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 Predicting contemporary and future species distributions is relevant for science and 
decision making, yet the development of high-resolution spatial predictions for numer-
ous taxonomic groups and regions is limited by the scalability of available modelling 
tools. Uniting species distribution modelling (SDM) techniques into one high-perfor-
mance computing (HPC) pipeline, we developed N-SDM, an SDM platform aimed 
at delivering reproducible outputs for standard biodiversity assessments. N-SDM was 
built around a spatially-nested framework, intended at facilitating the combined use 
of species occurrence data retrieved from multiple sources and at various spatial scales. 
N-SDM allows combining two models fitted with species and covariate data retrieved 
from global to regional scales, which is useful for addressing the issue of spatial niche 
truncation. The set of state-of-the-art SDM features embodied in N-SDM includes a 
newly devised covariate selection procedure, five modelling algorithms, an algorithm-
specific hyperparameter grid search, and the ensemble of small-models approach. 
N-SDM is designed to be run on HPC environments, allowing the parallel processing 
of thousands of species at the same time. All the information required for installing 
and running N-SDM is openly available on the GitHub repository https://github.
com/N-SDM/N-SDM.
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Background

Nature management and conservation decisions need to be 
guided by standardized biodiversity data (Araujo et al. 2019, 
Jetz  et  al. 2019, Kays  et  al. 2020). The largest fraction of 
raw biodiversity data exists in the form of billions of species 
occurrence records, an ever-increasing number boosted by the 
boom in citizen science initiatives and their compilation with 
scientific surveys or natural history collections (Amano et al. 
2016, Pocock et al. 2017, Kays et al. 2020). To translate these 
spatially discrete data into continuous biodiversity maps, spe-
cies distribution models (SDMs) relate species occurrences to 
environmental covariates (Franklin 2010, Peterson et al. 2011, 
Guisan et al. 2017). SDMs have developed extensively over 
the last two decades and are now key tools to predict the state 
and fate of biodiversity (Guisan et al. 2013, Ferrier et al. 2016, 
Araujo  et  al. 2019). Delivering SDM outputs that are rele-
vant for biodiversity assessments requires modelling pipelines 
equipped with best-available techniques and that are scalable 
enough to process the large quantities of available data.

To help streamlining key SDM steps, several platforms 
have been developed, mainly in the form of R packages, with 
the best-known including Biomod2 (Thuiller  et  al. 2009), 
enmEval (Muscarella  et  al. 2014), dismo (Hijmans  et  al. 
2017), Wallace (Kass et al. 2018), or SDMtune (Vignali et al. 
2020). Although existing SDM platforms have widely con-
tributed to SDM popularity (Guisan et al. 2013, Araujo et al. 
2019, Hao et al. 2019), they have not been explicitly designed 
to cope with the challenge of high-dimensional input data, 
either in relation with the number of species or candidate 
covariates available for modelling them. To date and to our 
knowledge, an SDM platform specifically designed for high-
performance computing (HPC) environments that are capa-
ble of efficiently handling large volumes of data was lacking.

The precision and coverage of species occurrence data can 
vary as regards to their sources, and modelling frameworks 
should accommodate these characteristics (Pagel et al. 2014, 
Fletcher et al. 2019, Pacifici et al. 2019). For instance, high-
precision data can be obtained from regional databases, while 
larger scale data are useful for providing a global overview of 
the species distributions, but they are generally recorded with 
coarser precision. Currently no end-to-end SDM platform is 
including features for facilitating the combination of occur-
rence records retrieved from various sources and at different 
spatial scales (e.g. regional and global). Such features would 
be useful for addressing the issue of spatial niche truncation, 
which is likely to occur when models are fitted based on geo-
graphically restricted occurrence data that do not encompass 
the whole species range (Mateo et al. 2019a, Chevalier et al. 
2021, Scherrer et al. 2021).

