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present in the five specimens analyzed

and absent in six D. persimilis and seven

D. pseudoobscura of different origin. The

number of specimens analyzed is small for

D. miranda, but since the lines used came

from different localities (see Materials and

Methods), it can be assumed that these

bands are diagnostic. We estimated the

size of species-specific bands observed by

Pascual et al. (1997b) in D. athabasca and

D. azteca. A total of nine bands clearly

identified D. athabasca and seven bands

identified D. azteca (Table 1).

The amount of variation between D.
pseudoobscura and D. persimilis was esti-

mated using the analysis of molecular

variance. D. miranda was not included in

the analysis due to the low number of in-

dividuals. Only polymorphic bands were

used in the analysis. Of the overall phe-

notypic variation, 58.38% was due to vari-

ation between species and 41.62% to intra-

specific variation. Population structure

was not analyzed because the number of

individuals was very low in some locali-

ties. Significant genetic differentiation be-

tween species was detected (fST 5 0.584,

p , .001). Tests of significance for vari-

ance components are based on 1,000 ran-

dom permutations.

A total of 39 males and females from Bel-

lingham (WA) and Salem (OR) kept in 70%

ethanol were amplified with some of the

diagnostic primers. The aim of this analy-

sis was to increase the number of D. mir-
anda in the sample. Males were morpho-

logically classified to the subgroup level

ahead of time and then the result of the

RAPD amplification was cross-checked

with the previous identification in order to

assess the reliability of the system. A blind

experiment, previously carried out with D.
azteca and D. athabasca males using a

morphological character and comparing

the results with RAPD banding pattern has

also shown the value of the technique

(Pascual et al. 1997b). Bellingham (WA) in-

dividuals were classified as follows: 4 af-
finis subgroup males as D. athabasca, 16

pseudoobscura subgroup males as D. pseu-
doobscura, and 8 obscura group females as

7 D. athabasca and 1 D. pseudoobscura. Sa-

lem (OR) males, from the pseudoobscura
subgroup, were classified as 7 D. pseu-
doobscura and 4 D. persimilis. All individ-

uals were amplified with at least two prim-

ers, those producing species-specific

bands. In each case opa-4 yielded a scor-

able set of bands for D. athabasca, opa-7

for D. pseudoobscura, opa-9 and opa-16 for

D. persimilis and opb-8 for D. miranda
(Table 1, Figure 1). Unfortunately no D.

miranda was found and thus we could not

increase the sample size of that species.

Here we describe species-specific bands

of D. pseudoobscura, D. persimilis, and D.
miranda that discriminate between these

three sibling species. These results, along

with those of a previous study using D.
azteca and D. athabasca (Pascual et al.

1997b) permit classification of all the spec-

imens collected in all samples of the dis-

tribution range of these five Nearctic spe-

cies of the obscura group. We may thus be

able to study their population dynamics

and assess its influence on the colonizing

success of D. subobscura.
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Reproductive and Mate
Choice Strategies in the
Hermaphroditic Flatworm
Echinostoma caproni

S. Trouvé, F. Renaud, P. Durand,
and J. Jourdane

Due to the important role that mating sys-

tems play in the evolution of species, we

investigate the selfing rate and mate

choice in the simultaneous hermaphroditic

parasite Echinostoma caproni (Tremato-

da). The echinostomes were maintained in

two situations in mice: (1) double infec-

tions where the two individuals do or do

not belong to the same geographic area

isolate, and (2) triple infections where two

of the three individuals originate from the

same isolate and the third one originates

from a different isolate. This experimental

design permits analysis of intra- and inter-

isolate selfing rates and of mate prefer-

ence. We predict, in the first experiment,

no difference between intra- and interiso-

late selfing rates. In the second experi-

ment we expect a preferential outcrossing

between individuals originating from the

same isolate in order to avoid hybrid

breakdown. The results obtained corrob-

orate our predictions and emphasize the

important and synergistic roles of selfing,

inbreeding depression, and hybrid break-

down in the evolution of echinostome re-

productive strategies.
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Reproductive strategies constitute a major

factor shaping the evolution of organisms.

