = 1 and Var(X1) = Var(X2) = 2.
As there is no standard solution method for the multi-marginal transportation problem with

7Observe, however, that the previous considerations show that such functions exist.
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arbitrary cost, we utilize a discretized se�ing (see e.g. [98]). Let q ∈]0, 1[ and de�ne ui =
F−1
Xi

(q), i = 1, 2. For N ∈ N, we introduce the variables X̃1 and X̃2 such that, for i = 1 and
i = 2,

X̃i =
kui
N

with probability FXi

(
kui
N

)
− FXi

(
(k − 1)ui

N

)
, k = 1, . . . , N − 1

and

X̃i = ui with probability 1− FXi
(

(N − 1)ui
N

)
.

�ese variables are simply the result of binning the Xi’s into N bins of equal length up to a
(high) quantile ui and assigning probabilities according to their distributions (and pu�ing the
remaining mass into the last bin to account for the unboundedness of the distributions). Let
Ỹ1 and Ỹ2 be two random variables such that

Ỹ1
d
= 0.5X̃1, Ỹ2

d
= min(X̃2, 0.5) + 0.25(X̃2 − 0.95)+,

where d
= denotes equality in distribution. �e idea behind this choice is that Ỹ1 could arise

from applying a quota-share contract (with proportionality factor 0.5) to X̃1, while Ỹ2 could be
the retained amount from a bounded stop-loss contract on X̃2 (with deductible 0.5 and layer
size 0.45), where the reinsurer still takes 75% of the exceedance above that layer. So these
are the target distributions ν̃1 and ν̃2 of the two insurers, and the task is now to see how the
reinsurer can o�er these while keeping the variance of (X̃1 − Ỹ1) + (X̃2 − Ỹ2) (the reinsured
amount) minimal, for instance in order to provide a competitive reinsurance premium.

By le�ing M denote the amount of distinct values taken by Ỹ2, in the following we will
implicitly assume that these random variables and distributions are de�ned on the space Ω′ =
{1, . . . , N}3 × {1, . . . ,M} and are such that, for example, Ỹ1(i, j, k, l) = Ỹ1(k) is the k-th
value taken by Ỹ1 in increasing order and ν̃1(k) = P[Ỹ1 = Ỹ1(k)]. Similar de�nitions apply
to the other random variables. �e optimal transport problem is then equivalent to �nding a
4-dimensional array P in RN×N×N×M

+ such that∑
k,l

Pi,j,k,l = µ̃(i, j), (i, j) ∈ {1, . . . , N}2,

∑
i,j,l

Pi,j,k,l = ν̃1(k), k ∈ {1, . . . , N},

∑
i,j,k

Pi,j,k,l = ν̃2(l), l ∈ {1, . . . , N},

Pi,j,k,l = 0 if Ỹ1(k) >X̃1(i) or Ỹ2(l) > X̃2(j),

(141)

and P minimizes the sum∑
i,j,k,l

(X̃1(i)− Ỹ1(k) + X̃2(j)− Ỹ2(l))2Pi,j,k,l

among all arrays satisfying (141). �is is a linear optimization problem. We want to use
standard linear optimization techniques to solve it, so we cast these equations into standard
form: we start by “�a�ening” P into an element p ∈ RN3M by making the (i, j, k, l) entry
of P into the i + N(j − 1) + N2(k − 1) + N3(l − 1) entry of p. Similarly, we let the cost
be represented by a vector c ∈ RN3M with i + N(j − 1) + N2(k − 1) + N3(l − 1) entry
equal to (X̃1(i)− Ỹ1(k) + X̃2(j)− Ỹ2(l))2. Denoting by 1N the column vector of dimension
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N �lled with ones, IN the identity matrix of dimension N and ⊗ the Kronecker product, the
(N2 +N +M)×N3M matrix

A =

 1
ᵀ
NM ⊗ IN2

1
ᵀ
M ⊗ IN ⊗ 1

ᵀ
N2

IM ⊗ 1
ᵀ
N3



can be used to encode the �rst three constraints in (141). Indeed, if θ ∈ RN2+N+M is given as
the stacking of µ̃, ν̃1 and ν̃2 (�a�ening �rst µ̃, so that µ̃(i, j) is the i+N(j−1) entry of θ), we see
that P satis�es the �rst three equalities in (141) if and only if Ap = θ. Finally, we can enforce
the last constraint in (141) by deleting the columns and entries ofA, p and c for which we have
Ỹ1(k) > X̃1(i) or Ỹ2(l) > X̃2(j) (that is, we delete the i+N(j − 1) +N2(k− 1) +N3(l− 1)
column of A if this condition is satis�ed). Let B, q and d denote, respectively, the matrix and
vectors obtained this way and K the number of columns that remained a�er this operation.
�e optimization problem then is of the form

Minimize dᵀq subject to Bq = θ and q ≥ 0.

