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Abstract 

Cholesterol is a lipid that is essential in membrane structure and function and that is a precursor 
for bile acid and steroid hormone synthesis. In humans, elevated plasma cholesterol levels are 
an important cardiovascular risk factor, as they predispose to the development of 
atherosclerosis. Understanding cholesterol metabolism is therefore the focus of extensive 
research. Yet, if there is evidence for substantial genetic contributions to variations in 
cholesterol levels, the underlying functional genetic architecture remains largely unknown and 
current approaches have yielded results of little predictive value regarding future disease 
occurrence. It is now becoming commonly accepted that complex traits, like plasma cholesterol 
levels, are the product of complex molecular networks, modulated by sets of genetic loci and 
environmental factors. To address these complexities, it is necessary to study cholesterol 
metabolism as a whole system and to get an understanding of the interacting effects of its 
individual parts. Here, we propose a systems genetics approach of the cholesterol biosynthetic 
pathway in genetically diverse BXD-type recombinant mouse lines. For this, we have combined 
large-scale genomic, transcriptomic and phenomic results and integrated it to reconstruct the 
co-expression network of cholesterol biosynthetic genes. We identified a set of new genes, 
previously not known to be involved in cholesterol metabolism. In particular, Echdc1 is one of 
the promising candidates and it was shown that variations in its sequence and transcript 
abundance are significantly associated to plasma cholesterol levels. We believe that examining 
the role of these genes will provide new insights on the regulation of cholesterol biosynthesis 
and on the basis of cholesterol level variability among individuals in a genetically admixed 
population. Translation to humans may eventually have clinical implications in prediction of 
disease risk and response to treatment and drug development.  
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1. Introduction 

 

1.1 The cholesterol molecule and its metabolism 

Cholesterol is well known for its central role in the pathogenesis of cardiac vascular disease. 
Yet, it is firstly an essential molecule in many animals, including humans, as a universal 
component of the cell membrane. It is also the precursor for steroid hormones, vitamin D, 
oxysterols and bile acids, and is thus a key player in animal metabolism. Moreover, recent 
research has shown the implication of cholesterol in inflammation and immunity	[1, 2], cancer	[3], 
and Alzheimer’s disease	 [4]. In the body, cholesterol can be derived both from diet and de novo 
synthesis (Figure 1A). In humans, most of it is synthesized de novo	 and a small fraction 
originates from the diet [5], whereas other animals, such as Caenorhabditis elegans and 
Drosophila melanogaster are sterol auxtrotrophs. With its unique structure of 27 carbon atoms 
arranged in 4 fused rings, the cholesterol molecule is produced through a complex biosynthetic 
pathway of sequentially acting enzymes - the mevalonate pathway. This pathway leads to the 
formation of cholesterol by deriving all carbons from acetate and through the formation of four 
major intermediates: mevalonate, farnesyl pyrophosphate, squalene, and lanosterol. HMG-CoA-
reductase is the rate-controlling enzyme of the pathway, which catalyzes the conversion of 
HMG-CoA to mevalonate, a step that is targeted by cholesterol lowering drugs called statins. 
Cholesterol obtained from food is first absorbed in the gut and transported to the liver, which 
then mediates its delivery to the whole body. As cholesterol and other lipids are insoluble, they 
are transported through the circulation as complexes with proteins: lipoproteins. Among them, 
low density lipoprotein (LDL) is the main lipoprotein that delivers cholesterol to peripheral cells, 
whereas high density lipoprotein (HDL) is responsible for reverse cholesterol transport, the 
process by which cholesterol is transported from peripheral tissues to the liver and secreted into 
the bile (Figure 1B). Bile cholesterol ends up in the small intestine where it can either be 
reabsorbed with bile salts - as part of the enterohepatic cycle - or excreted into faeces. The 
processes of cellular cholesterol synthesis, absorption and trafficking are tightly regulated at the 
cellular level [6]. There are two main transcriptional regulatory systems keeping cellular 
cholesterol homeostasis: sterol regulatory element-binding proteins (SREBPs) and liver X-
activated receptors (LXRs). These transcription factors aim at keeping intracellular cholesterol 
levels steady by balancing contributions of endogenous cholesterol synthesis and endocytosis of 
LDL cholesterol, and by regulating the formation of cholesterol esters for storage of excess 
cholesterol. SREBPs are a family of transcription factors that activate the expression of gene 
products dedicated to the synthesis and uptake of cholesterol [7]. On the other hand, liver X-
activated receptors (LXRs), are oxysterol-gated nuclear receptors that favor reverse cholesterol 
transport [8].	 
 