Indeed, mating systems influence the ge-

netic variability as well as the genetic

structure of populations (Charlesworth

and Charlesworth 1987; Jarne 1995). In

this context, hermaphrodites offer the op-

portunity to investigate the evolution of

sexual reproductive modes since a single

individual can self- or cross-fertilize. Com-

pared to plants, few studies have been

conducted on mating systems in animals.

These works have been mostly carried out

on molluscs [see Jarne et al. (1993) for a

review; Doums et al. 1996; Städler et al.

1995), ascidians (Bishop 1996; Bishop et

al. 1996), or free-living flatworms (Michiels

and Streng 1998), and the analysis of re-

productive strategies in helminth para-

sites has been roughly ignored for a long

time. Nevertheless, studies on reproduc-

tion in parasites will provide data to fill

out works on animals and to investigate if

theories usually advanced to understand

the evolution of mating systems in free-liv-

ing organisms have a parasitic counter-

part.

Some experiments have been conduct-

ed to investigate the mating behavior of

the hermaphroditic platyhelminth para-

site Echinostoma caproni (Trouvé et al.

1996). Infections of mice with two individ-

uals, from two isolates (i.e., originating

from two different geographic areas)

showed that, in this condition, the echi-

nostomes exhibit an unrestrictive mating

system involving both selfing and out-

crossing (Trouvé et al. 1996). Further-

more, in a mate-choice experiment where

mice were infected with three individuals,

two of the same isolate and one of anoth-

er, we found that both related individuals

produced very few outcrossed offspring

with the unrelated individual (Trouvé et

al. 1996). Although it was impossible to

distinguish selfed from outcrossed off-

spring between related individuals, this re-

sult likely suggests a marked mate prefer-

ence between individuals of the same

isolate. This prezygotic isolation seems to

be followed by a postzygotic isolation

characterized by a hybrid breakdown. In-

deed, it has been shown that the hybrids

of the second and third generations dis-

play a significantly lower fecundity com-

pared to both parental isolates and to the

F1 (i.e., hybrid breakdown; Trouvé et al.

1998).

In this context we can describe the forc-

es which should drive the evolution of the

echinostomes’ reproductive strategies as

follows. First, self-fertilization ensures the

reproduction of the echinostomes, which,

like many parasites, often evolve in low-

density populations (Charnov et al. 1976;

Ghiselin 1974; Tomlinson 1966). Second,

inbreeding depression decreases the fit-

ness of self-fertilized offspring. Third, after

a period of isolated evolution, hybrid

breakdown should reduce genetic ex-

change between different isolates.

Consequently, in the light of these pre-

dictions and our knowledge of echino-

stomes, we present a study on individuals

originating from a new natural population,

discovered in May 1996 in Mali, showing

an isoenzymatic polymorphism. We inves-

tigate selfing versus outcrossing rate in (1)

double infections where the two individu-

als do or do not belong to the same iso-

late; and (2) triple infections where two of

the three individuals originate from the

same isolate.

If our predictions are correct, we ex-

pect, in the first experiment, no difference

between intra- and interisolate selfing

rate. In the second experiment, we expect

a preferential outcrossing between indi-

viduals originating from the same isolate

in order to avoid hybrid breakdown.

Discussion

Echinostomes are simultaneous hermaph-

roditic Trematoda (Platyhelminth) para-

sitizing vertebrate intestines. The life cy-

cle of E. caproni includes three successive

hosts and an asexual reproduction occur-

ring in the first intermediate host. E. cap-
roni is routinely cycled in our laboratory

according to standard procedures (Trou-

vé et al. 1996) using Biomphalaria arabica
snails which act as first and second inter-

mediate hosts and mice (Swiss OF1 stock)

as the final host. In this study four isolates

of E. caproni were used; they originate

from Mali (Em), Egypt (El), Madagascar

(Ec), and Cameroon (Ek) (Trouvé and

Coustau 1998). The isolates El, Ec, and Ek

are homozygous at the loci GPI, PGM, MPI,
PheLeu peptidase, and PhePro peptidase

and present at these loci, respectively, the

alleles: El (aabaa), Ec (baaaa), and Ek

(abcbb). Furthermore, the Em isolate has

two homozygous electrophoretic forms

(Em1 and Em2) for which the alleles at the

previously mentioned loci are Em1 (aa-

baa) and Em2 (abbaa). The Em isolate also

presents heterozygous individuals at the

PGM locus.