Although potentially high-dimensional, this is a relatively easy linear optimization exercise.
For M = 40, we solve it using standard linear optimization packages. Speci�cally, we use
the linprog routine within the SciPy library, which implements the HiGHS so�ware for
linear optimization. �e results for some of the bivariate distributions of (X̃1, X̃2, Ỹ1, Ỹ2) are
shown in Figures 1 and 2. Let ηDet denote the distribution of

(X̃1, X̃2, 0.5X̃1,min(X̃2, 0.5) + 0.25(X̃2 − 0.95)+),

η∗ the distribution found by optimization and denoter by R̃i the reinsured amount X̃i − Ỹi.
With the dependence structure indicated by ηDet, R̃1 and R̃2 are independent and VarηDet

(R̃1+

R̃2) = 1.05314. �e variance a�er optimization is Varη∗(R̃1 + R̃2) = 0.82875, which repre-
sents an improvement of 21.31%. As can be seen from Figures 1 and 2, this is achieved in two
ways: �rst, the joint distributions of (X̃1, Ỹ1) and (X̃2, Ỹ2) are changed in such a way that,
under η∗, Ỹ1 has positive probability of being close to X̃1 and Ỹ2 has positive probability of
being close to X̃2 thus allowing the reinsured amounts R̃1 and R̃2 to take smaller values than
under ηDet.
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Figure 1. Probability mass functions for X̃1 and Ỹ1 (upper row) and X̃2 and
Ỹ2 (lower row) under ηDet (le� column) and η∗ (right column).

Secondly, the variance is also reduced by introducing a positive dependence relationship
between Ỹ1 and Ỹ2. �is may be slightly counter-intuitive at �rst if we think of the variance
as being reduced by making R̃1 and R̃2 counter-monotonic. While Figure 2 seems to indicate
that R̃1 and R̃2 have a negative dependence structure, we cannot fully expect it to be counter-
monotonic. Under the assumption of counter-monotonicity, small values for R̃1 would be
coupled with larger values of R̃2, which would imply that values of Ỹ1 close to X̃1 would be
paired with values of Ỹ2 far away from X̃2. Since Ỹ1 and Ỹ2 are bounded by X̃1 and X̃2, this
would imply that small values for Ỹ1 would be coupled with larger values of Ỹ2. However,
this argument lacks to take into account the fact that the reduction in variance can also be
achieved by introducing a di�erent dependence relationship between X̃1 and Ỹ2, and between
X̃2 and Ỹ1.

Curiously enough, observe that the optimal joint distributions of (X̃1, Ỹ2) and (X̃2, Ỹ1)
have a tendency to be concentrated in the upper le� corner (as well as in the area where
Ỹ2 ≤ 0.5 for (X̃1, Ỹ2)). �is seems to indicate that Ỹ2 “uses” the extra degree of freedom
in the distribution (X̃1, Ỹ2) to compensate for the behavior when X̃2 ≤ 0.5 (in which we
necessarily must have Ỹ2 = X̃2, regardless of the joint distribution) and for the constraint
Ỹ2 ≤ X̃2.
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Figure 2. Probability mass functions for the joint distributions under η∗ for
X̃1 and Ỹ2 (top le�), X̃2 and Ỹ1 (top right), Ỹ1 and Ỹ2 (bo�om le�) and R̃1 and
R̃2 (bo�om right).

Figure 3. Cardinality of the supports of the conditional distributions of Ỹ1

(le�) and Ỹ2 (right) under η∗ given X̃1 and X̃2.
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Similarly, Ỹ1 “uses” the extra degree of freedom in the distribution (X̃2, Ỹ1) to compensate
for the constraint Ỹ1 ≤ X̃1. Finally, from Figure 1 we can observe that, under η∗, there is
not a deterministic association between X̃1 and Ỹ1 nor between X̃2 and Ỹ2. Moreover, in
contrast to Examples 5.5.1 and 5.5.3, the randomization of Ỹ1 for given X̃1 is not only due
to the realization of X̃2 (and vice versa), as the conditional distributions of Ỹ1 and Ỹ2 given
(X̃1, X̃2) are not concentrated in one point, cf. Figure 3. �at is, for minimizing the variance,
in this example one uses an extra degree of randomness external to (X̃1, X̃2) (like for instance
a lo�ery). Observe, that this external randomness helps, in a way, to reach rather intuitive
joint distributions of the variables involved.