1.2 Cholesterol level variations in a natural population 

Cholesterol levels vary continuously over a range of distribution in natural populations; a process 
that is controlled by several genetic and environmental factors. The prime exogenous factors 
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well known to change cholesterol levels include diet, exercise and drugs, with potentially many 
more factors contributing. On the other hand, genetic makeup also changes an individuals’ 
propensity in cholesterol synthesis, absorption and output, resulting in inter-individual variations, 
and hence also making people more or less susceptible to disease. Indeed, not all individuals 
exposed to the same exogenous factors/stressors will develop health issues, revealing the 
importance of genetic factors [9], which are estimated to contribute to  roughly 50% of the 
variation in cholesterol level in humans [10]. However, if there is evidence for substantial genetic 
contributions to the variation of cholesterol and lipoprotein level, the underlying genetic 
machinery remains largely unsolved [11]. Due to the important implications of plasma lipoprotein 
levels in cardiovascular diseases, elucidating the genetic factors implicated has been and 
remains the focus of extensive research. Finding out these factors will undoubtly contribute to 
better prevention and management of disease linked with altered cholesterol levels [9, 12, 13].	 
 

1.3 Research in humans and in mice 

In the research for the genetic factors underlying complex traits, large efforts have been invested 
to discover the individual genes accounting for inter-individual variability. Genome-wide 
association studies (GWAS) have made it possible to identify hundreds of genetic loci 
associated to common traits in humans. In the field of plasma lipids and lipoproteins, these have 
revealed more than 50 variants underlying dyslipidemias, including previously known and 
entirely novel SNPs [14-16]. Although, these results have provided valuable insights into the 
current understanding of complex traits through identifying new-involved genes and pathways, 
they also brought about disappointment and questioning, as the effects explained by these 
genes represent only a limited portion of the heritable component of any complex trait, thus 
providing little predictive value regarding future disease occurrence [17]. The question arose 
hence as to why and which aspects have been missed through this approach [18]. Complex 
traits, such as cholesterol levels, typically result from the action of many genes, as well as from 
gene-gene and gene-environment interactions [19]. Accordingly, effects of genetic variants 
depend on the genetic and environmental context in which they operate	 [20], and thus show 
differences in expressivity and penetrance by virtue of interaction effects. This concept implies 
that complex traits cannot be explained solely by the sum of the actions of single genes [21]. 
This could in part explain why approaches aiming to identify single genes, like through GWAS, 
have failed to capture the complete range of genetic variability, as context-dependent effects, 
such as interactions, were overlooked. It is now becoming generally accepted that many traits 
need to be studied as the product of a whole system of larger scale, in which all the components 
of this system should be analyzed simultaneously [22]. The systems approach is based on the 
concept that the whole is greater than the sum of its parts, and thus, looking at systems as a 
whole will give a new perspective to the understanding of biological phenomena [23]. This 
approach provides us with a vision that wouldn’t be possible otherwise and becomes even more 
attractive when used in complementarity with the study of gene function at the level of individual 
pathways [24]. For the study of cholesterol metabolism, mice have remained a popular model 
organism, for practical reasons [25].	The ease with which their genome can be manipulated and 
their environment can be controlled is inconceivable in humans. Furthermore, the information 
resources available from mouse genetic resources are an additional benefit. Mouse models 
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have already proven useful for identifying new genetic determinants of common traits, for the 
study in vivo of relevant pathways and for validating the data obtained from human genetic 
studies [26]. Yet, it is important to note that in the mouse circulating cholesterol is largely found 
in HDL, differentiating them from humans and rendering the animals resistant to the 
development of atherosclerosis [27]. In this respect, genetically engineered mouse models have 
been generated that are prone to develop atherosclerosis, such as apoE deficient (Apoe-/-) or 
LDL receptor deficient (Ldlr-/-) mice, making them more apt to study cardiovascular disease [28].  
Despite that these mice strains developed atherosclerosis, they were not mimicking the full 
complexity of human populations in relation to cholesterol metabolism. Aiming a systems 
approach to understand complex traits, it was a challenge to find an experimental design that 
allows the analysis of many components simultaneously (genes, transcripts, phenotypes,…), 
and that comprises multifactorial perturbations, namely genetic variation and different 
environmental conditions [29]. Among the best models to this purpose are murine genetic 
reference populations (GRPs) and, more specifically, recombinant inbred (RI) strains [30]. GRPs 
are panels of strains with unique and fixed genomes that have been derived from multiple 
inbreeding of genetically diverse parental strains. As such, they model aspects of natural 
populations in showing genetic and phenotypic diversity, while keeping the advantages of model 
organisms. In particular, two features make them especially attractive for the study of complex 
traits [26]. First, RI strains are renewable and thus allow replicate studies: genotype once, 
phenotype many times. Second, the environment can be rigorously controlled in reference 
populations, enabling to discriminate between the effects of genes, environment and gene by 
environment interactions (GxE), much better than in a natural population. Moreover, as GRPs 
have fixed genotypes, publicly available databases from different centers can be shared, offering 
a richness of data and greatly increasing statistical robustness. The BXD family is one of the 
most important GRP with more than 160 strains derived from crosses between C57BL/6J and 
DBA/2J	 [31]. A great amount of data, ranging from genotypes over molecular (e.g. 
transcriptome) to clinical phenotypes has already been accumulated across the BXD strains by 
different independent groups and is publicly available on the GeneNetwork data repository 
(www.genenetwork.org) [31, 32]. 
 

