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Abstract

Fold and thrust belts are a common structural feature of orogens that form in response to compressional

tectonics. They have been studied by geologists for at least a century with the aim to understand the structural

style, tectonic evolution, dynamics and the control factors that govern their formation. Classically, we consider

two distinctive large scale tectonic styles for a fold and thrust belt, namely thick-skinned and thin-skinned

tectonic style. These styles are derived from the degree of basement-cover interaction during the fold and thrust

belt formation. The former implies that the crystalline basement and overlying sedimentary cover-sequences

accommodate an equal amount of deformation during crustal shortening. In contrast a thin-skinned style

implies that most of the bulk shortening is accommodated in the deformation of sedimentary cover-sequences

above the basement along a weak basal shear or detachment zone. Therefore, the basement remains mostly

undeformed while the cover-sequences exhibit significant internal deformation and/or horizontal displacement.

The structural style of fold and thrust belts is closely linked to inherited crustal structures, such as basins or

variations in the lithostratigraphy. Hence, large amount of data on fold and thrust belts indicates that the

structural style can be highly variable for the same belt. For example, studies report changes in style from the

exterior of the belt to the interior or from one end to the other along-strike. Consequently, it is suggestible

that the three-dimensional geometry of inherited pre-orogenic structures presents a prevailing control factor

on the structural style of fold and thrust belts.

In this thesis we focus on one of the preeminent fold and thrust belts belonging to the Western Swiss Alps,

namely the Helvetic nappe system. The Helvetic nappe system has a long standing history in Alpine geology

and was one of the major testing grounds for the evolution of the so-called nappe theory. In general, a tectonic

nappe is defined as a coherent allochthonous rock unit/sheet that has been displaced away from its original

position along a basal thrust or shear zone. Furthermore we distinguish between two end-member types,

namely fold nappes and thrust nappes. Fold nappes are large recumbent folds with an amplitude of several

kilometers contributing to a stratigraphic inversion of the same magnitude. In contrast thrust nappes are

emplaced as coherent rock sheets along a basal thrust resulting in the superposition of stratigraphic older

units on top of younger units. The Helvetic nappe system exhibits transition between these two the different

nappe styles along-strike. The style changes form the famous Morcles fold nappe in the Southwest, to the

Doldenhorn fold nappe in the center and the prominent Glarus thrust nappe in the Northeast. Morever, both

the Morcles and Doldenhorn nappe are overlain by series of smaller thrusts sheets that are analogues to the

Glarus nappe. Interestingly, the Doldenhorn fold nappe shows a less pronunced recumbent limb and internal



folding than the Morcles nappe, whereas the Doldenhorn nappe shows greater shearing. Both of these nappes

are derived from sediments that were once situated in a graben system that was inverted during the Alpine

orogeny. Contrary reconstructions of the Glarus nappe do not point to a pronounced graben system. Hence

it is suggested that lateral variations in the basement structure had a major influence on the evolution of the

Helvetic nappe systems.

The aim of this thesis is to gain additional insights in the lateral transition between folding and thrusting

and the evolution and emplacement of fold and thrust nappe stacking in three-dimensional space. To this aim

we employ three-dimensional (3D) thermo-mechanical numerical models that we apply to the Helvetic nappe

system. In our first study (Chapter 2) we implement a numerical algorithm to calculate and trace 3D finite

strain in order to quantify the deformation. We further use a simple 3D viscous model consisting of a laterally

changing mechanical stratigraphy (lithostratigraphy) to simulate the transition between thrusting and folding.

Our results essentially show that the spatial distribution and gradient of mechanical stratigraphy is directly

expressed in a change of the finite strain gradient along the hinge of the fold to the thrust sheet. In our second

study (Chapter 3) we employ a 3D numerical model of a simplified passive margin with an inherited graben

structure to simulate the formation of a fold nappe that is over-thrusted by a thrust sheet. Furthermore, the

model parameters and configuration are adapted to mimic the initial conditions of the Helvetic nappe systems.

We are able to reproduce several first order key features such as the nappe structure, temperature distribution,

geologic timing and finite strain pattern. Continuing, we show that a relative simple graben systems can

explain changes in fold nappe structure along-strike. Additionally our model results imply that large thrust

sheets may propagate in horizontal direction without disturbance by underlying fold nappe formation. Finally

our models also indicate that thrust and fold nappe formation in the Helvetic nappe systems likely occurred

under a semi-brittle-ductile deformation regime.



Résumé

Les chaînes de montagnes constituées de plis et de chevauchement sont une caractéristique structurale com-

mune des orogènes qui se forment en réponse à la tectonique de compression. Elles ont été étudiés par des

géologues pendant au moins un siècle dans le but de comprendre leur style structural, leur évolution tectonique,

leur dynamique et les facteurs de contrôle qui régissent leur formation. Classiquement, nous considérons deux

styles tectoniques distincts à grande échelle, pour une courroie pliante et une courroie de poussée, à savoir le

style tectonique à thick skinned et à thin skinned. Ces styles sont dérivés du degré d’interaction substratum au

socle - couverture pendant la formation de la chaîne de montagne. La première implique que le socle cristallin

et les séquences de couverture sédimentaire sus-jacentes permettent une quantité égale de déformation pen-

dant le raccourcissement de la croûte terrestre. Par contre, un style à thin skinned implique que la plus grande

partie du raccourcissement est accommodée dans la déformation des séquences de couverture sédimentaires

au-dessus du socle le long d’une zone faible de cisaillement ou de décollement de la base. Par conséquent, le

socle demeure en grande partie non déformé, tandis que les séquences de couverture présentent des déforma-

tions internes et/ou des déplacements horizontaux importants. Le style structural de plis et de chevauchement

est étroitement lié aux structures crustales héritées du passé, telles que les bassins ou les variations de la

mechanical stratigraphy. Par conséquent, une grande quantité de données sur les plis et de chevauchement

indique que le style tectonique mais aussi le style interne peuvent être très variables pour une même chaîne.

Par exemple, des études font état de changements de style de l’extérieur de la ceinture à l’intérieur ou d’un

bout à l’autre de la ceinture. Par conséquent, il est permis de penser que la géométrie tridimensionnelle des

structures pré-orogéniques héritées présente un facteur de contrôle dominant sur le style structural des chaînes

de montagnes.

Dans cette thèse, nous nous concentrons sur l’une des principales chaînes de montagnes des Alpes romandes, à

savoir le système de nappe helvétique. Le système de nappe helvétique a une longue histoire en géologie alpine

et a été l’un des principaux terrains d’essai pour l’évolution de la théorie dite des nappes. En général, une

nappe tectonique est définie comme une unité de roche allochtone cohérente qui s’est éloignée de sa position

initiale le long d’une zone de chevauchement ou de cisaillement. En outre, nous distinguons deux types de

cas extrême, à savoir les nappes plissés et les nappes chevauchements. Les nappes plissées sont de grands

plis couchés d’une amplitude de plusieurs kilomètres contribuant à une inversion stratigraphique de même

amplitude. En revanche, les nappes chevauchements sont placées sous forme de nappes rocheuses cohérentes le

long d’un chevauchement basal, ce qui entraîne la superposition d’unités stratigraphiques plus anciennes sur



des unités plus jeunes. Le système de nappe helvétique présente une transition entre ces deux styles de nappe

différents. Les changements de style forment la fameuse nappe de plis de Morcles au sud-ouest, la nappe de plis

du Doldenhorn au centre et la nappe de poussée de Glaris au nord-est. De plus, la nappe de Morcles et la nappe

du Doldenhorn sont recouvertes d’une série d’unites de poussée plus petites qui sont analogues à la nappe de

Glaris. Il est intéressant de noter que la nappe du Doldenhorn présente un plissement interne et un plissement

des membres couchés moins prononcés que la nappe des Morcles, tandis que la nappe du Doldenhorn présente

un cisaillement plus important. Ces deux nappes sont dérivées de sédiments qui étaient autrefois situés dans un

système de graben inversé pendant l’orogenèse alpine. Contrairement aux reconstitutions de la nappe de Glaris,

il n’y a pas de système de graben prononcé. Il est donc suggéré que les variations latérales de la structure du

socle e ont eu une influence majeure sur l’évolution des systèmes de nappe helvétique.

Le but de cette thèse est d’acquérir des connaissances supplémentaires sur la transition latérale entre la

plissement et la chevauchement et sur l’évolution et l’emplacement de l’empilement des nappes dans un espace

tridimensionnel. Pour ce faire, nous utilisons des modèles numériques tridimensionnels (3D) thermo-mécaniques

que nous appliquons au système de nappe helvétique. Dans notre première étude (chapitre 2), nous mettons

en œvre un algorithme numérique pour calculer et tracer les déformations 3D finies afin d’en quantifier la

déformation. Nous utilisons en outre un modèle visqueux 3D simple constitué d’une mechanical stratigraphy

à changement latéral pour simuler la transition entre la plissement et chevauchment. Nos résultats montrent

essentiellement que la distribution spatiale et le gradient de la stratigraphie s’expriment directement par un

changement du gradient de déformation fini le long de la charnière du pli. Dans notre deuxième étude (chapitre

3), nous utilisons un modèle numérique 3D d’une marge passive simplifiée avec une structure de graben hérité

pour simuler la formation d’une nappe de plis qui est surchargée par une nappe de chevauchment. De plus,

les paramètres et la configuration du modèle sont adaptés pour imiter les conditions initiales des systèmes de

nappe helvétique. Nous sommes en mesure de reproduire plusieurs caractéristiques clés de premier ordre telles

que la structure de la nappe, la distribution de la température, la chronologie des événements et le profil de

déformation fini. À partir de là, nous montrons qu’un système de graben relativement simple peut expliquer les

changements dans la structure de la nappe plissée tout au long de chaîne. De plus, nos modèles déduisent que

les grandes nappes de chevauchement peuvent avancer presque sans être perturbées horizontalement. Enfin,

nos modèles indiquent également que la formation de nappes de poussée et de plis dans les systèmes de nappes

helvétiques s’est probablement produite sous un régime de déformation semi-fragile-ductile.



Résumé grand public

Dans cette thèse, nous nous concentrons sur l’une des principales ceintures de nappes de plis et de chevau-

chement des Alpes de Suisse romande, à savoir le système des nappes helvétiques. Le système des nappes

helvétiques a une longue histoire dans la géologie alpine et a été l’un des principaux terrains d’essai pour

l’évolution de la théorie des nappes. En général, une nappe tectonique est définie comme une unité de roche

allochtone cohérente qui s’est éloignée de sa position initiale le long d’un chevauchement basal ou d’une zone

de cisaillement. De plus, nous distinguons deux types de nappes, à savoir les nappes de plis et les nappes de

charriage. Les nappes de plis sont des grands plis couchés d’une amplitude de plusieurs kilomètres contribuant

à une inversion stratigraphique de même amplitude. En revanche, les nappes de chevauchment sont mises en

place le long d’un chevauchement basal sous forme de nappes cohérentes, ce qui entraîne la superposition

d’unités stratigraphiques plus anciennes sur des unités plus jeunes. Le système des nappes helvétiques présente

une transition entre ces deux styles de formation de nappes. Les changements de style forment la fameuse

nappe plissée de Morcles au sud-ouest, la nappe plissée du Doldenhorn au centre et la nappe de chevauchment

de Glaris au nord-est. De plus, la nappe de Morcles et la nappe du Doldenhorn sont recouvertes d’une série de

nappes chevauchantes plus petites qui sont analogues à la nappe de Glaris. Il est intéressant de noter que la

nappe du Doldenhorn présente un flanc couché moins prononcés que la nappe de Morcles. Les reconstitutions

montrent que ce changement est probablement dû aux variations de la structure initiale du graben qui conte-

nait autrefois les unités rocheuses des deux nappes. Contrairement aux reconstitutions de la nappe de Glaris,

il n’y a pas de système de graben prononcé. Il est donc suggéré que les variations latérales de la structure du

socle ont eu une influence majeure sur l’évolution du système des nappes helvétiques.

Le but de cette thèse est d’acquérir des connaissances supplémentaires sur la transition latérale entre le

plissement et le chevaugement et sur l’évolution et l’emplacement de l’empilement des nappes de plissement

et de charriage dans un espace tridimensionnel. Pour ce faire, nous utilisons des modèles numériques thermo-

mécaniques en trois dimensions (3D) que nous appliquons au système des nappes helvétiques. Dans notre

première étude, nous mettons en œuvre un algorithme numérique pour calculer et tracer les déformations

finies en 3D afin d’en quantifier la déformation. Nous utilisons en plus un modèle visqueux 3D simple constitué

d’une stratigraphie qui varie latéralement pour simuler la transition entre un chevauchement et un plissement.

Nos résultats montrent essentiellement que la distribution spatiale et le gradient de la mechanical stratigraphy

s’expriment directement par un changement du gradient de déformation finie le long de la charnière du pli vers la

nappe chevauchment. Dans notre deuxième étude, nous utilisons un modèle numérique 3D d’une marge passive



simplifiée avec une structure de graben hérité pour simuler la formation d’une nappe de plis qui est surmontée

par une nappe de charriage. De plus, les paramètres et la configuration du modèle sont adaptés pour imiter

les conditions initiales du système des nappes helvétiques. Nous sommes en mesure de reproduire plusieurs

caractéristiques clés de premier ordre telles que la structure de la nappe, la distribution de la température, la

chronologie des événements et le profil de déformation finie. À partir de là, nous montrons qu’un système de

graben relativement simple peut expliquer les changements dans la structure de la nappe plissée tout au long

du profil. Enfin, nous acquérons également des connaissances supplémentaires sur le régime de déformation

lors de la formation du système des nappes helvétiques.



CHAPTER 1

Introduction

1



2 CHAPTER 1. INTRODUCTION

The body of this thesis consists of four main parts. The first part provides a general overview
of fold and thrust belts, followed by an overview of tectonic nappes and the Helvetic nappe
system to which we apply our numerical algorithm. Further, we describe our continuum
mechanics and numerical code used to solve our numerical problems. This introduction is
followed by two three-dimensional (3D) numerical studies that investigate (i) 3D finite strain
computation with application to the transition between viscous overthrusting and folding,
and (ii) the impact of 3D inherited half-graben architecture on nappe stacke formation with
application to the Helvetic nappe system. Next, Chapter 4 will provide a short summary of
our results with a concluding outlook. Finally, Chapter 5 (Appendix) includes two Matlab
scripts exemplifying finite strain calculation and a performance benchmark of our algorithm.

Definitions

Detachment horizon Here interchangeable with the term décollement (plane), meaning a
surface along which overlying rocks have moved in the course of deformation.

Mechanical stratigraphy In the context of the thesis the mechanical stratigraphy refers
to, as for example defined by Pfiffner (1993), to the thickness contrast between different
stratigraphic units of different mechanical strength. In general this term also includes the
effect of mechanical discontinuities, such as, for example, generated by normal faults on the
deformational behavior of rock strata.

Nappe From the French word nappe, meaning ’cover’, a thrusted coherent rock mass or
folded body of up to several km length and thickness that has been displaced from its original
substratum.

1.1 Fold and thrust belts

1.1.1 Overview

Fold and thrust belts are an universal structural feature of orogens on Earth which can
be observed throughout most geological eras (Figure 1.1; worldwide orogenies through time
taken form Liou et al., 2009). Unsurprisingly, they are therefore an active area for geological
studies, also largely due to hydrocarbon exploration ( e.g. Dunn et al., 1995; Cooper, 2007;
Lacombe et al., 2007). Typically, fold and thrust belts are located in the foreland of an
orogen and are commonly comprised of deformed sedimentary sequences. In some cases,
however, they also show the involvement of crystalline basement rocks. They are formed during
compressional tectonics and hence occur in various geological settings such as continental
plate collisions, subduction zones (Figure 1.2), intraplate locations or also along oblique plate
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Figure 1.1: World map displaying the distribution of orogens by geological era (taken from
Liou et al., 2009).

boundaries that involve transpression (e.g. Poblet and Lisle, 2011). They are structurally
complex and can exhibit an array of different structures, such as forward and back thrusts,
folds, nappes or duplexes (e.g. Price and McClay, 1981). For centuries, geologists have spent
considerable efforts to understand their origin, geometry, structural and geodynamic evolution,
as well as the control parameters that govern their formation. These parameters include, to
name a few, inherited structures, mechanical stratigraphy, geodynamic setting or the thermal
structure of the lithosphere. The vast interest in fold and thrust belts is reflected in a large
body of monographs starting from the 1970s (e.g. Price and McClay, 1981; McClay, 1992;
Macqueen and Leckie, 1992; Mitra and Fisher, 1992; Nemcok et al., 2009). Indeed, the early
1970s marked a breakthrough in the understanding of fold and thrust belts culminating in
fundamental geological knowledge. There are numerous factors that contributed to this jump
in knowledge. From the viewpoint of structural geology the three most notable milestones
in this decade were, the application of classical methods of rock deformation analysis to fold
and thrust belts (e.g. Ramsay, 1967; Durney et al., 1973; Fry, 1979). Here, detailed strain
analysis brought a greater understanding of the small scale processes and mechanisms that
contribute to the development of folds and thrust faults. Secondly, the technique of cross-
sectional balancing that aided in the restoration of fold and thrust belts cross-sections to
its original state as described in Dahlstrom’s seminal paper on the Alberta Foothills of the
Canadian Rocky Mountains (Dahlstrom, 1969). Here, the further development of additional
techniques (e.g. Suppe, 1983; Suppe, 1985; Hossack, 1979; Mitra and Namson, 1989) aided in
the quantification of the relationship between thrusts and folds. Altogether these innovations
provided a framework of common structural geometries that could be used to reconstruct the
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Figure 1.2: Sketch of two common subduction regimes resulting in orogeny and fold and
thrust belt formation (modified after Lacombe and Bellahsen, 2016).

evolution of fold and thrust belts. Hence, the application of these techniques ranges from single
geological units to entire fold and thrust belts. Consequently, the technique of kinematic and
geometrical restoration is still widely in utilized and remains a fundamental method which
is, for example, also used in the interpretation of seismic cross-sections. Finally, the last big
milestone was the introduction of the Coloumb wedge theory (Davis et al., 1983; Dahlen et al.,
1984) which was the result of extensive mechanical studies of accretionary wedges. This theory
combined for the first time the interaction of gravity-force and surface-force driven motions
to explain the mechanical and structural evolution of accretionary wedges. Extension of the
theory to fold and thrust belts, that usually also exhibit a wedge-like shape in cross-sectional
view (Figure 1.4a), marked a major step in the understanding of the large scale kinematics and
dynamics of fold and thrust belts. According to this model the formation of a accretionary
wedge can be understood akin to a bulldozer pushing a pile of snow (Figure 1.4b). The
wedge thereby deforms until it reaches its so-called critical taper value form whereon it will
slide along a basal detachment horizon (e.g. Davis et al., 1983; Dahlen et al., 1984; Buiter,
2012). If further material is added to the wedge, it will continue to deform until it reaches
its new critical taper value and then repeat the process of sliding. In general, the theory
is useful to describe the average state of a fold and thrust belt. However, it is limited by
several assumptions like, for example, use of homogeneous brittle material, a cohesionless
basal horizon and constant material properties through time (e.g. Davis et al., 1983).
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Figure 1.3: Schematic cross-sections showing the basic structural styles of fold and thrust
belts: a) thin-skinned tectonic style (simplified after Mazzotti et al., 2000), b) thick-skinned
tectonic style (simplified after Mirabella et al., 2008) and c) thick-skinned tectonic style with
inversion (simplified after Tavarnelli et al., 2004).

1.1.2 Structural style: Thin skinned vs thick skinned

Even though fold and thrust belts usually display a wedge like geometry it is difficult to define
universal features that can be attributed to all such belts (e.g. Fitz Diaz et al., 2011). The
main reason therefore lies in the great multitude of parameters that influence the formation
of fold and thrust belts. In consequence, they show a wide range of unique structural styles.
Here, important factors that exert a strong control on the evolution are, for example, the
plate tectonic setting, the interaction between sedimentary cover sequences and the underlying
basement, the mechanical stratigraphy, the rheology of different rock types and the thermal
structure. In addition, these control factors may have a complex interplay with each other
or may vary spatially inside the same fold and thrust belt. Hence, no single cross-sectional
view can provide a complete picture of a singular fold and thrust belt, even less so when
looking at the entirety of fold and thrust belts (e.g. Watts et al., 1995; Allmendinger et al.,
1997; Mouthereau et al., 2002; Hamilton, 1988; Nemčok et al., 2013). Nevertheless, geologists
distinguish two main tectonic styles of fold and thrust belts. The two styles are derived
from the interaction between the crystalline basement and the overlying cover sequences (e.g.
Coward, 1983; Pfiffner, 2006; Molinaro et al., 2005) and were first described by Rodgers
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(1949). The first style is called thin-skinned style and implies that the bulk deformation
is constrained to the upper crustal part which comprises sedimentary cover sequences. In
this case, the cover is decoupled from the underlying basement by a sole basal detachment or
thrust. Consequently, internal thrusts and faults of the sedimentary cover can propagate to the

Figure 1.4: a) Cross-section through the Canadian Rocky Mountains, example of a classical
thin-skinned fold and thrust belt, taken from Buiter, 2012, after Bally et al., 1966 ;b)
illustration of a bulldozer pushing a wedge as analogy to the Coloumb wedge theory.

surface, but are at depth confined by this major basal detachment or thrust. Henceforth, most
of the bulk shortening induced by the compressional tectonics is accommodated in sedimentary
cover sequences (Figure 1.3a). Such thin-skinned behavior is, for example, observed in the
Canadian Rocky Mountains (e.g. Price and McClay, 1981) or the Jura Mountains of the Swiss
Alps (e.g. Burkhard and Sommaruga, 1998). Often a thin-skinned style is succeeded by a so-
called thick-skinned style the closer we trace the fold and thrust belt to the core of the orogen.
The term thick-skinned indicates that the crust at large, including the crystalline basement,
is involved in the deformation. That is to say, parts of the basement can be incorporated into
thrusts sheets (Figure 1.3b), for example, by deep rooted normal faults or the inversion of
inherited basement structures such as basins and grabens (Figure 1.3c). In consequence, the
structural style of thick skinned belts is subject to the degree of reactivation of pre-existing
faults. Here, normal fault reactivation is mainly controlled by their angle and orientation in
relation to the compressional direction (e.g. Butler, 1989; Tricart and Lemoine, 1986; Coward
et al., 1991; Bellahsen et al., 2012). Moreover, the analysis of many Alpine style thick-skinned
fold and thrust belts indicates that inherited structures of rifted passive margins exert a strong
control on the overall deformation behavior and structure (e.g. Jackson, 1980; Lacombe and
Mouthereau, 2002; Butler et al., 2006; Coward et al., 1991; Boutoux et al., 2014). However,
given the fact that the tectonic style can vary inside the same fold and thrust belt, it is often
difficult to apply these puristic definitions. Therefore, several authors have tried to refine the
description of the tectonic styles by introducing new definitions. Pfiffner (2006), for example,
proposed to apply the term thick-skinned tectonics only to belts where the complete crust is
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involved in the deformation, whereas Poblet and Lisle (2011), suggest that fold and thrust belt
are by definition thin-skinned. Consequently, they employ the term basement-involved belts
with a thick skinned structural style as an alternative to the term thick-skinned. Furthermore,
Lacombe and Bellahsen (2016) state in a recent review that progressively more evidence points
to basement involved deformation inside belts that were once believed to be purely of thin-
skinned style. In consequence, they refer to all belts as thick-skinned.

1.1.3 Important parameters in the Alps

Given the wide range of parameters contributing to the structural evolution of fold and
thrust belts around the world, an extensive compilation is outside the scope of this thesis. For
a thorough review I would therefore like to point the interested reader to a recent review of
Cenozoic orogens by Lacombe and Bellahsen (2016). Nevertheless, there are some important
factors that can be mentioned to provide some additional background information for the
studies presented in Chapter 2 and Chapter 3. Both numerical studies were conducted with
the aim to apply their results to observations made in the Helvetic nappe system of the
Western Swiss Alps. On the large scale the underlying control factors that culminated in
these observations are best explained looking at the Alps as a whole.

The Alps were formed in consequence of the subduction and collision of the European and
Adriatic rifted continental margins. This final collision was preceded by a series of subductions
of different geological domains. The first subduction comprises the closure of the Piemonte-
Liguria oceanic domain onward from the Early to Middle Eocence (e.g. Lagabrielle and
Cannat, 1990; Rebay et al., 2012). Closure of this domain was followed by the subduction of
the Briançonnais micro-continent in the Late Eocene (e.g. Bucher et al., 2004). Proceeding,
the subduction continued with the Valais domain, which constitutes a ull-apart basin (e.g.
Steinmann and Stille, 1999; Masson et al., 2008). Finally, subduction and collision of the rifted
European continental margin was initiated in the Early Oligocene resulting in the formation
of the present day Alps (e.g. Manzotti et al., 2014). The above described paleogeographic
domains were reworked into different large scale structures that encompass distinct, so-called,
tectonic nappes in the Alps (e.g. Trümpy et al., 1980). The Helvetic nappe system, which is
of particular interest for our studies, corresponds to the former European continental passive
margin. Here a large body of literature agrees that the initial geometry of the rifted margin is
reflected in the structures we observe today (e.g. Lemoine et al., 1986; Gillcrist et al., 1987).
The next two paragraphs will therefore provide a short overview of this so-called structural
inheritance.
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Figure 1.5: Graph displaying a) basin compression resulting in the Morcles nappe (taken
from Boutoux et al., 2014, finite strain ellipses after Ramsay and Huber, 1987, cross-sections
after Escher et al., 1993) b)reconstruction of the Morcles basin c) simplified cross-section
of the Bourg d’Oisons basin displaying buttressing, (modified after Boutoux et al., 2014,)
d) simplified paleogeographic reconstruction of the Bourg d’Oisons basin (modified after
Boutoux et al., 2014).