With the increasing need to support systematic conserva-
tion practices with informative spatial predictions for large 
sets of species, there was a pressing need for an automated 
modelling tool equipped with features that are lacking in 
existing platforms, including an advanced covariate selection 
procedure, solutions for rare or infrequent species, and a strat-
egy for identifying best model parameter combinations. First, 

although rare species account for a large proportion of many 
taxonomic groups and are key in biodiversity assessments, 
their small sample size makes them challenging to model 
(Hernandez et al. 2006, Galante et al. 2017, Enquist et al. 
2019). Approaches like the ‘ensemble of small models’ (ESM) 
(Lomba et al. 2010, Breiner et al. 2015, Breiner et al. 2018) 
have been developed to overcome this rare species modelling 
paradox (Lomba et al. 2010), by allowing for more predic-
tors than in traditional SDM approaches. Similarly, select-
ing the best set of covariates out of many candidates is a key 
and highly influential step of the SDM process (Araujo and 
Guisan 2006, Fourcade et al. 2018, Cobos et al. 2019). Yet, 
there is currently no widely adopted reference approach by 
which to perform the covariate selection, and most of the 
existing SDM platforms do not include any feature for doing 
it. Last, identifying the optimal combination of model hyper-
parameters is important for delivering accurate predictions, 
but the exercise is not straightforward, especially when work-
ing with multiple algorithms. Parallel grid-search approaches 
have been proven useful for automatic hyperparameter tun-
ing and should be present in any new SDM platform (Kuhn 
and Johnson 2013, Chicco 2017, Vignali et al. 2020).

Here we introduce N-SDM, a flexible HPC-oriented SDM 
platform built around a scale-nesting framework intended 
at facilitating the combined use of species occurrence data 
retrieved from multiple sources and at various spatial scales. 
Integrating state-of-the-art SDM techniques into one HPC 
pipeline, N-SDM aims at delivering scalable and reproduc-
ible outputs for standard biodiversity assessments. After pro-
viding a description of the structure and methods included 
in N-SDM, we ran an example application for 1500 species 
at 25 m resolution across Switzerland to illustrate the main 
operations and performances.

Methods and features

N-SDM overview

N-SDM is an HPC-oriented SDM platform designed for 
Linux clusters equipped with the Slurm workload manager. 
Most of the N-SDM code is written in R (92.2%), where 
the modelling steps are handled. The core of this R code are 
custom functions wrapped together into the companion R 
package ‘nsdm’. The remaining 7.8% of the code is written in 
Bash language, which is primarily used to efficiently distrib-
ute the modelling tasks on the computing cluster.

Figure 1 provides an overview of the main tasks performed 
during an N-SDM run. A key characteristic of N-SDM is the 
spatially-nested framework. Two models fitted to scale-spe-
cific species and covariate data are combined: 1) a ‘global’ 
model intended at quantifying the species response to the 
bioclimatic conditions that can be found across its full dis-
tributional range, and 2) a ‘regional’ model fitted with fine-
scale occurrence data and habitat covariates. The ‘global’ vs. 
‘regional’ terminology is the one used by Gallien et al. (2012), 
a study that mainstreamed the combination of models fitted 
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with scale-specific species and covariate data (see Pearson et al. 
(2004) for one of the first studies). Further details on the 
spatially-nested modelling framework are provided in section 
‘Highlighted features’. N-SDM tasks are divided into three 
main stages: data preparation, core modelling, and spatial 
predictions. An extended version of the ‘N-SDM overview’ 
section, with details on the custom functions used at the 
three stages, is provided in the Supporting information.

Data preparation

Two main types of input data are feeding N-SDM: geore-
ferenced species occurrence data and environmental raster 
layers. Occurrence data from different sources can be used 

for fitting the global-level (full species range) and regional-
level (study area extent) models. For the global level, where 
the aim is to cover as much as possible the bioclimatic con-
ditions encountered throughout the species’ range, the 
increasing quantity and extent of data available from the 
Global Biodiversity Information Facility (GBIF; www.gbif.
org) is a valuable resource. For the regional level, more pre-
cise data, such as those extracted from national biodiversity 
databases or monitoring programs, can be used. Both global 
and regional occurrence data are used for global model fit-
ting, but only regional data are used for the regional model. 
Additional details about species data formatting are provided 
in the Supporting information. Covariate data should be pro-
vided as raster layers, standardized to a common spatial grid 