1.4 Computational methods 

As new experimental approaches now allow testing of multiple components simultaneously and 
across multiple genetic backgrounds, computational approaches evolved to assemble more 
complex and integrated systems. Among these, the network-based approach is of particular 
interest for the analysis of complex traits such as cholesterol levels [21]. Networks organize 
large-scale data by modeling molecules as nodes (for example genes or gene products) and the 
relationship between them as edges, thus enabling the representation of all components of a 
system simultaneously along with extensive interactions among them. Molecular regulatory 
networks and pathways underlying complex traits lend themselves to evaluation by such 
advanced approaches. Eventually, new causative genes and mutations can be implicated by 
mapping their involvement in a network with known susceptibility loci. In this way, networks 
provide a convenient framework for integrating a diversity of data and visualizing the 
complexities of a biological system	 [33]. Computational approaches enhance traditional 
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molecular techniques, by moving beyond examining genes and their downstream products one 
at a time, and integrating the entire complexity of the data. This view can only be obtained by 
interrogating the system as a whole. 
 

1.5 Our study 

In the present study, we sought to identify new regulatory genes of the cholesterol biosynthesis 
pathway. To this purpose, we propose a systems genetics approach of the cholesterol 
biosynthesis pathway based on whole genome, transcriptome, proteome, metabolome, and 
phenome data from 84 cohorts of mice, derived from 42 different BXD strains on two dietary 
regimens – chow diet (CD) or high fat diet (HFD) – with 3 to 5 replicate animals for each cohort. 
We use computational and network analysis to identify new genes involved in this pathway, as 
well as the relations between them and the already-known factors.  
 

 

2. Results 

 

1.1 Cholesterol biosynthesis genes cluster in a network of highly correlating genes 

A co-expression network was constructed based on the liver mRNA levels of a hundred 
cholesterol related genes. These were selected from the literature and previous correlation 
analyses, as any gene known to be involved in cholesterol metabolism [34]. From this broad, 
prior-based network appears a sub-network of strongly interconnected nodes, which is highly 
enriched in cholesterol biosynthetic genes (Supplementary Figure 1). As correlating genes are 
those which show a similar pattern of differential expression among the different BXD strains, it 
suggests that, to some extent, they are responding to the same genetic variability and thus to a 
common regulatory mechanism. It is therefore not surprising to find cholesterol biosynthetic 
genes grouped, as they are known and expected to be tightly regulated at the transcriptional 
level [35]. Importantly, it validates our method for finding sets of co-expressed genes. 
Accordingly, we thereafter have focused on this sub-network (Figure 2A), using it as a 
confirmed basis to which novel gene involvements could be mapped. We found also that some 
genes of the beta-oxidation pathway (Acadvl, Cpt1, Cpt2, Ehhadh, Hadha, Hadhb, Acadm) also 
add to the network, correlating strongly and negatively with cholesterol biosynthetic genes, 
whereas genes related to lipoprotein assembly and transport, like those encoding for the 
apolipoproteins stayed unrelated. Then, we repeated the analysis using the HFD cohort data 
and reproduced a similar sub-network (Figure 2B, Suppl. Figure 1B), further confirming the 
method and indicating the robustness of the cholesterol biosynthetic pathway to changes 
implied by the HFD. Interestingly, we observed an even higher count of significant correlations 
within the genes of the cholesterol subnetwork in the HFD, with an average of 3.1 significant (p 
< 1E-10) edges per node, against 1.2 in the CD, suggesting biosynthetic genes are more tightly 
regulated when dietary cholesterol is increased. 
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1.2 Plasma cholesterol correlates with the cholesterol biosynthesis gene regulatory 