1.1.4 Structural inheritance

In general, structural inheritance is widely acknowledged to be one of the most critical com-
ponents in the evolution of orogens. In the Alps studies as early as 1916 (Argand, 1916) show
that many of the structural features such as tectonic nappes were derived from Mesozoic sed-
imentary basin and half-graben infills (e.g. Helwig, 1976; Butler, 1986; Lemoine et al., 1986).
The studies show that these basins were bound by normal faults which played a crucial role
during compressional tectonics. In theory such pre-existing normal faults may be reactivated
to form basement thrusts (Jackson, 1980). However, complete fault reactivation is commonly
not observed in fold and thrust belts (e.g. Buchanan and Buchanan, 1995). Particularly in
the Western Alps fault orientation disfavors complete fault reactivation as thrusts (Coward
et al., 1994). Nevertheless in the Alps, basement faults acted as important mechanical discon-
tinuities between basement rocks and sedimentary units (e.g. Gillcrist et al., 1987; Coward
et al., 1994). Consequently, they had a major influence on the structural evolution. With-
out reactivation these offsets can result in buckling and folding of the sedimentary sequences
during contraction, such as, for example, observed in the Western French Alps (e.g. Boutoux
et al., 2014). After Gillcrist et al. (1987) this process is also called buttressing, as displayed
in Figure 1.5. Furthermore, basin and graben structures may undergo complete closer during
compression, such as, for example, observed at the Morcles nappe (Figure 1.5a,b). In addition,
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Figure 1.6: a) Model for the formation of the so-called Rawil between the Morcles and
Doldenhorn nappe by an oblique basement ramp (modified after Burkhard, 1988),b) Un-
dulations of fold axis and thrust plane caused by a inherited normal fault. Compression
parallel to the pre-existing normal fault resulting in the formation of a lateral ramp forms
along the inherited anisotropy (redrawn after Doglioni, 1992).

faults can localize thrust ramps (e.g. Coward et al., 1994; Butler, 1986) that influence the
developing structure depending on their orientation. Here, several studies in the Alps indicate
that oblique or lateral ramps can explain offsets between geological units and structures in the
field (e.g. Pfiffner, 1981; Burkhard, 1988; Doglioni, 1992; Zerlauth et al., 2014). For example,
Burkhard (1988) explains the lateral offset between the Aiguilles-Rouges and Aar basement
massif due to the existence of a lateral basement ramp (Figure 1.6a). Moreover, on a smaller
scale, such ramps may also cause the formation of "en échelons" folds (Figure 1.6b).

1.1.5 Mechanical Stratigraphy

Structural inheritance encompasses not only the basement structures, but also structural dif-
ferences in the overlying sedimentary cover sequences. Here, the inherited mechanical stratig-
raphy (e.g. Welbon and Butler, 1992; Pfiffner, 1993; Erickson, 1996) has an important impact
on the deformational behavior. The term mechanical stratigraphy comprises the mechanical
properties, thicknesses and interface boundaries of different rock strata (Laubach et al., 2009).
For a rough classification layers are commonly divided into mechanically weak/incompetent
and strong/competent layers. These classifications refer to their ability to resist deformation.
In general, incompetent units can accommodate larger deformations than competent materials
before undergoing plastic failure. They are also more prone to deform in a ductile manner,
showing a lower viscosity than competent layers (e.g. Wiltschko and Chapple, 1977; Ferrill
et al., 1998; Ferrill et al., 2017). Furthermore, weak layers often act as detachment horizons
(e.g. Lacombe and Mouthereau, 2002; Costa and Vendeville, 2002). A typical example for
such detachment transport is the Jura fold and thrust belt of the Western Swiss Alps. Here,
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Triassic evaporates act as major detachment horizon for the more competent units, such as
limestones, above (e.g. Burkhard and Sommaruga, 1998. In addition, faults can have a major
impact on the expression of the mechanical stratigraphy. For example, offset and vertical
displacement of detachment horizons can lead to the localization of thrust ramps or the ini-
tiation of buckle folds (e.g. Butler et al., 2006). Moreover, the mechanical stratigraphy is
closely linked to the original depositional environment, as basin and graben structures are
often asymmetric exhibiting internal unconformities (e.g. Lister et al., 1986; Froitzheim and
Eberli, 1990; Ranero and Pérez Gussinyé, 2010). Consequently, the mechanical stratigraphy
can show significant thickness variations in 3D space. In context of the Swiss Alps, one impor-
tant study investigating such variations of mechanical stratigraphy was conducted by Pfiffner,
1993 in the Helvetic nappe system. Here, Pfiffner (1993) analyzed several stratigraphic cross-
sections together with the corresponding large scale structures along strike of the system. On
this ground he showed that the thickness ratio between incompetent and competent layers has
a decisive impact on the structural style. The study suggests that thickness ratios n < 0.5

between incompetent and competent layers favor harmonic folding and/or imbricate thrusting
as observed in Northeast and central part of the nappe system. In contrast ratios n > 0.5

indicate a mode of disharmonic folding and formation of detachment folds which is encoun-
tered to a greater degree in the Southwest of the Helvetic nappes. In this perspective, Jaquet
et al. (2014) also performed 2D numerical simulations employing a relatively simple two layer
stratigraphy of different n ratios for a series of systemic simulations. In short, their results
supports Pfiffners hypothesis. Continuing in Chapter 2 we investigate the impact of such
lateral variations of n ratios on the transition between imbricate thrusting and detachment
folding using a 3D numerical model.

1.2 The Helvetic nappe system

1.2.1 Nappe tectonics

Tectonics nappes are a widespread structural feature of orogenic belts (e.g. Price and McClay,
1981). Although the definition of nappe may vary (Price and McClay, 1981), most authors
agree that a nappe is a coherent rock unit/sheet that has moved away from its autochthonous
substratum and thus has become an allochthonous unit (e.g. Termier, 1922; Price and McClay,
1981). Commonly, there exist two end-member types of nappes, namely thrust nappes and
fold nappes (e.g. Termier, 1906; Price and McClay, 1981; Epard and Escher, 1996). Thrust
nappes are allochthonous tectonic sheets that have been displaced along a prominent basal
shear zone or thrust fault. In contrast, a fold nappe is a large-scale recumbent fold that
consequently exhibits large-scale stratigraphic inversion with amplitudes exceeding several
kilometers (Figure 1.7). The general mechanisms that can drive nappe formation during
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Figure 1.7: Evolution of a fold nappe with an overturned limb with the progressive shearing
of the lower limb. (modified after Heim, 1922).

orogeny are well understood. Here, the two major driving forces are either external surface
forces (e.g. Ramsay et al., 1983; Epard and Escher, 1996; Boutoux et al., 2014), due to
compressional tectonics, or internal body forces (e.g. Durney et al., 1973; Merle, 1998) due
to gravity. However, the physical mechanisms of nappe initiation, as well as the transport
and stacking are still incompletely understood. Hence, there exist a large body of studies
employing theoretical and analogue models to investigate the formation of fold-and-thrust
belts and of nappes (e.g. Rubey and King Hubbert, 1959; Merle, 1989; Wissing and Pfiffner,
2003; Bauville et al., 2013; Poulet et al., 2014; Jaquet et al., 2014; Ruh et al., 2014; Bauville
and Schmalholz, 2017). For example, the dominant emplacement mechanism of fold nappes is
still controversial. Here, many authors favor dominantly ductile deformation mechanisms, such
as dislocation or grain-size sensitive diffusion creep under distributed shearing (e.g. Ramsay
et al., 1983; Gillcrist et al., 1987; Ebert et al., 2008; Bauville et al., 2013 ). In contrast, several
other investigators argue for localized thrusting under dominantly britte-plastic deformation
mechanisms, such as fluid pressure induced fracturing (e.g. Boyer and Elliott, 1982; Granado
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and Ruh, 2019). For thrust nappes the proposed emplacement mechanisms show an even
larger variety (Merle, 1989). Initial attempts to describe the movement of large thrust sheets
by frictional sliding culminated in the so-called overthrust paradox. In short, the paradox
states, that the required stresses to transport long sheets over a frictional surface exceed
the internal strength of the rock sheet. Hence, the displacement of large rock sheets would
result in the fragmentation of the sheet (e.g. Smoluchowski, 1909; King Hubbert and Rubey,
1959; Price, 1988). Consequently, several authors suggested different solutions to the apparent
paradox. Famously King Hubbert and Rubey (1959), for example, proposed the reduction of
the effective friction angle at the thrust base by elevated pore fluid pressure causing a reduction
in the required effective stresses to move the sheet. Other authors favored a dominantly ductile
deformation mechanism (e.g. Smoluchowski, 1909) combined with thermally-, chemically- or
mechanically-activated softening mechanisms (e.g. Poirier, 1980; Ebert et al., 2008; Poulet
et al., 2014). However, an additional problem of purely brittle-frictional emplacement models
is that thrusts sheets often show a displacement of several tens of kilometers on a sub-horizontal
thrust plane. This model is therefore in conflict with Anderson’s theory of faulting. After
Anderson’s theory thrust planes of friction angles of 30◦ should also dip with 30◦ in respect
to the horizontal, if the principal stress σ1 is approximately horizontal. Furthermore, smaller
friction angles would increase the dip angle. It is therefore likely that prominent low-angle
thrust planes are controlled by mechanical heterogeneities, such as the basement highs or the
spatial distribution of mechanical stratigraphy, as has been suggested for the Helvetic nappe
system (e.g. Pfiffner, 1993; Steck, 1999; Bauville and Schmalholz, 2017).

1.2.2 The Helvetic nappe system: A short geological overview

The Helvetic nappe system of the Western Swiss Alps represents a classical fold and thrust
belt. It has been studied extensively since the beginning of the 20th century (e.g. Argand,
1916, Heim, 1922) and as such had a major impact on the evolution of the nappe theory.
The Helvetic nappe system can be subdivided into three major units that are from top to
bottom: The Ultrahelvetics, The Helvetic nappes proper, and the Infrahelvetic complex. The
Helvetic nappes are mainly composed of Mesozoic and Triassic sediments that have been
detached and translated away from its original pre-Triassic crystalline basement. Here, pa-
leogeographic reconstructions show that the units were derived from the former European
continental passive margin (e.g. Ramsay, 1981, Pfiffner, 1993, Schmid et al., 2004). The
predominant sedimentary units are limestones, marls and shales. Altogether the stratigraphy
shows significant thickness variations in N-S direction of the system. These thickness changes
are reflected in the structural variations along-strike. Furthermore, the the Helvetic nappes
were displaced along major basal detachment horizons that originated in the weaker sediments
units, such as Triassic evaporites, or Lower and Middle Jurassic shales (e.g. Pfiffner, 2015).
Upon thrusting the Helvetic nappes were placed on the Infrahelvetic complex which is com-
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Figure 1.8: Simplified geological cross-sections along strike of the Helvetic nappe system.
a) Glarus nappe complex (modified after Pfiffner, 2015; b) Doldenhorn nappe (modified
after Kirschner et al., 1999)c) Morcles nappe (modified after Escher et al., 1993); d) Morcles
nappe at the Belledonne massif (modified after Epard, 1990) CS = cover sediments, UH/NH
= Ultrahelvetics/ North Helvetics.

prised of autochthonous Mesozoic and Tertiary cover-sediments that remained in contact with
the underlying autochthonous crystalline basement massifs. These basement massifs have also
been deformed significantly during the Alpine orogeny showing an elongated dome-like shape
( Ramsay, 1981). In detail, from SW to NE there are two major pairs of basement massifs
that are separated by a steep cuspate syncline. They are namely, the Aiguilles-Rouges and
Mont Blanc, and the Gastern and the Aar massif.

As mentioned above, the structural variations of the Helvetic nappes are significant along-
strike (Figure 1.8). Beginning in the SW of Switzerland we find a vertical succession of nappes
that have been displaced on top of each other, forming a so-called nappe stack. From bottom to
top, the crystalline Aiguilles-Rouges basement massif with its authochthonous Mesozoic cover
sediments is overlain by a large recumbent fold, namely the Morcles nappe (Figure 1.8c). The
Morcles fold nappe is the result of the closure and inversion of an inherited half-graben that was
once situated in the former continental passive margin. At the bottom, the overturned limb of
the Morcles nappe can be traced back to the steep Chamonix-Martigny syncline that divides
Aiguilles-Rouges from the Mont Blanc massif. Here, an increase of ductile strain together with
a thinning the limb is observed in direction of the root zone (e.g. Dietrich and Casey, 1989).
In addition, finite strain analysis indicates a combination of layer parallel compression and top
to the NW shearing for the Morcles nappe (Ramsay, 1981; Ramsay et al., 1983; Escher et al.,
1993). Moreover, the competence contrast between the strong limestones units and weak shales
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and marls resulted in the buckling and folding of the former during graben closure, leading
to parasitic folds inside the nappe. Hence, field evidences suggests a ductile deformation
regime during nappe emplacement. The Morlces nappe itself is overlain by a narrow thrust
sheet which is called the Ardon nappe (Masson et al., 1980) and another major thrust nappe
namely, the Wildhorn super nappe. The Wildhorn super nappe itself can be subdivided into
three smaller units called the Mont Gond, the Sublage nappe and the Diablerets nappe. Above
and in between the Helvetic nappes lie the Ultrahelvetic nappes (UH/NH). They exhibit
a recumbent synform between the Morcles and Diablerets nappes which suggests that the
Ultrahelvetics where initially located on top of the undeveloped Helvetic Nappes. Afterwards
the Ultrahelvetics were reworked and refolded during the shortening stage that resulted in
the emplacement of the Helvetic nappes (Ramsay et al., 1983). Furthermore, the Morcles
nappe can be traced across the Swiss border in the SW to the Western French Alps. Here,
the Morcles nappe (Figure 1.8d) can be subdivided into two highly thinned out recumbent
anticlines, namely the Sangle and Mont Joly Unit (not shown in the simplified cross-section).
These units also represent the infill of a former half-graben which has been squeezed out and
displaced on top of adjacent external Belledonne crystalline massif (Epard, 1990).

Continuing eastwards from the Swiss-part of the Morcles nappe to the central part of the
Helvetic nappe system three major nappes emerge on top of the Aar massif (Figure 1.8b).
Similarly to the Southwestern part we find several nappes stacked on top of the autochthonous
basement massifs. From bottom to top, the stack consists of the Doldenhorn fold nappe, the
Gellihorn and the Wildhorn nappe. These nappes are homologues to the Morcles and the
Wildhorn super nappe. In contrast to the Morcles nappe, the Doldenhorn nappe shows a less
prominent recumbent fold limb as well as an elongated shape with greater localized shearing at
its base (Steck, 1999). This slight change in style is likely related to changes in the mechanical
stratigraphy and half-graben geometry. In this context Pfiffner et al. (2011) suggests that here
the weak basal units are relatively thinner compared to the equivalent units at the Morcles
nappe.

Proceeding to the Eastern end of Switzerland the autochthonous cover sediments of the
Gastern and Aar massif is overlain by Infrahelvetic slices of Tertiary flysch and Mesozoic
sediments that were subsequently overthrusted by Helvetic nappes (Figure 1.8a). In contrast
to the Southwestern and Central Helvetic zone there is no record of a recumbent fold nappe
such as the Morcles or Doldenhorn nappe. Here the Helvetic nappes manifest themselves in the
prominent Glarus nappe complex (Figure 1.8a) that shows up to 50 km greater displacement
than the Helvetic nappes to the West (e.g Schmid, 1975; Groshong Jr et al., 1984). The
complex comprises three different major thrust sheets, namely, from bottom to top the Glarus
nappe, the Muertschen nappe and the Saentis nappe (not shown in the simplified cross-
section). The Glarus nappe consists of a thick unit of Permian Verrucano that is overlain by
folded Mesozoic and Tertiary sediments. Furthermore, the contact at the basal thrust of the
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Glarus nappe is extremely sharp and displays a strongly deformed calc-mylonite that reaches
a maximum thickness of a few meters (e.g. Schmid, 1975; Milnes and Pfiffner, 1977).

The emplacement of the Helvetic nappes took place from the Oligocene to Miocene times and
lasted approximately 10 to 15 Ma (e.g. Masson et al., 1980; Kirschner et al., 1996; Stampfli
et al., 2002; Herwegh and Pfiffner, 2005). In addition, the temperature conditions during
emplacement are well constrained by thermochronological studies which show metamorphic
peak temperatures ranging from around 200◦C to 400◦C at the basal contacts of the nappes.
Here, further constrains are given by metamorphic peak temperatures for the Mont Blanc
massif indicating temperatures of approximately 400◦C (Leloup et al., 2005). Hence, the
temperature data supports the field evidences which suggests that the nappes were largely
formed in a ductile flow regime.

1.3 Approach

In computational geodynamics it is common practice to utilize 2D and 3D numerical models
to simulate and investigate a variety of processes occurring on and in planet Earth. These
processes are of numerous different scales, ranging from mantle convection, subducting plates,
lithospheric folding, shear zone formation and porosity wave evolution. Particularly, large
scale deformations in the mantle or lithosphere can be approximated by the so called Stokes
equations. These Stokes equations are based on the classic theory of continuum mechanics.
Usually the Stokes equations are used to model the flow of incompressible fluids. Coinciden-
tally, rocks behave in similar manner to an incompressible fluid over million year long time
scales. Hence, the herein presented models of viscous folding and tectonic nappe stack em-
placement are likewise based on the same principles. Following section will present the reader
with a brief overview of the continuum mechanics and numerical approach utilized in this
work.

1.3.1 Continuum Mechanics

The theory of continuum mechanics describes a collection of fundamental physical laws that
are used to predict material behavior during the application of mechanical forces. The term
’continuum’ implies that any material is modeled as perfect continuous body without any
discontinuities. Hence, to predict the material behavior in a closed physical system there
are four fundamental physical conservations laws that need to be respected. These laws
are the conservation of mass, the conservation momentum and angular momentum and the
conservation of energy. In this context conservation means that all three quantities, mass,
momentum and energy are constant and thus are not allowed to change over time in a closed
system. The conservation laws provide a set of equations that have to be solved in order to
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understand and quantify the mechanical behavior of a given system (e.g. Gurtin, 1982; Mase,
1970; Ferziger and Perić, 2002).

Conservation principles

A general way to derive conservation laws is to consider a certain control mass (CM) or
system and its extensive properties. That is, physical properties that depend on the system
size, such as mass, momentum, or energy. In short, a conservation laws accounts for the rate
of change the amount of an extensive property inside a specified control mass or system in
relation to external effects. However, in a fluid dynamics approach, like the Stokes flow, it
is more convenient to deal with the fluid flow through a specifically defined control volume
instead of a continuum body. By employing the control volume approach the focus is shifted
away from the extensive properties to the intensive properties (e.g. ρ, v). For example,
any given extensive property Φ can be related to corresponding intensive property φ in the
following way (e.g. φ = 1 for mass conservation):

Φ =

∫
ΩCM

ρφdΩ (1.1)

Where ΩCM refers to the Volume occupied by the control mass (CM) and ρ to the density.
Continuing, the general conservation law can be defined by applying the Reynold’s transport
theorem:

d

dt

∫
ΩCM

ρφdΩ =
d

dt

∫
ΩCV

ρφdΩ +

∮
CV

ρφ(v − vb)ndS (1.2)

Where the first term ΩCV on the right side refers to the control volume and the second term
to the surface of the control volume CV, with v being the fluid velocity, vb the velocity of
the the surface and n the unit vector orthogonal to the surface. In most cases we consider
a fixed CV, leading to vb = 0, transforming the first derivative on the right side to a partial
derivative.
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Conservation of mass

If we consider a fixed control volume using equation (1.2) we can find the law of mass
conservation by setting φ = 1, under the assumption that mass is neither created nor destroyed
in our system:

∂

∂t

∫
ΩCV

ρdΩ +

∮
CV

ρvndS = 0. (1.3)

∂ρ

∂t
+∇(ρv) (1.4)

In our approach we treat the long-term deformational behavior of rocks as analogue to that of
an incompressible flow. This assumptions implies that the density is constant inside a control
volume. In addition, the statement of incompressibility demands the divergence of the flow
velocity to be zero. Equation (1.3) can therefore be simplified to

∂vi
∂xi

= 0 (1.5)

Where xi(i = 1,2,3) refers to Cartesian coordinates in the three spatial directions, vi are the
components of the velocity vector,

Conservation of momentum

The conservation of momentum for the incompressible Stokes flow can be derived in similar
way employing the above Reynold’s transport theorem (e.g. Müller and Müller, 2009). Thus
the law is given by:

− ∂P
∂xi

+
∂τij
∂xj

= ρgi (1.6)

(1.7)

Here, P is the pressure, τij = σij +Pδij are components of the deviatoric Cauchy stress tensor,
ρ is the density and gi the gravity acceleration vector.

Conservation of energy

Proceeding, the conservation of energy is given by following statement:

ρCp
∂T

∂t
=

∂

∂xi

(
λ
∂T

∂xi

)
+HR +HS (1.8)
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Here, Cp stands for the specific capacity, T for temperature and λ for the thermal conductivity.
The source term HR refers to the radiogenic heat production and HS for shear heating that
are defined as follows:

HS = τijε̇ij (1.9)

Where τij is the deviatoric Cauchy stress tensor and ε̇ij the deviatoric strain rate tensor.

Constitutive equations

The deformational behavior of rocks depends on their material properties (e.g. chemical com-
position, grain size), external conditions (e.g. temperature, stress) and varies across different
timescales (e.g. Ranalli, 1995, Karato, 2012). For example, on the time scale of seconds to
minutes rocks behave in a elastic manner. Whereas, they generally act in a brittle-ductile
manner in the timescale of million years. The transition between brittle behavior, which im-
plies fracturing, and ductile behavior, inferring ductile flow, depends largely on the confining
pressure, temperature and strain rate. The complete mathematical framework of rheology of
rocks is provided by the visco-elasto-plastic constitutive equations that relate stress to strain
rates. However, in the perspective of the herein presented studies we explicitly utilize a sole
viscous rheology (Chapter 2) and visco-plastic rheology (Chapter 3). Hence, we refrain from
the description of elastic rheology.

The components of the deviatoric strain rate tensor ε̇ij are defined by the visco-plastic con-
stitutive equations: where ε̇vsij is the viscous strain rate tensor, ε̇plij is the plastic strain rate
tensor, ηeff is the effective viscosity, τij are components of the deviatoric stress tensor and
τII = (1

2τijτij)
1
2 is the square root of the second invariant of the deviatoric stress tensor.

ε̇ij = ε̇vsij + ε̇plij =
τij

2ηeff
+ ε̇plII

τij
τII

(1.10)

Viscous creep The viscous deformation of crustal rocks is mainly governed by the so-called
dislocation creep (e.g. Ranalli, 1995, Karato, 2012). Dislocation creep is the result of the dis-
placement of crystallographic defects, known as dislocations, inside a crystal lattice. Movement
of such dislocations permanently deforms the crystal lattice and can, for example, culminate
in crystal preferred orientations (CPO). Commonly, dislocation creep flow laws of rocks are
measured under laboratory conditions and then extrapolated to geological conditions (stress,
strain rate, temperature). A standard formulation for the effective temperature dependent
viscosity ηeff for a dislocation creep-mechanism is given by:

ηeff =
1

2
(Bn)−

1
n (ε̇II)

1
n
−1 exp

(
En

nRT

)
(1.11)
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Where n is the power-law stress exponent, ε̇II = (1
2 ε̇ij ε̇ij)

1
2 the square root of the second

invariant of the strain rate tensor, Bn the creep constant, En the activation energy, R the
universal gas constant and T the temperature.

Plasticity Rocks undergo plastic failure when they are subjected to their maximum amount
of sustainable shear stress. This relationship is well understood by the so-called Byerlee’s law
(Byerlee, 1978). To facilitate plastic failure in our model we enforce the pressure-dependent
Drucker-Prager yield criterion (Drucker and Prager, 1952) given by:

τII ≤ τY = sin(φ)P + cos(φ)C (1.12)

Here, τII = (1
2τijτij)

1
2 is the square root of the second invariant of the deviatoric stress tensor,

τY is the yield stress, φ the friction angle, P the pressure, and C the cohesion.

1.3.2 Numerical framework

The three dimensional (3D) numerical simulations presented in this thesis were conducted
with the 3D parallel FDSTAG LaMEM Lithosphere and Mantel Evolution Model code
(https://bitbucket.org/bkaus/lamem). The LaMEM code is based on the finite differ-
ence method, which means that the conservation equations above are discretized using a finite
difference approach. That is, a low-order, stable discretization in space using a staggered grid
(FDSTAG) approach. The LaMEM code is built upon the Portable Extensible Toolkit for
Scientific Computation library (PETSc, Balay et al., 2019) which i.a. provides the framework
for the computational parallelization of the code. That is, PETSc is provides the user with
the necessary MPI algorithms to simplify the utilization of parallel computing. Furthermore,
LaMEM accesses the PETSc library which provides distributed arrays (DMDA), a suite of
pre-conditioners, linear and non-linear iterative solvers or Galerking multi-grid solver. Hence,
PETSc provides a stable computational base to focus on the programming of numerical al-
gorithms to solve physical problems (see Kaus et al., 2016 for a more detailed review of the
solvers).