Figure 1. N-SDM overview. Panels on the left display the sequence of tasks performed during each of the three main stages (Data prepara-
tion, Core modelling, and Spatial predictions). Panels on the right provide a graphical representation of the spatially-nested framework used 
in N-SDM. All the complementary information required for the installation and use of N-SDM, along with data for an example N-SDM 
run, are available on the N-SDM GitHub repository https://github.com/N-SDM/N-SDM. GLM: Generalized Linear Model; GAM: 
Generalized Additive Model; MAX: Maxnet; RF: Random Forest; GBM: (light) Gradient Boosted Machine; AUC: Area Under the Curve; 
CBI: Continuous Boyce Index; Kappa: Cohen’s Kappa coefficient; SEDI: Symmetric Extremal Dependence Index; TSS: True Skill Statistic.
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with consistent resolution, extent, and projection system. All 
the details for covariate data formatting are provided in the 
Supporting information. The two-level nesting framework 
allows using in the regional-level model covariates that are 
not available at the extent of the global level. However, the 
same covariate cannot be used in both global and regional 
models. If available, a pre-filtering correspondence table indi-
cating which covariates are candidates for modelling a target 
group of species can be provided (see Supporting informa-
tion for an example pre-filtering table). Such a table is use-
ful for incorporating expert knowledge on species ecology. If 
temporally-dynamic covariate and species data are provided 
to N-SDM, it is possible to perform temporal matching such 
that N-SDM will extract covariate values at the time steps that 
best match with species occurrences. The data preparation 
stage also includes the spatial-temporal thinning of occur-
rence data and the generation of background absences. In the 
first N-SDM ver. (ver. 1.0.0), the only option available for 
generating background absences is ‘random’. For each species 
and level, 10 000 background absences (user-customizable 
number) are randomly generated across the target areas.

Core modelling

The modelling stage starts with a newly-devised covariate 
selection procedure aimed at optimizing the predictive abili-
ties and parsimony of SDMs fitted in a context of high-dimen-
sional candidate covariate space. Selected covariates are used 
for fitting the modelling algorithms chosen among the five 
options available at the time of N-SDM release (ver. 1.0.0): 
Generalized Linear Model (GLM) (McCullagh and Nelder 
1989), Generalized Additive Model (GAM) (Hastie 2017), 
Maxnet (MAX) (Phillips  et  al. 2017), Random Forest (RF) 
(Breiman 2001), and light Gradient Boosted Machine (GBM) 
(Ke et al. 2017). In addition, the ESM approach (Breiner et al. 
2015, Breiner et al. 2018) can be specified as a sixth option. 
Model assessment and selection is based on cross-validated 
evaluation metrics including the Area Under the Curve 
(AUC) (Fielding and Bell 1997), the Continuous Boyce Index 
(CBI) (Hirzel  et  al. 2006), the maximized Cohen’s Kappa 
coefficient (maxKappa) (Kappa 1960), or the maximized True 
Skill Statistic (maxTSS) (Allouche et al. 2006). More details 
on available model assessment metrics can be found in the 
Supporting information. See Guisan et al. (2017) for further 
explanations on the maximization approach. In addition, we 
developed a consensus ‘Score’ metric averaging the AUC′ (or 
Somers’ D, such as AUC′ = AUC * 2 − 1) (Somers 1962), the 
maxTSS, and the CBI.

