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Abstract Numerous field experiments suggest that the self-potential (SP) geophysical method may
allow for the detection of hydraulically active fractures and provide information about fracture properties.
However, a lack of suitable numerical tools for modeling streaming potentials in fractured media prevents
quantitative interpretation and limits our understanding of how the SP method can be used in this regard.
To address this issue, we present a highly efficient two-dimensional discrete-dual-porosity approach for
solving the fluid flow and associated self-potential problems in fractured rock. Our approach is specifically
designed for complex fracture networks that cannot be investigated using standard numerical methods.
We then simulate SP signals associated with pumping conditions for a number of examples to show that
(i) accounting for matrix fluid flow is essential for accurate SP modeling and (ii) the sensitivity of SP to
hydraulically active fractures is intimately linked with fracture-matrix fluid interactions. This implies that
fractures associated with strong SP amplitudes are likely to be hydraulically conductive, attracting fluid flow
from the surrounding matrix.

1. Introduction

Quantification of fluid flow in fractured media is an outstanding challenge that is critically important in a
wide variety of research fields and applications including hydrogeology, geothermal energy, hydrocarbon
extraction, and the long-term storage of toxic waste [e.g., Carneiro, 2009; Kolditz and Clauser, 1998; Rotter
et al., 2008]. In the context of resource extraction, the presence of fractures is generally considered to be an
advantage as they facilitate access to materials stored in the matrix. Conversely, with regard to the storage
of toxic elements, fractures represent a risk of leakage and subsequent migration of pollutants deep into the
subsurface. In all cases, the detection of fractures and the characterization of their properties in natural
environments are a required and critical task [NAP, 2015].

Geophysics offers a variety of tools that can provide important information on subsurface structure, physical
properties, and fluid flow in a noninvasive manner [e.g., Hubbard and Linde, 2011]. Most geophysical tech-
niques infer fluid flow by data or model differencing in time or space; that is, they are not directly sensitive
to flow occurring at the time of the measurements. An exception is the self-potential (SP) method, which is
of particular interest for hydrogeological applications because of its direct sensitivity to water flowing in the
subsurface (i.e., the streaming potential) [Revil and Jardani, 2013]. This phenomenon is intimately linked to
the presence of an excess charge in the pore water that counterbalances electric charges at the mineral-pore
water interface. When water flows, it gives rise to a streaming current and an associated streaming potential.
The direct sensitivity to subsurface fluid flow makes the SP method particularly interesting for the study of
fractured rocks, in which flow is often highly channelized in a small fraction of the rock volume [e.g., Berkowitz,
2002].

Previous studies have demonstrated the ability of the SP method to detect groundwater flow in fractured
media [e.g., Fagerlund and Heinson, 2003; Maineult et al., 2013], determine the orientation of hydraulically
active fractures through azimuthal measurements at the ground surface [Wishart et al., 2006, 2008], and local-
ize water leakage through a single fracture [Revil et al., 2015]. Although such studies clearly demonstrate the
potential utility of SP measurements in fractured-rock investigations, there is currently a dearth of numerical
modeling tools to simulate SP responses in fractured media, the latter of which are required for quantita-
tive interpretation and inversion of field data. Indeed, whereas fully discretized finite-element approaches are
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regularly used to simulate SP signals in porous media [e.g., Revil and Jardani, 2013], such methods quickly
become computationally prohibitive when considering fractured rock where the fractures must be discretized
at a fine spatial scale.