Furthermore, a free surface boundary condition and dynamic evolution of topography is
implemented via the so-called sticky air approach. The approach utilizes a low viscosity air
phase in combination with a stabilization algorithm (Kaus et al., 2010, Duretz et al., 2011) to
account for numerical instabilities (’drunken sailer’ instability). In particular, such numerical
instabilities may arise in consequence of rather large numerical timesteps that are required to
compute geological problems in a sufficient amount of real time. Further, the topography of
the free surface is explicitly tracked on a 2D grid.

The advection and deformation of material is modeled by employing a maker and cell (MAC)
method (e.g. Harlow and Welch, 1965; Gerya and Yuen, 2003. Thus material properties are

https://bitbucket.org/bkaus/lamem
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stored and traced on numerous markers that are advected through the grid cells. Spurious
clustering of the markers is prevented by a combination of a 4th order Runge-Kutta advection
with a conservative velocity interpolation scheme.

The simulations presented herein were primarily computed on the local ’octopus’ super com-
puting cluster at the University of Lausanne. However, some high resolution results were
achieved by utilizing the Piz Daint cluster at the CSCS in Lugano (Chapter 5). In this con-
text, we also performed benchmarks in order to gain access to the cluster. In order to our
results we generally used the ParaView software suite which allowed for additional self-made
python scripts to automatize the visualization and data extraction. Additionally we created
our own Python based visualization schemes to create a detailed 2D cross-sectional analysis
(Chapter 3).

1.3.3 Finite strain computation

This section comprises a short overview of the algorithm that was implemented in LaMEM
to compute the evolution of 3D finite strain. In geology finite strain analysis is one of the
major methods to obtain information on the deformation and mechanical properties of natural
rocks. Additional information on the application and importance of finite strain can be found
in Chapter 2. In general, the undeformed state of an 3D object can be represented by a
unit sphere. Deformation of this unit sphere results in the development of an ellipsoid, also
called the finite strain ellipsoid. The finite strain ellipsoid is characterized by the orientation
and magnitude of its three principal strain axes. In order to obtain the principal strain
axes we calculate the finite strain tensor. In our numerical approach we compute the finite
strain tensor from the finite deformation gradient tensor F following a standard continuum
mechanics approach. (e.g. Bower, 2009; Ragan, 2009). In order to trace the evolution of finite
strain we accumulate and store F on our numerical markers. To obtain F we first compute
the incremental deformation gradient tensor ∆F for every time step from the velocity field:

∆F = I +
∂v

∂x
∆t, (1.13)

where I is the second order identity tensor, v the velocity vector, x the spatial coordinate
vector, and ∆t the time step. The second term of equation (1.13) is also called the displacement
gradient tensor and is an approximation derived from a Taylor series expansion, where the
higher order terms are dropped. We continue with the successive update of the deformation
gradient tensor F which is analogues cumulative coordinate mapping. That is, we consider a
coordinate map x = x(X, t), where the current coordinates x are a function of the original
coordinates X and time, we can use the chain rule on a time step:

∂xn+1

∂X
=
∂xn+1

∂xn

∂xn

∂X
(1.14)
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Table 1.1: Relation between Lode’s ratio ν, ellipsoid shape and deformation regime.

ν ellipsoid shape deformation regime
< 0 oblate constrictional

0 oblate-prolate plain strain
> 0 prolate flattening

After equation (1.14), the deformation gradient tensor F is updated from the previous time
step in a multiplicative manner:

F n+1 = ∆F F n, (1.15)

where F n and F n+1 are the deformation gradients in the beginning and in the end of a time
step, respectively. We proceed with the polar decomposition of the deformation gradient:

F = V R, (1.16)

where R is a proper orthogonal tensor representing rigid body rotation, and V is a symmetric
positive definite tensor representing finite strain in the current configuration, which is called
the left stretch tensor. The polar decomposition can be performed by computing the spectral
representation of the left Cauchy-Green deformation tensor B as follows:

B = FF T = V 2 =
3∑

i=1

λ2
i ni ⊗ ni (1.17)

Here λi and ni, respectively, are the eigenvalues and the eigenvectors of the left stretch tensor
V . The eigenvalues represent principal strains, and the eigenvectors represent the directions
of the principal strain axes. Both quantities are required to visualize the finite strain ellipsoid.

In order to quantify and visualize the finite strain tensor we compute and plot the strain
magnitude and the strain symmetry. Both values are obtained from the finite strain tensor.
The strain magnitude or strain intensity can be expressed by the octahedral shear strain εs
(Nádai and Hodge, 1963), also called Nádai strain. It provides a non-dimensional measure
on the amount of strain that was applied during a homogeneous deformation. The second
parameter is the Lode’s ratio ν (Lode, 1926) and describes the strain symmetry, the shape of
the ellipsoid. Moreover, the Lode’s ratio ν is restricted to values between -1.0 and 1.0, which
indicate the strain ellipsoid shape that can be related to the deformation regime (cp. Table
1.1).

In Chapter 2 we will show how to calculate the Nádai strain and how to relate both values
together in a so-called Hsu diagram (Hsu, 1966; Hossack, 1968). Furthermore supplement two
matlab codes in the Appendix to demonstrate the computation of 2D and 3D finite strain.
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1.3.4 Aim and structure of this thesis

Aim of this thesis is to gain additional insights in the formation and evolution of fold and
thrust nappe emplacement using three-dimensional (3D) thermo-mechanical numerical mod-
elling. We first focus on the 3D computation and quantification of 3D finite strain during
simultaneous thrusting and folding, based an previous 2D work by Jaquet et al. (2014). Here,
finite strain computation allows us to identify and characterize the transition between 3D
folding and thrusting in regards to the strain magnitude, deformation regime and orientation
of the finite strain principal axis. Further attention is focused on the three-dimensional mod-
elling of fold and thrust nappe stacking as observed in the Helvetic nappe system. In this
context, we are particularly interested in the effect of laterally variable half-graben structures
on 3D nappe formation and structure. Moreover, we compare our model results to geological
datasets of the Helvetic nappe system. In summary, we are able to reproduce first order key
features of the Helvetic nappe systems, as for example, the structural and kinematic evolution,
as well the thermal structure during emplacement of the nappes.

In particular we provide new answers or show new aspects for following questions:
— How can we compute and visualize 3D finite strain?
— How does a laterally variable mechanical stratigraphy effect the simultaneous processes

of viscous folding and over-thrusting?
— What characterizes the transition between over-thrusting and folding in 3D space?
— Does the internal formation of folds and thrusts induce strike-slip movements under a

bulk pure shear compression?
— How is a three-dimensional nappe stack formed?
— What is the effect of lateral variable half-graben geometry on nappe emplacement and

nappe structure?
— In what degree does underlying fold nappe formation effect the superposition of thrust

sheets during nappe stacking?

In Chapter 2 we present the results of a 3D mechanical numerical model employing a laterally
variable mechanical stratigraphy based on field observations by Pfiffner, 1993 in the Helvetic
nappe system. Moreover, our model configuration is based on previous 2D numerical results
(Jaquet et al., 2014) which allows us to focus on effect of different 3D geometries during
folding and thrusting. Furthermore, we present 3D strain analysis of several simulations with
different initial distribution of mechanical stratigraphy. Here, the deformation regime and
finite strain gradient reflect the initial model geometry. Proceeding, in Chapter 3 we present
results of 3D thermo-mechanical numerical simulations with a visco-plastic rheology modelling
fold and thrust nappe stacking. Nappe stacking is induced by simulating the compression of
a passive margin during orogenic wedge formation, mimicking the conditions during Alpine
orogeny. Here, we show for the first time, how fold and thrust nappe stacking takes places in
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three-dimensional space. In conclusion, our model results are in first order agreement with the
structural, kinematic and thermal datasets of the Helvetic nappe systems of the Swiss Alps.
Chapter 4 consists of a short summarizing discussion and conclusion together with an outlook
for future work. The final chapter (Chapter 5) is the Appendix and includes two Matlab
scripts demonstrating 2D and 3D finite strain calculation, and a performance benchmark of
the LaMEM code.
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Abstract

Finite strain analysis and three-dimensional (3D) numerical modelling are important methods
to understand the deformation history of rocks. Here, we analyze finite strain in 3D numerical
simulations of power-law viscous folding and overthrusting. Simulations with different and
laterally varying detachment geometries cause a lateral transition from folding (for thicker
detachments) to overthrusting. We compute the 3D finite strain tensor, the principal strain
values and their orientations. We compute the Nádai strain, εS , and the Lode’s ratio, ν,
representing the strain symmetry (constriction or flattening). We apply Hsu diagrams to
visualize strain distribution in εS - ν space, in combination with color-coding, indicating the
corresponding position of strain data in the 3D model. We analyze the orientation and spatial
variation of finite strain with polar and rose diagrams and quantify the spatial and temporal
evolution of finite strain with strain profiles. Our results show that: (i) the magnitude of
εS generally increases from folding to overthrusting, (ii) an initial flat ramp geometry of the
detachment generates a distinctive pattern of εS , (iii) lateral variations of εS and ν can be used
to identify lateral variations in sub-surface structures, and (v) internal strike-slip shearing is
generated due to the folding-overthrusting transition.
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Finite strain analysis in deformed rocks is one of the major objectives and essential tools in
structural geology (e.g Ramsay, 1967; Ramsay and Huber, 1987; Pollard et al., 2005). The
fundamental reason being that the quantification of finite strain is an irreplaceable method
to understand the structural history and the deformational behavior of rocks (Ramsay, 1967).
Finite strain can be estimated in many deformed rocks and uncertainties in finite strain esti-
mates are likely considerably smaller than uncertainties in estimates of strain rate or stress.
Moreover, finite strain analysis of geological structures such as folds, thrusts, shear zones,
foliations and lineations is useful to determine the kinematic and dynamic conditions during
the development of these structures on all geological scales. For example, the gradient of
finite strain across a ductile shear zone can be related to the temperature gradient across the
shear zone and the flow law parameters of the sheared rock (Bauville and Schmalholz, 2013;
Bauville et al., 2013). Therefore, finite strain analysis enables assessing the thermo-mechanical
process that was active during the deformation of rock units. Further applications of finite
strain analysis include the fundamental understanding of the development of rock fabrics and
foliations (Ramsay and Wood, 1973; Tullis and Wood, 1975), the correlation with magnetic
fabrics in studies of anisotropic magnetic susceptibility (e.g. Kligfield et al., 1981; Borradaile
and Henry, 1997; Burmeister et al., 2009; McCarthy et al., 2015), cross-sectional reconstruc-
tion (e.g. Woodward et al., 1986; Mitra, 1994) and the interpretation of spatial changes in
strain regarding the temporal evolution (e.g. Ramsay, 1967; Means et al., 1980; Fossen and
Tikoff, 1993). Consequently, there exists many studies focusing on strain analysis (Lisle et al.,
2019) and for a recent review of the history of finite strain analysis we refer to McCarthy et al.
(2019).

Strain can only be completely described in three dimensions (3D). Nevertheless, it is com-
mon to assume a plane strain deformation when analyzing strained geological materials (e.g.
Twiss and Moores, 1992; Mookerjee and Mitra, 2009). However, a 3D finite strain analysis is
essential for geological systems in which stratigraphy, basement structure and the associated
structural style varies laterally along strike.(e.g. Laubscher, 1972; Merschat et al., 2005). Nu-
merous studies of fold and thrust belts suggest that the development of different structural
styles along orogens is controlled by distinctive lateral structural variations associated with
tectonic inheritances (e.g. Laubscher, 1972; Ries, 1976; Beutner, 1977; Marshak et al., 1992;
Marshak and Flöttmann, 1996; Mitra, 1997). Tectonic inheritances include, for example, vari-
able depth of basins along strike or the lateral variation of detachment horizon thickness and
strength (e.g. Macedo and Marshak, 1999; Von Tscharner et al., 2016). For example, such
observations have been made in the Swiss Alps where studies link the deformation style to
lateral variations of basement structures and stratigraphy (e.g. Pfiffner, 1993; Butler et al.,
2006; Zerlauth et al., 2014; Bauville and Schmalholz, 2017). The quantification of finite strain
and its spatial gradients can provide, for example, important information on the sub-surface
basement geometry or the existence of sub-surface ramps or graben structures (e.g. Boutoux
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et al., 2014). The significance of three dimensional geometry on the evolving finite strain is
also supported by sandbox and numerical modeling (e.g. Gairola, 1977; Macedo and Marshak,
1999; Von Tscharner et al., 2016; Zwaan et al., 2016).

Many methods of strain analysis (e.g. Shimamoto and Ikeda, 1976; Fry, 1979; Mulchrone,
2003) could be naturally adapted to 3D but there are few finite strain studies focusing on the
3D deformation history (Tikoff and Fossen, 1999). In fact, the lack of suitable 3D data sets
to perform a complete 3D finite strain analysis is a long lasting problem (e.g McCarthy et al.,
2019). However, recent advances in, for example, tomography point to a feasible acquisition
of such 3D data sets in the future (e.g. Adam et al., 2013; Robin and Charles, 2015; Zwaan
et al., 2016). Additionally, a growing number of studies recognizes the utilization of 3D finite
strain analysis as an essential approach to understand the kinematic evolution of geological
structures (e.g. Fossen and Cavalcante, 2017; Fossen et al., 2018; Díaz Azpiroz et al., 2018).
Because of the importance of 3D finite strain analysis for structural geology, we focus here
on the quantification and visualization of finite strain and its gradients in 3D numerical mod-
els of power-law viscous flow applied to folding and overthrust shearing, referred to here as
overthrusting. We use the open source 3D numerical code LaMEM for our simulations (Kaus
et al., 2016). We perform simulations of the lateral transition from folding to overthrusting,
whereby the transition is controlled by laterally varying the thickness and geometry of a weak
detachment horizon. We base our 3D model configurations on a previous 2D numerical study
by Jaquet et al. (2014) who show that the detachment thickness controls whether a mechan-
ically competent viscous rock unit deforms dominantly by folding or overthrusting. Jaquet
et al. (2014) show that a pre-existing weak zone in the competent layer can either be activated
as shear zone and cause overthrusting or remain essentially undeformed and allow folding of
the competent layer. We calculate the 3D finite strain tensor from the numerical strain field.
In order to analyze the finite strain, we calculate various quantities, such as the Lode’s ratio ν
(Lode, 1926) and Nádai strain εs (Nádai and Hodge, 1963). Furthermore, we apply different
visualization methods such as the Hsu diagram (Hsu, 1966; Hossack, 1968) or polar and rose
diagrams. The main aims of this study are (i) to investigate the lateral transition from folding
to overthrusting in 3D numerical models of viscous flow and (ii) to present and discuss various
methods of 3D finite strain quantification and visualization for numerical simulations. We
also provide two Matlab scripts, as supplementary material, that contain the calculation and
visualization of finite strain for homogeneous 2D simple shear and 3D pure shear.
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2.1 Model and finite strain calculation

2.1.1 Model configuration

Our 3D model configurations are created with the open source software package geomIO
(Bauville and Baumann, 2019, https://geomio.bitbucket.io/) which can be used in com-
bination with the LaMEM code. The configurations consist of an incompressible weak viscous
matrix that surrounds an incompressible strong viscous layer (Figure 2.1). The strong layer
mimics competent carbonate or sandstone units and has an initial viscosity of µL = 1022

Pa ·s and a power-law stress exponent of n = 3. The matrix represents incompetent shale- or
evaporate-rich units and has an initial viscosity of µM = 1020 Pa ·s and a power-law stress
exponent of n = 3. The above effective viscosity values are given for the applied homogeneous
bulk deformation and effective viscosities can vary if the strain rate deviates form the reference
strain rate associated with homogeneous bulk deformation (see next section). Both phases
have a constant density of ρ = 2500 kg/m3. The matrix below the strong layer constitutes a
detachment horizon whose thickness varies laterally in the X-direction (orthogonal to shorten-
ing direction; Figure 2.1). The model domain has width of LX = 50 km, a length of LY = 50

km and a height of LZ = 10 km with 1 km of sticky air (µair = 1019 Pa ·s) in the top region
to mimic a free surface.

The initial thickness of the strong layer is constant with HL = 1 km. In contrast, we variably
decrease the detachment horizon thickness from HM = 1 km at X = 50 km to HM = 0.125
km at X = 0 km. To localize the deformation we prescribe a weak and oblique zone at Y =
25 km in the middle of the layer; following the 2D model configuration of Jaquet et al. (2014).
The weak zone has the same rheology as the surrounding matrix (µM = 1020 Pa ·s, power-law
stress exponent n = 3) and an initial thickness of 350 m (Figure 2.1g). Each configuration
contains two passive marker layers that we use to analyze the finite strain. In the next section
we will use the ratio HM/HL to refer to any changes of detachment horizon thickness.

In total we employ six different model configurations (Figure 2.1) to examine the effect of
the spatial distribution of HM/HL and the obliqueness of the weak zone: In configuration A
(Figure 2.1a) we decrease HM/HL from 1.0 to 0.125 in the lateral X-direction over X = 0
to 50 km (Figure 2.1h). Configuration B and Br (Figure 2.1b,c) employ the same HM/HL

distribution as configuration A (Figure 2.1h), but have an oblique weak zone. The angle of
the weak zone starting from X = 0 km is 15◦ for B and -15◦ for Br. Configuration C (Figure
2.1d,i) has a HM/HL increase over a shorter distance, creating a flat ramp geometry (Figure
2.1l). Here, HM/HL is constant with a value of 1.0 from X = 0 to 20 km and is then decreased
linearly to HM/HL = 0.125 over the distance X = 20 to 30 km, from where it is constant
again to X = 50 km. Similarly, configuration D and Dr (Figure 2.1e,f) use the same HM/HL

https://geomio.bitbucket.io/
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Figure 2.1: Display of our six initial model configurations. In red and blue: passive marker
layers that are used to track and display parameters for the finite strain evolution. a) to f)
3D view of our model configurations. g) Sketch (not to scale) of a zoom-in around the pre-
existing weak zone (same material properties as the matrix) with view in the X-direction.
h) Sketch (not to scale) of a model section along the X-direction for configurations A, B,
Br displaying the variability of HM/HL in the X-direction. l) Sketch (not to scale) of a
model section along the X-direction for configurations C, D, Dr displaying the variability of
HM/HL in the X-direction using a flat ramp. i) to k) Sketches (not to scale) of a top-down
view in the Z-direction to indicate the geometry of the weak zone and marker layers in the
X-direction for configuration C, D and Dr. The marker layers are initially parallel to the
weak zone. In configuration D and Dr the weak zone has an oblique angle across the ramp.
The ramp goes downward in the positive X-direction.
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distribution as configuration C (Figure 2.1l). Here, for both configurations the weak zone is
oblique with an angle of 60◦ and -60◦ across the flat ramp geometry (Figure 2.1j,k).

2.1.2 Mathematical Model

We solve for the conservation of mass and momentum for incompressible, slow viscous flow
under gravity using the equations:

∂vi
∂xi

= 0 (2.1)

− ∂P
∂xi

+
∂τij
∂xj

= ρgi (2.2)

where xi(i = 1,2,3) refers to Cartesian coordinates in the three spatial directions, vi are the
components of the velocity vector, P is pressure (negative mean stress), τij = σij + Pδij are
components of the deviatoric Cauchy stress tensor, ρ is density and gi the gravity acceleration
vector. We use a purely mechanical model without temperature evolution. The components
of the deviatoric strain rate tensor are defined by the viscous constitutive equation:

ε̇ij =
1

2ηeff
τij (2.3)

Where ηeff is the effective viscosity that depends on the power-law exponent n, the initial
reference viscosity η0 and the square root of the second invariant of the strain rate tensor
ε̇II = (1

2 ε̇ij ε̇ij)
1
2 . The strain rate invariant, ε̇II , is normalized by the square root of the second

invariant of the reference strain rate tensor ε̇rII :

ηeff = η0

(
ε̇II
ε̇rII

)(1− 1
n

)

(2.4)

The value of ε̇rII corresponds to homogeneous deformation for the applied pure shear shortening
configuration, without a layer, so that η0 is the constant effective viscosity of the model fluid
since ε̇II/ε̇rII = 1 for homogeneous pure shear. Deviations of ηeff from η0 are, hence, caused
by deviations of the strain rates from the homogeneous strain rate, which take place during
deformation with a strong layer.

We mimic a free surface boundary condition on the top using a so-called sticky air layer.
For all model sides, including the bottom, we apply a free slip boundary condition. The free
slip boundary condition at the base is used to model a perfect décollement horizon below the
strong layer. We induce bulk shortening of the model in the Y-direction by applying a velocity
boundary condition. For every time step the velocity is recalculated in such a way that the
bulk shortening strain rate is constant at ε̇bg = 10−15 1

s . The shortening of the model in the
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Y-direction is balanced by an elongation in the Z-direction, while the width in the X-direction
does not change.

We conduct our simulations with the 3D numerical parallel code LaMEM that uses staggered
grid finite difference discretization. Material properties are advected employing a marker-and-
cell method. A detailed overview of LaMEM can be found in Kaus et al. (2016) and in the
documentation on the official website (https://bitbucket.org/bkaus/lamem).

2.1.3 Finite Strain Calculation and Visualization

In 3D space the undeformed state of an object can be represented by a unit sphere. During
a homogeneous deformation the sphere changes to an ellipsoid that can be described by three
principal semi-axes. Any final state after a deformation can therefore be represented by a finite
strain ellipsoid. Such a finite strain ellipsoid is defined by the magnitude and orientation of the
three principal strains, which can be obtained from the finite strain tensor. In our numerical
approach we compute the finite strain tensor from the finite deformation gradient tensor F

following a standard continuum mechanics approach. (e.g. Bower, 2009; Ragan, 2009). In
order to trace the evolution of finite strain we accumulate and store F on our numerical
markers. To obtain the finite deformation gradient tensor we first compute the components
of the incremental deformation gradient tensor ∆F for every time step from the velocity field
in the following manner:

∆F = I +
∂v

∂x
∆t, (2.5)

where I is the second order identity tensor, v the velocity vector, x the spatial coordinate
vector, and ∆t the time step. The second term of equation (5) is also called the displacement
gradient tensor and is an approximation derived from a Taylor series expansion, where the
higher order terms are dropped. Next follows the successive update of the deformation gradient
tensor F which is analogous to the cumulative coordinate mapping. If we consider a coordinate
map x = x(X, t), where the current coordinates x are a function of the original coordinates
X and time, we can use the chain rule on a time step:

∂xn+1

∂X
=
∂xn+1

∂xn

∂xn

∂X
(2.6)

Following from equation (6), the deformation gradient tensor F is updated from the previous
time step in a multiplicative manner:

F n+1 = ∆F F n, (2.7)

https://bitbucket.org/bkaus/lamem


2.1. MODEL AND FINITE STRAIN CALCULATION 37

where F n and F n+1 are the deformation gradients in the beginning and in the end of a time
step, respectively. We proceed with the polar decomposition of the deformation gradient:

F = V R, (2.8)

where R is an orthogonal tensor representing rigid body rotation, and V is a symmetric
positive definite tensor representing finite strain in the current configuration, which is called
the left stretch tensor. The polar decomposition can be performed by computing the spectral
representation of the left Cauchy-Green deformation tensor B as follows:

B = FF T = V 2 =
3∑

i=1

λ2
i ni ⊗ ni (2.9)

Here, λi and ni, respectively, are the eigenvalues and the eigenvectors of the left stretch
tensor V . The eigenvalues represent principal strains, and the eigenvectors represent the
directions of the principal strain axes. Both quantities are required to visualize the finite
strain ellipsoid. To illustrate the finite strain computation in detail, we provide a Matlab
script in the supplementary material which presents the calculation of the finite strain ellipse
and ellipsoid for 2D and 3D homogeneous shear, respectively.

In order to quantify and visualize the finite strain tensor we compute and plot the strain
magnitude and the strain symmetry from the finite strain tensor. The strain magnitude or
strain intensity can be expressed by the octahedral shear strain εs (Nádai and Hodge, 1963),
also called Nádai strain. It provides a non-dimensional measure on the amount of strain that
was applied during a homogeneous deformation. The second parameter is the Lode’s ratio ν
(Lode, 1926) and describes the strain symmetry, the shape of the ellipsoid. The Lode’s ratio
ν is restricted to values between -1.0 and 1.0. For the interval −1.0 6 ν < 0 the ellipsoid
is general prolate, for 0 < ν 6 1.0 oblate and ν = 0 represents the boundary between an
oblate-prolate ellipsoid. Besides the geometrical description ν also infers the deformation
style: prolate ellipsoids imply a constrictional, oblate-prolate ellipsoids a plane strain, and
oblate ellipsoids a flattening deformation regime. Both parameters are calculated from the
natural strains ε1,2,3 = lnλ1,2,3 in the following manner:

εs =
1√
3

√
(ε1 − ε2)2 + (ε2 − ε3)2 + (ε3 − ε1)2 (2.10)

ν =
2ε2 − ε1 − ε3

ε1 − ε3
(2.11)

The parameters εs and ν can be correlated with each other inside a Hsu diagram (Hsu,
1966; Hossack, 1968). This diagram consists of a 60 degree section of a polar diagram, where
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the radial contours represent the εs values and the angular contours represent the ν values.
Thus the Hsu diagram provides a graphical representation of finite strain that relates strain

Figure 2.2: Example of a typical Hsu diagram, displaying the evolution of a sphere during
ongoing deformation for different εs (radial contours) and ν values (angular contours).

magnitude to strain symmetry and aids in the identification of different deformation regimes
(Figure 2.2). The strain magnitude-symmetry relation could also be displayed with the more
commonly used Flinn-diagram (Flinn, 1962). However in a recent review of the Hsu and Flinn
diagramMookerjee and Peek (2014) conclude that the spatial distribution of the Flinn-diagram
might obscure subtle kinematic patterns due to visual distortion. Hence, Mookerjee and Peek
(2014) suggest that the Hsu diagram may be more useful to statistical treatments of three-
dimensional data sets. In addition, we also calculate the orientation of finite strain major axis
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which is given by the azimuth and inclination relative to the XY-plane. For example, Figure
2.3 displays the finite strain major axis orientation for our marker layers using a color-coded
inclination on top of the directional vectors of the azimuth.