5.6. Conclusion and Outlook

In this paper we provided a link between the two �elds of optimal transport and opti-
mal reinsurance, which allows for a reinterpretation of some classical optimal reinsurance
results, a characterization of conditions for the optimality of deterministic treaties as well
as the derivation of new results, extending some previous approaches in the literature. In a
number of concrete examples we illustrated the bene�ts of this additional perspective on opti-
mal reinsurance problems. We also established an example with two insurers and a reinsurer
where external randomness in the contract speci�cation e�ectively increases the e�ciency.

While we worked out several concrete cases in detail, there are a number of directions that
could be interesting for future research. In particular, we like to mention the following here.
In this paper, we did not explicitly deal with the particular case of convex risk measures, an
important class of risk measures on which a large part of the literature is focused (cf. [26, 48]).
When the risk measure is given, for example, by

P(η) =

∫
u

(
w − x−

∫
y π2#η)(dy)

)
T#η(dx)

for u : R → R a convex and non-decreasing function, then P is convex and its optimization
can be addressed by means of Propositions 5.3.4, 5.3.7 or 5.4.1, depending on the nature of
the constraints. Also, for general convex risk measures, it seems that the dual representation
is tightly connected with the existence of the directional derivatives at optimal reinsurance
contracts, and it will be interesting to connect the present approach with concepts from duality
theory.

5.A. Continuation of Example 5.5.1

Recall that the function to minimize is h(x, ·), where h is given by

h(x, y) =
n∑
i=1

βiyi + λ∗ (sX − sY )2 − 2λ∗σ (sX − sY ) .

and sX =
∑n

i=1 xi and sY =
∑n

i=1 yi. �e partial derivatives of h are

∂h(x, y)

∂yk
= βk − 2λ∗

(
n∑
i=1

(xi − yi)

)
+ 2λ∗σ, k = 1, . . . , n,
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and the condition βi 6= βj for i 6= j implies that no y in Rn
+ solves ∂h(x, y)/∂yk = 0 for every

k = 1, . . . , n. �erefore we take another approach: we rewrite h in the form

h(x, y) =
n∑
i=1

(βi − βn)yi + βnsY + λ∗
(
s2
Y + 2 (σ − sX) sY

)
+ λ∗s2

X − 2λ∗σsX

= −
n∑
i=1

(βn − βi)yi + λ∗
(
sY − sX + σ +

βn
2λ∗

)2

+ λ∗s2
X − 2λ∗σsX

− λ∗
(
σ +

βn
2λ∗
− sX

)2

.

In the last line, only the �rst two terms depend on y, so it su�ces to �nd the y’s minimizing
the function

a(x, y) = −
n∑
i=1

(βn − βi)yi + λ∗
(
sY − sX + σ +

βn
2λ∗

)2

.

We make the following claim:

If y∗ minimizes a(x, ·) in [0, x] and y∗i > 0 for some i ≥ 2, then y∗j = xj for j = 1, . . . , i− 1.

Indeed, arguing by contradiction, assume there exists j < i such that y∗j < xj . De�ne ỹ as
ỹk = y∗k if k 6= i, j, ỹj = y∗j + min(xj − y∗j , y∗i ) and ỹi = y∗i −min(xj − y∗j , y∗i ). �en

• either ỹj = xj or ỹi = 0, and
• a(x, y∗)− a(x, ỹ) = (βi − βj) min(xj − y∗j , y∗i ) > 0.

�e last statement clearly contradicts the minimum property of y∗, so we conclude that the
above claim is true. Coincidentally, this also implies that if y∗i = 0 for some i, then y∗j = 0 for
all j ≥ i.