network 

As phenotypes were integrated to the cholesterol biosynthetic network, we found that 
cholesterol, glucose, liver weight, triglycerides, body weight loss at fasting, lactic acid, and iron 
levels are closely linked to the system (Figure 3). Most of these phenotypes are common 
manifestations of or are linked to the metabolic syndrome, but our data suggest that they are 
linked to cholesterol biosynthesis at the transcriptional level. Of note, LDL and HDL cholesterol 
levels did not manifest strong correlations. Notably, the link between iron and cholesterol levels 
is intriguing, and has also been described before in literature [36], where hepatic iron was 
shown to enhance cholesterol synthesis.  
 

1.3 Candidate regulatory genes can be mapped to the cholesterol biosynthesis network 

We proposed that if our approach is useful for re-discovering genes participating in cholesterol 
biosynthesis, then it should be valid for identifying novel gene involvements. Effectively, a few 
genes previously not known to be involved in cholesterol biosynthesis correlate strongly with the 
known set of genes and cluster along. Looking for novel regulators of the cholesterol 
biosynthetic pathway, we performed correlation analyses, using principal component analysis 
(PCA) to condense 6 core genes of the network into one, more robust, variable (Figure 4). We 
found a series of genes showing a similar pattern of expression as cholesterol biosynthetic 
genes in different strains throughout 6 independent datasets (Figure 4A,B). These genes 
demonstrate strong correlation to the first principal components across the different datasets, 
including the BXD CD and HFD cohorts [37] (Figure 4C), yet they have not been reported to be 
involved in or linked to this pathway previously. The main features of the 13 top candidate 
genes are summarized in Table 1. All of these genes being co-expressed with the cholesterol 
biosynthetic genes, it remains to be determined whether they are responding or acting upon the 
network regulation system. This question still has to be addressed experimentally, for example 
by looking at the situation where the gene in question has been knocked-down/-out in cells or in 
vivo. In this respect, we found that knock-outs (KO) already exist for some of the candidates. 
One of the genes, Acsl5, has been previously examined in Acsl5-KO mice, which showed a 
strong decrease in circulating cholesterol levels (p=2.55E-15)	 [38]. In humans, a variant in this 
gene was also reported to associate with better response to diet, lower total cholesterol, LDL 
and triglycerides [39]. Pstpip2-KO mice were shown to associate to multiple skeletal 
morphologic anomalies, as well as to changes in hematopoiesis, adipose tissue, and behavior. 
No significant phenotypic traits were found in Paox-KO mice. Regarding the other candidates, 
we can formulate hypotheses based on their response upon environmental changes such as 
addition of dietary cholesterol or statin treatment. 
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1.4 Six candidate genes also correlate to the cholesterol biosynthesis gene network in 

human data sets 

In order to further validate our results, we tested the candidate genes for correlation to the 
cholesterol biosynthesis gene network in two independent human databases: The Human Liver 
Cohort (HLC)	 [40] (Figure 5A), and The Genotype-Tissue Expression (GTEx) project [41, 42] 
(Figure 5B). Analysis of the transcriptional data from these two sources revealed that six of the 
candidate genes do correlate strongly to the principal components computed from the same 
core cholesterol biosynthetic genes as described previously. Echdc1, Rdh11, Mmab, and 
C14Orf showed significant correlation values (p<0.001) in both datasets, while Paox and Gck 
had significant values in a single dataset. 
 