Selfing Rate

We carried out infections of mice with two

Em individuals (i.e., Em1 and Em2) to es-

timate the selfing rate involved within an

isolate. Twenty days postinfection the in-

testines of the mice were opened and the

worms collected. The uterus of each adult

was torn to collect the eggs. Thirty larvae

hatched from the eggs of each worm were

individually brought into contact with one

mollusc. Genetic exchanges were assessed

from a ‘‘progeny-array analysis’’ by com-

paring the mother’s genotype to that of

her progeny at the rediae stage ( larval

stage in the first intermediate host). Elec-

trophoretic analyses were performed ac-

cording to the procedures described in

Trouvé et al. (1996). The Em individuals

showed a mixed mating system involving

both selfing and outcrossing. Although

variable (range 20–100%), the intraisolate

outcrossing rates were very high since the

total proportion of outcrossed offspring

was 77% (Table 1).

Whereas our previous experiments on

selfing rates (Trouvé et al. 1996) involved

isolates originating from Egypt (El) and

Madagascar (Ec) (interisolate situations),

the present work was done on the Mali

isolate for which we did not find any mor-

phological or electrophoretic differences

from the Egyptian one. In interisolate sit-

uations, the echinostomes reproduce by

both self-fertilization and cross-fertiliza-

tion (Table 1); the global outcrossing rate

totaled 74% (Trouvé et al. 1996). The data

were excluded when both individuals to-

tally selfed (pair 5), as this could have

been caused by no meeting and pairing

between the mates in the host habitat.

We compared each intraisolate selfing

rate to the interisolate estimates with

Fisher’s exact test (Sokal and Rolf 1981),

using the NPstat program, and then with

the sequential Bonferroni method (Rice

1989). There was no obvious difference in

outcrossing rates (Table 1); also, the glo-

bal statistic of the intra (mean 77%) and

inter (mean 74%) outcrossing rates did

not show significant p values according to

Fisher’s method (p 5 .44).

These results pointed out a predomi-

nance of cross-fertilization compared to

self-fertilization in both inter- and intra-

isolate matings. However, in both cases

the echinostomes partly self-fertilized.

This suggests that selfing is certainly a re-

productive mode used to ensure repro-

duction in the echinostomes. Otherwise

the low probability of meeting a partner

due to low mobility or population density

(Charnov et al. 1976; Ghiselin 1974; Tom-

linson 1966) could result in no reproduc-

tion. Furthermore, selfing is promoted by

the cost of outcrossing, which refers to
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Table 1. Comparison of intraisolate and interisolate outcrossing rates