From this it follows that for each �xed x, there are at most n candidate solutions of the
form (x1, . . . , xj−1, yj, 0, . . . , 0), where yj is the only point minimizing the mapping

(142) y 7→ −
j−1∑
i=1

(βn − βi)xi − (βn − βj)y + λ∗

(
y −

n∑
i=j

xi + σ +
βn
2λ∗

)2

in [0, xj]. For each j = 1, . . . , n we denote the associated candidate solution by y(j). Observe
that

(143) y
(j)
j =


0, if

∑n
i=j xi < σ +

βj
2λ∗∑n

i=j xi − σ −
βj

2λ∗
, if

∑n
i=j xi ≥ σ +

βj
2λ∗
, but

∑n
i=j+1 xi < σ +

βj
2λ∗

xj, if
∑n

i=j+1 xi ≥ σ +
βj

2λ∗

.

Let j∗ be the index de�ned by

j∗ = max

{
j ∈ {1, . . . , n} |

n∑
i=j

xi ≥ σ +
βj
2λ∗

}

or j∗ = 1 if the set on the right is empty. We claim that y(j∗) minimizes a(x, ·). Indeed, notice
that for k < j∗ − 1, we have y(k)

r = y
(k+1)
r = xr for r = 1, . . . , k, y(k)

k+1 = xk+1 − y(k+1)
k+1 = 0
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and y(k)
r = y

(k+1)
r = 0 for r > k + 1. Hence

a(x, y(k))− a(x, y(k+1)) = (βn − βk+1)xk+1 + λ∗

(
−

n∑
i=k+1

xi + σ +
βn
2λ∗

)2

− λ∗
(
−

n∑
i=k+2

xi + σ +
βn
2λ∗

)2

= λ∗xk+1

(
n∑

i=k+1

xi − σ −
βk+1

2λ∗

)
≥ 0.

�e only di�erence between y(j∗−1) and y(j∗) is in the j∗-th entry. However, since y(j∗)
j∗ mini-

mizes the map in (142), we have a(x, y(j∗)) ≤ a(x, y(j∗−1)). For k > j∗,

a(x, y(k+1))− a(x, y(k)) = −λ∗xk+1

(
n∑

i=k+1

xi − σ −
βk+1

2λ∗

)
≥ 0,

so we only need to show a(x, y(j∗)) ≤ a(x, y(j∗+1)). However, if ỹ is such that ỹi = xi for
i ≤ j∗ and zero otherwise, we can easily see that

a(x, y(j∗+1))− a(x, ỹ) = −λ∗xj∗+1

(
n∑

i=j∗+1

xi − σ −
βj∗+1

2λ∗

)
≥ 0,

and the minimal property of y(j∗)
j∗ implies a(x, y(j∗)) ≤ a(x, ỹ). Hence, a(x, y(j∗)) ≤ a(x, y(j))

for every j = 1, . . . , n.
Noticing that (143) can be wri�en in the form

y
(j∗)
j∗ = min

( n∑
i=j∗

xi −
βj∗

2λ∗
− σ

)
+

, xj∗

 ,

the condition β1 < . . . < βn implies that the optimal reinsurance contract is as given in (132).

5.B. Continuation of Example 5.5.3

Recall the de�nitions of the sets C, D1, D2 and D3 given in (133)-(134). With this C, the
functionals P and G satisfy the conditions of Proposition 5.3.4 with U ⊂ S the space of
measures with �nite marginal expectations, p(x, y) =

∑n
i=1 βiyi and g = 0. Let (x, y) ∈

Supp(η∗) and recall the measures

µx,y,t,ε(A) = η∗(A)− η∗(A ∩Bε(x, y)) + η∗((A− (0, t)) ∩Bε(x, y)),

appearing in Proposition 5.3.4. We wish to identify the sets over which minimization occurs
in (118). We proceed as in the proof of that proposition, i.e., we see that for a suitable chosen
t, we can �nd a δ > 0 such that µx,y,t,ε ∈ C for ε < δ. Denote the set from the conclusion of
Proposition 5.3.4 by I(x, y).

Assume �rst that (x, y) ∈ D1 \ ∂AR and let T denote the set of t’s such that (x, y) ∈
D1 − (0, t), i.e., T = {−y < t < x− y | (x, y + t) ∈ D1}. For t ∈ T , let

δ = min {d((x, y), ∂AR), d((x, y), ∂AR − (0, t)), d((x, y), ∂D1), d((x, y), ∂D1 − (0, t))} .
With this de�nition, δ > 0 and for every 0 ≤ ε < δ, we have that µx,y,t,ε ∈ M . We claim
that, further, V̂aRα(TS#µx,y,t,ε) = v∗. Indeed, notice that Bε(x, y) ⊂ D1 ∩ (D1 − (0, t)) and
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therefore
TS#µx,y,t,ε((v

∗,∞)) = µx,y,t,ε(D2) = η∗(D2) ≤ α.