In this paper, we address the above challenges and present a highly efficient, discrete-dual-porosity (DDP)
approach for simulating fluid flow and streaming potentials in fractured porous media. Our approach builds
on the 2-D electric current flow model developed by Roubinet and Irving [2014] and importantly considers
the exchange of water between fractures and the surrounding matrix. The proposed modeling approach
is specifically designed for highly heterogeneous fractured porous media that cannot be handled by stan-
dard numerical methods. Indeed, simulations are found to be approximately 50 times faster than standard
finite-element methods for simple configurations for which a comparison can be made. We use our numer-
ical approach to simulate field-scale SP experiments under pumping conditions in order to demonstrate
that (i) considering the fluid flowing in the matrix is absolutely essential for accurate simulation of SP
signals in fractured rock; (ii) strong SP signals are observed for hydraulically active fractures having signif-
icant fracture-matrix fluid interactions; and (iii) the detection of individual hydraulically active fractures by
SP measurements is feasible only when the hydrogeological response is determined by a few dominant
fractures.

2. Methodological Background
2.1. Governing Equations
Under steady state conditions, the Darcy velocity u (m/s) of an incompressible fluid can be described by
Darcy’s law and Darcy-scale mass conservation [e.g., Bear and Cheng, 2010],

u = −K∇h, ∇ ⋅ u = 0, (1)

where K (m/s) and h (m) are the hydraulic conductivity and hydraulic head, respectively. Here source or sink
terms are not considered, and the hydraulic conductivity is defined as K = !"g∕# with ! (m2) the medium
permeability, " (kg/m3) the fluid density, g (m/s2) the gravitational acceleration, and # (kg/(m s)) the fluid
dynamic viscosity.

Considering the presence of an electrical double layer that results in an excess of charge in the pore water,
the water flowing through the medium drags a part of this excess charge Q̄eff

v (C/m3). This generates an
electrokinetic source current density Js (A/m2), which can be defined as [Titov et al., 2002]

Js = Q̄eff
v u. (2)

In the quasi-static limit, the impact of this streaming current on the electric potential is described by the
following charge conservation equation [Sill, 1983]:

∇ ⋅
(
−%∇& + Js

)
= 0, (3)

where % (S/m) and & (V) are the bulk electrical conductivity and electric potential, respectively.

2.2. Overall Modeling Strategy
We wish to solve equations (1)–(3) in complex fractured-rock formations that are characterized by a large
contrast between the permeability of the fractures and that of the surrounding matrix. For this purpose, we
consider a DDP representation in which the fractures are explicitly represented. In accordance with existing
DDP formulations developed for fluid flow in fractured reservoirs [e.g., Lee et al., 2001; Li and Lee, 2008], each
fracture is represented using two parallel plates between which the flow is assumed to be laminar. This means
that (i) the fracture permeability can be defined as !f = (bf )2∕12 where bf is the fracture aperture [e.g., Snow,
1969] and (ii) the excess charge can be evaluated numerically by adapting the strategy of Jougnot et al. [2012]
for a single capillary tube to the case of two infinite plates having known separation.

Based on this DDP representation, we solve successively equations (1) and (3) in two dimensions using the
hydrogeological and self-potential model formulations described in sections 2.3 and 2.4, respectively. In
each case, the fractures and matrix are divided into fracture segments and matrix blocks having constant
properties, which are coupled through an exchange coefficient defined at the matrix-block scale. Please see
Roubinet and Irving [2014] for a detailed description of the representation and discretization methods used to
model the geological structures.
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2.3. Hydrogeological Model Formulation
As the fluid flow problem in equation (1) is mathematically equivalent to the electric current flow problem in
equation (3) with Js set to zero and with the hydraulic conductivity and hydraulic head replacing the electrical
conductivity and electric potential, the DDP approach described by Roubinet and Irving [2014] for electric
current flow can be employed to determine the distribution of hydraulic head in the fractures and matrix. This
distribution is then used to evaluate the Darcy velocity of the fluid circulating in these structures, as well as
the Darcy velocity of the fluid exchanged between them. The latter, expressed in the direction perpendicular
to each considered fracture, is given by

ufm = −
Km(hm − hf )

< d >
, (4)

where Km is the matrix hydraulic conductivity, hm and hf are the matrix and fracture hydraulic heads,
respectively, and < d > is the average normal distance between the fracture and each point of the surround-
ing matrix block [Lee et al., 2001; Li and Lee, 2008]. Whereas expression (4) is usually defined at the matrix-block
scale, note that we define it at the fracture-segment scale with hf the hydraulic head averaged along the
considered fracture segment.