Figure 2.3: Orientation of the finite strain major axis for the two marker layers for config-
uration A after 40% bulk shortening. Vectors are pointing in the direction of the azimuth
and are color-coded with the inclination of the major strain axis relativ to the XY-plane.

2.2 Results

2.2.1 General model evolution

We performed six simulations with a numerical resolution of 256x128x128 grid points utilizing
six different initial geometries (Figure 2.1). Figure 2.4 shows the topographic evolution of
configuration A from 10% to 40% bulk shortening. The top row displays the evolution of
the model from the side that is dominated by folding and the bottom row from the side that
is dominated by overthrusting. The deformation is initiated at the weak zone at Y = 25
km. For up to 20% bulk shortening overthrusting of the left layer on top of the right layer
is the predominant mode of deformation. With further bulk shortening both layers undergo
folding in areas of higher HM/HL. The height of the cylindrical fold depends on the ratio
HM/HL. The transition between the folding and the thrusting domain displays a smooth cusp
(Figure 2.4d, bottom row). In Figure 2.5 we display the topographic evolution after 40% bulk
shortening for all simulations. In general, the fold and thrust evolution always follows the pre-
existing weak zones (Figure 2.1). Configuration B (Figure 2.4b) shows as similar evolution
to configuration A, with the fold hinge evolving along the oblique weak zone. Conversely,
configuration Br (Figure 2.4c) shows the evolution of a continuous fold reaching to the end of
the low HM/HL region, where we would have expected overthrusting. Figure 2.5d displays
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Figure 2.4: Topographic evolution of model configuration A. Panels a) to d) show model
stages for bulk shortening in 10% increments from 10% to 40%,respectively. Top row: Model
evolution with the view in the positive X-direction starting from X = 0 km. Bottom row:
Model evolution with the view in the negative X-direction starting from X = 50 km.

the geometry of configuration C, where we observe three discrete zones: First a folding zone
in front, followed by a transition zone across the flat ramp, joining into a thrusting dominated
zone. We observe a similar pattern for configuration D and Dr (Figure 2.4e,f). In both
simulations the transition zone follows the oblique ramp that culminates into a rear or frontal
cusp in the transition zone, respectively.

In the following we focus on the analysis and visualization of finite strain in the rear and
front marker layer (Figure 2.1a) of configuration A. The location of both marker layers was
chosen in such a way that the rear marker layer is situated in the back limb of the evolving
fold and the front marker layer in the front limb of the fold after 40% bulk shortening. Figure
2.6 shows the 3D geometry after 40% bulk shortening together with the a) ν and b) εs values
of the marker layers. The magnitude and distribution of ν in the rear and front marker layer
is similar. The highest ν values of 0.6 are inside the folding domain (X = 0 - 20 km). Going
further in the X-direction the ν values decrease to 0.2 and then increase again to 0.4 along the
transition from folding to thrusting. ν values along the marker layers are generally positive
with the exception of the rear marker layer in the thrust sheet (X = 43 âĂŞ 50 km), where
ν takes negative values of about -0.2. The negative values indicate that the rear layer in
the thrusting sheet experiences constrictional strain. The εs values range from 0.014 to 0.21.
Along the X-direction εs exhibits the minimum value for X = 0 to 30 km, whereas it increases
to the maximum value from X = 30 - 50 km. In the front layer the maximum value occurs
at around X = 35 km with εs = 0.18, where we also observe a slight kinking of the layer.
In the rear layer, maximum εs values are located at the end of the thrusting domain. Here,
the location of the higher strain values coincides with the constrictional strain given by ν.
In general, εs values increase from the folding region to the thrusting region by one order of
magnitude.
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Figure 2.5: Topographic evolution of all six configurations after 40% bulk shortening,
displaying the transition between folding and overthrusting. a) Configuration A: linear
HM/HL distribution. b) Configuration B: linear HM/HL distribution with an oblique weak
zone. c) Configuration Br: linear HM/HL distribution with a reversed oblique weak zone.
d) Configuration C: HM/HL distribution facilitates a flat ramp geometry, e) configuration
D: same lateral linear HM/HL distribution as configuration C but with a oblique weak
zone across the ramp. f) Configuration Dr: same lateral linear HM/HL distribution as
configuration C but with a reversed oblique weak zone across the ramp.
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Figure 2.6: Results for model configuration A after 40% bulk shortening. a) Surface plot
with the marker layers showing the ν values and b) showing the εs values. c) Hsu diagram
for the rear marker layer, and d) Hsu diagram for the frontal marker layer with color-coded
X-coordinate for all data points in the respective marker layer.

Figure 2.6c and d illustrates the relation between ν, εs and the corresponding X-position for
each point of the rear and front marker layer inside a Hsu diagram. We observe a variable
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distribution of ν and εs values for the same X-position, which is not apparent in the surface
plot (Figure 2.6a,b). Both diagrams show a similar trend for εs. They display increasing values
from the folding to the thrusting region. The Hsu diagrams show that ν can vary strongly
for small ranges in X-position and small εs < 0.1. Moreover, they show that the deformation
clearly deviates from plane strain (ν = 0). For example, ν varies between 0 and 0.4 for εs =
0.075 in a X range from 30 to 40 km as seen in Figure 2.6c.

Figure 2.7: Results for model configuration A after 40% bulk shortening. a) Orientation
of the finite strain major axis showing the color-coded inclination angle of the axes on the
vector. b) Orientation of the finite strain major axis showing the color-coded azimuth of the
axes on the vector.

Figure 2.7 shows the color-coded inclination (a) and the azimuth (b) of the major finite
strain axis for the same simulation. For reference, an azimuth of 0 and 360◦ indicates that
the major finite strain axis dips towards the positive X-direction. Azimuth values increase in
the clockwise direction. For the inclination, an angle of 0◦ indicates that the major axis is
parallel to the XY-plane. The inclination and azimuth point to three distinctive regions in our
model configuration. For instance, the inclination in the rear layer (Figure 2.7a) reveals almost
uniform values of 17◦ from X = 0 to 20 km. Next, from X = 20 to 40 km the inclination
changes drastically to a range between 40◦ and 55◦. Further in the thrusting region (X >

40 km) the inclination is almost vertical with a value of about 80 to 85◦. The major finite
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strain axis azimuth for the rear layer (Figure 2.7b) also reveals a sharp transition between an
azimuth of about 90◦ in the folding domain to about 360◦ in the thrusting region (X ' 40
km). Azimuth values in the rear and front marker layer that are in the folding region show
uniform values of 90◦ and 270◦, respectively. As expected, these orientations coincide with
the bulk shortening direction.

Figure 2.8: Orientation analysis for the finite strain major axis for the a) rear and b) front
marker layer of configuration A after 40% bulk shortening. Polar diagram for (a.1) the rear
layer and (b.1) the front layer with using a color-coded X-position. From left to right row
wise: Polar histograms of the azimuth and corresponding inclination distribution for three
different sections in X-direction: 0 - 20 km (a.2),(b.2), 20 - 30 km (a.3),(b.3) and 30 - 50
km(a.4),(b.4).

A detailed analysis of the major finite strain axis orientation is shown in Figure 2.8. Here,
we utilize classical polar diagrams to illustrate the orientation of all data points. Additionally,
we subdivide the marker layer in three sections in the lateral X-direction. For each of the
sections we display a rose diagram for the azimuth and for the inclination. Data points in
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the polar diagram are color-coded by X-position. Both polar diagrams reveal prevalent value
clusters depending on the X-position. Additionally, we observe also some scatter that is more
pronounced in the front marker layer. The significance of the scatter can be understood by
taking the rose diagrams into account. For the rear marker layer (Figure 2.8a.1) we recognize
three different clusters. The first cluster is located at an azimuth between 60◦ and 90◦ with an
inclination between 0◦ and 30◦ (Figure 2.8a.1). This cluster represents the folding dominated
region and has X-values between 0 and 25 km. Here, the rose diagrams for the first section
(0 to 20 km) display a bulk azimuth around 90◦ with an inclination of around 20◦ to 28◦

(Figure 2.8a.2). The next cluster extends from the first cluster down to the mid point of the
polar diagram. There, the azimuth is still similar to the first region with slight deviations
(Figure 2.8a.1). Rose diagram values for the azimuth show bulk values close to 90◦. However,
the inclination increases to a bulk value around 45◦, ranging from 30◦ to 60◦ in total (Figure
2.8a.3). The last cluster is located in the middle of the polar diagram showing almost a full
360◦ range for the azimuth. This cluster corresponds to X-values lying between 30 and 50
km. The rose diagram reveals that the bulk azimuth varies between 220◦ to 330◦ and from
30◦ to 90◦ (Figure 2.8a.3). Here, the bulk inclination is close to 90◦. Hence, the principal
strain axis is almost parallel to the vertical Z axis. The flipping of the azimuth values can be
explained by the slight bending and bulging of the thrust sheet during overthrusting. Figure
2.8b.1 shows the result of the general polar diagram for the front marker layer. In contrast
to the rear marker layer we do not recognize three different clusters, but rather two major
clusters in addition with two zones of larger scatter. The first cluster has a bulk azimuth of
270◦ and inclinations from 0◦ to 90◦ and includes X-positions from 0 to 30 km. The cluster is
accompanied by a large scatter in the lower half circle of the polar diagram. However, further
inspection with the polar histograms (Figure 2.8b.2,3) shows that the scattered values are
negligible compared to the overall bulk values. Bulk values of the azimuth shows an angle
close to 270◦ and an inclination between 45◦ and 60◦. The second cluster is located in the
middle in the polar diagram and is connected to a scatter between the azimuth of 300◦ to
330◦ with inclinations from 0◦ to 90◦. Here, the histograms show a bulk azimuth near 270◦

and 90◦ with high inclinations greater 80◦ (Figure 2.8b.4). The scatter can be identified in
the inclination rose diagram and shows values between 45◦ and 80◦ (Figure 2.8b.4, bottom).
This deviation from the bulk values could coincide with kinking of the front layer which is
restricted to a short distance in X-direction. Our results show that finite strain quantities can
be considerably variable within a viscous competent layer that deforms by both folding and
overthrusting.

2.2.2 Evolution of εs and ν with progressive bulk shortening

Figure 2.9 shows the evolution of εs with progressive bulk shortening for 10, 20, 35 and
40% for the rear marker layer of configuration A. The magnitude of εs does not increase
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Figure 2.9: εs evolution for all points in the rear marker layer for configuration A for a)
10%, b) 20%, c) 35% and d) 40% bulk shortening.

significantly between 10% and 35% bulk shortening. From 35% on a slight strain increase
towards the thrusting region is noticeable. At 40% bulk shortening εs (Figure 2.9d) values
start to fan out between 20 and about 40 km X-position. The maximum εs values are around
0.18. One part of the marker layer rests in the back limb of the fold between X = 0 to 20 km,
while the part between X = 40 to 50 km lies in the thrust sheet. The transition zone between
folding and thrusting is therefore characterized by an increase of εs. This transition zone
shows a larger variability of εs than the zones in which one deformation style is dominant.
Similarly to the εs evolution, the ν evolution (Figure 2.10a-c) shows constant values from
10 to 35% bulk shortening. For these bulk shortening percentages values are close to zero,
indicating a plane strain deformation. At 40% bulk shortening (Figure 2.10d) we observe ν
ranging from 0.7 to 0 for X-positions between 0 and 40 km. The 40 km X-position marks the
transition of εs from positive to negative values. Values from 40 km onwards range from 0 to
-0.2, indicating a plane strain or constrictional strain ellipsoid. Overall we note two emerging
trends, (i) for 10 to 20% (Figure 2.10a,b) bulk shortening ν values are negative on the folding
side and positive on the thrusting side. However, (ii) once the rear marker layer becomes part
of the rear fold limb ν takes on positive values in the folding region and transition zone and
negative values at the end of the thrusting region (Figure 2.10c,d). In case of configuration A
the εs distribution can be used to infer the width of the transition zone. Contrary, ν shows
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homogeneous values for the folding and transition zone, but can be used to pinpoint the exact
transition point to the thrusting domain.

Figure 2.10: ν evolution for all points in the rear marker layer for configuration A for a)
10%, b) 20%, c) 35% and d) 40% bulk shortening. The red line indicates ν = 0; plane strain
deformation.

2.2.3 Profiles of εs and ν for all simulations

Spatial profiles of εs and ν for all simulations for the rear marker layer are given for a bulk
shortening of 40 % in Figure 2.11 and Figure 2.12. The value distribution of εs in X-direction
reflects the initial geometry and the transition from folding to thrusting. Simulations A, Br
and B (Figure 2.11a-c) have smooth linear decrease of HM/HL from 1.0 to 0.125 and the εs
values show a dense distribution from X = 0 to 20 km. The values then increase slowly with
an increasing scatter from X = 20 to 40 km from where the scatter decreases again to an εs
value around 0.15. In contrast, simulations C, Dr, and D (Figure 2.11d-f) show a different
pattern of εs distribution. The strain magnitude rises sharply from X = 20 to 30 km, where
we record a peak value of about 0.25. Simulation D and Dr show very tightly packed εs

values in the transition zone. Here, the narrower value range could be linked to the oblique
orientation of the weak zone across the ramp. After peaking, εs subsequently goes down to
0.15 in the thrusting region. The X-position of the peak εs values is directly related to the
initial transition point of the flat ramp into the horizontal thrust sheet layer. Analogous, ν
displays a characteristic distribution for the two types of different initial detachment horizon
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configurations. With exception of simulation Br and B, ν values are positive with a variability
from 0.2 to 0.8 in the folding domain (0 to 30 km). In contrast to the εs distribution we do
not find a significant change of ν in the region of 20 to 30 km. Therefore ν cannot be used to
identify the width of the transition zone. However, the immediate transition to the thrusting
region is marked by a sharp collapse of ν to values close to zero, indicating a deformation
mode close to plane strain.

Figure 2.11: Compilation of εs values for all configurations for all points inside the rear
marker layer after 40% bulk shortening. For all model configurations, εs shows higher values
in the thrusting dominated region.

2.2.4 Bulk strike-slip shearing and internal lateral extension

Figure 2.13a displays the percentage of bulk strike-slip shear along the X-direction inside
the rear marker layer. Positive shear values indicate that the folding domain moves faster in
the shortening direction relative to the thrusting domain, whereas negative values imply the
opposite. Bulk shear percentage between the folding and thrusting domain can be correlated
to the initial orientation of the weak zone. In simulations A and C the weak zone is orthogonal
to the shortening direction, resulting in a small bulk shear percentage of 1% compared to the
other simulations. For simulations B and D the weak zone is oblique and for simulations
Br and Dr the weak zone has the opposite obliquity. The obliquity orientation has a direct
impact on the relative progression between the folding and overthrusting domains. We find a
negative bulk shear for Br and Dr, whereas B and D with similar values display positive values.
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Figure 2.12: Compilation of ν values for all configurations for all points inside the rear
marker layer after 40% bulk shortening.

Figure 2.13a implies that the overthrusting/folding layer experiences a lateral bulk strike-slip
shearing due to the laterally varying deformation style, although the bulk deformation does
not impose any bulk strike-slip shear.

In Figure 2.13b we show the change of average length of the rear marker layer during bulk
shortening for all simulations. Positive values indicate an effective extension of the marker
layer, whereas negative values indicate shortening. In contrast to the observation for the bulk
strike-slip shear, we cannot link the polarity of the oblique weak zone to the change of layer
length. Simulations B and Br show the same extensional behavior, while D and Dr show
extension and compression of the rear layer. Similar to the internal strike-slip shear, Figure
2.13b illustrates that the rear marker layer experiences a lateral bulk extension or compression
due to the laterally varying deformation style, although the imposed bulk deformation of the
model in the lateral X-direction is zero.

2.3 Discussion

2.3.1 Finite strain visualization

Visualization of finite strain for 3D numerical simulations is challenging due to the various
finite strain quantities, like ν and εs, and their evolution and variation in space and time.
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Figure 2.13: a) Evolution of bulk strike-slip shear strain, γyx, in the rear marker layer
for all configurations. Positive values indicate higher relative displacement in the folding
than in the thrust region. Negative values indicate the opposite. b) Evolution of relative
extension or shortening of the length of the rear marker layer for all configurations. Positive
values indicate extension and negative values indicate shortening.

Plotting values of ν and εs for individual locations in a Hsu diagram and color-coding the
individual data points with respect to their spatial position in the 3D model is useful to char-
acterize the variable finite strain in 3D models (Figure 2.6c,d). Such Hsu diagrams may also
be useful for comparing finite strain from numerical simulations with finite strain data from
geological field studies in order to gain further understanding on the deformation processes.
We also display ν and εs separately in 2D profiles (e.g. Figure 2.11,Figure 2.12). These profiles
are particularly useful to compare different simulations and corresponding ν and εs patterns.
Similar to the surface plot for ν and εs (e.g Figure 2.6a) we additionally visualize the ori-
entation of the principal strain axis, showing either the azimuth or inclination (Figure 2.7).
Here, the primary advantage is the acquisition of a first order overview of the directions within
the 3D geometry. Results of more complex model configurations that are directly based on
geological reconstructions could be compared with data from geological maps, e.g. the orien-
tation of stretching lineations (e.g. Dietrich, 1989; Steck, 2008). Yet, a more detailed analysis
should be done with color-coded polar diagrams which help to identify clusters and patterns
of data points. In addition, rose diagrams can provide a statistical analysis to identify the
bulk direction of the finite strain major axis.

Finite strain quantification and visualization as we presented here is, of course, not only
useful for fold and thrust belts, but has further applications in earth systems. For example,
in mantle dynamics (Hess, 1964) finite strain orientation can be used to infer a first order
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approximation of the lattice preferred orientation (McKenzie, 1979; Ribe, 1989) of the seismic
anisotropies produced by ductile flow in the mantle. Hence, the visualization methods for
finite strain presented here are equally applicable for other geological problems, such as the
investigation of seismic anisotropies along a subducting plate ( e.g. Buttles and Olson, 1998).

2.3.2 Modelling the lateral transition from folding to overthrusting

Many studies on fold-and-thrust belts using theoretical, analogue sandbox and numerical
models assume a dominantly brittle or brittle-plastic deformation behavior (e.g. Chapple,
1978; Dahlen et al., 1984; Buiter, 2012; Graveleau et al., 2012). Yet, recent studies on fold-
and-thrust belts suggest a systemic bias (Bond et al., 2007; Alcalde et al., 2017; Butler et al.,
2018; Butler et al., 2019) towards brittle deformation in the interpretation of geological and
seismic cross sections of fold-and-thrust belts. For example, Butler et al. (2019) argues that
the over-reliance on idealization and over simplification of geological structures to a narrow
range of geometrical structures, such as Dahlstrom’s ’Foothills Family’ (Dahlstrom, 1969),
has resulted in a confirmation bias favoring brittle faulting as the dominant deformation
style in fold-and-thrust belts. The above mentioned studies suggest that ductile folding, or
buckling, might not be as rare in natural fold-and-thrust belts as often implied by previous
studies. Therefore, folding and ductile deformation may play an important role during the
evolution of fold-and-thrust belts, and ductile folding and brittle thrusting may often be of
equal importance. Hence, our 3D viscous models of folding and overthrusting can provide
important insights into the formation of fold-and-thrust belts.

Nearly all six different model configurations (Figure 2.1) show a transition between the two
deformation styles folding and overthrusting (Figure 2.6); depending on the spatial variation
of HM/HL and the weak zone geometry. The only exception is configuration Br (Figure 2.5c)
which shows a continuous fold after 40% bulk shortening. However, in case of configuration
Br overthrusting is still initiated at first, yet after ongoing shortening the fold propagates into
the already established thrust sheet. This propagation might be explained by the differential
deformation velocity between the two deformation styles caused by the orientation of the
oblique weak zone. Since for configuration Br folding is initiated closer to the moving model
boundary and overthrusting further away, fold development progresses relatively faster than
overthrusting. Another reason could be the matrix thickness between the thrusting layer
and the overthrusted layer. Small increases of the matrix thickness between both layers
during overthrusting could favor folding. This result implies that despite initial HM/HL

ratios favoring overthrusting, differential velocities and evolvingHM/HL ratios during ongoing
deformation could modify and change the favored deformation style from overthrusting to
folding.
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The oblique orientation of the weak zone along the ramp in configuration D and Dr (Figure
2.5e,f) results in a more uniform strain magnitude. In addition, the orientation of the weak
zone determines the direction of the cusp in the transition zone. The two different spacial
distributions of HM/HL ratio, either linear or more narrowly constrained by a flat ramp,
produce a distinctive εs pattern (Figure 2.9). These different finite strain patterns could be
used to infer subsurface structures from finite strain estimates in overlying geological units.
For example, lateral or oblique ramps are quite common in nature (e.g. Butler et al., 2006;
Wennberg et al., 1998; Zerlauth et al., 2014) and significantly influence the deformation at the
surface (e.g. Boyer and Elliott, 1982). Given the knowledge of the mechanical stratigraphy,
structural style and strain gradients from the field, computation of the finite strain could
further aid in the refinement of geological models and reconstructions. Strain gradients and
patterns could be used to pinpoint structural changes in the underlying lithology, but also to
evaluate conceptual models.

Our numerical simulations record ca 2% bulk lateral extension and compression and up
to 6% of bulk strike-slip shear in our marker layers (Figure 2.13). For the applied model
configuration, these values indicate extensional, compressional and shear displacements in the
order of kilometers (e.g. 2% extension equals 1 km). Such strains could locally produce brittle
extensional and compressional faults with displacement directions orthogonal to the applied
shortening direction although there was no bulk lateral deformation in the model. Similarly,
local brittle strike-slip faults could be generated although there was no bulk strike-slip shear
applied to the model. Our model, hence, shows the generation of considerable local strains
which are only caused by the lateral transition from folding to overthrusting but not by an
applied bulk deformation. If such finite strain would be observed in the field, it would have only
a local significance and would not be usable for interpretations of the regional deformation.
Our results show, hence, the importance of assessing whether observed deformation structures
in the field are of only local or regional significance.

2.4 Conclusions

We present different visualization methods for 3D finite strain which are useful to characterize
finite strain in 3D numerical simulations of folding and overthrusting. Hsu diagrams, indicat-
ing Nádai strain and Lode’s ratio for individual locations, in combination with color-coding,
indicating the relative spatial locations inside a model, are particularly useful to visualize finite
strain and its spatial gradients. We also apply polar diagrams and rose diagrams to visualize
the orientation of the principal strains and the spatial variation of this orientation in the 3D
models. Our results show that finite strain varies considerably in space and time during the
3D evolution of folding and overthrusting
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In the presented 3D models of power-law viscous flow, the lateral variation of deformation
style, from folding to overthrusting, is caused by the lateral variation of the thickness and
geometry of a detachment horizon. We applied bulk shortening only in one horizontal di-
rection and there was no bulk deformation in the second, orthogonal horizontal direction.
The lateral variation of the model geometry caused out-of-plane strain, orthogonal to the
bulk shortening direction, and deviations from 2D plane strain which we quantified with Hsu
diagrams. Furthermore, the strong layers experienced a bulk strike-slip shear deformation
which was not imposed by the boundary conditions. Therefore, lateral variations in model
geometry, mimicking natural tectonic inheritance, can cause (i) deviations from plane strain
associated with lateral extension or compression and (ii) lateral bulk strike-slip shearing al-
though there was no bulk lateral deformation and shear applied in the model. Consequently,
natural observations of extensional and/or strike-slip shear structures do not necessarily in-
dicate a regional-scale extension or strike-slip shearing. It is, hence, important to consider
the impact of laterally varying geometries on the finite strain and shear in order to determine
whether natural observations of finite strain have a regional significance or not.