Spatial predictions

Four main types of prediction surfaces are mapped by N-SDM: 
1) the predicted response from each modelling algorithm at 
global and regional levels, 2) the ensemble average of these 
predictions for the two levels (optionally weighted averages 
using the value of the user-specified model evaluation metric 
for each target algorithm), 3) their coefficients of variation at 

the two levels, which provides a measure of uncertainty, and 
4) the final nested ensemble combining global- and regional-
level predictions according to the scale-nesting strategy speci-
fied by the user. No ensemble of the two nesting strategies is 
computed. However, if the two options are specified, N-SDM 
will produce individual predictions for each of the two strate-
gies, which is useful for comparison. At this time, two nesting 
strategies are provided with N-SDM: ‘multiply’ and ‘covari-
ate’ (Fig. 1). Details on the scale-nesting strategies are pro-
vided in the ‘Highlighted features’ section. If raster layers for 
future scenarios (e.g. climate and/or land-use changes) are 
provided to N-SDM, the prediction and mapping processes 
are repeated. To account for potential observational biases in 
occurrence data (Fithian  et  al. 2015, Robinson et  al. 2018, 
Isaac et al. 2020), N-SDM is equipped with an option that 
allows setting a constant value (e.g. zero or median) to the set 
of specified covariates expected to be related to these biases, for 
example distance from the transportation network or human 
population density. By doing so, the observer bias is assumed 
to be removed from the prediction area (Warton et al. 2013, 
Bonnet-Lebrun et al. 2020, Chauvier et al. 2021).

Highlighted features

In addition to being the first end-to-end SDM platform 
explicitly designed for HPC environments, N-SDM also pio-
neers in integrating within a single platform: 1) a spatially-
nested modelling framework, 2) an ‘embedded’ covariate 
selection procedure, 3) the ESM approach, and 4) an hyper-
parameter grid-search strategy.

Spatially-nested modelling framework

An increasing number of ecological records has recently 
become available to the scientific community, particu-
larly in connection with the rise of citizen science projects 
(Dickinson  et  al. 2010, Amano  et  al. 2016, Pocock  et  al. 
2017). These sources have proven useful in resolving spa-
tial gaps in scientific surveys and tackling several modelling 
challenges, such as niche truncation (Titeux  et  al. 2017, 
Mateo et al. 2019a, Chevalier et al. 2021). The niche trun-
cation issue is particularly relevant for regional and regional 
study areas, for which it is likely that target species can 
also be found in a wider range of bioclimatic conditions. 
Consequently, models fitted on the basis of regional occur-
rences only are likely to result in truncated estimates of the 
species’ response to environmental covariates, failing at pro-
viding accurate predictions for areas or periods with condi-
tions outside the range of those used for model calibration 
(Barbet-Massin et al. 2010, Sanchez-Fernandez et al. 2011, 
Scherrer et al. 2021). A data-oriented solution is to use addi-
tional species occurrences from outside the regional study 
area, with the objective of covering as much as possible of the 
full species niche (Hannemann et al. 2016, Fernandes et al. 
2019, Chevalier et al. 2021).

To integrate data arising from multiple sources into a single 
model, recent studies have developed hierarchical frameworks, 
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most of which having been built around GLM and estimated 
in a Bayesian context (Fletcher et al. 2019, Isaac et al. 2020, 
Adde et al. 2021). However, being restricted to GLM, these 
methods are not compatible with the ensemble modelling 
strategy used in N-SDM. Moreover, the computational costs 
of the Bayesian approach make it inappropriate for modelling 
thousands of taxa. Based on more straightforward methods, 
the spatially-nested modelling framework used in N-SDM 
consists in combining global and regional level model outputs 
using the specified nesting strategy. At the time of its release, 
two nesting strategies are provided with N-SDM: ‘covariate’ 
and ‘multiply’. The ‘covariate’ strategy consists in using the 
global model output as an additional covariate for fitting the 
regional model (Mateo et al. 2019a, Bellamy et al. 2020). The 
global model output covariate cannot be discarded during the 
covariate selection step. This strategy allows to directly pro-
vide the regional model with larger-scale information on the 
conditions that are favorable, or not, for the species. The ‘mul-
tiply’ strategy is calculating the geometric mean of the two 
model outputs (Fournier et al. 2017, Mateo et al. 2019b) to 
produce a consensual indicator of the habitat suitability values 
obtained at the two levels. The main advantage of the geomet-
ric mean compared to the arithmetic mean is that a very low 
habitat suitability value at either one of the two levels will be 
directly reflected in the combined indicator.