2.4. Self-Potential Model Formulation
The presence of the previously described fluid flows combined with an excess of charge in the pore water
implies the generation of source current densities in the fractures and matrix, which we denote by Js,f and
Js,m, respectively. We now describe how we account for these current densities in the electrical problem at the
fracture, fracture-network, and matrix-block scales, with particular focus on the additional terms required in
comparison with the DDP approach described by Roubinet and Irving [2014].

At the fracture scale, consider the charge conservation equation (3) in two dimensions with a constant fracture
electrical conductivity %f

− %f

(
'2

xf
&f + '2

yf
&f

)
= −'xf

Jxf
s,f − 'yf

Jyf
s,f , (5)

where xf and yf denote the spatial variables parallel and perpendicular to the considered fracture, respectively,
&f denotes the electric potential in this fracture, and Jxf

s,f and Jyf
s,f are the components of Js,f in the xf and yf

directions, respectively. As our 2-D DDP formulation is based on a 1-D representation of fractures, we average
equation (5) over the aperture of the considered fracture. Assuming that the variation of Jxf

s,f along the fracture
is negligible ('xf

Jxf
s,f = 0 A/m3), this yields

− %f'2
xf
&̄f = −E

fm −SP
fm, (6)

where &̄f = 1
bf
∫ bf

0 &f (xf , yf )dyf is the electric potential averaged over the fracture aperture and E
fm

=

− %f

bf

[
'yf

&f (yf =bf ) − 'yf
&f (yf =0)

]
and SP

fm
= 1

bf

[
Jyf

s,f (yf =bf )
− Jyf

s,f (yf =0)

]
are electric source/sink terms represent-

ing exchange occurring at the fracture-matrix interfaces related to the variations in electric potential and
hydraulic head, respectively. In our dual-porosity formulation, this leads to E

fm
being expressed as a function

of the difference in electric potential between the fracture and matrix [Roubinet and Irving, 2014] and to SP
fm

being given, using expression (2), as

SP
fm = Q̄eff

v,f ufm∕bf , (7)

where Q̄eff
v,f is the effective excess charge in the considered fracture and ufm is the Darcy velocity of the fluid

going from this fracture to the surrounding matrix (section 2.3).

At the fracture-network scale, charge conservation at each fracture intersection is enforced by integrat-
ing equation (3) over the considered intersection. Using Gauss’s Divergence Theorem with Ci denoting the
contour of the intersection and n⃗Ci

its outward unit normal vector leads to the expression

− ∫Ci

%f∇&f ⋅ n⃗Ci
dCi = −∫Ci

Q̄eff
v,f uf ⋅ n⃗Ci

dCi, (8)

where uf is the Darcy velocity of the fluid in the fracture. As each fracture intersection is the shared extremity
of several fracture segments, expression (8) is discretized as the sum of the integrals over the apertures of
these fracture segments. The left-hand side is obtained using the analytical expression of equation (6), and
the right-hand side is taken into account as a source term.
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Finally, in the matrix, charge conservation is again enforced by integrating equation (3) over each matrix block
having volume Vm and applying Gauss’s Divergence Theorem. Using Cm to denote the contour of a matrix
block and n⃗Cm

its outward unit normal vector leads to

− ∫Cm

%m∇&m ⋅ n⃗Cm
dCm = −∫Cm

Q̄eff
v,mum ⋅ n⃗Cm

dCm + ∫Vm

(E
fm +SP

fm

)
dVm, (9)

where the first term on the right-hand side is related to the electrokinetic source current density Js,m
exchanged between the matrix blocks and the second term is related to fracture-matrix exchanges occur-
ring inside each block. We discretize expression (9) using a modified finite-volume method where the terms
related to the presence of fluid flow are taken into account as source terms.