Now, let ε′ = min {d((x, y), ∂D1), d((x, y), ∂D1 − (0, t))} − ε. We have ε′ > 0 by choice of
ε. For v∗ − ε′ < u < v∗, let

Du =

{
(x, y) ∈ AR |

n∑
i=1

(xi − yi) > u

}
.

Observe that, for these u’s, we still have Bε(x, y) ⊂ Dc
u ∩ (Dc

u − (0, t)) and therefore
TS#µx,y,t,ε((u,∞)) = µx,y,t,ε(Du) = η∗(Du) > α.

Hence V̂aRα(TS#µx,y,t,ε) = v∗. In a similar manner, we see that if t 6∈ T (but still −y < t <

x− y), we have V̂aRα(TS#µx,y,t,ε) > v∗ for ε small enough, so that

(144) I(x, y) = {z ∈ [0, x] | (x, z) ∈ D1}.
Now we consider (x, y) ∈ D1 ∩ ∂AR and proceed similarly by de�ning

δ = min {d((x, y), ∂AR − (0, t)), d((x, y), ∂D1 − (0, t))} ,
ε′ = d((x, y), ∂D1 − (0, t))− ε,

for t’s such that −x0 < ti ≤ 0 if y0,i = x0,i, 0 ≤ ti < x0 if y0,i = 0, −x0,i < ti < x0,i − y0,i

if 0 < y0,i < x0,i and (x, y) ∈ D1 − (0, t). We still obtain I(x, y) as in (144). �us, for
(x, y) ∈ D1,

I(x, y) =

{
z ∈ [0, x] |

n∑
i=1

(xi − zi) ≤ v∗

}
.

Likewise, we can show that for (x, y) ∈ D2 we can de�ne T = {−y < t < x − y |
(x, y + t) ∈ D2} and obtain

I(x, y) ⊃

{
z ∈ [0, x] |

n∑
i=1

(xi − zi) ≥ v∗

}
.8

In particular, 0 ∈ I(x, y) for (x, y) ∈ D2.
Now, let (x, y) be an arbitrary point in the support of η∗. SinceAR = D1∪D2∪D3, (x, y)

is in one (an only one) of these three sets. If (x, y) ∈ D1, the previous computations, together
with the conclusion of Proposition 5.3.4, show that

y ∈ argmin

{
n∑
i=1

βizi | z ∈ [0, x],
n∑
i=1

xi − v∗ ≤
n∑
i=1

zi

}
.

�is is a linear optimization exercise with linear constraints and one can see that the condition
(x, y) ∈ D1 implies

∑n
i=1 xi ≤ v∗ and y = 0. Similarly, if (x, y) ∈ D2,

∑n
i=1 xi > v∗ and

y = 0. �erefore,
(145) Supp(η∗) ⊂ D3 ∪ {(x, 0) | x ∈ Rn

+}.
As stated before, this implies

η∗(D3) = 1− α− µ

({
x ∈ Rn

+ |
n∑
i=1

xi < v∗

})
:= m

8In this case we obtain only an inclusion as opposed to an equality. �is comes from the fact that for t 6∈ T
we can only ensure V̂aRα(TS#µx,y,t,ε) ≤ v∗. As a ma�er of fact, for ε small enough, we will actually have an
equality and therefore I(x, y) = [0, x], though we do not need this information to �nd the solution.
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and we need to optimally assign this mass to D3. Now, observe that (145) implies

P(η∗) =

∫
D3

n∑
i=1

βiyi η
∗(dx, dy)

and, just as in the proof of Proposition 5.3.7, it is intuitive that if (x, y) ∈ Supp(η∗)∩D3, then
y should be in the minima of p(x, ·). Before making this statement more rigorous, let us note
the following:

For �xed x ∈ Rn such that
∑n

i=1 xj > v∗, the minimum of y 7→
∑n

i=1 βiyi on

[0, x] ∩

{
y ∈ Rn

+ |
n∑
i=1

yi =
n∑
i=1

xi − v∗
}

is unique and is given by

(146) y∗(x) = (min (Q1(x), x1) , . . . ,min (Qn−1(x), xn−1) , Qn(x)) ,

where

Qi(x) =

(
n∑
j=i

xj − v∗
)

+

, i = 1, . . . , n.