Embedded covariate selection procedure

With Earth observation data made available at an unprec-
edented rate, species distribution modelers are increasingly 
challenged by high-dimensional spaces of candidate covari-
ates to define realistic niches (Kuenzer et al. 2014, Soille et al. 
2018, Sudmanns et al. 2020). For optimizing the predictive 
abilities and parsimony of the models fitted by N-SDM, we 
devised an innovative ‘embedded’ covariate selection method 
developed around three main algorithms: GLM (McCullagh 
and Nelder 1989), GAM (Hastie 2017), and RF (Breiman 
2001). These algorithms are among the most used in SDM 
studies (Hao et al. 2019) and are covering a gradient of flex-
ibility and fitting methods that makes the ensemble of their 
results generalizable to many modelling frameworks. Thus, 
the covariate subset selected after applying the embedded 
procedure can also be used for fitting other popular SDM 
algorithms, such as Maxent (Phillips et al. 2006) or Gradient 
Boosting (Elith  et  al. 2008), even if they are not directly 
related to any of the three target algorithms.

The embedded covariate selection consists of two main 
steps: Step A ‘Collinearity filtering’, and Step B ‘Model-specific 
embedding’. In 1) we reduce the dimensionality of the candi-
date set by eliminating the less informative covariates among 
collinear pairs, based on correlation matrices and univariate 
GLM p-values. In 2), selected covariates are used to fit mod-
els with embedded selection procedures. Specifically, we use 
GLM with elastic-net regularization (Zou and Hastie 2005), 
GAM with null-space penalization (Marra and Wood 2011), 
and guided regularized RF (Deng and Runger 2013). For each 
algorithm, the n covariates retained after regularization are 

ranked from 1 (‘best’) to n (‘worst’). The algorithm-specific 
ranking is done based on the absolute value of the regular-
ized regression coefficients for GLM, the chi-square statistic 
for GAM, and the Mean Decrease Gini index for RF, all to be 
maximized. The final overall ranking is obtained by ordering 
the sum of the three ranks for each covariate, starting with the 
covariates that were commonly selected by all the three mod-
els, and then adding the remaining. The top k covariates were 
selected as the final modelling set, with k being a user-speci-
fiable setting and ceiling (log2(number of occurrences)) the 
default value. The covariate selection is applied individually to 
each species at both the global and regional levels. Additional 
details on the covariate selection method and evaluation 
results are provided in the Supporting information.

Ensemble of small models (ESM)

Former studies have shown that an increase in the number of 
species occurrences tended to be associated with an increase 
in model accuracy (Guisan  et  al. 2007, van Proosdij  et  al. 
2016, Fernandes et al. 2018). Among the main reasons pro-
posed are that species niches are less well covered with smaller 
sample sizes, while the risk of model overfitting increases, 
especially when many covariates are considered. The ESM 
method (Breiner et  al. 2015, Breiner et  al. 2018) has been 
developed to address the challenge of modelling species with 
small sample sizes, as it is often the case for rare and threat-
ened organisms. This method consists in fitting every pos-
sible combinations of two covariates (i.e. fitting n(n − 1)/2 
models, with n being the number of covariates) and averag-
ing individual predictions from selected bivariate models into 
an ensemble. Results from Breiner et al. (2015) showed that 
predictive skills and transferability of ESMs were higher than 
those obtained under a more standard SDM approach, espe-
cially for the rarest species. More specifically, Breiner  et  al. 
showed in a second paper that ensembling different algo-
rithms was not improving the accuracy of the ESM predic-
tions (likely because the ESM is already itself an ensembling 
approach, even when using a single algorithm) and that the 
simplest algorithms were advantageous in terms of both 
model performance and computation time (Breiner  et  al. 
2018). This was notably the case for GLM, which is currently 
the sole algorithm available for ESM fitting in N-SDM, but 
others could be added on request if justified. Three main set-
tings need to be defined for running the ESM approach with 
N-SDM: the number of occurrences below which ESMs are 
run, the total number of covariates evaluated, and the thresh-
old value for the specified evaluation metric below which a 
bivariate model is discarded from the final ensemble.