1.5 Variation at the Echdc1 locus is associated to differences in cholesterol levels 

We further examined the first candidate gene, Echdc1, which is coding for ethylmalonyl-CoA 
decarboxylase: a protein known to have a role in lipid metabolism but whose function is still 
unclear [43]. We found that sequence variants in the 5Mb region containing Echdc1 (Figure 6A) 
are significantly linked to cholesterol levels in two independent datasets, a CD	[37] and a female 
cohort	 [31], using a PheWAS approach recently developed (Li et al.) (Figure 6B). To better 
understand how this gene relates to cholesterol metabolism, we first searched for its 
conservation in species and found it is conserved in vertebrates (Figure 6C). We then analyzed 
open-access data on differential tissue expression and found from the GTEx project that 
Echdc1 mRNA level is highest in adipose, lung, bladder, and breast tissue (Figure 7A). Human 
tissue protein staining is strongest in hepatocytes, adrenal cortex, renal tubules and Leydig cells 
based on data from the Human Protein Atlas [44]. A more in-depth analysis of the phenotypes 
linked to Echdc1 in the BXD CD dataset revealed that blood glucose, liver weight in grams and 
as percentage of the total body weight, total plasma cholesterol, sub-cutaneous white adipose 
tissue (scWAT), and aspartate transaminase (ASAT) levels are the most correlated traits 
(Figure 7B). This implies that changes in Echdc1 expression are associated, not only to 
cholesterol levels, but also to phenotypes such as liver weight and ASAT levels - signatures of 
liver disease - and could also potentially be inducing them. When looking at the gene’s 
regulatory response to environmental changes, we found that it is up-regulated when mice are 
fed a HFD (Figure 7C).  When mice are fed with a high fat diet depleted of cholesterol, Echdc1 
expression is induced, whereas its levels are decreased when cholesterol is added to the diet 
[45] (Figure 7D). Moreover, in human primary hepatocytes treatment by statins up-regulates 
Echdc1 levels [46]. 
 

1.6 Human ECHDC1 gene variants may be associated with breast cancer risk 

In 2008, a genome-wide association study (GWAS) in an Ashkenazi Jew population provided 
evidence for a breast cancer risk locus at 6q22.33, a region including ECHDC1 and RNF146 
[47]. This study suggested that ~7% of breast cancers in this population could be attributable to 
this risk factor, due to a relatively low risk ratio (1.5) but a high frequency of carriers (23%). 
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However, this association was not reproduced in subsequent breast cancer GWAS, which 
include one study in Chinese Women [48] and another study in African-American Women [49]. 
Nonetheless, ECHDC1 was mentioned in another study aiming at exploring the effects of the 
mucin 1 oncoprotein, which is aberrantly overexpressed in human breast cancer cells [50]. This 
protein was shown to induce the expression of a set of 38 genes involved in cholesterol and 
fatty acid metabolism, including ECHDC1, which shapes a network that converges to the 
SREBP-1 gene. This result supports our observations of a role of ECHDC1 in lipid metabolism, 
and it strengthens our hypothesis of a possible participation of ECHDC1 in breast cancer 
pathogenesis. In this context, there is also epidemiological evidence that statins can offer 
protection against breast cancer [51], but not against all cancer types [52]. Furthermore, in a 
recent study a metabolite of cholesterol, 27-hydroxycholesterol, was shown to link 
hypercholesterolemia and breast cancer pathophysiology [53]. 
 

 