Indeed, let ỹ denote any minimum and for i = 1, . . . , n, let Ci be given by

Ci =

{
z ∈ Rn

+ |
n∑

j=i+1

zj ≤ v∗,
n∑
j=i

zj > v∗

}
.

�ese sets are disjoint and x belongs to one (and only one) of them. Let i0 denote the index
such that x ∈ Ci0 . We claim that ỹj = xj for j < i0. For otherwise, we can let j0 be the �rst
index for which this does not happen or j0 = 1 in case ỹj < xj for all j’s. �erefore, ỹj = xj
for j < j0, while ỹj0 < xj0 . If ỹk = 0 for all k > j0, then the condition

∑n
i=1 ỹi =

∑n
i=1 xi−v∗

implies

ỹj0 =
n∑

i=j0

xi − v∗ > xj0

since j0 < i0. �us, there exists k0 > j0 such that yk0 > 0. However, in this case, the vector
ŷ ∈ Rn given by ŷj = ỹj if j 6= j0, k0, ŷj0 = min(xj0 , ỹj0 + ỹk0) and ŷk0 = max(0, ỹk0 +
ỹj0 − xj0) satis�es all the constraints and further p(x, ŷ) < p(x, ỹ) as βj0 < βk0 . Since this is
a contradiction to the optimality of ỹ, we therefore conclude ỹj = xj for all j < i0 and

n∑
j=i0

ỹj =
n∑

j=i0

xi − v∗.

�is now implies ỹi0 =
∑n

j=i0
xi − v∗ ≤ xi0 , since

βi0 ỹi0 = βi0

(
n∑

j=i0

xi − v∗
)

= βi0

n∑
j=i0

yj ≤
n∑

j=i0

βjyj

for any other y ∈ Rn
+ with yj = xj for j < i0 (which is a condition for optimality). Hence

ỹ =

(
x1, x2, . . . , xi0−1,

n∑
j=i0

xi − v∗, 0, . . . , 0

)
,

which is equivalent to (146) on Ci0 and shows unicity of ỹ.
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From (146) it follows that the mapping x 7→ y∗(x) is continuous. �e rest of the proof
now follows easily: if for some (x, y) ∈ Supp(η∗) ∩ D3, y 6= 0, we had y 6= y∗(x), then, by
continuity of q(x) := p(x, y∗(x)), we could �nd an open ball B ⊂ Rn

+×Rn
+ around (x, y) not

intersecting Rn
+ × {0} and such that q(x′) < p(x′, y′) for every (x′, y′) ∈ B. We could then

modify η∗ by moving all the mass in B to the graph of q, obtaining a measure with the same
VaR and a strictly smaller value for P . For example, we can use the following measure

η(A) = η∗(A \B) + µ(Q−1(A) ∩B′).
Here Q = (Id, q) and B′ ⊂ π1(B) is an open ball around x such that η∗(B) = µ(B′), which
exists by absolute continuity of µ. It therefore follows that

Supp(η∗) ⊂ {(x, 0) | x ∈ Rn
+} ∪ {(x, y∗(x)) | x ∈ Rn

+}.
Le�ing E = {z ∈ Rn

+ | q(z) ≤ d}, where d is chosen so that µ(E) = 1 − α, a similar
argument shows that, in case d > 0, there cannot be a point (x, y) in the support of η∗ such
that q(x) > d.
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Bernoulli, 22(3):1364–1382, 2016.
[6] H. Albrecher, S. A. Ladouce�e, and J. L. Teugels. Asymptotics of the sample coe�cient of variation and

the sample dispersion. J. Statist. Plann. Inference, 140(2):358–368, 2010.
[7] H. Albrecher, C. Y. Robert, and J. L. Teugels. Joint asymptotic distributions of smallest and largest insurance

claims. Risks, 2(3):289–314, 2014.
[8] H. Albrecher and J. L. Teugels. Asymptotic analysis of a measure of variation. �eory of Probability and

Mathematical Statistics, 74:1–10, 2006.
[9] H. Albrecher, J. L. Teugels, and K. Scheicher. A combinatorial identity for a problem in asymptotic statistics.

Appl. Anal. Discrete Math., 3(1):64–68, 2009.
[10] H. Albrecher and S. �onhauser. Optimality results for dividend problems in insurance. RACSAM-Revista

de la Real Academia de Ciencias Exactas, Fisicas y Naturales. Serie A. Matematicas, 103(2):295–320, 2009.
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