Pair
no. Parent

Number of
offspring
analyzed

Number (%) of
outcrossed
offspringa

Pair
no. Parent

Number of
offspring
analyzed

Number (%) of
outcrossed
offspringb

1 Em1 13 10 (77) 1 Ec 19 11 (58)
Em2 20 15 (75) El 22 22 (100)

2 Em1 10 2 (20) 2 Ec 17 7 (41)
Em2 15 4 (27) El 24 8 (33)

3 Em1 16 11 (69) 3 Ec 21 16 (76)
Em2 16 14 (87.5) El 26 24 (92)

4 Em1 17 15 (88) 4 Ec 18 12 (67)
Em2 20 17 (85) El 25 11 (44)

5 Em1 16 10 (62.5) 5 Ec 20 0 (0)
Em2 16 14 (87.5) El 18 0 (0)

6 Em1 21 14 (67) 6 Ec 22 18 (82)
Em2 19 18 (95) El 18 18 (100)

7 Em1 24 22 (92) 7 Ec 20 20 (100)
Em2 23 13 (56.5) El 18 16 (89)

8 Em1 19 15 (79)
Em2 19 13 (68)

9 Em1 24 10 (42)
Em2 24 20 (83)

10 Em1 23 23 (100)
Em2 20 20 (100)

11 Em1 18 16 (89)
Em2 18 14 (78)

12 Em1 25 20 (80)
Em2 17 9 (53)

13 Em1 26 22 (85)
Em2 26 20 (77)

14 Em1 21 19 (90)
Em2 19 11 (58)

15 Em1 18 5 (28)
Em2 23 23 (100)

16 Em1 22 22 (100)
Em2 17 17 (100)

17 Em1 17 12 (71)
Em2 17 16 (94)

18 Em1 14 13 (93)
Em2 20 18 (90)

19 Em1 25 23 (92)
Em2 26 12 (46)

20 Em1 21 16 (76)
Em2 20 20 (100)
Em 19.6 15.2 (77) Mean Ec 19.5 14 (72)

Mean (Em1 and
Em2)

El 22.2 16.5 (74)

Em1, Em2: two electrophoretic forms of the isolate of Mali; Ec, El: isolates originating from Madagascar and Egypt,
respectively (see text).

a This study.
b Trouvé et al. (1996).

the transmission of genes and results from

the doubling of parent-offspring related-

ness under selfing compared to outcross-

ing. In this context, alleles have a 50%

transmission advantage (Charlesworth

1980). On the other hand, the homozygos-

ity resulting from selfing uncovers a ge-

netic load by the expression of recessive

deleterious mutations, which should pro-

mote random mating (Charlesworth and

Charlesworth 1987). A mixed mating sys-

tem can be selected as a consequence of

biparental inbreeding (Ronfort and Couvet

1995; Uyenoyama 1986), a phenomenon

that is expected in these organisms be-

cause the asexual reproduction at the lar-

val stage may give rise to clonal individu-

als in the same final host. Such a mixed

mating system has already been identified

in pulmonate snails (Städler et al. 1993,

1995; Doums et al. 1996; Coutellec-Vreto et

al. 1997; Viard et al. 1997) as well as in

numerous plant species [Charlesworth

and Charlesworth (1987) for a review; Kar-

ron et al. 1995].

Mate Choice

The choice of mate was analyzed by per-

forming concurrent infections of mice with

one Ek, one Em1, and one Em2 worm. The

estimation of genetic exchanges was done

following the same procedure as de-

scribed above. For each replicate, the in-

traisolate outcrossing rate was compared

with the interisolate one. Since these two

datasets are not independent, we per-

formed a sign test using Statistica 4.1 for

Macintosh.

Three reproductive modes have been

used by the Em individuals (Em1 and

Em2): selfing, outcrossing with a related

individual (intraisolate outcrossing), and

outcrossing with an unrelated individual

(interisolate outcrossing) (Table 2). How-

ever, Em individuals produced significant-

ly more offspring through intraisolate out-

crosses than via interisolate outcrosses (p

, .01). This result is clearly illustrated by

comparing the mean proportion of intra-

outcrossed offspring (83%) with the mean

of interoutcrossed offspring (7%) for Em

individuals. This clearly highlights that in-

dividuals originating from the same isolate

(Em) preferentially outcrossed with each

other.

These results can be explained in view

of the long process of two evolutionary

factors: first, inbreeding depression is ex-

pected to decrease selfing rate and, sec-

ond, hybrid breakdown likely reduces the

interisolate outcrossing. These two fac-

tors act in synergy and seem to account

for the high intra-cross-fertilization ob-

served. Whereas this result on mate

choice could be interpreted as postzygotic

incompatibility between the two isolates,

we should note that if such an incompat-

ibility exists, it would have induced a de-

crease of the interisolate outcrossing rate

in the first experiment with double infec-

tion. On the contrary, we did not observe

a significant difference between intra- and

interisolate outcrossing rates (Table 1).