3. Discussion 

We set out to find new regulatory genes of the cholesterol biosynthesis pathway by means of 
network analysis. Genes of the cholesterol biosynthesis pathway were shown to associate into 
a co-expression network of highly correlating nodes. This was consistent with the prior 
knowledge that these genes are subject to fine regulation at the transcriptional level, validating 
our approach. We searched for phenotypes linked to the cholesterol biosynthesis pathway and 
found traits related to the metabolic syndrome. In fact, plasma glucose levels, triglycerides, 
cholesterol, liver weight, plasma iron and lactic acid levels all correlate to cholesterol 
biosynthesis gene transcription. With the same general approach, we found several new co-
expressed genes showing strong similarity to the known cholesterol biosynthetic genes 
regarding their pattern of expression in genetically diverse strains. Different situations can lead 
to co-expression of genes: they can share a transcriptional regulator, directly regulate one 
another’s expression, be in genomic proximity, respond to a product of one gene, and more. We 
identified a set of 13 novel genes co-expressed with the known cholesterol biosynthesis genes, 
among which some will eventually prove to have a regulatory action on cholesterol metabolism.. 
One of the candidate genes that came out of our analysis is Acls5. As we subsequently looked 
for open-access data on the candidate genes, we found that Acsl5-KO mice show changes in 
circulating cholesterol levels as most striking phenotype. This biologically confirms the 
phenomenon that we bioinformatically anticipated and thus strongly supports our results. 
Echdc1 is another promising candidate coming out of this analysis. We have shown that 
variations in Echdc1 sequence and transcript abundance are significantly associated to plasma 
cholesterol levels, reinforcing the idea that Echdc1 is a novel causative gene in cholesterol level 
changes. Liver weight and ASAT levels - signatures of liver disease - also associated strongly to 
Echdc1 mRNA levels implying Echdc1 is linked to changes in hepatocyte physiology as well. In 
GWAS, this same gene has been identified as a significant risk factor of breast cancer in an 
Ashkenazi Jewish populations and linked with a lipid metabolic gene network involved in breast 
cancer. These findings further highlight the need for additional studies on Echdc1 and it’s 
involvement in cholesterol metabolism and breast cancer. The other 11 candidates also deserve 
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further attention, and in particular, their validation through in-depth biological studies. As a first 
step, we propose to examine the transcriptional response of the genes to different perturbations 
(pathway inhibitors and knock-downs of regulatory genes) in hepatocyte cell lines. In a second 
step, phenotypic and metabolic characterization of model animals with loss-of-function of these 
genes could constitute a robust reference before further investigations. 
 

 

4. Conclusion 

Our analysis has led to the identification of several genes with potent regulatory functions on the 
rate of cholesterol biosynthesis. At this stage, our findings are just enough to formulate a 
hypothesis. However, we propose to pursue this research by a functional analysis and validation 
of the involvement for one or more candidate genes. We believe it may lead us one step further 
into understanding the genetic basis of cholesterol-related traits in a genetically diverse 
population. Moreover, the biological pathways that will be uncovered as a result of these studies 
might give rise to a better understanding of the basic mechanisms of cholesterol metabolism. 
Ultimately, elucidating these genetic factors will offer insights into both treatment and prevention 
of diseases ensuing high cholesterol levels. 
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5. Methods 

GeneNetwork (www.genenetwork.org) was used to retrieve all the data, i.e. all BXD genotypic, 
transcriptomic and phenotypic data. Network Graphs were constructed in R from BXD liver gene 
expression and phenotype results, using the custom package imsbInfer on Github 
(https://github.com/wolski/imsbInfer). The connectivity between nodes was calculated as the 
spearman rank correlation, with a threshold at p < 0.001 (and p < 1E-10) for significant 
connections. Selection of phenotypes was done by plotting the cholesterol biosynthesis network 
with all phenotypes, then taking phenotypes with > 1 significant connection to the cholesterol 
network. The research for novel genes was done using GeneNetwork by PCA and correlation 
analyses in the following manner. We computed the values for the first principal component 
(factor 1), obtained from the PCA of 6 core genes of the cholesterol biosynthesis network (Idi1, 
Nsdhl, Lss, Mvk, Fdps, Dhcr7). Then we calculated spearman rank correlations between factor 
1 and all liver genes and kept the 1000 first genes. We repeated the process in 6 different 
databases (liver mRNA: EPFL/LISP CD&HFD	 [37]; UCLA/BHF2 (Apoe Null) F&M [54]; UNC 
F&M	 [55], MDP JAX	 [56]), so that in total we used 2 female, 2 male, 1 CD, and 1 HFD, and 1 
other independent cohorts from three different genetic mouse model systems (BXD, MDP, 
BHF2). Then we selected correlating genes with highest incidence among correlation results in 
all datasets. The same approach and the same genes were used to compute the first principal 
component in two human datasets (GTEx [41, 42] and HLC	 [40]). Student’s t-test was used to 
calculate significance of the difference between two groups. Pearson correlation was used to 
calculate r and p correlation values for gene expression and phenotype. Geneious software was 
used to draw the Echdc1 phylogenetic tree	 [57]. Prism software was used to draw correlation 
and mRNA expression figures (GraphPad Prism 6.0, GraphPad Software, San Diego, CA, 
USA). 
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Tables & Figures 
 
 

 
 