Hyperparameter grid search

Each modelling algorithm comes with a specific set of hyper-
parameters, whose optimal values depend on the characteristics 
of the data to be modelled (Chicco 2017, Vignali et al. 2020, 
Valavi et al. 2022). The fine tuning of these hyperparameters 
is decisive for maximizing the predictive value of the model 
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and avoiding overfitting. However, when working with mul-
tiple algorithms and species at the same time, manually setting 
the optimal combination of hyperparameter values is unreal-
istic. In N-SDM, an exhaustive automatic grid-search strategy 
aimed at finding the best combination of hyperparameter val-
ues is used. The grid-search procedure starts by generating all 
the possible combinations of candidate hyperparameter values. 
Each combination is evaluated and ranked using the specified 
cross-validated assessment metric and the best setting is kept 
for fitting the final model. More details on available model 
assessment metrics can be found in the Supporting informa-
tion. The hyperparameter tuning grid is provided in a form of 
an editable ‘param-grid.csv’ where default values can easily be 
modified (Supporting information). The list of algorithm-spe-
cific hyperparameters that are tunable in N-SDM along with 
their default values is provided in the Supporting information.

Installing and running N-SDM

N-SDM (ver. 1.0.0) can be downloaded from the GitHub 
repository https://github.com/N-SDM/N-SDM, where 
complementary instructions for installation and example 
data are provided. Prerequisites for running N-SDM include 
1) Linux cluster computer equipped with the Slurm workload 
manager, 2) availability of the modules (with versions used 
for N-SDM development) gcc (9.3.0), r (4.0.5), proj (5.2.0), 
perl (5.32.1), curl (7.76.1), geos (3.8.1) and gdal (2.4.4), 
3) a clone of the N-SDM/N-SDM GitHub repository in 
the working directory, and 4) an installation of the ‘nsdm’ R 
package. Once these prerequisites are satisfied, and the user-
specific settings of the 106 editable options in the ‘settings.
csv’ table (Supporting information) are defined, N-SDM can 
be run by executing the main N-SDM script ‘nsdm.sh’. From 
this script, 14 encapsulated R scripts are automatically run. 
The Supporting information provides an overview of these 
14 R scripts, along with the relative distribution of com-
putational resources (memory and time) needed for each of 
them. The list of outputs generated during an N-SDM run is 
provided in the Supporting information.

Applied example

We ran an example aimed at illustrating the main opera-
tions and performances of N-SDM by modelling the habitat 
suitability of 1500 plant and vertebrate species (Supporting 
information) at 25 m resolution across Switzerland and pro-
jecting it to future conditions. An extended version of the 
‘Applied example’ section, with complementary details and 
analyses, is provided in the Supporting information.

Study areas

Following the spatially-nested framework of N-SDM, we dis-
tinguished between regional- and global-level study areas. The 
regional-level area included all of Switzerland. For the global-
level area, we used a bounding box covering the European 
continent. The extent of the global level was chosen to accom-
modate most of the 1500 species modelled in this example. 
However, for species with narrow distributions (e.g. restricted 

to the Alps), this extent could have been reduced for optimiz-
ing model performances. For this example, global and regional 
levels were combined by using the ‘covariate’ nesting strategy.

Data and methods

Species occurrence data

The species occurrence records used for the regional-level 
model were provided by the Swiss Species Information 
Center InfoSpecies (www.infospecies.ch) on 23 August 2021. 
For the global level model, occurrence records were obtained 
from GBIF (www.gbif.org) on 27 October 2021 (https://doi.
org/10.15468/dl.zwp3dx). The minimum (maximum) num-
ber of occurrence available per species at global and regional 
levels were 65 (750 038) and 50 (109 211), respectively. For 
each species and level, 10 000 background absences were ran-
domly generated across the target areas.