Different lateral variations in geometry generate different lateral finite strain variations.
Sharp lateral geometric variations, such as oblique ramps, cause considerable lateral varia-
tion in finite strain. Hence, finite strain patterns might be used in field studies to determine
subsurface geometrical heterogeneities, such as sharp basement topography variations, asso-
ciated with faults.
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Abstract

Fold-and-thrust belts and associated tectonic nappes are common in orogenic regions. They
exhibit a wide variety of geometries and often a considerable along-strike variation. However,
the mechanics of fold-and-thrust belt formation and the control of the initial geological config-
uration on this formation are still incompletely understood. Here, we apply three-dimensional
(3D) thermo-mechanical numerical simulations of the shortening of the upper crustal region
of a passive margin to investigate the control of 3D laterally variable inherited structures on
the fold-and-thrust belt evolution and associated nappe formation. We consider tectonic in-
heritance by applying an initial model configuration with horst and graben structures having
laterally variable geometry and with sedimentary layers having different mechanical strength.
We use a visco-plastic rheology with temperature dependent flow laws and a Drucker-Prager
yield criterion. The models show the folding, detachment and horizontal displacement of sedi-
mentary units, which resemble structures of fold and thrust nappes. The models further show
the stacking of nappes. The detachment of nappe-like structures is controlled by the initial
basement and sedimentary layer geometry. Significant horizontal transport is facilitated by
weak sedimentary units below these nappes. The initial half-graben geometry has a strong
impact on the basement and sediment deformation. Generally, deeper half-grabens generate
thicker nappes and stronger deformation of the neighboring horst while shallower half-grabens
generate thinner nappes and less deformation in the horst. Horizontally continuous strong
sediment layers, which are not restricted to inital graben structures, cause detachment folding
and not overthrusting. The amplitude of the detachment folds is controlled by the underly-
ing graben geometry. A mechanically weaker basement favors the formation of fold nappes
while stronger basement favors thrust sheets. The applied model configuration is motivated
by the application of the 3D model to the Helvetic nappe system of the French-Swiss Alps.
Our model is able to reproduce several first-order structural features of this nappe system,
namely (i) closure of a half-graben and associated formation of the Morcles and Doldenhorn
nappes, (ii) the overthrusting of a nappe resembling the Wildhorn and Glarus nappes and (iii)
the formation of a nappe pile resembling the Helvetic nappes resting above the Infrahelvetic
complex. Furthermore, the finite strain pattern, temperature distribution and timing of the
3D model is in broad agreement with data from the Helvetic nappe system. Our model, hence,
provides a first-order 3D reconstruction of the tectonic evolution of the Helvetic nappe system
based on thermo-mechanical deformation processes.

3.1 Introduction

Fold-and-thrust belts are common in nature and typically associated with orogenic belts,
such as the Himalayas or the European Alps (e.g. Price and McClay, 1981; Lacombe and Bel-
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lahsen, 2016). The structural interpretation of fold-and-thrust belts is based on the interaction
between the crystalline basement and the overlying sedimentary cover. Two end-member de-
formation styles are commonly distinguished: thin-skinned deformation, without significant
basement involvement, and thick-skinned deformation, with significant basement involvement
(Rodgers, 1949; Pfiffner, 2006). Due to their importance for the fundamental understanding
of mountain building processes and for natural resources exploration, the formation of fold-
and-thrust belts has been studied since several decades with field and modelling studies ( e.g.
Davis et al., 1983; Dahlen, 1984; Dahlen and Suppe, 1988; Beutner, 1977; Price and McClay,
1981; Gillcrist et al., 1987; Butler, 1989; Ramsay, 1989; Buchanan and Buchanan, 1995: Dunn
et al., 1995; Mitra, 1997; Lacombe and Mouthereau, 2002; Wissing and Pfiffner, 2003; Simp-
son, 2011; Yamato et al., 2011; Ruh et al., 2012; Fernandez and Kaus, 2014; Bellahsen et al.,
2012; Bauville and Schmalholz, 2015; Lacombe and Bellahsen, 2016; Bauville and Schmal-
holz, 2017). However, the mechanical deformation processes controlling fold-and-thrust belt
evolution are still incompletely understood. One challenge for understanding fold-and-thrust
belt evolution is that the formation, spacing, orientation and time-sequence of thrusts, shear
zones and folds are controlled by two different factors: First, the mechanical deformation be-
havior of rocks, which can be dominated either by brittle-frictional sliding or by ductile creep
and can further be strongly affected by various mechanical softening mechanisms, such as fric-
tional strain softening, reduction of effective friction by fluid overpressure, grain size reduction
with damage or thermal softening. Second, the geometrical configuration, such as half-graben
structures or orientation of sedimentary layers, and variations in rock strength, for example
between basement and cover or within the cover by alternation of strong, such as carbonates,
and weak, such as shales, sediments. To illustrate these two controlling factors in a simple way,
let us consider the deformation of a linear viscous material under homogeneous pure shear.
Adding a circular inclusion with a smaller viscosity to the viscous material will not generate
a shear zone inside the linear viscous material for this deformation configuration. The only
possibility to generate a shear zone in the viscous material is to add a softening mechanism,
such as thermal softening (Jaquet et al., 2015; Kiss et al., 2019) or grain-size reduction with
damage (Bercovici and Ricard, 2003; Austin et al., 2008). In contrast, if the linear viscous
material is sheared over a non-planar interface, resembling a half-graben, then a shear zone
can develop inside the linear viscous material even without any softening mechanism (Bauville
and Schmalholz, 2017). Therefore, a main challenge for understanding the thermo-mechanical
evolution of fold-and-thrust belts is to determine whether the major thrusts and shear zones
have been controlled by a particular rheological softening mechanism or by pre-existing geo-
metrical and mechanical heterogeneities, referred to here as tectonic inheritance. In nature,
there is most likely a continuous transition between these two controlling factors.

Many studies employing analogue and numerical models have been performed with a fo-
cus on the impact of different rheological models. Studies investigated the impact of brittle,
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brittle-ductile, visco-plastic and visco-elasto-plastic rheological models on fold-and-thrust belt
evolution, and also studied, for example, the impact of fluid pressure and associated reduction
of effective friction (e.g. King Hubbert and Rubey, 1959; Stockmal, 1983; Merle, 1989; Simp-
son, 2011; Ruh et al., 2014; Poulet et al., 2014; Bauville and Schmalholz, 2015; Granado and
Ruh, 2019). Other numerical studies focused more on the impact of tectonic inheritance, in the
form of mechanical heterogeneities, on fold-and-thrust belt evolution (Wissing and Pfiffner,
2003; Bauville and Schmalholz, 2017). The majority of numerical modeling studies uses two
dimensional (2D) models, which were often able to produce results that are to first oder com-
parable with geological reconstructions and cross-sections. However, it is well known that the
style of fold-and-thrust belts can vary considerably along-strike the belt (e.g. Hamilton, 1988;
Mitra and Fisher, 1992; Mitra, 1997; Mouthereau et al., 2002; Fitz Diaz et al., 2011; Nemčok
et al., 2013). Inherited, laterally varying pre-existing structures are important, for example,
in the Alps where pre-Alpine laterally varying passive margin structure presumably exert a
strong control on the deformation style (Pfiffner, 1993; Pfiffner et al., 2011). A recent study
of the Iberian passive margin by Lymer et al. (2019) highlights the complex 3D architecture
of such margins. Their results imply that fault systems disappear laterally or link together
in lateral direction along the margin, consequently creating discontinuities and geometrical
asymmetries. Therefore, it is important to consider the 3D inherited heterogeneities of pas-
sive margins when studying fold-and-thrust belts that resulted from the deformation of passive
margins, as is the case for the Helvetic fault-and-thrust belt (Pfiffner et al., 2011).

Here, we apply a 3D thermo-mechanical numerical model to investigate the fundamental im-
pacts of mechanical heterogeneities, representing graben structures and sedimentary layering,
on the deformation style during fold-and-thrust belt formation. A particular aim is to apply
our model results to the Helvetic nappe system in the Swiss-French Alps (see next section).
We employ an initial model configuration that mimicks a simplified upper crustal region of
a passive margin and is composed of a basement and several sedimentary units. The passive
margin contains a half-graben system that varies along the lateral direction. Moreover, we
apply laboratory derived temperature dependent dislocation creep flow laws for all our model
units and consider a brittle-frictional Drucker-Prager yield stress. We use a typical velocity
boundary condition to simulate the large scale deformation conditions during tectonic wedge
formation (Simpson, 2011; Ruh et al., 2014). In order to keep our model relatively simple,
we concentrate on the thermo-mechanical processes on the macroscale and the impact on
kilometer-scale structures. Hence, we do not consider microscale processes such as grain size
reduction involving secondary mineral phases and damage. Furthermore, our model does not
include hydro-chemical coupling. Hence, we do not model processes such as fluid release and
decarbonatization (Poulet et al., 2014).

The aims of our study are to: (1) understand the impact of lateral changes in half-graben
geometry on the deformation style, (2) investigate the importance of the spatial distribution



3.2. OVERVIEW OF THE HELVETIC NAPPE SYSTEM 61

Figure 3.1: Simplified geological cross-sections along strike of the Helvetic nappe system.
a) Glarus nappe complex (modified after Pfiffner, 2015). b) Doldenhorn nappe (modified
after Kirschner et al., 1999). c) Morcles nappe (modified after Escher et al., 1993). d)
Morcles nappe at the Belledonne massif (modified after Epard, 1990). UH/NH = Ultrahel-
vetics/North Helvetics. CS = Cover sediments.

of a competent layer and half-graben geometry during fold-and-thrust belt formation and (3)
discuss the application of our numerical models to the formation of the Helvetic nappe system.

3.2 Overview of the Helvetic Nappe system

The Helvetic nappe system is a fold-and-thrust belt complex that was formed during the
Alpine orogeny when the European passive margin collided with the Adriatic margin (e.g.
Trümpy et al., 1980; Pfiffner, 2015). The system consists of a pile of tectonics nappes, which
mainly comprise Mesozoic and Cenozoic sediments derived from the former European conti-
nental margin (Masson et al., 1980; Ramsay, 1981; Pfiffner, 1993; Escher et al., 1993; Steck,
1999; Pfiffner et al., 2011). Commonly, the nappe system is subdivided in the structurally
upper Helvetic nappes, considered mainly as allochtonous thrust nappes, and the structurally
lower Infrahelvetic complex, which can involve par-authochtonous fold nappes (Pfiffner, 1993;
Pfiffner et al., 2011) (Figure 3.1).

The onset of Alpine burial of the proto-nappe system is constrained by the last deposited
sediments with ages of ca. 28 to 34 Ma (Kirschner et al., 1995; Nibourel et al., 2018). Peak
metamorphic conditions in the Helvetic nappe system occurred between ca. 25 and 17 Ma,
indicating the end of the main phase of nappe stacking (Kirschner et al., 1995; Nibourel
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et al., 2018). The main phase of nappe formation and stacking occurred presumably during
a period of ca. 10 to 15 Ma (Masson et al., 1980; Milnes and Pfiffner, 1980; Burkhard, 1988;
(Kirschner et al., 1995; Nibourel et al., 2018). Uplift and exhumation of the Helvetic nappe
system occurred between ca. 20 Ma and today (Kirschner et al., 1995; Nibourel et al., 2018).
We focus here on the main phase of nappe formation and stacking and do not consider the
subsequent uplift and exhumation of the Helvetic nappe system.

The Helvetic nappe system exhibits a wide range of nappe geometries, including two com-
monly considered end-member nappe styles, namely fold nappes and thrust nappes, or thrust
sheets (Termier, 1906; Epard and Escher, 1996). Fold nappes are recumbent folds with fold
amplitudes of several kilometers and with a stratigraphic inversion in a prominent overturned
limb. Thrust nappes are coherent allochtohonous rock sheets that are displaced along a basal
shear zone and lack a prominent overturned limb.

We consider here four simplified geological sections across the Helvetic nappe system in the
Swiss-French Alps and focus on several prominent nappes within these sections (Figure 3.1).
The first order tectonic features of these four cross sections and the associated nappes will be
compared with our 3D modelling results.

The first section includes the Glarus nappe of the Eastern Swiss Helvetic nappes (Figure
3.1a). Geological reconstructions suggest a displacement of approximately 50 km from its
original location along a thin basal thrust zone that is composed of Mesozoic sediments (e.g.
Pfiffner, 2015). Studies suggest that the Glarus basal thrust originates inside Carboniferous
strata allowing for the transport of the Glarus nappe consisting of Permian Verrucano units
at its base (e.g. Schmid, 1975; Pfiffner, 1993; Pfiffner, 2015). Observations on the thrust zone
suggest earlier viscous dominated deformation followed by dominantly brittle deformation
(Herwegh et al., 2008). A number of studies investigated the complex deformation behavior
of the thrust zone and suggest the involvement of pressurized fluids that resulted in hydro-
fracture networks and the reduction of the friction at the base (e.g. Burkhard et al., 1992;
Badertscher and Burkhard, 2000; Badertscher et al., 2002; Herwegh et al., 2008; Hürzeler
and Abart, 2008). Recently, Poulet et al., 2014 suggest a superposition of viscous and brittle
deformation mechanisms due to ductile shear heating resulting in decarbonatization and the
release of overpressurized fluids causing brittle fracturing.

The second section includes the Doldenhorn nappe, belonging to the Infrahelvetic complex,
which has been overthrusted by the Wildhorn nappe, belonging to the Helvetic nappes (Figure
3.1b). The Doldenhorn nappe consists of Mesozoic and Cenozoic parautochthonous sediments
that have been squeezed and sheared out of a pre-Alpine half-graben, referred to here as North
Helvetic basin (Figure 3.2). The Gellihorn and Jägerchrütz nappes are minor nappes and their
sediments are considered as deposits on a basement high, likely a horst, which seperated the
half-graben including the Doldenhorn sediments from the more distal marginal basin, referred
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to here as Helvetic basin, on which the Wildhorn sediments have been deposited (Masson
et al., 1980) (Figure 3.2). The Doldenhorn nappe roots in the Aar basement massif. Studies
indicate metamorphic peak temperatures in the Doldenhorn nappe of up to 380◦C (Herwegh
and Pfiffner, 2005; Ebert et al., 2007a). These temperatures allowed for ductile deformation
and folding of the Doldenhorn nappe during nappe formation. Colder temperatures around
ca. 250 ◦C in the structurally higher Wildhorn nappe were likely responsible for a deformation
style resembling more a thrust nappe.

The third section includes the Morcles fold nappe (Figure 3.1c) belonging to the Infrahelvetic
complex. It is overlain by a major thrust nappe, which is termed in this region the Wildhorn
super-nappe (Steck, 1999). The term super-nappe is used, because the nappe can be subdi-
vided, from bottom to top, into the Diablerets, Mont-Gond and Sublage nappes. Similarly
to the Doldenhorn nappe, the Morcles nappe is considered as the result of the closure of the
North Helvetic basin and the subsequent extrusion of sediments during compressional Alpine
tectonics (e.g. Ramsay, 1981; Pfiffner, 1993). This North Helvetic basin comprised kilometer
thick sequences of shale-rich units with competent carbonate units in between. Different to
the Doldenhorn nappe, the Morcles nappe exhibits less pronounced shearing at its base, a
more prominent overturned limb and stronger internal isoclinal folding. The strongly thinned
and overturned limb is in contact with the crystalline Aigulles-Rouges massif below and its
autochthoneous sediments. Between the Morcles and Wildhorn nappe is a minor sedimentary
nappe, the Ardon nappe, which is considered as originating from the horst region, from a
similar paleogeographic position as the Jägerchrütz nappe (Figure 3.2). Estimates of meta-
morphic peak temperatures range between 250◦C and 380◦C and therefore support a domi-
nantly ductile deformation regime (Leloup et al., 2005; Boutoux et al., 2016). Furthermore,
the deformation of the Morcles nappe is constrained by finite strain measurements. The data
highlights a pattern of increasing strain from the front of the nappe towards the root zone and
also from the top to the bottom. Strain ellipses show X/Y ratios > 400 at the contact between
the overturned limb and the basement-cover (Ramsay and Huber, 1987; Casey and Dietrich,
1997). Microstructural observations of the basal mylonitic shear zone in the overturned limb
of the fold nappe indicate ductile creep in the calcite-rich lithologies (Austin et al., 2008).
The Wildhorn super-nappe, as a whole, resembles more a thrust sheet but exhibits significant
internal deformation. For example, the Diableret nappe is separated from the Mont Gond
nappe by an isoclinal fold indicating significant ductile deformation inside the super-nappe.

Due to the topographic Rawil depression, there is no continuous outcrop from the Doldenhorn
towards the Morcle nappe. However, geological reconstructions suggest, that the Doldenhorn
and Morcles nappes originate from the same, lateral continuous North Helvetic basin and
that the Wildhorn nappe and super-nappe result from the same laterally continuous Helvetic
basin of the Mesozoic passive European margin (Epard, 1990). The North Helvetic basin
is considered absent in the eastern region of the Helvetic nappe system, which explains the
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Figure 3.2: Simplified paleogeographic map of the lower cretaceous showing the assumed
distribution of the basement massifs and sedimentary units forming the discussed tectonic
nappes of the Helvetic nappe system (modified after Epard, 1990 and Pfiffner, 2015). The
cross section on the top left represents a section through the SW region across the Helvetic
nappe system (modified after Jaquet et al., 2018).

absence of significant nappes in the Infrahelvetic complex below the Glarus thrust. The
Doldenhorn nappe can be considered as an intermediate nappe type between a thrust nappe,
represented by the Glarus thrust, and a fold nappe, represented by the Morcles nappe.

The fourth section includes also the Morcles nappe and is located in the French Alps (Epard,
1990) (Figure 3.1d). In this section, no Helvetic nappes are outcropping. In contrast to
the Morcles fold nappe in the third section, the Morcles nappe is here not a fold nappe but
rather a thrust nappe (cp. Figure 3.1c and 3.1d, respectively), because there is no prominent
overturned limb. The basement massif is there termed Belledone massif, but the Morcles
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nappe in the French region is considered as a geological continuity from the Morcles nappe in
the Swiss region (Epard, 1990) (Figure 3.2).

Some studies suggested mechanical explanations for the variation in nappe style within the
Helvetic nappe system. The formation of fold nappes in the Southwestern part of Switzerland
and the lack of such fold nappes in the Northeastern part is explained by lateral variations of
the mechanical stratigraphy, that is the alteration of mechanically strong, such as carbonates,
and weak, such as shales, sedimentray units (Pfiffner, 1993; Pfiffner et al., 2011). Different
thickness ratios, n, of weak to strong sedimentary units cause a different mechanical response
during shortening. Low ratios n < 0.5 favor imbricate thrusting and harmonic folding while
higher ratios of n favor fold nappes and detachment folding (Pfiffner, 1993). This impact of
thickness ratios on deformation style, which was derived by field observations, is also supported
by 2D numerical simulations (Jaquet et al., 2014). Moreover, Von Tscharner et al. (2016)
quantified, with 3D numerical models of viscous deformation, the impact of laterally varying
half-graben depth on the folding of sedimentary layers in the half-graben. Their 3D model
results also confirm that laterally varying sediment thickness has a strong impact on fold
amplification and nappe formation. However, their models do not generate thrust nappes and
also not the stacking of nappes, as observed in the Helvetic nappe system. A comparison
of observed finite strain gradients across the Morcles fold nappe with finite strain gradients
resulting from a theoretical thermo-mechanical shear zone model utilizing calcite flow laws
suggests that the Morcles fold nappe was generated by heterogeneous shearing during Alpine
shortening (Bauville and Schmalholz, 2013), as was already suggested by kinematic models
(Ramsay et al., 1983; Dietrich and Casey, 1989; Casey and Dietrich, 1997).

3.3 Methods

3.3.1 Numerical method

We apply the concept of continuum mechanics to describe the deformation of rocks with a
system of partial differential equations (e.g. Mase, 1970). To solve the resulting system of
equations numerically, we apply the 3D thermo-mechanical parallel code LaMEM (Kaus et al.,
2016; https://bitbucket.org/bkaus/lamem) for our simulations. The equations describing
the conservation of mass, linear momentum and energy are:

∂vi
∂xi

= 0 (3.1)

− ∂P
∂xi

+
∂τij
∂xj

= ρgi (3.2)

ρCp
∂T

∂t
=

∂

∂xi

(
λ
∂T

∂xi

)
+HR +HS (3.3)

https://bitbucket.org/bkaus/lamem
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where xi (i = 1,2,3) refers to Cartesian coordinates in the three spatial directions (i=1 indicates
x-direction, i=2 y-direction and i=3 z-direction), vi are the components of the velocity vector,
P is pressure (negative mean stress), τij = σij +Pδij are components of the deviatoric Cauchy
stress tensor (with δij being the Kronecker delta), ρ is density, gi = [0 0 g] the gravity
acceleration vector with g being the gravitational acceleration, Cp is the specific heat, T the
temperature and λ the thermal conductivity. The source term HR refers to the radiogenic
heat production and HS = τij ε̇ij for shear heating. The components of the deviatoric strain
rate tensor ε̇ij are defined by the visco-plastic constitutive equations:

ε̇ij = ε̇vsij + ε̇plij =
τij

2ηeff
+ ε̇plII

τij
τII

(3.4)

where ε̇vsij is the viscous strain rate tensor, ε̇plij is the plastic strain rate tensor, ηeff is the
effective viscosity, τij are components of the deviatoric stress tensor and τII = (1

2τijτij)
1
2 is

the square root of the second invariant of the deviatoric stress tensor.

The temperature dependent viscosity ηeff for the considered dislocation creep is:

ηeff =
1

2
(Bn)−

1
n (ε̇II)

1
n
−1 exp

(
En

nRT

)
(3.5)

where n is the stress exponent, ˙εII = (1
2 ˙εij ˙εij)

1
2 the square root of the second invariant of the

strain rate tensor, Bn the creep constant, En the activation energy and R the universal gas
constant. The components of the plastic strain rate tensor ε̇plij are determined by enforcing
the Drucker-Prager yield criterion given by:

τII ≤ τY = sin(φ)P + cos(φ)C (3.6)

Here, τY is the yield stress, φ the friction angle and C the cohesion.

The system of equations is discretized with a staggered grid finite difference approach and
solved with LaMEM. Material properties are advected employing a marker-and-cell method. In
order to maintain computational stability for large time steps we employ a stabilized free sur-
face boundary condition. For detailed information on the LaMEM code see Kaus et al. (2016)
and the documentation on the official website (https://bitbucket.org/bkaus/lamem).

https://bitbucket.org/bkaus/lamem
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Figure 3.3: a) 3D geometry of our reference model configuration using a laterally dis-
appearing half-graben, and highlighting the distribution of our numerical phases and their
material properties. Here, the color green refers to weak materials and dark blue to strong
materials. The configuration is based on the paleogeographic reconstructions as indicated by
the abbreviations on the model: AR = Aiguilles Rouges massif, MB = Mont Blanc massif,
HB = Helvetic Basin, NH/UH = North Helvetic flysch and Ultrahelvetic units, HG = North
Helvetic graben. b) Display of our three different half-graben systems used as initial setup.
c) Cross-sectional view at X = 0 km for three models utilizing half-graben G-1 in combi-
nation with three different stratigraphic distributions. d) Sketch displaying our boundary
conditions. e) 3 cross-sectional slices along X-direction to explain our model evaluation. f)
Subfigure highlighting our passive marker overlay which is used to distinguish the different
structural units HG (green) and HB (blue) from each other. Temperature isotherms are
shown in [◦C].