Table 1: Key characteristics of candidate regulatory genes of the cholesterol biosynthesis 
pathway. The table summarizes four tissues with highest gene expression as GTEx [41, 42] and 
sub-cellular location of the protein products for each candidate, as reported by the Human 
Protein Atlas [44]. Response to exogenous perturbations was examined by looking for 
transcriptional changes in mice hepatocytes upon addition of dietary cholesterol	 [45] and after 
human hepatocyte treatment by cholesterol lowering drugs	 [46]: Rosuvastatin and Atorvastatin 
(arrows: ↓ lower, ↑ higher mRNA levels, p-values < 0.05 are bold). Knock-out (KO) availability in 
mice is according to the IMPC	[38]. Genes abbreviations, Echdc1: enoyl Coenzyme A hydratase 
domain containing 1, Lactb2: lactamase, beta 2, Rdh11: retinol dehydrogenase 11, Pstpip2: 
proline-serine-threonine phosphatase-interacting protein 2, Mmab: methylmalonic aciduria type 
B protein, Aqp8: aquaporin 8, Copz1: coatomer protein complex, subunit zeta 1, Ubl3: ubiquitin-
like 3, Nfe2: nuclear factor, erythroid derived 2, Acsl5: acyl-CoA synthetase long-chain family 
member 5, Gck: glucokinase, Paox: polyamine oxidase (exo-N4-amino).	
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Figure 1: (A) Schematic view of cholesterol equilibrium. Body cholesterol is derived from both an 
exogenous (diet) and an endogenous (de novo synthesis) source. Endogenous cholesterol is 
produced through multiple reductive polymerizations from the simple building block acetate. The rate 
of de novo synthesis in hepatocytes is regulated according to alimentary, thus plasmatic, cholesterol 
levels and is the major homeostatic factor for maintaining stable plasmatic concentrations. Differences 
in sensitivity of this retro control mechanism contribute substantially to individuals’ cholesterol 
statuses. The four-ring structure of the cholesterol molecule is shown, with both a polar head group 
and a nonpolar hydrocarbon body making up its unique biophysical properties. Intermediates in the 
cholesterol biosynthesis pathway have many alternative fates, with in particular isopentyl 
pyrophosphate as the precursor of a large array of biomolecules with diverse biological roles. 
Cholesterol itself is the precursor for steroid hormones, vitamin D and oxysterols. Also, cholesterol can 
be fatty acylated to form cholesteryl esters for storage and transport. Liver cells excrete cholesterol 
into the bile both as free sterol and after conversion to bile acids. (B) Overview of cholesterol 
metabolism. Exogenous and endogenous biosynthetic cholesterol pathways and the metabolism of 
low-density lipoprotein (LDL) and high-density lipoprotein (HDL) are shown. Dietary cholesterol is 
packaged with triglycerides (TGs) into chylomicrons in the intestinal mucosa. Chylomicrons, secreted 
via the lymphatic system, enter the blood and circulate until they are hydrolyzed by an endothelial 
lipoprotein (LP) lipase in the capillaries, releasing free fatty acids (FAs). The chylomicron remnants are 
taken up by hepatic LDL receptor (LDLR), or by LDLR-related protein-1 (LRP1). Some of the 
cholesterol enters the metabolic pool, and some is excreted as free cholesterol or bile acids into the 
biliary tract. The endogenous synthesis of cholesterol begins in the liver, with 3-hydroxy-3-
methylglutaryl coenzyme A reductase (HMGCR) being rate-limiting. LDL is responsible for cholesterol 
transport from the liver to the periphery. Its synthesis begins as liver cells secrete cholesterol and 
triglycerides incorporated into very low-density lipoprotein  (VLDL) into the circulation. In the capillaries 
of adipose tissue and muscle, the TG contained in VLDL is hydrolysed by LP lipase, releasing free 
FAs and IDL. Further metabolism of IDL includes direct uptake through the LDL receptor and 
hydrolysis by hepatic lipase, yielding cholesterol-rich LDL. LDL is endocytosed by peripheral cells and 
hepatocytes by LDLR. HDL, which also originates from hepatic synthesis, mediates reverse 
cholesterol transport, by interacting with ATP-binding cassette A1 (ABCA1) and ABCG1 transporters 
on non-hepatic cells. ABCA1 mediates the rate-limiting step in HDL particle formation and 
maintenance of plasma HDL levels	 [58]. Lecithin-cholesterol acyltransferase (LCAT) esterifies 
cholesterol and produces globular HDL particles. Cholesteryl esters are selectively taken up from HDL 
in the liver by a scavenger receptor B1 (SRB1) dependent process. Adapted from “Toronto Notes” by 
Zamir Merali & Jason D. Woodfine, 2016. Copyright 2016 by Toronto Notes for Medical Students, Inc.	