3. Method Validation

To validate our modeling approach, we consider the fracture, matrix, and fluid properties in Table 1 and the
basic 2-D fracture configuration shown in Figure 1a. In this configuration, two fractures of infinite vertical
extent intersect at position (x, y) = (50, 50) m. The fractures are oriented at angles of −26.6∘ (Fracture 1) and
26.6∘ (Fracture 2) and have widths (in the x-y plane) of 111.8 m (Fracture 1) and 50 m (Fracture 2). The fracture
permeability and effective excess charge were evaluated as described in section 2.2, and the fracture electri-
cal conductivity was set equal to the water conductivity %w = 5 × 10−2 S/m as we consider clean fractures
(i.e., no filling). For the matrix, the permeability was chosen to be representative of sandstone [Schön, 2011]
and the excess charge was evaluated from the permeability using the empirical relationship defined by
Jardani et al. [2007]. The matrix electrical conductivity was determined using Archie’s law: % = %w)m, where
) is the porosity and m the cementation exponent (set equal to 2).

For the fluid flow problem, we consider the following: (i) Dirichlet hydraulic head boundary conditions equal
to 1 m and 0 m on the left and right sides of the domain, respectively, (ii) Dirichlet boundary conditions varying
linearly between these two values along the top and bottom, and (iii) a sink term applied at the center of the
domain corresponding to pumping at a rate of 0.8 × 10−3 m2/s. To study the impact of water flowing in the
low-permeability matrix on the generated SP signal, we solve the fluid flow problem first only in the fractures
(i.e., ignoring matrix flow) and then over the whole domain. For the streaming potential problem, we consider
the following: (i) a current insulation condition on all borders of the domain and (ii) a reference electrode
located at (x, y) = (0, 0) m with a specified potential of 0 V.

Figures 1b and 1c show the distribution of the electric potential difference Δ&x,y(x, y) = &x,y(x, y) − &x,y(0, 0)
for the cases where matrix fluid flow was ignored and accounted for, respectively. These results were com-
puted using our DDP approach with 201 matrix blocks in each direction, as well as with the COMSOL
Multiphysics 4.3 finite-element software package. In the latter case, using the “extremely coarse” meshing
option resulted in 8.1×105 model elements and a combined meshing/computation time of 1.5 h on a 2.9 GHz
laptop computer with 8 GB RAM. In comparison, our DDP approach required only 4.1 × 104 model elements
and the total computation time was less than 2 min. The mean absolute difference between the results of our
DDP approach and those of the finite-element solution is 2.6 × 10−5 mV for the case with no matrix flow and
3.2 × 10−1 mV when it was considered, which demonstrates a good agreement between the two modeling
methods. This agreement is also observed in Figures 1d and 1e, which contain polar plots of the potential dif-
ference in Figures 1b and 1c along the dashed circle having a radius of 20 m. Here the plotted values Δ&∗

r (*)
were calculated relative to the minimum along the circle Δ&min

r , whose position is shown by a black cross in
Figures 1b and 1c. That is,

Δ&∗
r (*) = Δ&r(*) − Δ&min

r . (10)

The results of the validation (Figure 1) provide important insight into whether it is reasonable to neglect matrix
fluid flow when modeling streaming potentials in fractured media. As seen in Figures 1b and 1d, making this
assumption results in extremely small SP values compared to the case where matrix flow and matrix-fracture
interactions are taken into account (Figures 1c and 1e). This is despite the fact that in our example, the matrix
permeability was set to be 8 orders of magnitude smaller than that of the fractures and thus the matrix can
be considered as impermeable from a flow modeling perspective. Indeed, whereas extremely small matrix
permeabilities are generally ignored for flow computations in fractured media, they cannot be neglected
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Table 1. Properties Used for the Numerical Validation (Figure 1)