Although the mate choice experiment in-

volved a small number of replicates, the

results are highly significant and clearly

confirm the hypothesis proposed in a pre-

vious article (Trouvé et al. 1996), namely,

that there is mate preference between re-

lated individuals.

This preferential intraisolate outcross-

ing may result from two phenomena: (1) a

preferential mating between related indi-

viduals, that is, assortative mating. Such a

phenomenon has already been pointed

out in a number of species, for example,

Drosophila melanogaster (Wu et al. 1995),

Tribolium confusum (Wade et al. 1995), as

well as in parasites, on schistosomes

(Tchuem Tchuenté et al. 1993), or (2) a

postcopulatory prezygotic isolation, that

is, a gametic selection which would oper-

ate in the female genital tract (sperm com-

petition or cryptic female choice; Eber-

hard 1996). These postcopulatory isolation

mechanisms have been observed in a

wide range of taxa [for reviews see Bishop

(1996), Bishop et al. (1996), Gomendio and

Roldan (1993), Parker (1990), and Wirtz

(1997)]; however, no study has been car-

ried out in this context for parasites.
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Table 2. Selfing and outcrossing rates exhibited by each parent of a group of three worms: Em1 1

Em2 1 Ek

Trio
no. Parent

Number of
offspring
analyzed

Number (%) of eggs fertilized by the sperm of

Em1 Em2 Ek

1 Em1 14 0 (0)s 14 (100) 0 (0)
Em2 16 12 (75) 3 (19)s 1 (6)
Ek 17 9 (53) 8 (47) 0 (0)s

2 Em1 23 6 (26)s 14 (61) 3 (13)
Em2 19 19 (100) 0 (0)s 0 (0)
Ek 17 16 (94) 0 (0) 1 (6)s

3 Em1 24 0 (0)s 24 (100) 0 (0)
Em2 20 14 (70) 2 (10)s 4 (20)
Ek 17 2 (12) 15 (88) 0 (0)s

4 Em1 20 6 (30)s 14 (70) 0 (0)
Em2 19 16 (84) 0 (0)s 3 (16)
Ek 21 10 (48) 11 (52) 0 (0)s

5 Em1 21 0 (0)s 21 (100) 0 (0)
Em2 21 16 (76) 3 (14)s 2 (10)
Ek 19 5 (26) 12 (63) 2 (11)s

Mean Em1 20.4 2.4 (12)s 17.4 (85) 0.6 (3)
Em2 19 15.4 (81) 1.6 (8)s 2 (11)
Ek 18.2 8.4 (46) 9.2 (51) 0.6 (3)s

Em1, Em2: two electrophoretic forms of the isolate of Mali; Ek: isolate originating from Cameroon (see text); s 5
selfing rate.

Hence further work is needed to distin-

guish between these hypotheses.
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Quantitative Trait Loci
Influencing Honeybee Alarm
Pheromone Levels

G. J. Hunt, A. M. Collins, R. Rivera,
R. E. Page Jr., and
E. Guzmán-Novoa

Quantitative trait loci (QTL) mapping pro-

cedures were used to identify loci that in-

fluence the levels of alarm pheromones

found in the stinging apparatus of worker

honeybees. An F1 queen was produced

from a cross between a queen of Euro-

pean origin and a drone descended from

an African subspecies. Haploid drones

from the hybrid queen were individually

backcrossed to European queens to pro-

duce 172 colonies. Samples of stings

were taken from backcross workers of

these colonies. Alarm pheromone levels

were determined by gas chromatography.

RAPD markers were scored from the hap-

loid drone fathers of these colonies. The

multiple-QTL model (MQM) of MapQTL

was used to identify QTLs that influence

the levels of four alarm pheromone com-

ponents. Seven independent, potential

QTLs were identified with LOD scores

greater than two, and one at LOD 1.88. We

identified one QTL for n-decyl acetate,