3.3.2 Model configuration

The model configuration (Figure 3.3a) has a lateral width of X = 70 km, a length of Y =
210 km and height of Z = 40 km. Our numerical resolution for most simulations is 128 ×
256 × 128 (X × Y × Z) grid points with a mesh refinement in Z-direction using 96 grid
points between Z = 8 and 32 km and 16 grid points each for Z < 8 km and Z > 32 km. Our
model consists of five units which are, from top to bottom: a sticky air, a cover, a strong
layer, a weak unit and a basement unit. Each unit has distinctive mechanical properties, such
as for example, a flow law, friction angle, or cohesion that corresponds to natural materials.
In addition to the standard parameters of the flow laws we add a pre-factor f to the creep
constant Bn to facilitate a brittle-ductile transition zone at a depth of 8−10 km. The details
of the mechanical properties for each unit are listed in Table 3.1. The initial model geometry
is based on a simplified and idealized cross-section of the European crustal continental passive
margin. The basement constitutes the bottom of the model domain and has a maximum height
of 15 km. It involves a half-graben (HG) that is separated by a horst from a larger distal basin
(HB) to the right (Figure 3.3b). HG represents the half-graben region in which the sediments
of the Morcles and Doldenhorn nappes have been deposited, HB represents the Helvetic Basin
in which the sediments of the Wildhorn nappe have been deposited and the horst between HG
and HB represents the domain on which the sediments of the Ardon and Gellihorn nappes
have been deposited (Fig. 3.2). In the reference configuration HG is becoming shallower
and finally disappears towards the NE-direction (positive X-direction; Figure 3.3a). The half-
graben, between 110 km > Y > 90 km, is subjected to different geometries in our different
model configurations with respect to its lateral extend (X-direction). The total dimensions of
the graben system are fixed with a maximum depth of 7 km, a length of 25 km (Y-direction)
and a width of 50 km (X-direction). In contrast, the geometry of the distal basin (Y < 90 km)
is constant and has no variations in the X-direction for all model configurations. Both half-
graben and basin are filled with a weak unit, mimicking shale-rich sediments, that is overlain
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by a strong layer with a thickness of 1.5 km, mimicking strong carbonates. Additionally, we
apply a 10 km thick sediment cover, mimicking the North Helvetic Flysch and Ultrahelvetic
units. We assume that these cover unit have been thrust on top of the proto-Helvetic nappe
system before the onset of nappe formation. Finally, we use a low density, low viscous sticky
air unit (η = 1019 Pa.s−1, ρ = 1 kg.m−3) on top to simulate a free surface boundary condition.
In order to investigate the impact of the geometry of HG on the structural evolution of our
model we use two different series of simulations. In the first one, we vary the geometry of HG
in lateral direction using three different geometries (Figure 3.3b), namely G-1 to G-3. Here,
we also define our reference model A.G-1. It compromises HG, G-1, that linearly shallows
and narrows out in lateral X-direction. The next configuration, G-2, is HG without lateral
geometrical variations, which is bounded by a 90◦ wall to the adjacent basement. Our third
configuration, G-3, is HG being a full graben that shallows out in lateral direction while the
length in Y-direction is constant.
In the second series (Figure 3.3c) we employ the same HG as in the reference configuration,
G-1, but modify the spatial connection between the strong layer and the underlying basement.
In model B.G-1 we decrease the height of the horst in such a way that the strong layer and a
part of the weak unit rests on the top of the horst. Additionally, we also thicken the left part
of the strong layer which is connected to the basement in a wedge like shape (Figure 3.3c).
In the last model, C.G-1, we extend the strong layer to the left of the HG (Figure 3.3c). For
C.G-1, the layer is not connected with the basement, but underlain by an additional 0.5 km
thick layer of weak units (Figure 3.3c).
To test the impact of the vertical strength distribution in the basement, we performed an
additional simulations, D.G-1, with the same configuration as the reference model, A.G-1,
but we cut-off the deviatoric stresses in the basement at 40 MPa. Numerically, this is done
by setting the cohesion in the basement to 40 MPa and setting the friction angle to zero.
Such yield criterion corresponds essential to a pressure-insensitive von Mises yield strength
and mimics a semi-brittle deformation, or a low temperature plasticity.
We apply free slip boundary conditions on all sides of the model except on the top where we
model a free surface boundary condition with the sticky air method (Figure 3.3d). In order to
mimic the kinematic conditions during tectonic wedge formation, we apply a constant velocity
boundary condition on the bottom face and the left XZ-face of our model (Figure 3.3d). We
induce bulk shortening of the model by moving the left boundary and the bottom boundary
in positive Y-direction with a constant velocity of vy = 1 cm/yr. This boundary condition
is similar to typical sandbox analogue models of accretionary wedge formation. The bulk
shortening strain rate ε̇bg is recalculated from the velocity boundary condition for every time
step. The shortening of the model in Y-direction is balanced by an elongation in Z-direction,
with no changes of the width in X-direction.
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We use a linear, vertical temperature gradient of 16.6◦C/km with a fixed temperature of
20◦C at the surface and 435◦C at the bottom of the model. The heat flux through all vertical
model sides is zero. Furthermore, we use passive marker lines and patterns to improve the
visualization of 2D cross-sections of our 3D model (Figure 3.3f). Also , we slightly change
the color scheme to highlight the two major basement structures HG and HB, together with
the sediments on top of the basement horst (yellow). The darker colors inside the HG and
HB indicate the strong layer while the lighter colors correspond to the weak units. The
layering and patterns are passivley advected with the numerical velocity field. Hence, they do
not influence the material properties and deformation and are simply there for visualization
purposes.

Table 3.1: Table listing the material properties of our model units for most models, where
ρ is the density, A is the pre-exponential factor, f is custom pre-factor, n is the power-
law exponent, Q is the activation energy, λ is the thermal conductivity, φ is the friction
angle, and C is the cohesion. Some additional parameters are constant: Here the thermal
expansion coefficient α = 3 × 10−5 K−1, the heat capacity Cp = 1050 J.K−1 and the
radiogenic heat production Qr = 10−6 W.m−3. We use following creep flow laws: 1Schmid
et al. (1977),2Hansen et al. (1983),3Kronenberg et al. (1990).

Model unit ρ [kg.m−3] Rheology f A[Pa−n.s−1] n Q [J.mol−1] λ[W.m1K−1] φ [◦] C [MPa]

Cover 2750 Calcite1 0.1 1.58× 10−25 4.2 4.45× 105 2.0 30 1
Strong layer 2750 Calcite1 1.0 1.58× 10−25 4.2 4.45× 105 2.5 30 1
Weak units 2750 Mica2 1.0 1× 10−138 18.0 5.10× 105 2.5 5 1
Basement 2800 Granite3 1.0 3.16× 10−26 3.3 1.87× 105 3.0 30 10

3.4 Results

3.4.1 3D model evolution

We first provide an overview of the general model evolution of all six performed 3D simulations.
Figure 3.4 shows the structural evolution for three different bulk shortening for each model
configuration. All models, except model C.G-1 (Figure 3.3c), show the formation of nappe-
type structures in the strong layers and stacking of the strong layer from HB on top of the
strong layer of HG. Model C.G-1 does not generate any nappe-like structure or overthrusting,
but generates detachment folds.
In the first stage of our reference model A.G-1 (Figure 3.4a) the strong layer of HB is detached
from the horst by the formation of a shear zone. Both the strong layer and the weak units
below are thrusted on top of the horst culminating in a horizontal displacement of about
10 km. Our model generated a structure resembling a thrust sheet or thrust nappe. The
HB experiences closure. In the region of HB, the weak sediments and the basement are
thickened with ongoing bulk shortening. Initially, the basement experiences an uplift at the
right boundary due to the imposed velocity discontinuity. The basement uplift increases the
topography at the right boundary of the model (i.e. the backstop). The HG shows minor



3.4. RESULTS 71

Figure 3.4: 3D model evolution for our six simulations, using a graphical threshold to
highlight the deformation of the strong layer, weak units and the basement. Rows correspond
to the configuration and columns to the total bulk shortening γb.
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signs of deformation at 23%. The strong layer is partially sheared and squeezed out in front
of HG. Additionally, we observe a slight depression of the strong layer in the rear of HG. In
the next shortening stage, (Figure 3.4b) the closure and inversion of HG is in progress. The
strong layer has been squeezed out of HG. The horizontal displacement of the strong layer of
HG decreases in positive X-direction associated with decreasing depth of HG. Furthermore,
the thrust nappe from HB has advanced on top of HG and the horst exhibits a dome-like
shape. At 47 % bulk shortening (Figure 3.4c), the half-graben is almost completely closed
resulting in the formation of a elongated cusp dipping towards the backstop. The infill of HG
has been extruded and compromises a nappe that is overthrust by a nappe from HB. The
front of the nappe from HB is essentially straight along the lateral, X-direction, indicating
that the displacement of the nappe is essentially unaffected by the formation of the nappe
below, whose front varies significantly along the X-direction. We only observe a slightly higher
topography above the nappe from HG, causing a slight tilting of the nappe from HB towards
the positive X-direction.
Model A.G-2 (Figure 3.4b) deviates in the structural evolution from model A.G-1. At 23 %

bulk shortening (Figure 3.4b), the strong layer of HG is displaced more out of HG than for
model A.G-1. The basement horst is slightly sheared towards the left, that is against the
shortening direction. This shearing of the horst increases with progressive bulk shortening.
At 47 % bulk shortening (Figure 3.4b) the HG is nearly closed at its top, but the closure of
the HG did not form a cusp, as for model A.G-1. In contrast, the sediments still in the HG
become thicker with depth, because for the considered geometry of the HG it is more difficult
to squeeze out all the sediments (Figure 3.4b). The strong layer of HG has been completely
detached from the horst showing a higher slope in front of the extruded sediments. Overall,
this model shows a significantly higher degree of basement involvement, with the up doming
horst separating the nappe from HG from the thrust nappe from HB. Nevertheless, the front
of the nappe from HB was displaced in the same uniform manner as in the reference model,
A.G-1.
Model A.G-3 displays a similar evolution as model A.G-1 (Figure 3.4c). The geometry of HG
results in a almost straight front of the squeezed out strong layer. There is a slight curvature
at the lateral boundary between the lateral end of HG and basement (Figure 3.4c). The
final stage (Figure 3.4c) shows a nappe originating from HG that is almost homogeneous in
lateral X-direction. However, even though the depth of the half-graben is constant up to X
= 50 km there is a notable decrease of nappe height from X = 30 to 50 km. This tilting of
the nappe front towards the positive X-direction can be explained by the adjacent basement,
which might affect the degree of half-graben closure due to the strength contrast between the
sediment and basement units. At 47 % bulk shortening (Figure 3.4c) the nappe from HB did
not fully thrust over the fold nappe.
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Model B.G-1 (Figure 3.4d) exhibits a continuous strong layer from HG to HB across the horst,
but has the same geometry of HG than reference model A.G-1. At 23 % bulk shortening
(Figure 3.4d) we observe a similar deformation of the strong layer at HG than in model A.G-
1. However, a larger amount of weak sediments from HB is displaced across the horst against
the shortening direction. At 35 % bulk shortening the HG is less closed that for the same bulk
shortening of the reference model (Figure 3.4d). Inside the initially continuous strong layer, a
shear zone develops that forms a nappe of sediments from the region of the HB. At 47 % bulk
shortening (Figure 3.4d) two nappe structures have formed; one consisting of sediments from
HG and a structurally higher one consisting of sediments from HB. The two nappes are also
stacked. However, in this model the strong layer has no connection anymore to the horst.
Model C.G-1 (Figure 3.4e), with a strong layer resting above the entire basement, shows
detachment folding. The lateral variations in basement geometry are not significant enough
to generate a shear zone in the strong layer, which eventually would form a nappe structure.
The deformation of the basement and HG is similar to model B.G-1. The detachment fold
with the largest amplitude originates from the region of HG (Figure 3.4e). With progressive
shortening, this detachment fold is displaced across the basement against the direction of
shortening (Figure 3.4e).
In model D.G-1 (Figure 3.4f), with a stress cut-off in the basement at 40 MPa, the shortening is
more homogeneously distributed in the basement, so that during the initial stages of shortening
(23 %; Figure 3.4f) the basement at large distance from the backstop is already thickened.
Consequently, the basement uplift around the backstop is significantly lower compared to all
other models. Furthermore, during nappe formation some parts of the uppermost basement
are also sheared-off from the basement. The nappe forming from the strong layer of HG
resembles a fold nappe.

3.4.2 2D numerical cross sections

We discuss the deformation in the 3D models by analyzing six 2D cross sections parallel to the
shortening direction (Y-direction) but at six different location along the lateral X-direction
(Figure 3.5). The six cross sections are located along the lateral direction from X = 0 km to
X = 50 km with 10 km spacing.
For the reference model A.G-1 (Figure 3.5) at 23% shortening (Figure 3.5, left column), the
sediments from HB have been detached from their original position and thrusted across the
basement horst all along the lateral direction (everywhere in the left column of Figure 3.5).
The displaced sediments from HB resemble a thrust nappe. Around the backstop (right
side) there is significant basement uplift. The cross sections show, from top to bottom, the
shallowing and disappearance of HG. The strong layer is already sheared-out of HG, whereby
the horizontal displacement is larger for deeper HG. Both nappes originating from HB and HG
are deforming at the same time. The temperature around the top of the horst is ca. 300◦C.
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Figure 3.5: Graph showing lateral cross-sections for two different states of bulk shortening
for the geometrical evolution of model A.G-1. Cross-sections are taken in 10 km steps from
X = 0 km to X = 50 km. Additionally we display the isothermal lines in degree Celsius [◦C].
Columns correspond to the bulk shortening state and rows to cross-section X-position.
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Figure 3.6: Graph showing lateral cross-sections for two different states of bulk shortening
for the second invariant of the deviatoric stress τII of model A.G-1. Cross-sections are taken
in 10 km steps from X = 0 km to X = 50 km. Additionally we display the isothermal lines in
degree Celsius. Columns correspond to the bulk shortening state and rows to cross-section
X-position.
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The passive marker lines in the weak sediments of HB indicate ductile flow generating passive
shear folds. In the basement the passive marker symbols (’crosses’) indicate an increase in
shear strain from the top to the bottom of the basement due to decrease in basement viscosity
associated with a temperature increase. At 47% bulk shortening (Figure 3.5g-l, right column)
the nappe from HB is thrust completely above the nappe from HG. The HG has been almost
closed with the weak sediments residing now inside a cusp between the neighboring basement
units, which dips towards the backstop. In the deeper region of HG the passive markers
in the weak sediments indicate a fold nappe structure. The very frontal part of the nappe
from HG resembles a thrust nappe, formed exclusively by the strong layer, whereas the main
part of the nappe, including also the weak sediments, resembles a fold nappe (Figure 3.5g-i).
Between the upper nappe from HB and the lower nappe from HG are cover sediments that
have been dragged between the two nappes during overthrusting of the nappe from HB (Figure
3.5g-k). The nappe from HG disappears in lateral direction with the disappearance of HG.
For the cross section without HG (Figure 3.5l) there is only a nappe from HB resembling a
thrust nappe. Despite the significant lateral variation of the depth of HG and the associated
lower nappe, the horizontal displacement of the upper thrust nappe is essentially the same
along the lateral direction. Consequently, nappe formation of sediments from HG does not
affect the horizontal displacement of the overthrusting nappe from HB. The horst exhibits
a significant internal deformation in the regions with a deep HG, indicated by the passive
marker symbols. The temperature isotherms are affected by the deformation and thickening
of the model. Generally, the sediments are getting hotter during the deformation. At 23%

bulk shortening the strong layer of HG has a temperature of ca. 300◦C while the temperature
of the strong layer of HB is less than 300◦C. At 47% bulk shortening the isotherms indicate
that both strong layers were heated by ca. 50◦C.
Additionally to the cross sections showing the structural and thermal evolution of model A.G-
1, we display the same cross sections but indicating the magnitude of the deviatoric stress
invariant, τII , to quantify the state of stress (Figure 3.6). The largest stress is ca. 140 MPa
and occurs at the brittle-ductile transition in the cover, in a depth of ca. 5 km. At 23% bulk
shortening (Figure 3.6a-f) the top of the basement exhibits τII values between 40 MPa and
80 MPa. After 47% bulk shortening τII values in the basement are strongly decreased, down
to 10 MPa to 20 MPa, due to the increase of basement temperature. Overall, there are no
considerable lateral variations in τII .
The cross-sections for model A.G-2 indicate overall a similar structural evolution as our refer-
ence model (Figure 3.7) in the sense that the sediments are sheared-out of HG and HB, form
nappe-like structures and are piled at 46% bulk shortening. However, the different initial
geometry of HG also generates differences in the structural evolution: At 23% bulk shortening
the nappe from HB is less displaced across the horst for a deeper HG. The reason is that due
to the different geometry of HG, the basement horst is also significantly sheared towards the
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Figure 3.7: Graph showing lateral cross-sections for two different states of bulk shortening
for the geometrical evolution of model A.G-2. Cross-sections are taken in 10 km steps from
X = 0 km to X = 50 km. Additionally we display the isothermal lines in degree Celsius [◦C].
Columns correspond to the bulk shortening state and rows to cross-section X-position.
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left model side and represents, hence, a less stiff obstacle for a deep HG. Therefore, both the
nappe from HB and the horst are sheared together towards the left model side. For a shallower
HG, the horst represents a mechanically stiffer obstacle for the nappe from HB and, hence, the
nappe is overthrust more to the left. At 46% bulk shortening (Figure 3.7g-l) we also observe
extrusion of sediments from HG, but for the deepest regions of HG a significant amount of
the sediments remains trapped between the basement at depth. Around the region where HG
is deepest, the horst is sheared significantly and even sheared slightly on top of the basement
that was initially to the left of HG (Figure 3.7g-i). The strong layer from HG is essentially
disconnected from the horst and a significant part of this strong layer resembles more a thrust
nappe. The temperature evolution of model A.G-2 is similar to the one of the reference model.
The results indicate that the geometry of HG has a strong impact of the structural evolution
of the nappes and the basement, although the first order structural evolution is similar to the
reference model.
Model A.G-3 (Figure 3.8) shows a similar structural evolution as the reference model. The
main difference can be observed in the cross section located at the lateral boundary of HG at
X-position 50 km (Figure 3.8l). There, sediments of HG have been extruded laterally out of
HG, which can be seen by a pocket of sediments inside the basement.
Model B.G-1 (Figure 3.9) shows a different nappe evolution than model A.G-1. At 23% bulk
shortening (Figure 3.9a-f) in the region where the horst is overlain by weak sediments and a
strong layer (yellow), the strong layer is sheared off the horst and pushed across HG by the
strong layer from HB (Figure 3.9a). In the region where the horst is overlain only by the
strong layer (yellow), the strong layer is continuously sheared and dragged by the sediments
from HB (Figure 3.9b). The degree of shearing decreases with decreasing thickness of the
yellow layer (Figure 3.9b-d). At 47% bulk shortening, HG is also almost closed and nearly
all sediments have been squeezed out (Figure 3.9g-f). At X = 0 km (Figure 3.9f) the strong
layer is completely detached from the basement. The layer initially resting on the horst has
been sheared above the sediments from HG and is itself overthrust by the sediments from
HB. This structure resembles the vertical stacking of three nappes whose sediments were
originally horizontally next to each other. With decreasing thickness of the strong layer from
the horst, its shearing across the sediments from HG is also decreasing (Figure 3.9i-k). Despite
a horizontally continuous strong layer from HG to HB, a major shear zone developed in the
strong layer and caused the generation of a nappe-like structure. The shear zone development
inside the strong layer is only due to the geometrical variation of the underlying basement,
because the strong layer has homogeneous material properties.
Model C.G-1, with a continuous strong layer across the entire model domain (Figure 3.10),
shows a very different evolution compared to the reference model, because no prominent shear
zones form in the strong layer, which could develop a nappe-like structure and significant
overthrusting.
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Figure 3.8: Graph showing lateral cross-sections for two different states of bulk shortening
for the geometrical evolution of model A.G-3. Cross-sections are taken in 10 km steps from
X = 0 km to X = 50 km. Additionally we display the isothermal lines in degree Celsius [◦C].
Columns correspond to the bulk shortening state and rows to cross-section X-position.
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Figure 3.9: Graph showing lateral cross-sections for two different states of bulk shortening
for the geometrical evolution of model B.G-1. Cross-sections are taken in 10 km steps from
X = 0 km to X = 50 km. Additionally we display the isothermal lines in degree Celsius [◦C].
Columns correspond to the bulk shortening state and rows to cross-section X-position.
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Figure 3.10: Graph showing lateral cross-sections for two different states of bulk shortening
for the geometrical evolution of model C.G-1. Cross-sections are taken in 10 km steps from
X = 0 km to X = 50 km. Additionally we display the isothermal lines in degree Celsius [◦C].
Columns correspond to the bulk shortening state and rows to cross-section X-position.
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The strong layer initially above HG develops a detachment fold. At 23% bulk shortening
(Figure 3.10a-f) this detachment fold already shows a great variability in amplitude in lateral
X-direction of the model. During the initial stages of folding, the core of this fold was filled
with half-graben sediments and progressively displaced towards the left where the basement
top is horizontal (Figure 3.10a-e). In the region without half-graben, only a small amount
of weak sediments was available to fill the fold core so that considerable amplification was
inhibited (e.g. cp. Figure 3.10f and a), as is the case for detachment, or décollement, folding
(e.g. Epard and Groshong Jr, 1993; Schmalholz et al., 2002; Butler et al., 2019). During bulk
shortening, the detachment fold is displaced across the basement towards the left. The HG
is also closed after 47% bulk shortening (Figure 3.10g-j). Similarly to the other models the
weak half-graben sediments have been extruded and some of these sediments have filled the
core of the detachment fold. The green marker lines in Figure 3.10g indicate that the fold
was continuously fed by the half-graben sediments during ongoing deformation. Hence, the
amplitude of the largest individual fold decreases towards the model side without a half-graben
(Figure 3.10g,l). The strong layer initially from HB forms a thick nappe-like structure with
a slightly overturned layer at the front. However, no overthrusting above the sediments from
HG occured.
Compared to the reference model, model D.G-1 (Figure 3.11) shows only a minor basement
uplift at the right boundary at 21% bulk shortening (Figure 3.11a-f). Instead, the bulk short-
ening is distributed more homogeneously throughout the basement, resulting in significant
thickening also in the basement on the left model side. Because the top of the basement
is weaker, the strong layers can shear-off and displace slices of the basement (e.g. Figure
3.11a). Further bulk shortening results in the extrusion from sediments from HG resulting
in a structure resembling a fold nappe. This fold nappe is overthrust from the sediments
from HB, resembling a thrust nappe (Figure 3.11g-l). The last deformation stage is shown
for 53% bulk shortening, because 6 − 7% more bulk shortening is required to overthrust the
sediments from HB, compared to the reference model. The strong layer from HG forming the
fold nappe exhibits an overturned limb that is still in contact with the basement. Thus, this
model does not form any structure similar to a thrust nappe for the sediments from HG. The
passive marker symbols show gentle folding of the basement, also on the model side without
half-graben (Figure 3.11l). In contrast, the reference model (Figure 3.5l) exhibits updoming
of the basement without well developed folding.

3.4.3 Nádai strain and Lode’s ratio

We compute the Nádai strain εs (Nádai and Hodge, 1963) and Lode’s ratio ν (Lode, 1926)
for our simulations, which are two quantities to quantify 3D finite strain. Both parameters
are computed from the natural logarithm of the finite strain principal axes, ε1, ε2 and ε3. The
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Figure 3.11: Graph showing lateral cross-sections for two different states of bulk shortening
for the geometrical evolution of model D.G-1. Cross-sections are taken in 10 km steps from
X = 0 km to X = 50 km. Additionally we display the isothermal lines in degree Celsius [◦C].
Columns correspond to the bulk shortening state and rows to cross-section X-position.
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Nádai strain εs is the octahedral shear strain and provides a non dimensional value for the
strain magnitude:

εs =
1√
3

√
(ε1 − ε2)2 + (ε2 − ε3)2 + (ε3 − ε1)2 (3.7)

The Lode’s ratio provides information on the strain symmetry and strain regime and can
exhibit values in the interval of [−1 1]. In particular, ν < 0 indicate a prolate strain ellipsoid
(constrictional strain), ν = 0 a prolate-oblate strain ellipsoid (plane strain) and ν > 0 an
oblate strain ellipsoid ellipsoid (flattening strain):

ν =
2ε2 − ε1 − ε3

ε1 − ε3
(3.8)

We display both quantities for model A.G-1 (Figure 3.12) for three different cross-sections,
which provides a representative image of the finite strain distribution also for the other models.
The first section is taken at the maximum depth of HG (X = 0 km), the second at half of
the depth (X = 25 km), and the last at the section where the half-graben disappears (X = 50
km). In general, εs values are highest on the right side on top of the basement horst, ranging
between 3.5 to 4. The extent of this shear zone, for the same intensity, changes laterally
with changing depth of HG. For example, the shear zone roots much deeper into the basin
on the side without HG (cp. Figure 3.12a-c). Moreover, εs outlines the fold nappe structure
indicating that the fold nappe is surrounded by highly strained material. Here, maximal values
of εs increase laterally with decreasing depth of HG. Another lateral difference is the intensity
of the shear zone located on the left side of the model in front of the extruded sediments.
This shear zone also gains intensity in lateral direction with decreasing half-graben depth.
Similarly to εs the, Lode’s ratios ν (Figure 3.12d-f) pinpoint the shear zone on top of the
horst and outline the fold nappe.
Overall, ν values are close to zero which indicates a plane strain deformation. The largest
deviations from plane strain are located in the cross section of maximum depth of HG (Figure
3.12d). Furthermore, values around the fold nappe in the range of 0.5 imply a flattening
regime. In contrast, the shear zone at the rear of the basement horst displays negative values
that are in the order of −0.2 to −0.5, indicating a constrictional deformation.