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Figure 2: Regulatory network of cholesterol biosynthetic genes based on the transcriptome 
analysis in 42 different BXD strains. Nodes represent genes, and edges represent 
correlations between gene transcript levels among the different strains (co-expression). 
Genes were selected from literature and previous correlation analyses (see Suppl. Figure 
1). Networks were computed for datasets on two dietary regimens: (A) chow diet (CD) and 
(B) high fat diet (HFD) with two levels of significance: p < 1e-3 and p < 1e-10. 
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Figure 3:  Transcriptional network of cholesterol biosynthetic genes with 
correlating phenotypes and mapping of some of the candidate regulatory genes. 
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Figure 4: Identification of novel genes related to cholesterol biosynthesis by principal component 
analysis (PCA). (A) (Left) PCA plot for six cholesterol biosynthetic gene transcripts from the BXD 
liver mRNA dataset in both cohorts (CD, HFD). A single factor explains ~87% of the variance in their 
transcript levels in the CD and 91% in the HFD. (Right) 13 candidate genes are shown in a 
Spearman correlation matrix with the first PCA factor in CD (bottom left) and HFD (top right) 
conditions. (B) PCA was repeated in six independent datasets, including the BHF2 Apoe Null mouse 
population [54] shown here. (Left) PCA plot for the same six genes in both a male and a female 
cohort. The first principal component explains ~68% of the variance in transcript levels in the male 
cohort and 71% in the female cohort. (Right) A Spearman correlation matrix of factor 1 and the gene 
candidates is shown for the male (top right) and the female cohorts (bottom left). (C) Two known 
cholesterol genes and 13 candidates correlation plots to factor 1 in the PCA for both CD and HFD 
dataset. 
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Figure 5: PCA validation of candidate genes in 
two human databases (HLC	[40] and GTEx [41, 
42]). Values of gene transcript abundance from 
the same core cholesterol biosynthetic genes 
as described previously were computed into 
principal components. (A) (Left) PCA plot from 
the HLC show that a single factor explains 68% 
of the variation in both the female and male 
cohorts. (Right) Five genes are significantly 
correlated to factor 1 in both cohorts. (B) PCA 
plot from the GTEx database show a single 
factor explain 64% of the variation in transcript 
levels. (Right) Five genes significantly correlate 
to factor 1. Genes that significantly (p < 0.001) 
correlate to factor 1 are shown in the 
corrgrams. 
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Figure 6: Echdc1 as a potent novel regulatory gene in cholesterol metabolism and 
biosynthesis. (A) Genomic context of the Echdc1 region. (B) PheWAS Manhattan plot of 
molecular traits linked to the nearby region (±2.5Mb) of Echdc1 on chromosome 10q29. (C) 
Phylogenetic comparison of Echdc1 sequence of Mus musculus, which is conserved in 
vertebrates.  
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Figure 7: (A) Echdc1 mRNA expression levels in different human tissues reported as RPKM 
(Reads Per Kilobase of transcript per Million mapped reads, corresponding to mean values of 
the different individual samples from each tissue type), from the GTEx project [41, 42] (B) 
Echdc1 mRNA levels correlate to blood glucose, liver weight, plasma cholesterol, sub-
cutaneous white adipose tissue (scWAT) and aspartate aminotransferase (ASAT) levels in the 
CD BXD mouse cohort. (C) Echdc1 mRNA expression is up-regulated in the HFD BXD cohort (p 
= 0.0466). (D) Data retrieved from GEO	 [60] show that Echdc1 is down-regulated in the 
hepatocytes of mice fed a HFD with additive cholesterol	[45] whereas it is up-regulated in human 
hepatocytes treated by cholesterol lowering drugs	[46]. 
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Supplementary figure 1: Transcriptional network of cholesterol related genes based on the 
transcriptome analysis in different BXD strains on two dietary regimens – chow diet (CD) or high fat 
diet (HFD). Genes related to cholesterol metabolism were selected from the literature. (A) CD co-
expression network, where a core sub-network of high correlation density was defined manually 
(encircled). (B) HFD co-expression network. (C) Genes of the cholesterol biosynthesis pathway	[61]. 
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