Fracture 1 Fracture 2 Matrix

) (-) 1 1 0.1

b (m) 2 × 10−3 10−3 -

! (m2) 3.3 × 10−7 8.3 × 10−8 10−15

% (S/m) 5 × 10−2 5 × 10−2 5 × 10−4

Q̄eff
v (C/m3) 3.6 × 10−5 1.4 × 10−4 1.2 × 103

" = 103 kg/m3 g = 9.8 m/s2 # = 10−3 kg/(m s)

Figure 1. (a) Configuration used to validate our modeling approach where the red cross represents the position of the
considered pumping well. (b and c) Spatial distribution of the SP signal Δ&x,y (in mV) computed with our DDP approach
where the white square represents the position of the reference electrode. (d and e) Polar plots of the SP signal Δ&∗

r
(in mV) with respect to a reference located at the black cross in Figures 1b and 1c, respectively, and computed with our
DDP approach (blue lines) and a finite-element solution (red crosses). Note that matrix fluid flow was ignored in
Figures 1b and 1d and accounted for in Figures 1c and 1e.
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when modeling the SP response. These results also imply that if the matrix material is strictly impervious or if
the fracture network is so well connected that fracture-matrix fluid exchange is minimal, then the associated
SP signals will be negligible.

The results obtained for the case where matrix fluid flow was accounted for (Figures 1c and 1e) also provide
information concerning the sensitivity of the SP method to fracture-matrix fluid exchanges. As Fracture 2
does not intersect the domain boundaries (Figure 1a), the fluid circulating in this fracture during the pumping
experiment is provided by the surrounding matrix. Conversely, the fluid circulating in Fracture 1 is mostly
provided by the Dirichlet conditions enforced at the extremities of the modeling domain. That is, Fracture 2 is
characterized by strong fracture-matrix fluid interactions which result in (i) strong variations of the SP response
Δ&x,y perpendicular to this fracture and (ii) small variations of Δ&x,y along this fracture where the maximum
value of Δ&x,y is observed (Figure 1c). As a result, the maximum value of Δ&∗

r is observed in the direction
of Fracture 2 (Figure 1e), which demonstrates that azimuthal SP measurements would be more sensitive to
Fracture 2 than to Fracture 1.

4. Results for Complex Fractured Media

We now use our modeling approach to investigate how the SP method may help to identify hydraulically
active fractures in complex fractured media. To this end, we consider the two 2-D fracture configurations
shown in Figures 2a and 2b. These 100 × 100 m regions contain (i) a primary fracture at position y = 50 m
extending from x = 0 m to 100 m that is characterized by an aperture of 2 × 10−3 m and (ii) a random distri-
bution of fractures all having an aperture of 10−3 m. In the latter case, the fracture positions and orientations
were drawn from a uniform distribution, whereas a power law distribution was considered for their lengths
using power law exponents equal to 1.5 (Figure 2a) and 2.5 (Figure 2b) and percolation parameter equal to 6.
Justifications and examples of fracture networks corresponding to these distributions and parameters can be
found in Bonnet et al. [2001], Bour and Davy [1997], and Roubinet et al. [2010].

We consider the same fracture, matrix, and fluid properties as before (Table 1), as well as the same boundary
and source conditions for the fluid flow and streaming potential problems with, again, pumping applied at the
center of the domain. Note that matrix fluid flow and fracture-matrix fluid exchange are taken into account in
these examples. Figures 2c and 2d show the distribution of the SP response Δ&x,y computed with our model-
ing approach using 201 matrix blocks in each direction, and Figures 2e and 2f show the corresponding polar
plots of Δ&∗

r defined in equation (10) with, again, the position of Δ&min
r represented with a black cross in

Figures 2c and 2d.