3.5 Discussion

3.5.1 Impact of lateral geometry variations and rheological layering

Our models show the detachment of sedimentary units and their subsequent horizontal trans-
port. Depending on the model configuration, the sedimentary units resemble fold or thrust
nappes. The strain localization necessary to detach the sedimentary units and to transport
them horizontally without significant internal deformation occurred without any mechanical
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Figure 3.12: Graph showing three different cross-sections of model A.G-1 displaying Nádai
strain (first column) and Lode’s ratio (second column). Row-wise cross-sections at X = 0,
25, 50 km, respectively.

softening mechanism. In our models, the main cause of the strain localization is the initial
geometrical configuration and the variations of mechanical strength between the model units.
Strain localization and associated shear zone formation due to geometrical and strength vari-
ations has been shown with 2D numerical simulations to occur even for linear viscous material
(Bauville and Schmalholz, 2017). For such strain localization no variation of effective material
properties develops and it is, hence, sometimes termed kinematic strain localization, which
is fundamentally different to so-called dynamic softening mechanisms in which the effective
material properties change, for example due to local heating, grain size reduction or fluid infil-
tration (Bauville and Schmalholz, 2017). Moreover, the formation of fold nappes by pushing
ductile material against a rigid obstacle, without dynamic softening, was shown, for example,
with laboratory deformation experiments (e.g. Bucher, 1956) and numerical simulations ( e.g.
Peña and Catalán, 2004). Dynamic softening mechanism are most likely active in nature, but
their intensity and the required deformation conditions are still contentious. Furthermore, dy-
namic softening mechanisms most likely intensify the strain localization shown in our models,
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but our models show that, in principle, such dynamic softening mechanism are not essential
to generate nappe-like structures.
The emplacement of the sediments from HB in the style of a thrust nappe is observed in all
models with exception of model C.G.-1. The thrust nappe exhibits a laterally uniform front
despite the deformation and nappe formation in HG below (Figure 3.4). Even in the case of
model A.G-2, where the basement horst is strongly incorporated in the deformation, we do
not observe large horizontal displacement gradients in the thrust nappe. Hence, deformation
of such relatively small graben systems might play only a minor role on the displacement
variations along strike of fold-and-thrust belts. In our models, the uniform thrust front is the
result of the initially straight boundary between basement horst and HB. Consequently, we
infer that the initial large scale basin architecture plays a major role in the geometry of orogenic
salients. Several studies (e.g. Thomas, 1977; Marshak et al., 1992; Boyer and Elliott, 1982)
of different orogens also indicate that the sediment basin thickness is of particular importance
in the expression of salients. In this context, Macedo and Marshak (1999) investigated the
effect of variable basin geometries during bulk shortening using 3D sandbox models. Their
study implies that basin-controlled salients are strongly controlled by the basin topography,
that is, variations of sedimentary thickness inside the basin. There are, however, additional
conditions such as the indenter shape or the direction and orientation of convergence of the
colliding plates that influence the overall shape of orogens ( e.g. Laubscher, 1972; Ries, 1976;
Mitra, 1997). Naturally, the investigation of such large scale boundary effects would require
a different model configuration than in our study.
Volume variations related to the lateral changes in the depth of HG are always expressed in
the lateral variations of the thickness of the extruded nappe. The thinning out of the initial
graben structure is reflected in a decrease of height and a decrease of length of the nappe.
These lateral variations also affect the lateral amplitude variation of the major detachment
fold of simulation C.G-1. The local geometry around the major detachment fold resembles
a thin skinned tectonic style where most deformation is concentrated in the cover sediment.
However, much of the sediments filling the core of the detachment fold originate from HG,
which is more than 10 km away from the detachment fold (Figure 3.11g-l). Closure of HG
resulted in movement of sediments from HG into the core of the detachment fold. This
result shows that detachment fold initiation and progressive evolution can be controlled by
the inherited basement structure, Additionally, this finding suggest that predominately thin
skinned tectonics can passively be influenced by underlying heterogeneities due to variations
in the basement architecture. Nevertheless, the expression of such detachment folds in our
models also depends largely on the thickness ratio between incompetent and competent units.
Our findings are, therefore, in broad agreement with previous field observations and numerical
studies (e.g. Pfiffner, 1993; Jaquet et al., 2014).
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3.5.2 Comparison with the Helvetic nappe system

Model A.G-1 and B.G-1 are able to reproduce several first-order structural features of the Hel-
vetic nappe system. In addition, we are also able to connect the two different main kinematic
deformation phases of the Western Helvetics and the Eastern Helvetic Nappes. The formation
of the main basal thrust originates in weak sedimentary units, comparable to the Cretaceous
Palfris shales, of our Helvetic basin equivalent. Similarly to the PrabÃľ deformation phase in
the West and the contemporaneous Calanda phase in the East (e.g. Pfiffner, 2015), this basal
thrust aids in the transport of a laterally uniform thrust nappe in our simulations. Given the
simplifications of our model we attribute the resulting major thrust front to the formation
of basal thrust of the Wildhorn super-nappe in the West and the Glarus thrust in the East.
Continuous bulk shortening leads to shear localization at the contact between the strong layer
and the horst in the basin. Subsequently, the layer is detached and translated with help of
the weak sediments across the basement horst and onto the half-graben, resembling a thrust
sheet or nappe. We record a first noticeable deformation of the half-graben approximately 2
Ma in our simulations. This timing is in agreement with a study by Jaquet et al. (2018) which
proposes a similar time interval between the onset of the Helvetic nappes and the onset of the
basal thrusting at the Morcles half-graben. Continuing, the vertical extrusion and squeezing-
out of the half-graben sediments takes place simultaneous with stacking of the major thrust
nappe on top at about 6 to 7 Ma. The resulting nappe stack shows major structural differ-
ences in the lateral direction of the model. This along-strike variation is comparable to the
lateral structural variations in the Helvetic nappe system. At the end of our simulations we
record approximately 10 Ma for the complete process of nappe stack formation. This timing
is in broad agreement with studies of the Morcles nappe complex (e.g. Kirschner et al., 1996;
Boutoux et al., 2016) that suggest an emplacement duration of 10 to 15 Ma.
Figure 3.13 shows a comparison between geological cross-sections taken along-strike of the
Helvetic nappe systems with selected zoomed in numerical cross-sections in lateral direction
of our model. The first cross-section a) of model A.G-1 (Figure 3.13d,e,f) shows our equivalent
of the Morcles nappe at the maximum depth of the half-graben. The result here is similar to 2D
numerical studies by Bauville and Schmalholz (2015) who investigated fold nappe formation
and nappe stack formation also in application to the Helvetic nappe system, respectively.
To first order we reproduce an extruded fold nappe with a shape comparable to the Morlces
nappe, which means that its the length only slightly exceeds its height. The strong layer is still
connected to the adjacent basement horst and the deformed internal weak units, highlighted
by the green passive marker lines, resembles a recumbent fold. The inner part of the fold nappe
roots into a steep cusp, analogues to the Chamonix zone between the Aiguilles-Rouges and
Mont Blanc massif (Figure 3.13a). Moreover, we find significant amount of material from the
overburden between the thrust nappe and the fold nappe, but also below the fold nappe. The
material between the two nappes resembles the Ultrahelvetics in the geological cross-sections,
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Figure 3.13: Comparison between the geological cross-sections of the Morcles nappe, Dold-
enhorn nappe and Glarus nappe complex with sections taken from our numerical simulations.
Columnwise(left to right) 1.column: geological-cross sections, 2.column: sections from model
A.G-1, and 3.column: sections from model D.G-1. Temperatures taken from Ebert et al.
(2008). UH/NH = Ultrahelvetics/North Helvetics. CS = Cover sediments.

whereas the material below the fold nappe corresponds to undeformed cover-sequences of the
basement. Turning now to the Morcles equivalent of model B.G-1 (Figure 3.13g) we find a
significant different structure of the extruded fold nappe. There are several major differences
that are connected to the initial mechanical layering inside the half-graben. First, the fold
nappe shows a far greater length to height aspect ratio than the natural analogue. Secondly,
the strong normal limb is not in contact with the basement horst. Due to the continuous
strong layer the structure shows greater shearing at the contact between the fold and thrust
nappe.
Proceeding with cross-section e) of our numerical model A.G-1 (Figure 3.13e), we find similar-
ities with the geological cross-section of the Doldenhorn nappe (Figure 3.13b). The extruded
nappe shows similar aspect ratio and shape like the Doldenhorn nappe with the length sig-
nificantly exceeding the thickness. However, cross-section h) of model B.G-1 (Figure 3.13h)
provides an even better match with the structure of the Doldenhorn nappe. The resulting
fold nappe shows a comparable shape and size. Due to the initial rheological layering this
model forms a thin thrust sheet on top of the fold nappe. We interpret this thrust sheet as
an analogue to the Gellihorn and Jägerchrütz nappes, which are essentially thin thrust sheets
on top of the Doldenhorn nappe (Pfiffner et al., 2011).
Finally the numerical cross-sections without half-graben (Figure 3.13f,i) exhibit a similar dis-
placement and shape for both of our models. The finding suggests that underlying nappe
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formation in HG and minor variations in the vertical rheological layering has a negligible
effect on the horizontal displacement parallel to the shortening direction along strike of the
major thrust sheet. To first order, this structure is comparable to the Glarus nappe complex
displayed in Figure 3.13c.

Figure 3.14: Comparison between finite strain from the Morcles nappe (taken fromBastida
et al. (2014); after Casey and Dietrich (1997) modified from Dietrich and Casey (1989), green
strain ellipses from Ramsay and Huber (1987)) and selected finite strain ellipses from model
A.G-1 and model D.G-1.

Additionally, we also find a first order agreement when comparing the finite strain pattern
between field measurements from the Morcles nappe and our numerically calculated finite
strain (Figure 3.14). Generally, the aspect ratio of the strain ellipses increases towards the
bottom and root zone of the nappe, indicating significant shearing. Furthermore, we observe
less deformed ellipses in the top, normal limb of our Morcles equivalent with ellipses of higher
aspect ratios (Figure 3.14b, d) near the contact between the fold nappe and the thrust nappe.
Figure 3.14b shows a better match for the finite strain pattern in the upper limb, whereas
Figure 3.14c displays a better fit for the contact zone. We also observe a subhorizontal
orientation of the major finite strain axis towards the root zone of the nappe (Figure 3.14c).
Numerical finite strain computation is a useful tool to compare numerical models with natural
observations. The comparison can efficiently be used to recognize where the numerical model
requires adaptation to the real data.
However, certain first order features of the Helvetic nappe system we could not reproduce with
our models. The first shortcoming is the protrusion and shearing out of the strong layer of the
half-graben. In 3D view this process is expressed as a thin carpet in front of the fold nappe
(e.g. Figure 3.4c,f), resembling a nose-like feature in the 2D cross-sections. Shearing out of
the layer inhibits the formation of an outer recumbent limb as observed in the Morcles nappe
(Ramsay et al., 1983). Here, our results are in contrast with previous 2D thermo-mechanical
numerical modelling results by Bauville and Schmalholz (2015), who successfully simulated the
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formation of a recumbent fold limb during half-graben inversion. One of the main reasons for
this deviation lies in the viscosity ratio (ηR) between overlying strong layer (ηL) and the half-
graben infill (ηI). In the simulations of Bauville and Schmalholz (2015), both the layer and the
infill have the same viscosity (ηR = 1), whereas our simulations, using different creep flow laws
for each units, show that the infill viscosity ηI can be up to three orders of magnitude smaller
than the strong layer viscosity ηL (ηR = 1000). Secondly, temperature estimates from several
authors (e.g. Kirschner et al., 1999; Herwegh and Pfiffner, 2005; Ebert et al., 2007b) indicate
lower peak temperature conditions along the different basal nappe contacts in comparison with
our simulations. For example, Ebert et al. (2008) reports increasing temperatures of 270◦C

to 390◦C from the front of the Morcles nappe to its root. Here we find a close match with
root zone temperatures, whereas our front part of the fold nappe exhibits temperatures in the
range of 370◦C (e.g. Figure 3.13d). Similar temperature comparisons between our Doldenhorn
and Glarus thrust complex equivalents show the same trend (see Figure 3.13). Moreover, the
cross-sections of model B.G-1 exhibit slightly higher temperatures inside the core of the fold
nappe, in consequence of the significantly thicker thrust nappe above. In summary our models
show a good match for the root zone temperatures, but higher temperatures at the front of the
nappe complexes compared to natural observations. Ebert et al., 2008 suggests a horizontal
temperature gradient of approximately 6◦C/km along the nappe interface for all three cross-
sections. We only register a horizontal gradient of 2◦C/km along the basal thrust surfaces.
Additional constraints are given by Leloup et al. (2005) and Boutoux et al. (2016) who indicate
peak metamorphic temperatures of 320◦C for the Aiguilles-Rouges massif and 400◦C for the
Mont Blanc massif. Despite these discrepancies our model conforms to the temperature trends
of natural observations, showing increasing temperatures from the front to the root zones of
the nappes. Further improvements could be made by adjusting the initial geothermal gradient
or by modifying the initial geometrical configuration. For the latter case, primarily, Nibourel
et al. (2018) demonstrate that the Aar massif experienced a 10−15◦ southwards dip in relation
to the isotherms. Essentially such a configuration would, for example, place the half-graben
system further up in the isotherms. This adjustment would lead to cooler temperatures in
the front of the nappe and greater horizontal temperature gradients during and after nappe
emplacement. In terms of large scale structural components our simulations lack the formation
of parasitic folds, smaller imbricate thrusts or the detachment between different levels inside
the major thrust complex. Modelling of such smaller-scale features would require (i) a higher
numerical resolution in combination with (ii) a drastically more complex rheologically layering.
In addition, field observations indicate the existence of several large scale shear zones in the
Mont Blanc and Aar massif. Our models do not reproduce such features, mainly because of our
mechanically homogeneous basement unit which represents a large simplification compared to
the natural complexities. There are, for example, several studies regarding the Aar massif that
correlate the formation of ductile and brittle shear zones to inherited pre-alpine heterogeneities
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( e.g. Berger et al., 2017; Mair et al., 2018). In particular, structures such as foliations, mafic
dykes or folds present mechanical anisotropies that can culminate in localized strain and shear
zones (e.g. Bell, 1978; Carreras et al., 2010; Herwegh et al., 2017; Wehrens et al., 2017).
Finally, our model does not fully resolve the large scale kinematics and intricate deformational
history of the Helvetic nappe system. For example, reconstructions between the SW and the
NE of the Helvetics show a differential horizontal displacement of the thrust nappes of up to
50 km ( e.g. Pfiffner, 2015). Here, variations are likely due to the initial basement geometry
and convergence of subducting plate e.g. obliquity of the plate which have not been taken
into account in our model.

3.5.3 Comparing geological with modelled cross sections: The Morcles
nappe

Figure 3.15: Comparison between selected numerical cross-sections and simplified geolog-
ical cross-sections. Row-wise(top to bottom) a) Simplified Morcles section modified after
Pfiffner (2015) (indicated in the map of Figure 3.1 with the dashed profile line) and d) section
from model D.G-1. b) Simplified Morcles modified section after Escher et al. (1993) and e)
cross-section model F.G-1. c) Simplified section modified after Epard (1990) and f) section
from model A.G-2. UH/NH = Ultrahelvetics/North Helvetics. CS = Cover sediments.
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The method of cross-sectional balancing and reconstruction is one of the major tools to un-
derstand the evolution of fold-and-thrust belts on different structural scales (e.g. Dahlstrom,
1969; Price, 1981; Baby et al., 1992; Massoli et al., 2006; Alavi, 2007). Even though some
authors suggest an underlying bias of such techniques due to different simplifications (Butler
et al., 2019), geological cross-sections themselves are indispensable. In addition, they are use-
ful for comparisons with numerical models that aim to decipher the mechanical processes and
material properties that lead to the formation of geological structures. However, caution is
advised when comparing sections of numerical models with geological cross section. The large
three-dimensional variability in geological structures and structures generated in numerical
models such as in this study should be a warning sign when trying to fit one observation
with one model. Hence, in this section we show and compare three different geological cross
sections of the Morcles nappe with our numerical results (Figure 3.15). The cross sections
are from different locations along strike of the Morcles nappe and highlight, together with our
numerical cross section, the complexity of geological reconstruction. We start with a compar-
ison of a geological cross section of the Morcles nappe near the Sanetschpass and a section
of model B.G-1 (Figure 3.15a and d). Here, the geological cross section shows a relatively
thin Morcles nappe with a sheared lower and upper limb. This observation is similar to our
cross section which exhibits an elongated sheared fold nappe with sheared lower and upper
limbs. Moreover, in this model we observe a significant deformation of the basement at the
contact of the cover sediments which is in agreement with microstructural observations that
suggest a brittle-ductile emplacement of the Morcles nappe (Ebert et al., 2007a; Austin et al.,
2008). Figure 3.15b shows a Morcles cross section of Escher et al. (1993) from further South-
west in the nappe system. In this case, model D.G-1 (Figure 3.15e) provides a better first
order fit than B.G-1. Our fold nappe exhibits a strongly sheared recumbent limb that still
reaches into the root zone of the nappe. Furthermore, the strong layer is still connected to
the basement horst and is in contact with the thrust nappe where it is sheared, displaying a
similar saw-tooth shape as observed in the geological cross section. Also, the overall aspect
ratio is closer to the geological cross-section than in model B.G-1. In contrast, both of the
previous numerical sections do not match the observations for the Morcles nappe even further
Southwest in France near Megève (Figure 3.15c). Here, the sediments are rather squeezed out
of the half-graben due to a greater thickness of shales instead of forming a recumbent limb
(Epard, 1990). Therefore, we suggest that a cross-section of model A.G-2 Figure (3.15f) shows
a closer match to the geological structure. In summary, different cross sections of the Morcles
nappe can be compared to different numerical models with different initial conditions regard-
ing the geometry or rheology. Hence, it is a challenge to capture the evolution of 3D geological
structures with a single 3D model, because of the geometrical and rheological uncertainties.
Further, this also implies that one has to be even more cautious in the application of a single
2D model to the formation of 3D fold-and-thrust belts and geological structures in general.



3.6. CONCLUSIONS 93

3.6 Conclusions

The presented 3D numerical simulations show the formation of a fold-and-thrust belt result-
ing from the wedge-type deformation of the upper crustal region of a passive margin. The
deformed crustal region is characterized by a half-graben with laterally varying thickness and
a horst separating the half-graben from a laterally homogeneous basin. The numerical sim-
ulations show the formation of tectonic nappes with horizontal displacement of several tens
of kilometers and with geometries ranging from fold nappe to thrust nappe. The formation
of the sedimentary nappes results from the shearing-off and detachment of sedimentary units
form the half-graben, horst and basin. Nappe detachment, transport and stacking occur for
standard viscoplastic rheological models without any applied rheological, or dynamic, soften-
ing mechanisms. Nappe formation and their geometry are controlled by the initial basement
geometry and the strength contrast between basement and cover sediments and the strength
contrast within the sediments. The results indicate the fundamental importance of tectoni-
cally inherited structures on the evolution of fold-and-thrust belts. Consequently, the results
emphasize the importance of geological field work and reconstructions of the initial geological
situation before fold-and-thrust belt formation.
Modelled nappe-like structures generated from sediments from the half-graben with laterally
varying depth show that the nappe geometry strongly depends on the amount of sediments
available for nappe formation. The calculation of 3D finite strain shows that the deformation
during the formation of nappes originating from the half-graben largely deviates from a 2D
plane strain deformation. Nappes originating from the laterally homogeneous basin show a
more or less laterally straight displacement front indicating that the laterally heterogeneous
deformation during nappe formation in the half-graben region does not considerably affect the
overthrusting nappe.
The applied strength of the basement has a strong control on the resulting nappe geometry. A
relatively stronger basement favors the formation of nappes resembling a thrust nappe while
reduced basement strength (due to a stress cut-off at 40 MPa) favors the formation of fold
nappes.
The initial model configuration was based on geological reconstructions of the Helvetic nappe
system. The modelled 3D structures show several first-order similarities with this nappe
system: (1) Formation of a nappe resulting from the closure of a half-graben. Depending
on the model configuration, this nappe can be more similar to a fold or a thrust nappe.
The modelled nappes are applicable to the Morcles and Doldenhorn nappes of the Helvetic
nappe system. (2) Formation of a laterally homogeneous thrust nappe which overthrusts
and is stacked above the underlying nappe resulting from half-graben closure. This nappe
is applicable to the Wildhorn and Glarus nappe. (3) The detachment of minor sediment
units originally located on the horst and their emplacement between the upper thrust nappe
and the underlying nappe from the half-graben. These minor nappes are applicable to the
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Ardon, Jägerchrütz and Gellihorn nappes. (4) The entrapment of weak sediments, which were
originally situated structurally above the sediments eventually forming nappes, between the
two major nappes. These entrapped sediments are applicable to the Ultrahelvetic units. (5)
The modelled temperatures, temperature gradients and finite strain gradients are in overall
agreement with data from the Helvetic nappe system.
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4.1 Summary

Chapter 2

We presented the 3D numerical models of viscous folding and over-thrusting of a strong layer
that is embedded inside a weak matrix is initiated along a lateral pre-existing weak zone under
pure shear shortening. All simulations indicate that folding transitions to over-thrusting, or
vice-versa, depending on the detachment horizon thickness below the strong layer. Hence,
our models support and extend the previous results of 2D numerical models by Jaquet et al.
(2014). Furthermore, our results support the hypothesis by Pfiffner (1993) who used the ratio
between incompetent and competent layers in the mechanical stratigraphy to infer the mode
of deformation along-strike of the Helvetic nappe system of the Western Swiss Alps. Thus,
we are able to relate our simple viscous model to geological field observations, which likely
occurred under more complex brittle-ductile conditions (Pfiffner, 1993 ). Our results show
that the transition between viscous folding and over-thrusting culminates in a smooth cusp
in the transition between folding and thrusting. In case of a orthogonal weak zone in regards
to the compressional direction we do not observe significant strike slip movement between
the two domains of the models. Strike-slip in the range of 2− 6% occurs only in simulations
with an oblique weak zone, suggesting that the orientation to the velocity boundary is of
major importance. The implementation of 3D finite strain computation and tracing allows us
to quantify several aspects of the transition between the two deformation modes. Here, we
employ the Nádai strain εS and the Lode’s ratio ν. Both values are used to characterize the
the strain pattern along the limbs of the fold and the thrust inside a Hsu diagram. The Hsu
diagram shows overall smaller strains in the folding domain that increase towards the thrusting
domain. In particular ν values show that the transition zone is marked by a strain ellipsoid that
is in the flattening regime. Cross-sections along the fold limbs also display an increase of strain
magnitude in the direction of the thrusting domain. Henceforth, the lateral εS gradient reflects
gradients in the detachment horizon thickness of the model configuration. Higher detachment
horizon thickness gradients culminate a higher εS gradient. Additionally, strong gradients
in the detachment horizon generate higher peak strain values at the end of the flat-ramp
geometry towards the thrusting domain. Similarly ν shows a drop from positive ,flattening,
values to approximately values of zero when transitioning from folding to thrusting. Hence
both values could theoretically be used to locate mechanical discontinuities in the stratigraphy
or basement structure by finite strain analysis of cover-sequences. Furthermore we show that
statistical analysis with the aid of rosediagrams is a useful tool to determine the bulk values
for the 3D orientation of finite strain in complex structures such as folds. The dip angle of the
principal axis gradually changes from the folding end to the thrusting. These results could
also potentially be used to help in the interpretation of field measurements.
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Chapter 3

Lateral and vertical variations in the three-dimensional geometry of inherited structures of
passive margins, such as basins and half-grabens, present a significant mechanical heterogene-
ity that exerts a strong control on the structural evolution during compressional tectonics.
Basement highs or graben horsts have a significant impact on plastic strain localization. Our
models show that thrust nappe formation is initiated at the contact between the relatively
strong sedimentary layer and basement unit. The underlying weak units aid in the detachment
and sub-horizontal transport of a coherent thrust sheet across the basement and on top of
the half-graben. This half-graben undergoes ductile closer with progressive bulk shortening.
Moreover, the closure of the half-graben results in the extrusion of the half-graben infill which
exhibits a structure similar to a fold nappe. The dimensions of this fold nappe change in
lateral direction of the model depending on the half-graben structure (depth). Hence, we are
able simulate 3D nappe stacking of a thrust nappe on top of a fold nappe. The structure of the
fold nappe changes laterally, but has no significant effect on the horizontal propagation of the
thrust sheet/nappe. Therefore, it is likely that differences in horizontal displacement orthogo-
nal to the transport direction of thrust nappes is largely controlled by the initial geometry, for
example, the basin structure, or basin orientation in regards to the velocity boundary. Several
of our simulations show a first order agreement with natural observations from the Helvetic
nappe system. We are able to reproduce different fold nappes in lateral direction of the model
similar to the structures observed along-strike of the Helvetic nappe system. Depending on
the depth and length of the half-graben we either observe a structure resembling the Morcles
nappe or the Doldenhorn nappe. In the domain without half-graben we observe the emplace-
ment of a thrust nappe analogues to the Glarus nappe complex of the Eastern Swiss Alps.
In general, our nappe stack is formed during approximately 10 Ma of convergence which is in
good agreement with natural data. Furthermore, our thermal structure is also close to condi-
tions during the emplacement of the Helvetic nappes. There are some key features that we do
not capture with our standard rheology, such as the strongly overturned limb of the Morcles
nappe. Here our configuration employing a pressure-insensitive von Mises yield strength that
mimicks a semi-brittle deformation, or a low temperature plasticity aids in the development of
a overturned limb that is closer to the natural observations of the Morcles nappe. Altogether
our results point therefore to a brittle-ductile deformation mechanism which is agreement with
macro and micro structural observations.

4.2 Conclusion and Outlook

Inherited structures exert a strong control on the structural evolution of geological systems. In
Chapter 2 we presented the impact of lateral variations in the mechanical stratigraphy on the
interaction between folding and thrusting. One further step in this direction would be the use
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self consistent shear zone formation instead of a pre-existing weak zone. In order to achieve
self-consistency future work should ideally apply a visco-elasto-plastic rheology together with
a temperature dependent rheology. A model like this might generate increased torque or strike
slip between the two modes of deformation resulting in plastic failure. Here, it would also be of
interest how the shear zone is formed. For example, in our models the shear zone was initially
symmetric, however, in case of a more complex model the shear zone might not be initiated
everywhere at the same time or place. Furthermore, this kind of model could also be used
to investigate the formation of fractures across the fold. Additionally, similar configurations
could be applied to the modelling of basement thrusts via underlying basement ramps. Such
ramps are often proposed but seldom modeled ( e.g. Burkhard, 1988; Allerton, 1994; Zerlauth
et al., 2014). Continuing, the presented model in Chapter 3 brings some additional insight into
three dimensional nappe formation. In perspective of the Helvetic nappe systems next steps
could be taken to gain additional knowledge on the differential displacement (e.g. up to 50
km Schmid, 1975) between the southwest and the northeast of the system. This would require
a significant altered structure of the basin from which the thrusts originate, or altogether
a different model boundary condition. This new boundary condition could, for example,
comprise a fixed oblique indenter, similar to sandbox models. Additionally, high resolution
2D numerical models should be used to investigate the effect of a brittle-ductile deformation
regime on the fold nappe formation. In this context our results show that a combination of
brittle deformation in the basement and ductile flow of the sediments produces the closest
match to the observed nappe structures. High resolution 2D numerical models would also
allow for additional rheological layering and the implementation of mechanical anisotropies
inside the basement. Hence, one other step could also be the implementation of mechanical
anisotropies in the basement, such as folds, foliations or pre-existing faults, which also played
a crucial role during the uplift of the basement massifs (e.g. Herwegh et al., 2017).
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Supplementary A: 2D and 3D finite strain Matlab code

Following section contains two supplementary Matlab codes for 2D finite strain (Listing 5.1)
and 3D finite strain calculation (Listing 5.2) under pure and simple shear deformation. The
codes were created to demonstrate and exemplify the finite strain computation in Chapter 2.
Additionally we also provide two figures displaying the result of a 2D (Figure 5.1) and 3D
calculation (Figure 5.2).