Covariate data

We applied the embedded covariate selection procedure 
described in the ‘Highlighted features’ section on a suite of 
1508 candidate covariates derived from 109 individual vari-
ables and belonging to eight main categories (bioclimatic, 
edaphic, hydrologic, land use and cover, population, topo-
graphic, transportation, and vegetation) (Supporting infor-
mation). Only bioclimatic covariates (n = 19) were used 
for fitting global-level models and only habitat covariates 
(n = 1489 covariates) were used at the regional level. Since the 
‘covariate’ nesting strategy was used, the global-model output 
was forced as an additional covariate in all regional models.

Model fitting and assessment

GLM, GAM, MAX, RF, and GBM models were fitted using 
their default values for hyperparameter tuning (Supporting 
information). Given the number of occurrence records per 
species, no ESMs were run for this example application. 
Hyperparameter selection and model accuracy were evaluated 
using the average ‘Score’ of the AUC′, maxTSS, and CBI val-
ues obtained through a split-sample procedure repeated 100 
times with 30% of the data kept for validation. Because of 
large differences in the sample size or spatial coverage of spe-
cies occurrence data, no between-species analyses of model 
accuracy were done.

Spatial predictions

Ensemble predictions were mapped over a 25 m resolu-
tion grid covering Switzerland. Climate projections derived 
from the representative concentration pathways (RCPs) 
RCP4.5 (‘Low Carbon’) and RCP8.5 (‘High Carbon’) (van 
Vuuren et al. 2011) were used for projecting habitat suitabil-
ity by the end of the century (2070–2100). For illustrative 
purposes, we reported maps obtained for eight example spe-
cies sampled from the taxonomical group represented in the 
set of 1500 species.
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Running time and memory usage

We reported the average N-SDM run time and maximum 
memory usage requirements for 100 species, applying the par-
allelization approach described in the Supporting information 
and using a 10-core central processing unit strategy with AMD® 
EPYC 7402 on the University of Lausanne HPC cluster.

Results

N-SDM was successfully run for all 1500 species. The aver-
age run time for 100 species was ≈ 7 h and the maximum 
memory usage ≈ 250 GB.

Covariate selection

Out of the 1489 habitat covariates available at the regional 
level, 833 were selected in at least one of the 1500 models. 

Among the eight main categories of environmental covariates, 
‘hydrologic’ was the most often selected relative to the overall 
number of covariates available in this category, whereas ‘land 
use and cover’ was the least (Fig. 2A).

Model fitting

All the models obtained for the 1500 species and five algo-
rithms had a median Score value above 0.85 (Fig. 2B), indi-
cating high predictive performances. GLM was the algorithm 
with the lowest median and the one with the highest inter-
quartile range. On the other hand, GBM was the algorithm 
with the highest median.

Spatial predictions

Figure 2C shows the spatial predictions obtained for eight 
example species. Projections for future periods obtained 

Figure 2. Applied N-SDM example results. (A) Covariate categories representation in the 1,500 regional-level models. The covariate count 
index for a category was equal to the count of covariates from this category selected in the final models divided by the overall number of 
covariates available in this category. For readability, the global model output covariate being the only representative of his category and 
forced into all models (covariate count index of 1,500) was excluded from this analysis. (B) Cross-validated model “Score” values (average 
of Somers’ D, maximized True Skill Statistic, and Continuous Boyce Index) for the 1,500 species and five algorithms (Generalized Linear 
Model, Generalized Additive Model, Maxnet, Random Forest, light Gradient Boosted Machine). For each boxplot, the central box repre-
sents the 1st quartile, the median, and the 3rd quartile. The two whiskers extend to the furthest non-outlier points. (C) Habitat suitability 
for eight species sampled from the groups represented in the set of 1,500 species, with from top to bottom Primula auricula (Angiospermae), 
Milvus migrans (Aves), Capra ibex (Mammalia), Dryopteris villarii (Pteridophyta), Zootoca vivipara (Reptilia), Pinus cembra (Pinophyta), 
Salamandra atra (Amphibia), and Lycopodium annotinum (Lycopodiophyta). Left column: predicted habitat suitability for the current 
period (1980–2021). Middle column: projected habitat suitability for 2070–2100 under the “low carbon” (RCP4.5) scenario. Right col-
umn: projected habitat suitability for 2070–2100 under the “high carbon” (RCP8.5) scenario.
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under the two RCP scenarios indicated extensive changes in 
habitat suitability patterns, with some species likely to have 
their areas of high habitat suitability values increased (e.g. 
Milvus migrans), while for others these areas could be con-
siderably reduced (e.g. Salamandra atra). The magnitude of 
changes, either in terms of elevational, latitudinal, or longitu-
dinal shifts, was exacerbated under RCP8.5.