For the fractured medium in Figure 2a, we observe that the maximum value of Δ&∗
r is 31 mV and that this

value is obtained when * = 306∘ (Figure 2e). This corresponds to the location of a dead-end fracture that is
hydraulically connected and close to the pumping well, which implies that the considered fracture contributes
significantly to the pumped volume of fluid and that this contribution is mostly provided by the surround-
ing matrix. In other words, fluid fracture-matrix exchanges are maximized at this position, which results in a
strong SP signal. Figures 2c and 2e also show that Δ&∗

r ranges from 10 mV to 20 mV for angles correspond-
ing to (i) the primary fracture in which the pumping is applied and (ii) fractures that are connected to the
domain boundaries and hydraulically connected to the pumping well. Conversely, Δ&∗

r is smaller than 10 mV
for angles associated with regions where there is no fracture that is well connected to the pumping well.
This demonstrates that the contrast in hydraulic and electrical properties between fractures and matrix, as
well as the corresponding fracture-matrix exchanges, results in variations of Δ&x,y that are smaller along the
hydraulically active fractures than perpendicular to these fractures.

For the fractured medium presented in Figure 2b, a different behavior for Δ&∗
r is observed (Figure 2f ). In this

case, we do not see any localized large values characteristic of dominant hydraulically active fractures hav-
ing important fracture-matrix interactions. We observe that (i) the largest values of Δ&∗

r around 20 mV are
obtained when * ranges from 252∘ to 297∘ and (ii) the smallest values of Δ&∗

r , defined here as Δ&∗
r ≤ 5 mV,

are obtained when 63∘ ≤ * ≤ 72∘ and 135∘ ≤ * ≤ 144∘. The latter regions having small SP values correspond
to regions containing comparatively small fluid flow (not shown).

Note that the simulations presented above represent scenarios where (i) a natural hydraulic gradient is locally
perturbed by pumping and (ii) the pumping rate is large enough such that the simulated azimuthal electri-
cal measurements are not significantly affected by the boundary conditions. Further analysis could help to
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Figure 2. (a and b) Studied fractured domains where the red cross represents the position of the considered pumping
well. (c and d) Corresponding spatial distribution of the SP signal Δ&x,y (in mV) computed with our DDP approach
where the white square represents the position of the reference electrode. (e and f) Polar plots of the SP signal Δ&∗

r
(in mV) with respect to the black crosses located in Figures 2c and 2d, respectively, and computed with our DDP
approach.

assess the impact of these boundary conditions and their distance from the pumping well on the simulated SP
signals. This could be easily done, for example, by comparing the signals obtained for domains of increasing
size associated with consistent boundary conditions and fracture network properties.

5. Conclusions

We have presented a highly efficient and accurate 2-D discrete-dual-porosity approach for modeling stream-
ing potentials in complex fractured porous media. A key feature of this approach is that it accounts for fluid
and electric current flow in and between the fractures and surrounding matrix. For a simple configuration
with two intersecting fractures and pumping, we found that our method is 50 times faster and provides
the same response as a fully discretized finite-element numerical solution. We also saw in this example that

ROUBINET ET AL. STREAMING POTENTIAL IN FRACTURED ROCK 7
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ignoring matrix-fracture interactions may lead to simulated SP responses that are not only wrong in overall
appearance but also orders of magnitude too small in amplitude. These results and further examples based
on more complex fractured domains demonstrate that the SP method, when applied to fractured media, is
primarily sensitive to hydraulically active fractures having important fracture-matrix exchange. The latter find-
ing opens up exciting possibilities to remotely and noninvasively identify fracture-matrix exchange using SP
measurements. It would also be straightforward to include our new modeling approach within an inversion
framework to quantify these exchanges from field data. For more densely fractured media, we approach an
upscaled effective medium response, in which it becomes impossible to identify individual fractures. However,
in this case, strong SP signals will still inform us about regions that are (in an average sense) well connected
to the pumping well, whereas weak SP signals will indicate regions that are poorly connected to the pumping
well. Future work will focus on simulating SP signals in 3-D fractured domains. For this purpose, the required
numerical method will build on either 2.5-D or 3-D formulations of our DDP approach, which are currently in
development for modeling electrical current flow in fractured porous media.
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