Figure 5.1: Final state of the deformation of a unit circle under a combination of pure and
simple shear resulting in the pictured 2D finite strain ellipse . The result was obtained with
the 2D finite strain matlab code below.

Listing 5.1: Matlab code for 2D finite strain calculation
1 % Plot 2D f i n i t e s t r a i n e l l i p s e : plane s t ra in , s imple shear
2 % f o r a homogeneous deformation
3 c l e a r a l l , c l o s e a l l
4 %% Input
5 % ===============================
6 ps_rate = −2; % Pure shear s t r a i n ra t e
7 ss_rate = 0 ; % Simple shear s t r a i n ra t e
8 nt = 1000; % Number o f time s t ep s
9 dt = 0 . 0 1 ; % Time increment

10 %% Pre−Proces s ing
11 % ===============================
12 % i n i t i a l i z e g r id
13 X = [ − 1 : 0 . 2 : 1 ] ; % Spec i f y coord inate range X
14 Y = X; % Spec i f y coord inate range Y
15 [X2D, Y2D] = meshgrid (X, Y) ; % Create 2D coord inate system
16 X2D_ini = X2D; % Store X2D matrix
17 Y2D_ini = Y2D; % Store Y2D matrix
18 % I n i t i a l i z e marker c i r c l e
19 theta = l i n spa c e (0 ,2∗ pi , 100 ) ; % I n i t a l i z e theta angle
20 Xc = cos ( theta ) ; % I n i t a l i z e X coo rd ina t e s
21 Yc = s in ( theta ) ; % I n i t a l i z e Y coo rd ina t e s
22 XYc_ini = [Xc ; Yc ] ; % Relate X to Y
23 XYc = XYc_ini ; % Store XY coord ina t e s
24 F = [1 0 ; 0 1 ] ; % I n i t i a l deformation grad i ent t enso r
25 time = 0 ; % I n i t i a l time
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26
27
28 %% Time loop
29 % ===============================
30 f o r t s t ep = 1 :1
31 time = time+dt ;
32
33 i f t s t ep > 10 && ts t ep < 40 , ss_rate = −2; ps_rate = 0 ; % Change deformation
34 e l s e i f t s t ep > 40 , ss_rate = 1 ; ps_rate = 1 ; end
35 %% Calcu la te Ve loc i ty F i e ld and Update Coordinates
36 % Get Deformation matr i ces
37 PSmat = repmat ( ps_rate , s i z e (XYc) ) ; % matrix to apply pure shear
38 PSmat ( 2 , : ) = −PSmat ( 2 , : ) ;
39 SSmat = repmat ( ss_rate , s i z e (XYc) ) ; % matrix to apply s imple shear
40 SSmat ( 2 , : ) = 0 ;
41 % Deform gr id
42 VX_ps = X2D.∗ ps_rate ; % Ve loc i ty due to pure shear deformation f o r X
43 VY_ps = −Y2D.∗ ps_rate ; % Ve loc i ty due to pure shear deformation f o r Y

"
44 VX_ss = Y2D.∗ ss_rate ; % Ve loc i ty due to s imple shear deformation f o r X
45 VY_ss = ze ro s ( s i z e (VX_ss) ) ; % Ve loc i ty due to s imple shear deformation f o r Y
46 VX_tot = VX_ss+VX_ps ; % Total v e l o c i t y f o r X
47 VY_tot = VY_ss+VY_ps ; % Total v e l o c i t y f o r Y
48 X2D = X2D + VX_tot∗dt ; % Add deformation to g r id f o r X
49 Y2D = Y2D + VY_tot∗dt ; % Add deformation to g r id f o r Y
50
51 % Deform the marker c i r c l e
52 VXYc_ps = XYc.∗PSmat ; % Ve loc i ty matrix f o r pure shear deformation
53 VXYc_ss = f l i p ud (XYc) .∗ SSmat ; % Ve loc i ty matrix f o r s imple shear deformation
54 VXYc_tot = VXYc_ps + VXYc_ss ; % Total v e l o c i t y matrix
55 XYc = XYc + VXYc_tot .∗ dt ; % Add deformation to XY
56
57 %% Calcu la te the P r i n c i p i a l S t ra in Axes
58 % ===============================
59 % Calcu la te f i n i t e s t r a i n e l l i p s e
60 D = [1+dt∗ps_rate dt∗ ss_rate ; dt ∗0 1−dt∗ps_rate ] ; % incrementa l t rans fo rmat ion

tenso r
61 F = D∗F; % update f i n i t e t rans fo rmat ion

tenso r
62 XY_strain_el = F ∗ XYc_ini ;
63 B = F∗F ’ ; % Lef t Cauchy−Green tenso r
64 [BV,BE] = e i g s (B) ; % Spec t ra l decomposit ion
65 VE = diag ( sq r t ( diag (BE) ) ) ; % Square roo t s o f e i g enva lue s
66 FS = BV∗VE; % Sca l e e i g enve c t o r s with e i g enva lu e s
67 psax = FS ( : , 2 ) ; % F in i t e s t r a i n ax i s 1
68 psay = FS ( : , 1 ) ; % F in i t e s t r a i n ax i s 2
69 %% Post−proc e s s i ng
70 % ===============================
71 c l f ; hold on
72 h = p lo t (X2D, Y2D, ’−k ’ ,X2D’ , Y2D’ , ’−k ’ ) ; % Plot g r id
73 s e t ( gca , ’ Color ’ , [ 1 1 1 ] )
74 s e t ( gca , ’ Fonts i ze ’ ,12)
75
76 ve l = quiver (X2D,Y2D,VX_tot ,VY_tot , ’b ’ ) ; % Plot v e l o c i t y

vector f i e l d
77
78 a1 = quiver (0 ,0 , psax (1) , psax (2) , ’ c o l o r ’ , [ 0 . 5 0 0 ] , ’ l i n ew idth ’ ,5 , ’ AutoScale ’ , ’ o f f ’ ) ;
79 a2 = quiver (0 ,0 , psay (1) , psay (2) , ’ c o l o r ’ , [ 0 0 .5 0 ] , ’ l i n ew idth ’ ,5 , ’ AutoScale ’ , ’ o f f ’ ) ;
80 qu iver (0 ,0 ,− psax (1) ,−psax (2) , ’ c o l o r ’ , [ 0 . 5 0 0 ] , ’ l i n ew idth ’ ,5 , ’ AutoScale ’ , ’ o f f ’ ) ;
81 qu iver (0 ,0 ,− psay (1) ,−psay (2) , ’ c o l o r ’ , [ 0 0 .5 0 ] , ’ l i n ew idth ’ ,5 , ’ AutoScale ’ , ’ o f f ’ ) ;
82
83 comp_el = p lo t ( XY_strain_el ( 1 , : ) , XY_strain_el ( 2 , : ) , ’ r− ’ , ’ l i n ew idth ’ ,5 ) ; % Plot c a l cu l a t ed

s t r a i n e l l i p s e % p lo t imposed e l l i p s e
84 pass_el = p lo t (XYc( 1 , : ) , XYc( 2 , : ) , ’−−k ’ , ’ l i n ew idth ’ ,5 ) ; % Plot pa s s i v e marker

s t r a i n e l l i p s e
85 i f ps_rate == 0 && ss_rate == 0
86 a = ’ no deformation ’ ;
87 e l s e i f ps_rate ~= 0 && ss_rate == 0
88 a = ’ pure shear ’ ;
89 e l s e i f ps_rate == 0 && ss_rate ~= 0
90 a = ’ s imple shear ’ ;
91 e l s e i f ps_rate ~= 0 && ss_rate ~= 0
92 a = ’ pure & simple shear ’ ;
93 end
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94 t i t l e ( [ ’ Deformation : ’ , a , ’ | time : ’ , num2str ( time ) ] )
95 ax i s equal
96 ax i s ([−3 3 −1.5 1 . 5 ] ) ;
97 ax i s on
98 y l ab e l ( ’Y ’ ) , x l ab e l ( ’X ’ )
99 i f sum( abs ( psax ) ) < sum( abs ( psay ) ) % f ind major and minor ax i s to update legend

100 s = a2 ; a2 = a1 ; a1 = s ;
101 end
102 legend ( [ comp_el , pass_el , a1 , a2 , v e l ] , ’Computed s t r a i n e l l i p s e ’ , ’ Pa s s i v e l y deformed c i r c l e ’ , ’

Major s t r a i n ax i s ’ , ’Minor s t r a i n ax i s ’ , ’ Ve loc i ty f i e l d ’ , ’ l o c a t i o n ’ , ’ nor theas t ’ )
103
104 drawnow
105 pause ( 0 . 1 )
106 end

Figure 5.2: Deformation of a unit sphere (left, after first time step) to a ellipsoid (right)
under combination of pure and simple shear. The ellipsoid inside shows the three principal
strain axis. Both deformation states were produced with the matlab code below. The figure
heading displays the current values of εs and ν.

Listing 5.2: Matlab code for 3D finite strain calculation
1 % Plot 3D f i n i t e s t r a i n e l l i p s o i d : plane s t ra in , s imple shear xy , xz , yz
2 % f o r a homogeneous deformation
3 c l e a r a l l , c l o s e a l l
4 %% Input
5 % ===============================
6 % Primary deformation mode , s e t one va r i ab l e to 1 r e s t to 0
7 plane_stra in = 0 ;
8 c o n s t r i c t i o n = 1 ;
9 f l a t t e n i n g = 0 ;

10 % Spec i f y pure shear
11 ps_rate = 1 ;
12 % Add shear deformation
13 xy_rate = 0 ;
14 xz_rate = 0 ;
15 yz_rate = 0 ;
16 % Time
17 dt = 0 . 0 1 ; % time step
18 nt = 70 ; % number o f time s t ep s
19 tsxy = 20 ;
20 t sxz = 40 ;
21
22 %% Pre−Proces s ing
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23 % ===============================
24 % I n i t i a t e sphere coo rd ina t e s
25 r = pi ∗ ( −24 :0 .5 :24) /24 ;
26 s = pi ∗ ( 0 : 0 . 5 : 2 4 ) /24 ;
27 [ theta , phi ] = meshgrid ( r , s ) ;
28 X = s in ( phi ) .∗ cos ( theta ) ;
29 Y = s in ( phi ) .∗ s i n ( theta ) ;
30 Z = cos ( phi ) ;
31 % Save i n i t i a l c oo rd ina t e s
32 XYZ_ini = [X( : ) ’ ;Y( : ) ’ ; Z ( : ) ’ ] ;
33
34 % I n i t i a t e deformation grad i ent t enso r
35 Fxx = 1 ; Fxy = 0 ; Fxz = 0 ;
36 Fyx = 0 ; Fyy = 1 ; Fyz = 0 ;
37 Fzx = 0 ; Fzy = 0 ; Fzz = 1 ;
38
39 F = [ Fxx Fxy Fxz ; . . .
40 Fyx Fyy Fyz ; . . .
41 Fzx Fzy Fzz ] ;
42 % I n i t i a t e add i t i ona l parameters
43 nadai_stra in = 0 ;
44 lode s_rat i o = 0 ;
45 time = 0 ;
46
47
48 %% Time loop
49 % ===============================
50 f o r i t = 1 : nt
51 %% add shear deformation a f t e r c e r t a i n time l im i t
52 i f i t > tsxy , xy_rate = 3 . 0 ; end
53 i f i t > tsxz , xz_rate = −1.0; xy_rate = 0 ; end
54 %% Check deformation mode
55 i f sum( abs ( [ xy_rate , xz_rate , yz_rate ] ) ) ~= 0 , shear = ’ a c t i v e ’ ;
56 e l s e shear = ’ none ’ ; end
57 i f p lane_stra in == 1
58 ps_rateX = ps_rate ;
59 ps_rateY = ps_rate ;
60 ps_rateZ = 0 ;
61 de f = ’ plane s t r a i n ’ ;
62 e l s e i f c o n s t r i c t i o n == 1
63 ps_rateX = −0.5∗ps_rate ;
64 ps_rateY = 0.5∗ ps_rate ;
65 ps_rateZ = ps_rate ;
66 de f = ’ c o n s t r i c t i o n ’ ;
67 e l s e i f f l a t t e n i n g == 1
68 ps_rateX = 0.5∗ ps_rate ;
69 ps_rateY = ps_rate ;
70 ps_rateZ = 0.5∗ ps_rate ;
71 de f = ’ f l a t t e n i n g ’ ;
72 e l s e d i sp ( ’ p l a s e d e f i n e deformation mode ’ ) , break ;
73 end
74 %% Calcu la te Ve loc i ty F i e ld and Update Coordinates o f E l l i p s o i d
75 VXr_ps = X.∗ ps_rateX ; % Ve loc i ty due to pure shear deformation
76 VYr_ps = −Y.∗ ps_rateY ; % Ve loc i ty due to pure shear deformation
77 VZr_ps = Z.∗ ps_rateZ ; % Ve loc i ty due to pure shear deformation
78
79 VXr_xy = Y.∗ xy_rate ; % Ve loc i ty due to s imple shear deformation
80 VXr_xz = Z.∗ xz_rate ; % Ve loc i ty due to s imple shear deformation
81
82 VYr_xy = ze ro s ( s i z e (VXr_xy) ) ; % Ve loc i ty due to s imple shear deformation
83 VYr_yz = Z.∗ yz_rate ; % Ve loc i ty due to s imple shear deformation
84
85 VZr_xz = ze ro s ( s i z e (VXr_xy) ) ; % Ve loc i ty due to s imple shear deformation
86 VZr_yz = ze ro s ( s i z e (VXr_xy) ) ; % Ve loc i ty due to s imple shear deformation
87
88 VXr_tot = VXr_ps + VXr_xy + VXr_xz ; % Total v e l o c i t y in X
89 VYr_tot = VYr_xy + VYr_ps + VYr_yz ; % Total v e l o c i t y in Y
90 VZr_tot = VZr_xz + VZr_yz + VZr_ps ; % Total v e l o c i t y in Z
91
92 X = X + VXr_tot∗dt ; % Add deformation to e l l i p s o i d
93 Y = Y + VYr_tot∗dt ; % Add deformation to e l l i p s o i d
94 Z = Z + VZr_tot∗dt ; % Add deformation to e l l i p s o i d
95
96 %% ca l c u l a t e deformation grad i ent t enso r
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97 D = [1+dt∗ps_rateX dt∗xy_rate dt∗xz_rate ; . . .
98 0 1−dt∗ps_rateY dt∗yz_rate ; . . .
99 0 0 1+dt∗ps_rateZ ] ; % Incrementa l

t rans fo rmat ion tensor
100 F = D∗F; % Update deformation

tenso r
101
102 % Apply deformation grad i ent to i n i t i a l sphere
103 XYZ_strain_el = F ∗ XYZ_ini ;
104 XFS = reshape (XYZ_strain_el ( 1 , : ) , s i z e (X, 1 ) , s i z e (X, 2 ) ) ;
105 YFS = reshape (XYZ_strain_el ( 2 , : ) , s i z e (X, 1 ) , s i z e (X, 2 ) ) ;
106 ZFS = reshape (XYZ_strain_el ( 3 , : ) , s i z e (X, 1 ) , s i z e (X, 2 ) ) ;
107 % Safety check f o r d i sc repancy between deformation by v e l o c i t y f i e l d
108 % and deformation grad i ent t enso r c a l c u l a t i o n
109 errVF = [max(max(max( abs ( (X( : )−XFS( : ) ) ) ) , max( abs ( (Y( : )−YFS( : ) ) ) ) ) , max( abs ( (Z ( : )−ZFS ( : )

) ) ) ) ] ;
110
111 % Calcu la te p r i n c i p a l ax i s l ength and d i r e c t i o n v ia po la r
112 % decomposit ion
113 B = F∗F ’ ; % Lef t Cauchy−Green tensor
114 [BV,BE] = e i g s (B) ; % Spec t ra l decomposit ion
115 VE = diag ( sq r t ( diag (BE) ) ) ; % Square roo t s o f e i g enva lue s
116 FS = BV∗VE; % Sca l e e i g enve c t o r s with e i g enva lu e s
117 % Compute lode ’ s ra t i o , nadai s t r a i n
118 e = so r t ( diag (VE) , ’ descend ’ ) ; % p r i n c i p a l s t r a i n s
119 nadai_stra in = (1/ sq r t (3 ) ) ∗ sq r t ( ( l og ( e (1) ) − l og ( e (2 ) ) )^2 . . .
120 + ( log ( e (1 ) ) − l og ( e (3 ) ) )^2 + . . .
121 ( log ( e (3) ) − l og ( e (1 ) ) )^2 ) ;
122
123 lode s_rat i o = (2∗ l og ( e (2 ) ) − l og ( e (1 ) ) − l og ( e (3 ) ) ) . . .
124 /( log ( e (1 ) ) − l og ( e (3 ) ) ) ;
125
126 %% Post−proc e s s i ng
127 c l f , hold on
128 view ( [ 4 5 45 ] )
129 % Plot e l l i p s o i d
130 h = su r f (X,Y,Z) ;
131 s e t (h , ’ FaceColor ’ , [ 0 0 .8 0 . 6 ] , ’ FaceAlpha ’ , 0 . 3 )
132 s e t ( gca , ’ Fonts i ze ’ ,12)
133 s e t ( gca , ’ v i s i b l e ’ , ’ on ’ ) ;
134
135 % Pr in c i pa l s t r a i n axes vector
136 [~ , idx ] = so r t (max( abs (FS) ) ) ; FSsorted = FS ( : , idx ) ; % so r t matrix to keep c o l o r s

f i x ed
137 psa_major = FSsorted ( : , 3 ) ;
138 psa_imed = FSsorted ( : , 2 ) ;
139 psa_minor = FSsorted ( : , 1 ) ;
140 % Plot p r i n i p a l s t r a i n axes
141 quiver3 (0 ,0 ,0 , −psa_major (1) ,−psa_major (2 ) ,−psa_major (3 ) , ’ c o l o r ’ , [ 1 0 0 ] , ’ l i n ew idth ’ ,3 ,

’ AutoScale ’ , ’ o f f ’ )
142 quiver3 (0 ,0 ,0 , −psa_minor (1) ,−psa_minor (2) ,−psa_minor (3) , ’ c o l o r ’ , [ 0 0 1 ] , ’ l i n ew idth ’ ,3 ,

’ AutoScale ’ , ’ o f f ’ )
143 quiver3 (0 ,0 ,0 , −psa_imed (1) ,−psa_imed (2) ,−psa_imed (3) , ’ c o l o r ’ , [ 0 1 0 ] , ’ l i n ew idth ’ ,3 ,

’ AutoScale ’ , ’ o f f ’ )
144 quiver3 (0 ,0 , 0 , psa_major (1) , psa_major (2 ) , psa_major (3 ) , ’ c o l o r ’ , [ 1 0 0 ] , ’ l i n ew idth ’ ,3 ,

’ AutoScale ’ , ’ o f f ’ )
145 quiver3 (0 ,0 , 0 , psa_minor (1 ) , psa_minor (2) , psa_minor (3) , ’ c o l o r ’ , [ 0 0 1 ] , ’ l i n ew idth ’ ,3 ,

’ AutoScale ’ , ’ o f f ’ )
146 quiver3 (0 ,0 , 0 , psa_imed (1) , psa_imed (2) , psa_imed (3) , ’ c o l o r ’ , [ 0 1 0 ] , ’ l i n ew idth ’ ,3 ,

’ AutoScale ’ , ’ o f f ’ )
147
148 %Ve loc i ty F i e ld
149 % quiver3 (X( 1 : 1 0 : end ) ,Y( 1 : 1 0 : end ) ,Z ( 1 : 1 0 : end ) ,VXr_tot ( 1 : 1 0 : end ) ,VYr_tot ( 1 : 1 0 : end ) ,VZr_tot

( 1 : 1 0 : end ) , ’ co lo r ’ , [ 0 0 0 ] , ’ l inewidth ’ , 1 , ’ AutoScale ’ , ’ on ’ )
150
151 ax i s equal
152 y l ab e l ( ’Y ’ ) , x l ab e l ( ’X ’ ) , z l a b e l ( ’Z ’ ) ;
153 t i t l e ( { [ ’ Deformation : ’ , de f ] ; [ ’ Shear ing : ’ , shear ] ; [ ’ Nadai s t r a i n \ eps i lon_{ s } = ’ ,

num2str ( nadai_strain , 2 ) , ’ ; Lodes r a t i o \nu = ’ , num2str ( l ode s_rat i o ) ] } )
154 drawnow
155 pause ( 0 . 0 1 )
156
157 end
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Supplementary B: Benchmark

This section comprises the results of some parallel computing benchmarks with the LaMEM
code. The benchmarks were conducted in context of an successful application for computing
hours at the CSCS Swiss National Supercomputing Center in the framework of this project.
First we display the results for a strong scaling test for a 3D wedge configuration (temperature-
dependent visco-plastic rheology) similar to the one shown in Chapter 3 (Figure 5.3; Table
5.1). Here we use a fixed numerical resolution of 512x256x128 grid points. Additionally we
include a figure deciphering the relation between required resources (node hours) and real time
days to solve the model used for the strong scaling(Table 5.4). Afterwards we present a weak
scaling benchmark for a configuration of viscous falling spheres in a viscous matrix (Figure
5.5; Table 5.2). The spheres have a 1000 times higher viscosity than the matrix.
Strong scaling benchmarks are used to test and evaluate the behavior of an application by
fixing the total size of the problem and increasing the number of processors. In this case the
number of processors is given by the amount of cores/nodes that we use. In order to evaluate
the efficiency of the code we calculate the speed-up Sp:

Sp =
t1
tp

(5.1)

Where t1 is the time needed to solve the problem for the least amount of required cores/nodes
(processors) and tp is time for an increased amount of cores/nodes for the same problem
size. Ideally the speed-up would double with double the amount of cores/nodes. However
such a scenario is unrealistic and the performance degrades at one point due to, for example,
communication overhead.
Weak scaling investigates the behavior of an application by fixing the size of the problem per
processor and increasing the number of processors, in our case cores/nodes. Weak scaling
provides a measurement of parallel efficiency Ep given by:

Ep =
Sp
p

(5.2)

Where Sp is th speed-up and p the number of processors (cores/nodes). In an ideal case Ep

should be 1. However, in general for most applications Ep decreases with increasing number
of processors. In the scientifc computing a Ep > 0.5 is acceptable, which we reach for most of
our tests.
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Figure 5.3: Strong scaling for a 3D wedge configuration employing a resolution of
512x256x128 grid points using 12 CPU cores per node.

Table 5.1: Number of cores and nodes, wall time and speed-up for a 3D wedge configuration
employing a resolution of 512x256x128 gridpoints using 12 CPU cores per node.

Cores Nodes Wall time [s] Speed-up
128 11 720 1.0
256 22 368 2.0
512 43 196 3.7
1024 86 150 4.8
2048 171 139 5.2
4096 342 182 4.0

Table 5.2: Cores, nodes, resolution in gridpoints, multigrid levels, coarse grid size per core,
KSP iteration count, solution time for one timestep, parallel efficiency of the weak scaling
benchmark using a viscous falling sphere configuration using 12 CPU cores per node.

Cores Nodes Resolution MG
levels

Coarse level
per core

KSP
Iterations

Solution
time [s]

Parallel
efficiency

64 6 128x128x128 5 4x4x4 71 46.9582 1.00
128 11 256x128x128 6 1x1x1 77 57.1306 0.89
256 22 256x256x128 6 2x2x2 64 48.1605 0.87
512 43 256x256x256 6 2x2x2 76 56.6713 0.88
1024 86 512x256x256 6 1x1x1 74 65.0811 0.75
2048 171 512x512x256 6 1x1x1 78 77.3255 0.66
4096 342 512x512x512 6 1x1x1 75 121.865 0.41
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Figure 5.4: Comparison of real time hours and computing node hours for the strong scaling
test. The graph indicates that even though 1024(86) and 2048(171) cores(nodes) show a
higher total speed up the usage of 512(43) cores(nodes) provides the best ratio between
resources (node hours) spent and time needed to solve the problem.

Figure 5.5: Weak scaling for a problem size of 323 grid points per core with 12 cores
per node employing the inbuilt viscous falling spheres test of LaMEM. The configuration
consists of multiple falling spheres that have a viscosity that is 1000 times larger than the
surrounding matrix.
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