Conclusions

By uniting leading-edge SDM methods into one HPC mod-
elling pipeline, N-SDM facilitates the delivery of scalable and 
reproducible outputs for standard biodiversity assessments. 
Among the set of features that make N-SDM a powerful 
SDM platform, three attributes give it a unique and innova-
tive character: 1) the spatially-nested framework, 2) the HPC 
design, and 3) its customizability and collaborative nature.

1.	 N-SDM is an end-to-end SDM platform facilitating the 
use of species occurrence data retrieved from multiple 
sources and at different scales, which is useful for address-
ing the issue of niche truncation. This was achieved by 
building N-SDM around a spatially-nested framework 
allowing for the combination of two models fitted with 
their respective global- and regional-level data. The two 
methods currently available in N-SDM for combining the 
two levels are inspired from the existing literature and are 
straightforward enough to be compatible with the exigence 
of the ensemble modelling context, which involves work-
ing with several algorithms. Moreover, these methods are 
fast enough for delivering results for possibly thousands 
of species in a reasonable amount of time. This potential 
massive production of SDMs is backed by the integra-
tion of the latest available methodological standards and 
reporting tools, which should help to enhance the quality 
of N-SDM outputs, the capacity to critically review model 
setups, and to assess the potential of the results for policy 
planning. Nevertheless, it comes with the risk of yielding 
misleading predictions if not conducted with appropriate 
data and in close partnership with experts on the modelled 
species to help build and validate the prediction maps.

2.	 N-SDM fills the gap in the availability of SDM platforms 
specifically designed for HPC environments, which are 
crucial for handling big data contexts in relation with the 
increasing amount of species occurrence data and environ-
mental layers for modelling them. Moreover, to aim for 
completeness, biodiversity assessments need to consider 
and model as many species as possible, which is difficult 
to achieve with the computational frameworks of existing 
SDM platforms. By specifically targeting HPC environ-
ments and incorporating cutting-edge parallelization strate-
gies, N-SDM directly meets these requirements. Through an 
applied example, we demonstrated the abilities of N-SDM 
to fit models with high predictive values and to deliver high 
resolution maps in a relatively short period of time and with 
comparably low memory usage, given the large number of 
species, occurrences, and candidate covariates considered.

3.	 Provided with a set of 106 tunable parameters, N-SDM 
has been designed for high customization flexibility, so it 
can be adapted to anyone’s objectives and computing envi-
ronment. This first N-SDM version (ver. 1.0.0) was devel-
oped in and for Linux cluster computers equipped with 
the Slurm workload manager, because they are among 
the most common resources used for HPC. In addition, 
N-SDM has been designed to incorporate inputs from 
both the computational modelling community and spe-
cies experts whose guidance can be particularly useful at 
the crucial stage of pre-selecting covariates that are relevant 
for the distribution of target organisms. On the modelling 
community side, N-SDM is hosted on a public GitHub 
repository where anyone interested in contributing to its 
improvement is invited to suggest optimizations, or to 
create new features that could be added to the pipeline. 
N-SDM is intended to be improved and updated at regu-
lar intervals. Anticipated improvements could include the 
addition of background-absences generation techniques, 
cross-validation procedures (e.g. spatial blocking), and 
modelling algorithms or algorithm versions.

To cite N-SDM or acknowledge its use, cite this Software 
note as follows, substituting the version of the application 
that you used for ‘version 1.0’: 

Adde, A. et al. 2023. N-SDM: a high-performance computing pipe-
line for Nested Species Distribution Modelling. – Ecography 
2023: e06272 (ver. 1.0).
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